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1 Introduction
At the origin, coding theory has had mainly the funda-
mental dedication on information theory. In fact cod-
ing theory had arisen from the need for better com-
munication and better computer data storage. Con-
cretely convolutional codes are extensively used in
many wireless transmissions systems such as trans-
mitting information in deep space with remarkable
clarity. These codes are oftentimes implemented in
concatenation with a hard-decision code, particularly
Reed Solomon. Before turbo codes, such construc-
tions were the most efficient, coming closest to the
Shannon limit.

The convolutional codes are binary codes that are
an alternative to the block codes by their simplicity
of generation with a little shift register. The convolu-
tional codes were introduced by Elias [7] where it was
suggested to use a polynomial matrix G(z) in the en-
coding procedure and they allow to generate the code
online without using a previous buffering.

Convolutional codes are used extensively in nu-
merous applications as satellite communication, mo-
bile communication, digital video, radio among oth-
ers.

G. D Forney in [9] explained that the term “con-
volutional” is used because the output sequences can
be regarded as the convolution of the input sequence
with the sequences in the encoder.

A mathematical theory has been developed which
has a strong relationship with algebra, combinatorics
and algebraic geometry. Nowadays the coding theory
is a very active area of research. There are many tasks
related to the constructions of codes and relationships

of coding theory with other areas of mathematics as
linear algebra, linear systems theory for example.

A key problem in convolutional codes theory was
to find a method for constructing codes of a given
rate and complexity with good free distance. Di-
verse methods have been introduced for this task.
There is a considerable amount of literature on the
theory of convolutional codes over finite fields, (see
[7, 8, 13, 14, 16, 17, 19, 20, 23] for example).

A description of convolutional codes can be pro-
vided by a time-invariant discrete linear system called
discrete-time state-space system in control theory (see
[20, 22, 23]). We want to note that linear systems the-
ory is quite general and it permits all kinds of time
axes and signal spaces.

The aim of this article is to make a survey of the
convolutional codes with the help of the tools of sys-
tems theory. Input-output representation of a convolu-
tional code is examined, and output-controllable sys-
tems are characterized. The output controllability de-
scribes the ability of an external input to move the out-
put from any initial condition to any final condition in
a finite number of steps.

In the case of state space dynamical systems over
real or complex numbers the the controllability and
observability problem has been largely studied (see
[5, 10, 11] for example). This problem for systems
over commutative rings has also been studied (see
[2, 18] for example). For convolutional codes the-
ory, Rosenthal [21], presented a first step toward an
algebraic decoding algorithm. It is based on an in-
put/state/output description of the code and relies on
the controllability matrix being the parity check ma-
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trix of an algebraically decodable block code. More
recently other authors also study convolutional codes
using the tools of control theory [3, 4, 15, 24], in par-
ticular in [3, 4], a characterization of some different
models of concatenated convolutional codes from the
perspective of linear systems theory is presented and
also conditions so that the concatenated codes are ob-
servable are established.

The paper is organized as follows. In section 2
some basic notions about codes theory is introduced,
in section 3 the definition of a convolutional code as
linear system is given and the dynamic properties as
output controllability are analyzed and a brief intro-
duction to analysis of output controllable parallel con-
volutional codes is considered. Finally, in section 4
the conclusions are presented.

Convolutional code

2 Preliminaries
In this section, we present some basic notions about
codes theory.

Let A = {a1, · · · , aq} be a finite set of symbols,
called alphabet of the message. We denote by M the
set containing all sequences of symbols in A of length
k. Also we denote by R the set consisting of all se-
quences of symbols in A of length n. We consider k
and n positive integers with k ≤ n.

We are interested in the case when A = IFq =
GF (q) the Galois field of q elements Zq.

Consider f : A −→ A∗ where A∗ =
∪

n≥0An

and An = A× . . .×A.
A code is defined as the image f(An) = C ⊆ A∗.
We remark the following concepts:

- The left translation operator σ and the right
translation operator σ−1 over the sequence
spaces A∗ are defined as: σ(a0, a1, a2, . . .)
= (a1, a2, a3, . . .), σ−1(a0, a1, a2, . . .) =
(0, a0, a1, a2, . . .),

- C ⊆ A∗ is said to be invariant by right (left)
translation when σ−1C ⊆ C (σC ⊆ C).

- If for each element of C there is a finite number
of non-zero elements, we say that C is compact.

Definition 1 An error correcting code C ⊆ A∗ is said
that is a convolutional code, when C is linear (consid-
ered as a vector space over IFq with the usual sum
of vectors) invariant by right translation operator and
has compact support.

Following Rosenthal and York [22], a convolu-
tional code is defined as a submodule of IFn[s].

Definition 2 Let C ⊆ A∗ be a code. Then C is a con-
volutional code if and only if C is a IF[s]-submodule
of IFn[s].

Corollary 3 There exists an injective morphism of
modules

ψ : IFk[s] −→ IFn[s]
u(s) −→ v(s).

Equivalently, there exists a polynomial matrix G(s)
(called encoder) of order n × k and having maximal
rank such that

C = {v(s) | ∃u(s) ∈ IFk[s] : v(s) = G(s)u(s)}.

The rate k/n is known as the ratio of a convo-
lutional code. We denote by νi the maximum of all
degrees of each of the polynomials of each line, we
define the complexity of the encoder as δ =

∑n
i=1 νi,

and finally we define the complexity convolution code
δ(C) as the maximum of all degrees of the largest mi-
nors of G(s).

The representation of a code by means a polyno-
mial matrix is not unique, but we have the following
proposition.

Proposition 4 Two n × k rational encoders G1(s),
G2(s) define the same convolutional code, if and only
if there is a k × k unimodular matrix U(s) such that
G1(s)U(s) = G2(s).

After a suitable permutation of the rows, we can
assume that the generator matrix G(s) is of the form

G(s) = (P (s), Q(s))T

with right coprime polynomial factors P (s) ∈
IF(n−k)×k and Q(s) ∈ IFk×k, respectively.

3 Systems and Codes
A dynamic system is a model of an isolated fragment
of the nature with a dynamic behavior that can be ob-
served and studied: This behavior is the response of
the system to an external stimulus, and this response
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may not be always the same, but rather depend also on
the current circumstances of the dynamical system.

In other words, a dynamic system is a process
which has a magnitude which varies with the time ac-
cording a deterministic or stochastic law. More specif-
ically:

Definition 5 A dynamic system is a triple Σ =
(T,A,B) where T ⊆ IR is the time, A is the alphabet
of signals, and B ⊆ AT ⊂ A∗ is the behavior. The
elements of B are called trajectories.

A linear model of a dynamical system can be rep-
resented in terms of variables depending on the times
by the equations

xt+1 = Axt +But
yt = Cxt +Dut

}
(1)

where A ∈ Mδ(IF), B ∈ Mδ×k(IF), C =∈
M(n−k)×δ(IF) and D ∈ M(n−k)×k(IF). For sim-
plicity and if confusion is not possible, we will write
p = n−k. Also, we will write the system 1 simply as
a quadruple of matrices (A,B,C,D).

3.1 Realization
From now on T = Z+, A = IFn where IF = IFq =
GF (q) is a finite field (the q elements Galois field).

The proper rational matrix P (s)Q(s)−1 is a co-
prime factorization of the transfer matrix of a dynam-
ical system as (1).

Theorem 6 Let C ⊆ IFn[s] be un k/n-convolutional
of complexity δ. Then, there exist matrices K, L of
size (δ+n−k)×δ an a matrixM of size (δ+n−k)×n
having their coefficients in IF such that the code C is
defined as:

C = {v(s) ∈ IF[s] | ∃x(s) ∈ IFδ[s] :
sKx(s) + Lx(s) +Mv(s) = 0}

Moreover, K is a column full rank matrix,(
K M

)
is a row full rank matrix and

rang
(
s0K + L M

)
= δ + n− k, ∀s0 ∈ IF.

The triple (K,L,M) satisfying the above it is
called minimal representation of C.

Proposition 7 If (K1, L1,M1) is another representa-
tion of the convolutional code C. Then, there exist in-
vertible matrices T and S of adequate size, such that

(K1, L1,M1) = (TKS−1, TLS−1, TM). (2)

Proof:

C = {v(s) ∈ IF[s] | ∃x(s) = S−1x1(s) :
sK1x1(s) + L1x1(s) +M1v(s) = 0}.

⊓⊔
It is obvious that the relation (2) is an equivalence

relation induced by the Lie group G = {(T, S) ∈
Gl(δ + n− k, IF)×Gl(δ; IF)}.

Corollary 8 The triple (K,L,M) can be written as:

K =

(
−Iδ
0

)
, L =

(
A
C

)
, M =

(
0 B

−In−k D

)
.

(3)

Proof: It suffices to make elementary row and column
transformations to the matrix

(
K L M

)
. ⊓⊔

As a corollary we have the following result.

Corollary 9

C = {v(s) ∈ IF[s] | ∃x(s) ∈ IFδ[s] :(
sI −A 0 −B
−C I −D

)(
x(s)
v(s)

)
= 0}.

Proof: From theorem 6, we have

s

(
I
0

)
x(s)−

(
A
C

)
x(s)−

(
0 B
−I D

)
v(s) = 0,

and the result is obtained. ⊓⊔
If we divide the vector v(s) into two parts v(s) =

(y(s), u(s))T depending on the size of the matrix, the
equality (

sI −A 0 −B
−C I −D

)(
x(s)
v(s)

)
= 0

can be expressed as

sx(s) = Ax(s) +Bu(s)
y(s) = Cx(s) +Du(s)

}
.

Applying the Z antitransform we obtain the sys-
tem

xt+1 = Axt +But
yt = Cxt +Dut

}
(4)

Here vt = (yt, ut)
T , x0 = 0.

Remark 10 We can obtain the encoder matrix
G(z−1) using the transfer matrix of the system (4).
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Example 1 Over IF = Z2 we consider the following
representation of a convolutional code

K =

 1 0
0 1
1 1

 , L =

 0 1
1 0
1 0

 , M =

 0 0
1 0
0 1


We have  1 0 0 1 0 0

0 1 1 0 1 0
1 1 1 0 0 1

 ∼

 1 0 0 1 0 0
0 1 1 0 1 0
0 1 1 1 0 1

 ∼

 1 0 0 1 0 0
0 1 1 0 1 0
0 0 0 1 1 1

 ∼

 1 0 0 1 0 0
0 1 1 1 0 1
0 0 0 1 1 1

 .
And we obtain

A =

(
0 1
1 1

)
, B =

(
0
1

)
,

C =
(
0 1

)
D = (1).

3.2 Convolutional code as input-state-output
Let IF = IFq be the q-elements Galois field and con-
sider the matrices A ∈ IFδ×δ, B ∈ IFδ×k, C ∈
IF(n−k)×δ and D ∈ IF(n−k)×k. A convolutional code
C of rate k/n and complexity δ can be described by
the following linear system of equations:

xt+1 = Axt +But
yt = Cxt +Dut

}
,

vt =

(
yt
ut

)
,

x0 = 0.

(5)

In terms of systems theory the variable xt is called a
state variable of the system at time t, ut the input vec-
tor and yt the vector output obtained from the combi-
nation of input and state variable. If no confusion is
possible, we will write the system as the quadruple of
matrices (A,B,C,D).

Based on the system (5), one can find a minimal
representation of a code, it suffices simply to define
the triple (K,L,M) as (3).

In terms of the theory of codes, we have the input
of the encoder after time twhich is called the informa-
tion o vector message ut; the vector yt created by the
encoder is called parity vector, the code vector vt is
transmitted via the communication channel. We will
denote the code convolution created in this way, by
C(A,B,C,D).

In terms of the input-state-output representation
of a convolutional code, the free distance of a convo-
lutional code C, that is, the minimum Hamming dis-
tances between any two code sequences of C, can be
characterized as (see [15])

dfree(C) = lim
j→∞

dcj(C), (6)

where

dcj(C) =

minu(0)̸=0

{
j∑

t=0
wt(u(t)) +

j∑
t=0

wt(y(t))

}

is the j-th column distance of the convolutional code
C, for j = 0, 1, 2, . . ..

The free distance of a convolutional code deter-
mines to a large extend the error rate in the case of
maximum likelihood decoding, and is a good indica-
tor of the error correcting performance of the code.

It is well known that a manner to understand
the properties of a dynamical system is treating it by
purely algebraic techniques. The main aspect of this
approach is defining an equivalence relation preserv-
ing the required properties, many interesting and use-
ful equivalence relations between linear systems have
been defined.

We want to define an equivalence relation over
the set of quadruples (A,B,C,D) in such a way that
the code representations (K,L,M), associated to the
equivalent quadruples are equivalent under the equiv-
alence relation defined in (2). Then we consider the
following equivalence relation:

Definition 11 The quadruple of matrices
(A1, B1, C1, D1) is equivalent to (A,B,C,D)
if and only if, there exist an invertible matrix
S ∈ Gl(δ, IF) such that:

(A1, B1, C1, D1) = (SAS−1, SB,CS−1, D). (7)

Obviously,((
−Iδ
0

)
,

(
A1

C1

)
,

(
0 B1

−In−k D1

))
= (K,L,M)
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with

K =

(
S 0
0 I

)(
−Iδ
0

)
S−1,

L =

(
S 0
0 I

)(
A
C

)
S−1,

M =

(
S 0
0 I

)(
0 B

−In−k D

)
.

So, (K1, L1,M1) is equivalent to (K,L,M).
We will note that the concept of minimality of an

input-state-output representation is different from the
concept of minimality of a representation, in classical
linear systems theory. A representation (A,B,C,D)
in linear systems literature is minimal if and only if
the pair (A,B) is controllable and the pair (A,C)
is observable. In fact, if the pair (A,B) is control-
lable, then the observability of the pair (A,C) ensures
that the linear system (5) describes a noncatastrophic
convolutional encoder, as we can see in the following
lemma.

Lemma 12 (Lemma 2.11 of [22],) Assume that the
pair of matrices (A,B) is controllable. The convolu-
tional code C(A,B,C,D) defined through (5) repre-
sents an observable convolutional code if and only if
the pair of matrices (A,C) is observable.

Remember that a convolutional code is said catas-
trophic if it prone to catastrophic error propagation,
i.e. a code in which a finite number of channel er-
rors causes an infinite number of decoder errors. Any
given convolutional code is or is not a catastrophic
code.

3.3 Output-Controllability
One of the fundamental concepts in control theory is
controllability. This is a qualitative property of the
control systems and is of particular importance in con-
trol theory. The controllability systematic study began
at the beginning of the sixties in the XX century and
the study is based on the mathematical description of
the dynamical system. In the literature there are many
different definitions of controllability which depend
on the type of dynamical system.

The most used definition of controllability is the
state controllability requiring only that any initial state
x(0) can be steered to any final state x1 with a finite
number of steps. In this paper we will consider the
output controllability that relates the input to the out-
put, more concretely describes the control capability
of input to the output.

Now we can try to solve the following problem:
given x(0) = 0 and any ȳ we can obtain a sequence
of inputs u(0), . . ., u(δ) such that y(k) = ȳ. For that
and in a more general form we consider the following
definition.

Definition 13 Dynamical system (5) is said to be out-
put controllable if for every y(0) and every vector
y1 ∈ IRp, there exists a finite time t1 and a control
u1(t) ∈ IRm, that transfers the output from y(0) to
y1 = y(t1).

Therefore, output controllability generally means,
that we can steer output of dynamical system indepen-
dently of its state vector.

The existence of a solution of the problem is
equivalent of the existence of the solution of the linear
system equation ȳ = CAδ−1Bu(0)+. . .+CABu(δ−
2) + CBu(δ − 1) +Du(δ), that in a matrix form we
have

ȳ =
(
CAk−1B . . . CAB CB D

)


u(0)
...

u(k − 2)
u(k − 1)
u(k)

 .

So, the existence of a solution is relied to the rank of
the matrix of this system.

For a linear time-invariant system, like (5), de-
scribed by matrices A, B, C, and D, we define the
output controllability matrix

oC =
(
CB CAB . . . CAδ−1B D

)
. (8)

Remark 14 Cayley-Hamilton theorem ensures that
the range of the matrix[

CB CAB . . . CAδ−1B D
]

coincides with the range of the matrices[
CB CAB . . . CAiB D

]
∀i ≥ δ.

We have the following result.

Theorem 15 Dynamical system (5) is output control-
lable if and only if the matrix oC has full row rank:
rank oC = p.

Example 2 The system associated with the code in
Example 1 is output controllable:

rank
(
CB CAB D

)
= rank

(
1 1 1

)
= 1

WSEAS TRANSACTIONS on MATHEMATICS M. I. Garcia-Planas, El M. Souidi, L. E. Um

E-ISSN: 2224-2880 328 Issue 4, Volume 11, April 2012



Remark 16 As we said at the beginning of this sub-
section, another important property and largely stud-
ied is the state controllability characterized by the
rank of the controllability matrix

C =
(
B AB . . . Aδ−1B

)
in the sense that the dynamical system (5) is control-
lable if and only if the matrix C has full row rank.
Like in the case of output controllability we observe
that the range of the matrix[

B AB . . . Aδ−1B
]

coincides with the range of the matrices[
B AB . . . AiB

]
, ∀i ≥ δ.

It should be pointed out, that the state control-
lability is defined only for the linear state equation,
whereas the output controllability is defined for the
input-output description i.e., it depends also on the
linear algebraic output equation. Therefore, these two
concepts are not necessarily related.

The following example shows that the concepts
of output-controllability and controllability are not
equivalent.

Example 3 a) Consider the system (A,B,C,D) with

A =

 0 1 0
0 0 0
0 0 1

 , B =

 0
1
0


and

C =
(
1 0 0

)
, D = (0).

Clearly,

rank
(
CB CAB CA2B

)
= 1

so, the system is output-controllable. And

rank
(
B AB A2B

)
= 2 < 3,

so, the system is not controllable
b) Suppose now the system (A,B,C,D) with

A =

(
0 1
0 0

)
, B =

(
0
1

)

C =

(
1 1
1 1

)
, D =

(
0
0

)
.

Clearly,

rank
(
CB CAB

)
= 1 < 2,

so, the system is not output controllable. And

rank
(
B AB

)
= 2

So, the system is controllable.
c) There may be systems that simultaneously are

controllable and output-observable as for example the
system (A,B,C,D) with

A =

 0 1 0
0 0 1
0 0 0

 , B =

 0
0
1


C =

(
1 0 0

)
, D = (0).

Clearly

rank
(
CB CAB CA2B

)
= 1,

so, the system is output controllable. And

rank
(
B AB A2B

)
= 3

so, the system is controllable.
d) And finally we also present a system that is

neither output controllable nor controllable as for ex-
ample the system (A,B,C,D) with

A =

 0 1 0
0 0 0
0 0 0

 , B =

 0
0
1


C =

(
1 0 0

)
, D = (0).

Clearly,

rank
(
CB CAB CA2B

)
= 0 < 1,

so, the system is not output controllable. And

rank
(
B AB A2B

)
= 1 < 3,

so, the system is not controllable.

Proposition 17 The output controllability character
is invariant under feedback.

Proof: Let F ∈ Mk×δ(IF) be a feedback, then the
system under feedback is

(A+BF,B,C +DF,D).

Now, it suffices to compute the submatrices
(C + DF )(A + BF )iB constituting the output-
controllability matrix.

(C +DF )(A+BF )iB =
CAiB +

∑
0≤ℓ≤i−1CA

i−ℓ−1BF (A+BF )ℓB+
DFAiB+

∑
0≤ℓ≤i−1DFA

i−ℓ−1BF (A+BF )ℓB.

In the case where D = 0 a proof can be found in
[6]. ⊓⊔
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Remark 18 We observe that if the matrix C is the
identity matrix this result ensures that the state con-
trollability is also invariant under feedback.

The above proposition induces to consider the follow-
ing equivalence relation

Definition 19 The dynamical systems
(Ai, Bi, Ci, Di), i = 1, 2 are equivalent if
and only if, there exist matrices S ∈ Gl(δ; IF),
R ∈ Gl(m; IF), T ∈ Gl(q; IF), F ∈ Mm×δ(IF)
such that A2 = SA1S

−1 + SB1F , B2 = SB1R,
C2 = TC1S + TD1F , D2 = TD1R.

It is immediate that if we take the subset formed
by R = I , T = I , F = 0 we obtain the relation (7).

Proposition 20 The output controllability is invari-
ant under the new equivalence relation.

Proof: Taking into account proposition 17, it suffices
to prove that the output controllability is invariant un-
der basis change in the state, input and output spaces.

Let (A1, B1, C1, D1) be a quadruple equivalent to
(A,B,C,D) under basis change in the state input and
output spaces, that is

(A1, B1, C1, D1) = (SAS−1, SBR, TCS, TDR).

We observe that

C1A
i
1B1 = TCSS−1AiS−1SBR = TCAiBR.

So,

rank
(
C1B1 C1A1B1 . . . C1A

i
1B1 D1

)
rankT

(
CB CAB . . . CAiB D

)
R

⊓⊔

Proposition 21 Let (Ai, Bi, Ci, Di), i = 1, 2 be two
equivalent dynamical systems. Then

rank
(
C1 D1

)
= rank

(
C2 D2

)
.

Proof: If (Ai, Bi, Ci, Di), i = 1, 2 are equiva-
lent, following the definition 19 there exist matrices
S ∈ Gl(δ; IF), R ∈ Gl(m; IF), T ∈ Gl(q; IF),
F ∈ Mm×δ(IF) such that A2 = SA1S

−1 + SB1F ,
B2 = SB1R, C2 = TC1S + TD1F , D2 = TD1R.
So,

rank
(
C1 D1

)
=

rankT
(
C1 D1

)( S−1

F R

)
=

rank
(
C2 D2

)
.

In order to obtain conditions for output-
controllability we consider an equivalent quadruple

(Ac, Bc, Cc, Dc) with Dc =

(
0 0
0 Id

)
, d = rankD,

Bc =
(
B1 0,

)
,

(Ac, B1) =

((
N

J

)
,

(
B11

0

))
is a pair of

matrices in its Kronecker reduced form and

Cc =

(
C11 C12

0 0

)
,

all blocks in matrices are of adequate size. (For more
information about canonical reduced forms see [12]).

Taking into account proposition 21 and the re-
duced form we can consider triples of matrices
(A,B,C) and announce the main result.

Theorem 22 Let (A,B,C) be a triple of matrices in
its reduced form. Then

i) If p > δ the system is not output-controllable,

ii) If p ≤ δ the system is output-controllable if and
only if rankC11 = p.

Proof: Let k1 ≤ . . . ≤ kr the Kronecker indices of
(A,B).

Observe that C11 ∈Mp×k1+...+kr(IF).

rank
(
CB CAB . . . CAn−1B

)
=

C11

(
B11 NB11 . . . NkrB11

)
.

Matrix
(
B11 NB11 . . . NkrB11

)
has full rank

equal to
∑kr

i=1 ki. ⊓⊔
In the particular case where (A,B) is completely

controllable we have the following corollary.

Corollary 23 Let (A,B,C) be a triple of matrices
such that the pair (A,B) is controllable, Then the sys-
tem is output controllable if and only if

rankC = p ≤ δ

Example 4 Let (A,B,C) be a triple with

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 ,

B =


0 0 0 . . . 0
0 0 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
0 1 0 . . . 0


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and

C =

 c11 c12 c13 c14 c15
...

...
...

...
...

cp1 cp2 cp3 cp4 cp5

 .
Following theorem the system is output control-

lable if and only if rankC = p and it is not possible if
p > 5.

In this case is easy to compute the output control-
lability matrix and obtain the rank:

rank
(
oC1 oC2 oC3

)
= r,

where

oC1 = rank

 c13 c15 0 . . . 0
...

...
... . . .

...
cp3 cp5 0 . . . 0

 ,

oC2 = rank

 c12 c14 0 . . . 0
...

...
... . . .

...
cp2 cp4 0 . . . 0

 ,

oC3 = rank

 c11 0 0 . . . 0
...

...
... . . .

...
cp1 0 0 . . . 0

 .
So

r = rank

 c13 c15 c12 c14 c11
...

...
...

...
...

cp3 cp5 cp2 cp4 cp1

 =

rankC.

3.3.1 Parallel concatenated codes
In coding theory, concatenated codes form a class of
error-correcting codes that are derived by combining
an inner code and an outer code. They were conceived
in 1966 by Dave Forney as a solution to the problem
of finding a code that has both exponentially decreas-
ing error probability with increasing block length and
polynomial-time decoding complexity.

Consider now two convolutional codes
C1(A1, B1, C1, D1) and C2(A2, B2, C2, D2). Let
x1(t), u1(t), and y(1)(t) be the state vector,
the information vector and the parity vector of
C1(A1, B1, C1, D1), and let x2(t), u2(t), and y2(t) be
the state vector, the information vector and the parity
vector of C2(A2, B2, C2, D2), respectively.

Suppose that both codes are concatenated in a
parallel form, so that the input information u2(t) =

u1(t) = u(t) and the final parity vector y(t) =
y1(t) + y2(t).

Consequently,

x1 = A1x1(t) +B1u(t)
x2 = A2x2(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t) + (D1 +D2)u(t).

That in a matrix form we have

A =

(
A1 0
0 A2

)
, B =

(
B1

B2

)
C =

(
C1 C2

)
, D = D1 +D2.

If C1(A1, B1, C1, D1) is a (n, k, δ1)-code and
C2(A2, B2, C2, D2) is a (n, k, δ2)-code, then
C(A,B,C,D) is a (n, k, δ1 + δ2)-code.

The transfer matrix of the concatenated system
can be deduced directly from the transfer matrices of
the initial systems.

Proposition 24

C(zIδ1+δ2 −A)−1B =
C1(zIδ1 −A1)

−1B1+D1+C2(zIδ2 −A2)
−1B2+D2.

For more information about concatenated codes
see [1], for example. The output controllability of the
codes does not ensure the output controllability of the
concatenated code as we can observe in the following
example.

Example 5 Consider the following systems in Z2,

A1 = A2 =

(
0 1
0 0

)
, B1 = B2 =

(
0
1

)

C1 = C2 =
(
1 0

)
, D1 = D2 = (1).

The concatenated system is

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0
1
0
1


C =

(
1 0 1 0

)
, D = (0).

It is obvious that the systems (Ai, Bi, Ci, Di) are
output controllable. But the output controllable matrix
is the zero matrix.

In fact the output controllability of the systems is
not a necessary condition.

Example 6 Consider the following systems in Z2,

A1 =

(
0 1
0 0

)
, B1 =

(
0
1

)
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C1 =
(
1 0

)
, D1 = (1),

and

A2 =

(
0 0
0 1

)
, B2 =

(
1
0

)

C2 =
(
0 1

)
, D2 = (1).

The concatenated system is

A =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , B =


0
1
1
0



C =
(
1 0 0 1

)
, D = (0).

The system (A2, B2, C2, D2) is not output control-
lable but the concatenated system is output control-
lable.

Therefore, there is not a direct relation between
output controllability of the systems and the output
controllability of the concatenated system. But, some
sufficient conditions can be obtained.

Proposition 25 A sufficient condition for the output
controllability of concatenated system is

rank (D1 +D2) = p.

Example 7 Consider the following systems in Z2

A1 =

(
0 0
0 1

)
, B1 =

(
1 0
0 0

)
,

C1 =

(
0 1
0 0

)
, D1 =

(
0 0
0 1

)
,

and

A2 =

(
1 0
0 0

)
, B2 =

(
0 0
1 0

)
,

C2 =

(
0 0
0 1

)
, D2 =

(
0 1
0 0

)
,

Clearly,
rank (D1 +D2) = 2.

Then, the concatenated parallel system is output con-
trollable.

4 Conclusions
In this paper a detailed look at the algebraic structure
of convolutional codes using techniques of linear sys-
tems theory has been made. In particular a study of the
input-state-output representation of a convolutional
code has been presented. The output-controllability
property has been introduced and conditions for this
property have been given. Finally, a brief introduction
to analysis of output controllability for parallel con-
catenated codes is given.
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