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Abstract: This paper discusses the diffusion equation with a damping term as follows

ut = div(|Dum|p−2Dum)− uq1 |Dum|p1 ,

where p > 2,m > 1, and p > p1, q1+p1m > m(p−1) > 1. By the standard Picard iteration method, a sufficient
condition is given to the existence of the singular self-similar solutions. Moreover, the paper gives a classification
for these singular self-similar solutions.
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1 Introduction

Consider the following diffusion equation

ut = div(|Dum|p−2Dum)− uq1 |Dum|p1 (1)

where −uq1 |Dum|p1 is the damping term. When q1 =
0, m = 1, p = 2, (1) is the well-known Hamilton-
Jacobi [1] equation. When p1 = 0, (1) is the well-
known evolutionary p-Laplacian equation with the ab-
sorption term. When p = 2, p1 = 0, (1) is the well-
known porous media equation with the absorption ter-
m. These equations come from many fields such as
physics, fluid mechanics et al.

For example, in the study of water infiltration
through porous media, Darcy’s linear relation

V = −K(θ)∇ϕ

satisfactorily describes flow conditions provided the
velocities are small. Here, V represents the seepage
velocity of water, θ is the volumetric moisture con-
tent, K(θ) is the hydraulic conductivity and ϕ is the
total potential, which can be expressed as the sum of
a hydrostatic potential ψ(θ) and a gravitational poten-
tial z

ϕ = ψ(θ) + z. (2)

However, (2) fails to describe the flow for large veloc-
ities. To get a more accurate description of the flow in
this case, several nonlinear versions of (2) have been
proposed. One of these versions is

V α = −K(θ)∇ϕ (3)

where α is a positive constant, cf. [2-4] and the ref-
erences therein. If it is assumed that infiltration takes
place in a horizontal column of the medium, by the
continuity equation

∂θ

∂t
+
∂V

∂x
= 0,

(2) and (3) give

∂θ

∂t
=

∂

∂x
(D(θ)p|θx|p−1θx)

with 1
p = α and D(θ) = K(θ)ψ′(θ). Choosing

D(θ) = D0θ
m−1 (cf. [5-6]), one obtains (1) with-

out the damping term −uq1 |Dum|p1 , u being the vol-
umetric moisture content.

Another example where equation (1) appears is
the one-dimensional turbulent flow of gas in a porous
medium (cf. [7]), where u stands for the density, and
the pressure is proportional to um−1; see also [8].
Typical values of p are 1 for laminar (non-turbulent)
flow and 1

2 for completely turbulent flow.
Due to its degeneracy or singularity, we are only

able to get the existence of the weak solution of (1)
in general, there are many references, for examples
[9,10] and the reference therein, to probe the existence
or the uniqueness of the weak solutions for the Cauchy
problem or the initial boundary value problem of (1).
At the same time, if p = 2, p1 = 0, there are also a
lot of papers to study the existence of the self-similar
solutions of (1) such as [11-20]. Several years ago,
[21] had studied the existence of the self-similar sin-
gular solutions of the following quasilinear parabolic
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equations with the nonlinear gradient term

ut = △u− uq1 |Du|p1 , (4)

and
ut = △um − uq1 |Du|p1 . (5)

Clearly, equation (4) is the same as equation (1) with
m = 1, p = 2, and equation (5) is just slightly differ-
ent from equation (1) with p = 2 in the format. From
these known results, if one wants to get the existence
of the self-similar solutions of the equations, which
are with the format as (1), one needs to use Picard’s
iteration method and some fixed point theory. Gen-
erally speaking, the essential difficulties come from
the following two aspects. The first difficulty comes
from that how to describes the relationship between
the exponents m, p of the function u and the expo-
nents q1, p1 of the gradient term. The second difficul-
ty comes from that how the nonlinear damping term
uq1 |Dum|p1 affects the existence of the self-similar
solution. However, one should construct some spe-
cial functions or some special inequalities to get the
self-similar solutions of (1) according to the specific
exponents m, p, p1, q1. This is the main reason of that
the authors of [21] deal with (4) and (5) into two cas-
es respectively. To the best knowledge of the author,
all the methods of the above references are not able
to deal with the case of (1) with m = 1, p ̸= 2, an
essential difficulty comes that the difference between∫
|z′(r)|p−1dr and

∫
z′(r)dr = z+ c. In other words,

all above references only need to deal with the simple
integral

∫
z′(r)dr = z+ c, while, if p ̸= 2, we should

face the more difficult integral
∫
|z′(r)|p−1dr in many

estimates we needed.
In the paper, we always assume that p > 2,m >

1, and

p > p1, q1 + p1m > m(p− 1) > 1. (6)

Let us introduce some definitions and some known re-
sults.

Definition 1 The self-similar solution means that the
solution u(x, t) of (1) has the form as

u(x, t) = t−αf(|x|t−β). (7)

By a directly calculation, we have

α =
p− p1

p(q1 + (p1 − p+ 1)m)− (1 +m−mp)(p− p1)
,

β =
q1 + (p1 − p+ 1)m

p(q1 + (p1 − p+ 1)m)− (1 +m−mp)(p− p1)
.

The condition (6) makes sure of that α > 0, β > 0.

The equation (1) can be transformed to the fol-
lowing ordinary differential equation

(|(fm)′|p−2(fm)′)′ +
n− 1

r
|(fm)′|p−2(fm)′

+βrf ′ + αf − f q1 |(fm)′|p1 = 0, (8)

with variable r = |x|t−β , and we introduce the initial
condition of (8) as

f(0) = a > 0, f ′(0) = 0. (9)

Definition 2 The singular solution u(x, t) of (1)
means that u(x, t) is continuous in RN × (0,+∞) \
(0, 0), u(x, t) ≥ 0, which is not identical to zero and
satisfies that

lim
t→0

sup
|x|>ε

u(x, t) = 0,∀ε > 0. (10)

If moreover,

lim
t→0

∫
|x|≤ε

u(x, t) = ∞, ∀ε > 0, (11)

then, u(x, t) is called a strong singular solution of (1).

By the definition of the self-similar solution, (10)
is equivalent to that

lim
t→0

r
α
β f(r) = 0, (12)

and the condition (11) is equivalent to that

lim
t→0

rnβ−α
∫
r≤εt−β

f(r)dr = 0.∀ε > 0. (13)

IfNβ < α, and the solution f of equation (8) satisfies
(12), then f ∈ L1(0,∞; rN−1dr), and so f satisfies
(13). This fact means that the function u(x, t) defined
as (7) satisfies (10) and (11), i.e. u(x, t) is a strong
singular solution of (1).

For many special cases of the equation (1), an im-
portant way to show the large time behavior of the
global solutions as t → ∞, is to compare them with
their singular self-similar solutions, one refers to the
references [22-26]. However, Papers [22-26] are base
on the assumption the uniqueness of the strong singu-
lar solutions to the corresponding equations. But, in
general, since equation (1) contains the damping term
−umq1 |∇ump1 |, the uniqueness of the solutions gen-
erally is not true, one can refer to [31]-[35]. Thus how
to compared to its singular self-similar solution, base
the large time behavior of the global solution of (1),
remains open for a long time.

However, recently, in [36], the author had based
the large time behavior of the global weak solution of
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(1) in another way. In details, we had introduced the
following definition of the global weak solution of (1)
with initial value

u(x, 0) = u0(x), x ∈ RN . (14)

Definition 3 A nonnegative function u(x, t) is called
a weak solution of (1)-(14), if u satisfies

(i)

u ∈ C(0, T ;L1(RN )) ∩ L∞(RN × (τ, T )),

um ∈ Lp
loc(0, T ;W

1,p(RN )), (15)

ut ∈ L1(RN × (τ, T )), ∀τ > 0; (16)

(ii)∫
S
[u(x, t)φt(x, t)− | Dum |p−2 Dum ·Dφ

−uq1 | Dum |p1 φ]dxdt = 0, ∀φ ∈ C1
0 (S) (17)

where S = RN × (0,∞).
(iii)

lim
t→0

∫
RN

| u(x, t)− u0(x) | dx = 0. (18)

The method of [36] bases on comparing the weak
solution of (1)-(14) to the Barenblatt-type solution of
(1) without the damping term −umq1 |∇ump1 |. It is
not difficult to verify that

Ec = t
−1
µ {[b− m(p− 1)− 1

mp
(Nµ)

−1
(p−1)

×(| x | t
−l
Nµ )

p
p−1 ]+}

p−1
m(p−1)−1

is the Barenblatt-type solution of the Cauchy problem

ut = div(| Dum |p−2 Dum), (x, t) ∈ S, (19)

u(x, 0) = cδ(x), x ∈ RN , (20)

where
µ = m(p− 1)− 1 +

p

N
),

c =

∫
RN

u0(x)dx−
∫ ∞

0

∫
RN

uq1 | Dum |p1 dxdt

and b is a constant such that

b =

∫
RN

Ec(x, t)dx,

and δ denotes the usual Dirac Delta function. In [37],
we have got the following theorems.

Theorem 4 Let m(p − 1) > 1. If Ec is a unique
solution of (19)-(20), then the solution u of (1) with
(14) satisfies

t
l
µ | u(x, t)− Ec(x, t) |→ 0, as t→ ∞, (21)

uniformly on the sets {x ∈ RN :| x |< at
−l
µN , a > 0}.

Theorem 5 Suppose m(p − 1) > 1, q1 + mp1 >
m(p− 1)− 1 and

| x |α u0(x) ≤ B, lim
|x|→∞

| x |α u0(x) = C,

where α,B and C are constants with α ∈
(0, p−p1

q1+mp1
). If the solution u(x, t) of (1) and (14) sat-

isfies
| Dum |≥ 1, (x, t) ∈ S, (22)

then
t

1
q1−1u(x, t) → C∗, as t→ ∞, (23)

uniformly on the sets

{x ∈ RN : | x |≤ at
1
β , a > 0},

where
C∗ = (

1

q1 − 1
)

1
q1−1

and

β =
p(q1 +mp1 − 1)− p1(m(p− 1)− 1)

q1 +mp1 −m(p− 1)
.

Theorem 6 Suppose 1 < m(p − 1) < q1 + mp1 <
m(p− 1) + p

N and α > p−p1
q1+mp1−m(p−1) ,

| x |α u0(x) ≤ B,

∫
RN

u0(x)dx > 0.

Assume that (1) has a unique very singular solution
U(x, t). Then the solution of (1) with (14) satisfies

t
1

q1−1 | u(x, t)− U(x, t) |→ 0, as t→ ∞, (24)

uniformly on the sets

{x ∈ RN : | x |≤ at
1
β }.

In this paper we will discuss the existence of the
singular self-similar solutions of (1) and give a com-
plete classification for them.

At the end of this introduction section, we would
like to point out that, when m(p − 1) < 1, there
is few reference on the self-similar solution in this
case, though for some special q1, p1, the well posed-
ness of the weak solution had been studied in [30].
By the way, there are many references devoted to the
existence of the self-similar solutions of the general
parabolic equation, for examples, see [27-29].
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2 The self-similar solutions and the
classification

In this section, according to the relationship between
the solutions of (8) and the initial value f(0), we will
give a classification of the solutions of (8). Base on
this classification, we can get the existence of the sin-
gular self-similar solution of (1) and the correspond-
ing classification.

Let z = fm. Then (8)-(9) are changed to

(|z′|p−2z′)′ +
n− 1

r
|z′|p−2z′ + βr(z

1
m )′

+αz
1
m − z

q1
m |z′|p1 = 0, (25)

z(0) = b = am > 0, z′(0) = 0. (26)

If we transform (25)-(26) into the equivalent integral
equation, and use the classical Picard’s iteration, for
any given b > 0, we know that there is an unique
solution f(r) = f(r, b) to (25)-(26). Assuming that
(0, R(b)) is the largest interval such that z > 0, then

z′(r) < 0, r ∈ (0, R(b)).

Moreover, we have
(i) R(a) = ∞, or
(ii) R(b) <∞, f(R(a)) = 0.

At the same time, (12) is transformed to

lim
r→∞

r
α
β z

1
m (r) = 0. (27)

Let v = |z′|p−2z′ = −|z′|p−1. Then (25) can be
rewritten as

v′ = −n− 1

r
v+

β

m
rz

1
m
−1|v|

1
p−1

−αz
1
m
+ z

q1
m |v|

p1
p−1 .

(28)
For any λ, η > 0, we set

Sλ,η = {(z, v) | 0 < z ≤ η,−λzθ < −|v|
1

p−1 < 0},

Sλ = {(z, v) | 0 < z,−λzθ < −|v|
1

p−1 < 0},
where the constant θ satisfies

1

m
< θ <

m+ 1

2m
. (29)

If we choose the constants

rλ,η =
mα

βλ
η1−θ +

mθλ

β
ηθ−

1
m ,

then, by (28) and using (29), when r > rλ,η,

v′

(zθ)′
<

−βr
mθ

z
1
m
−θ +

αz
1
m
+1−θ

θ
− |v|

1
p−1

< [− α

θλ
η1−θ − ληθ−

1
m ]z

1
m
−θ +

α

θ
z

1
m
−2θ+1

< −λ. (30)

Thus, we have the following lemma.

Lemma 7 For any λ, η > 0, there is a constant rλ,η
such that, when r > rλ,η, Sλ,η is a positive fixed set,
i.e. if (z(rλ,η), v(rλ,η)) ∈ Sλ,η, then, when r > rλ,η,
the orbit of equation (28) (z(r), v(r)) is in Sλ,η.

Supposing that (0, R(a)) is the largest interval of
the existence of the positive solution for (25), we can
prove that if R(a) = ∞, then the orbit of equation
(28) will enter in S1 at last. Otherwise, by Lemma 7,
there is a large enough constant r0, such that

−zθ(r) ≥ v(r),∀r ≥ r0,

and so, when r → ∞,

z1−θ

1− θ
≤ z1−θ(r0)

1− θ
− (r − r0) → −∞,

This is a contradiction.
Now, we define the following three sets:

A = {a > 0 | R(a) <∞, z′(R(a)) < 0},

B =

a > 0 |
the orbit (z, v) of equation (28)
will enter inS1from the point
(a, 0)


and

C = {a > 0 | R(a) <∞, z′(R(a)) = 0}.

Since for any a ∈ B, when r < R(a) but close to
R(a), the corresponding orbit of (28) satisfies that

z′ + zθ > 0,

which implies that R(a) = ∞. It means that the sets
A,B and C are not intersection each other, and more-
over, A ∪B ∪ C = (0,∞).

The main result of the present paper is the follow-
ing theorem

Theorem 8 Supposing that p > 2,m > 1, and con-
dition (6) is true, then we have

(I) If α ≤ Nβ, then R(b) = ∞, and moreover,

lim
r→∞

inf r
α
β f(r; b) > 0.

(II) If α > Nβ, then there are two open set A, B
and a closed set C, such that

A ∩B = B ∩ C = A ∩ C = ∅,
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and
A ∪B ∪ C = (0,∞).

Moreover, if 0 < b≪ 1 and (0, b) ⊂ A; if b≫ 1, and
(b,∞) ⊂ B, such that

(i) if b ∈ A, then R(b) <∞, (fm)′(R(b)) < 0;
(ii) if b ∈ B, then R(b) = ∞,

lim
r→∞

(f(r; b), f ′(r, b)) = (0, 0)

and there is a constant k(b) > 0 such that

lim
r→∞

r
α
β f(r; b) = k(b);

(iii) if b ∈ C, then R(b) <∞,

(fm)′(R(b)) = 0,

and

lim
r→R(b)

(fm−1(r, b))′ = −m− 1

m
βR(b).

3 The proof of Theorem

Lemma 9 The set A is a nonempty open set.If 0 <
a≪ 1, then (0, a) ⊂ A.

The details of the proof of the lemma can be found in
[14] and [22].

Lemma 10 If R(a) = ∞, then there is k(a) > 0,
such that limr→∞ r

α
β z

1
m = k(a).

Proof. Since f ′(r) < 0, f(r) > 0, we have

lim
r→∞

f(r) = c ≥ 0. (31)

Moreover,

0 = lim
r→∞

f(r)

r

= lim
r→∞

∫ r
0 f

′(r)dr + f(0)

r
= lim

r→∞
f ′(r), (32)

since z = fm,

lim
r→∞

z|z′|p−2 = 0. (33)

Setting

h(r) =

∫ r

R(a)
|z′|p−2z′dr+c = −

∫ ∞

r
|z′|p−2z′dr+c,

H(r) = µh(r) + r|z′|p−2z′,

where c and µ are the constants to be chosen later. By
the fact that

lim
r→∞

z′ = 0,

it is easy to know that

h′(r) = |z′|p−2z′.

We can assert that when r ≫ 1, the sign of H(r)
is fixed. Clearly,

H ′(r) = (µ+ 1)|z′|p−2z′ + r(|z′|p−2z′)′

= (µ+ 1)|z′|p−2z′ + r(−n− 1

r
|z′|p−2z′ − βr(z

1
m )′

−αz
1
m + z

q1
m |z′|p1),

= (µ+ 2− n)|z′|p−2z′ − βr2(z
1
m )′

−αrz
1
m + rz

q1
m |z′|p1 . (34)

If there is a r0 ≫ 1, H(r0) = 0, then we can choose
the constant c > 0, such that

c >
zp−1mp−1

µ(βr0)p−1
+ z(r0).

Since ∫ ∞

r
|z′|p−1dr <

∫ ∞

r
|z′|dr = z(r),

by the above choice of the constant c, we know that

βr2

m
z

1
m
−1(

µh(r0)

r0
)

1
p−1 − αr0z

1
m > 0.

By (34), we have

H ′(r0) > 0. (35)

By this fact, it is easy to know that when r ≫ 1, H(r)
is with fixed sign .

If H(r) < 0, noticing that

lim
r→∞

−r|z′|p−1∫∞
r

|z′|p−2z′dr+c

r|z′|
z

= lim
r→∞

−z|z′|p−2∫∞
r |z′|p−2z′dr + c

= 0,

then, when r ≫ 1,

µ <
−r|z′|p−1

−
∫ r
R(a) |z′|p−2z′dr + c

< −rz
′

z
,

−z′(r) > µr−1z(r), lim
r→

−z′r
z

> µ. (36)

Using equation (25) again,

(−|z′|p−1)′ = −n− 1

r
|z′|p−2z′

−βr(z
1
m )′ − αz

1
m + z

q1
m |z′|p1
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> −βr
m
z

1
m
z′

z
− αz

1
m

> (
βµ

m
− α)z

1
m := δz

1
m ,

where we have chosen the constant µ such that

δ = (
βµ

m
− α) > 0.

By this inequality, it is easy to know that there is a
constant c such that

−z′ ≥ cz
m+1
mp ,

which implies that there is r0 such that z(r0) = 0, it
contradicts R(a) = ∞. So, when r ≫ 1, H(r) > 0.
Noticing that ∫ ∞

r
|z′|p−1dr < z(r),

then

|z′|p−1

z + c
<

|z′|p−1∫ r
R(a) |z′|p−2z′dr + c

<
µ

r
.

Since z is bounded, by the above inequality, when
r ≫ 1,

|z′|p−1 <
µ(z + c)

r
<
c1
r
. (37)

Now, we differentiate the two sides of equation (25),
denote w(r) = v′ = (p− 1)|z′|p−2z′′, and denote

G(r) = −n− 1

r2
|z′|p−1 +

β

m
z

1−m
m |z′|

+
β(1−m)r

m2
z

1−2m
m z′

− α

m
z

1−m
m z′ +

q1
m
z

q1−m

m |z′|p1+1,

F (r) =
n− 1

r
+

βr

m(p− 1)
z

1
m
−1|v|

1
p−1

−1

− p1
p− 1

z
q1
m |v|

p1
p−1

−1
,

then we have

w′ + F (r)w = G(r). (38)

By (37), it is easy to know that, when r ≫ 1,

G(r) > 0, F (r) > 0.

Since z′(r) < 0, limr→∞ z′(r) = 0, there exists
r0 ≫ 1 such that z′′(r0) > 0. Then w(r0) > 0. By
(38), when r ≫ 1,

w(r) > 0, z′′(r) > 0. (39)

By equation (25),

0 < (−|z′|p−1)′ = −n− 1

r
|z′|p−2z′ − βr(z

1
m )′

−αz
1
m + z

q1
m |z′|p1 , (40)

so
lim
r→∞

(−βr(z
1
m )′ − αz

1
m ) ≥ 0,

and
r

α
β z

1
m < c, lim

r→∞
z = 0. (41)

Now, we rewrite (40) as

n− 1

r
|z′|p−2z′ + βr(z

1
m )′ + αz

1
m − z

q1
m |z′|p1 < 0

i.e.

βr(z
1
m )′+αz

1
m−n− 1

r
mp−1z(1−

1
m
)(p−1)|(z|

1
m )′|p−1

−(z
1
m )q1mp1z(1−

1
m
)p1)|(z|

1
m )′|p1 < 0. (42)

(i) If p1 ≥ 1, then

−|(z|
1
m )′|p1 ≥ −|(z|

1
m )′|.

For any ε > 0, ε ≪ 1, since z(r) → 0,∃rε ≫ 1,
when r ≥ rε, by (42),

αz
1
m + β(r + ε)(z

1
m )′ < 0,

z(r) ≤ c(r + ε)
−αm

β ≤ c1r
−αm

β , (43)

−z′(r) < µr−1z(r) ≤ c2r
−1−αm

β . (44)

(ii) If 0 < p1 < 1, q1 ≥ 1, similar to (i), when r ≥
rε ≫ 1,

−(z
1
m )q1mp1z(1−

1
m
)p1 |(z|

1
m )′|p1 > −αεz

1
m

αz
1
m + β(r + ε)(z

1
m )′ − αεz

1
m < 0,

z(r) ≤ c1r
− (α−ε)m

β , (45)

−z′(r) <≤ c2r
−1− (α−ε)m

β . (46)

(iii) If 0 < p1, q1 < 1, by q1+ p1m > m(p− 1) > 1,
from (42) and (37), we also know that (45), (46) are
true.
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Certainly, by (41), we have

0 ≤ lim
r→∞

r
α
β z

1
m = k(a) <∞. (47)

If k(a) = 0, multiplying (25) with r
α−β
β , and making

the integral from r0 to r

−
∫ r

r0
s

α−β
β d|z′|p−1 = −|z′|p−1s

α−β
β |rr0

+
α− β

β

∫ r

r0
s

α
β
−2|z′|p−1ds,

∫ r

r0

n− 1

s
|z′|p−2z′s

α
β
−1
ds =

∫ r

r0

n− 1

s
|z′|p−1s

α
β
−1
ds,

∫ r

r0
βs(z

1
m )′s

α
β
−1
ds = βs

α
β z

1
m |rr0 −α

∫ r

r0
s

α
β
−1
z

1
mds,

we obtain

−|z′|p−1s
α−β
β |rr0 +βs

α
β z

1
m |rr0

= (−α
β
)

∫ r

r0
s

α
β
−2|z′|p−1ds

+

∫ r

r0
z

q1
m |z′|p1s

α
β
−1
ds. (48)

Substituting the above integral as
∫∞
r , we obtain

|z′|p−1r
α
β − βr

α
β
+1
z

1
m

= (
α

β
−n)r

∫ ∞

r
|z′|p−1s

α
β
−2
ds+r

∫ ∞

r
z

q1
m |z′|p1s

α
β
−1
ds.

From limr→∞ r
α
β z

1
m = k(a) = 0, using L’Hospital

rule, we have

lim
r→∞

r

∫ ∞

r
|z′|p−1s

α
β
−2
ds = 0,

lim
r→∞

r

∫ ∞

r
z

q1
m |z′|p1s

α
β
−1
ds = lim

r→∞
z

q1
m |z′|p1r

α
β
+1
.

If p1 ≥ 1, from (43) and (44) we get

lim
r→∞

z
q1
m |z′|p1r

α
β
+1

= 0.

If p1 < 1,

q1 +mp1 −m(p− 1)

p− p1
< q1 +mp1 −m(p− 1)

< q1 +mp1 − 1,

α

β
(q1 +mp1 − 1) > 1

by (45) and (46) we have

z
q1
m |z′|p1r

α
β
+1

< r
−α−ε

β
q1−p1(1+

(α−ε)m
β

)+α
β
+1

= r
α
β
(q1+mp1−1)+

q1ε

β
+

p1mε

β
+1 → 0,

lim
r→∞

r
α
β
+1
z

1
m = 0.

If we repeat this method, for ∀M > 0, we get

lim
r→∞

rMz
1
m = 0.

It contradicts (41), so k(a) > 0.

Lemma 11 The set B is a nonempty open set. If a≫
1, then (a,∞) ⊂ B. Moreover, for any a ∈ B

lim
r→∞

r
α
β z

1
m = k(a) > 0. (49)

Proof. We notice that

|z′|p−2z′(r) < 0, r ∈ (0, R(a)),

and there is r1 such that

(|z′|p−2z′)′(r) < 0, r ∈ (0, r1).

If for some r ∈ (0, R(a)),

(|z′|p−2z′)′(r) ≤ 0,

then from (25),

z
q1
m |z′|p1 ≤ n− 1

r
v + βr(z

1
m )′ + αz

1
m < αz

1
m ,

z
q1−1

m |z′|p1 ≤ α. (50)

If for some r ∈ (0, R(a)),

(|z′|p−2z′)′(r) > 0,

then there is b such that

(|z′|p−2z′)′ = 0, 0 < b < r,

and in (b, r),
(|z′|p−2z′) ≥ 0.

So, in (b, r), |z′|p−2z′ = −|z′|p−1 is monotone in-
creasing, it means that

z
q1−1

m |z′|p1(r) ≤ z
q1−1

m |z′|p1(b) ≤ α.

If q1 ≤ 1, then

|z′|p1 ≤ αz−
q1−1

m ≤ αa1−q1 ,
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|z′| ≤ α
1
p1 a

1
p1 (1− q1). (51)

If q1 > 1, then

|z′|z
q1−1

mp1 ≤ α
1
p1 . (52)

Denote by γ − 1 = q1−1
mp1

, then we have

zγ(r) ≥ amγ −mγα
1
p1 r,∀r ∈ (0, R(a)). (53)

Supposing that r0 is the first intersection point of
the orbit crossing the boundary of S1, then

−|v|
1

p−1 = −|z′(r0)| = −zθ(r0).

Since q1 > 1, we have γ > 1, and by (52) and (53)
we have

|z′(r0)|zγ−1(r0) = zγ+θ−1(r0) ≤ mα
1
p1

and

mγα
1
p1 r0 ≥ amγ − (mα

1
p1 )

γ
γ+θ−1 := ϕ1(a). (54)

If q1 ≤ 1, then we have γ ≤ 1, and by (51) we have

z(r0) = |z′(r0)|
1
θ ≤ (α

1
p1 )

1
θ ,

and

z(r0) = z(0) +

∫ r0

0
z′(s)ds ≥ am − α

1
p1 a1−γr0,

i.e.
α

1
p1 r0 ≥ a1−γ(am − z(r0))

≥ aγ(am−1 − α
1

p1θ a
1−γ−θ

θ ) := ϕ2(a). (55)

At the same time, by Lemma 7, we have

r1,a =
mα

β
a1−θ +

mα

β
a1−θ

=
ma1−θ

β
(α+ θa2θ−

m+1
m ).

If q1 > 1, by the choice of θ in (29), we have mγ >
1− θ. By (54), we have

lim
a→∞

ϕ1(a)

r1,a
= ∞.

If q1 ≤ 1, it is clear of that

m− 1 >
1− γ − θ

θ
,

(m− 1)γ > 1− θ,

by (54), we have

lim
a→∞

ϕ2(a)

r1,a
= ∞.

So, if we choose a large enough, we have r0 > r1,a,
it contradicts Lemma 7. The above discussion means
that when a ≫ 1, (a,∞) ∈ B. Now, by that the
solution depends on the initial value continuously, we
know that B is an open set.

Lemma 12 The set C is a nonempty closure set, and
for any a ∈ C, the solution z(r) of (25) satisfies that

lim
r→R(a)

z′(r)

z
1
m (r)

= −βR(a). (56)

Proof. Multiplying (25) with rn−1, and making the
integral from r to R = R(a)

|z′|p−1rn−1 − βrnz
1
m = (nβ + α)

∫ R

r
z

1
m sn−1ds

+

∫ R

r
z

q1
m |z′|p1sn−1ds. (57)

Clearly, when r → R,

0 < z−
1
m (r)

∫ R

r
z

1
m sn−1ds ≤

∫ R

r
sn−1ds→ 0.

Now, we want to prove

lim
r→R

∫ R

r
z

q1
m |z′|p1sn−1ds = 0. (58)

If q1 ≥ 1, then (58) is true clearly. If 0 < q1 ≤ 1,
we discuss it with the following two cases.

Case 1. p1 ≥ 1.

lim
r→R

∫ R
r z

q1
m |z′|p1sn−1ds

z
1
m

= lim
r→R

z
q1
m |z′|p1sn−1

1
mz

1
m
−1(r)z′

lim
r→R

z
q1
m

+n− 1
m |z′|p1−1 = 0. (59)

Case 2. 0 < p1 < 1. Set

H(r) =

(
−
∫ R

r
|z′|p−2z′ds

)σ

+ |z′|p−2z′.

Then

H ′(r) = σ

(
−
∫ R

r
|z′|p−2z′ds

)σ−1

|z′|p−2z′(r)

+(|z′|p−2z′)′
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= σ

(
−
∫ R

r
|z′|p−2z′ds

)σ−1

|z′|p−2z′(r)

+(−n− 1

r
|z′|p−2z′ − βr(z

1
m )′ − αz

1
m + z

q1
m |z′|p1).

Assume that there is r0, when 0 < R − r0 ≪ 1,
H(r0) = 0. For the simplicity, we can denote

h(r) = −
∫ R

r
|z′|p−2z′ds.

Then

H ′(r0) = −(σhσ−1 +
n− 1

r0
)hσ +

β

m
r0z

1
m
−1|h|

σ
p−1

−αz
1
m + z

q1
m |h|

σp1
p−1 ,

= −σh2σ−1 − n− 1

r0
+
β

m
r0z

1
m
−1|h|

σ
p−1 − αz

1
m

+z
q1
m |h|

σp1
p−1 .

Since limr→R z(r) = 0, if σ > p−1
2p−3 , then

σ

p− 1
< 2σ − 1,

σ

p− 1
< σ,

and so

|h|
σ

p−1 = h
σ

p−1 > h2σ−1, h
σ

p−1 > hσ,

i.e. we have
H ′(r0) > 0.

By this fact, it is easy to know that H(r) is with fixed
sign in (r0, R).

If it holds that when 0 < R − r ≪ 1, H(r) > 0
i.e. hσ > |z′|p−1, according to (59), we can assume
that limr→R |z′| = 0 without loss of the generality.
Otherwise the problem is just the same as the case 1.
Thus,

h(r) =

∫ R

r
|z′|p−1ds < −

∫ R

r
z′ds = z(r), r−R≪ 1,

|z′| < h
σ

p−1 < z
σ

p−1 ,

|z′|
z

< z
σ

p−1
−1
.

lim
r→R

∫ R
r z

q1
m |z′|p1sn−1ds

z
1
m

≤ lim
r→R

∫ R
r z

q1
m z

p1σ

p−1 sn−1ds

z
1
m

≤ lim
r→R

z
q1p1σ

m(p−1)
− 1

m

∫ R

r
sn−1ds = 0, (60)

where we choose σ > max{ p−1
2p−3 ,

p−1
p1q1

}, (60) is true.

If it holds that when 0 < R − r ≪ 1, H(r) < 0,
i.e. hσ < |z′|p−1, then

h(r) = −
∫ R

r
|z′|p−2z′ds = −

∫ R

r
|z′|p−2dz

= −z|z′|p−2 |Rr −(p− 2)

∫ R

r
z|z′|p−3z′′ds

= |z′|p−2(r)− (p− 2)

∫ R

r
z|z′|p−3z′′ds < |z′|

p−1
σ

|z′|p−2− p−1
σ (r) < (p− 2)

∫ R
r z|z′|p−3z′′ds

|z′|
p−1
σ

. (61)

Since

lim
r→R

∫ R
r z|z′|p−3z′′ds

|z′|
p−1
σ

= lim
r→R

−z|z′|p−3z′′

−p−1
σ |z′|

p−1
σ

−1z′′

=
p− 1

σ
lim
r→R

z|z′|p−2− p−1
σ , (62)

we now choose σ close to p−1
2p−3 , then σ p−1

2p−3 is very
close to p−2

2p−3 < 1 too, which implies that (61) contra-
dicts (62).

The proof of Theorem 8: (i) If α ≤ Nβ, multiplying
the equation (25) with r

α
β
−1, we obtain

(r
α
β
−1|z′|p−2z′ + βr

α
β z

1
m )′ = (n− α

β
)r

α
β
−2|z′|p−1

+r
α
β
−1
z

q1
m |z′|p1 < 0. (63)

Let
g(r) = r

α
β
−1|z′|p−2z′ + βr

α
β z

1
m .

It is clear that limr→0 g(r) = 0. By (63), for any r >
0,

g(r) > 0. (64)

If R(a) < ∞, since z ≡ 0, z′ ≡ 0 in [R(a),∞), we
have

lim
r→R(a)

g(r) = 0.

which contradicts (64). So R(a) = ∞.
By g(r) < βr

α
β z

1
m and the monotonicity of g(r),

we have
lim
r→∞

inf r
α
β z

1
m > 0.

At the same time, by Lemma 7, Lemmas 9-12, we can
get the conclusions (i), (ii) and (iii) of the theorem.
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