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Abstract: A new system of generalized set-valued mixed equilibrium-like problems (in short, S-GMELP) in Ba-
nach spaces is discussed. In order to obtain the existence of solutions of S-GMELP, a system of related auxiliary
problems (in short, S-AP) is established. On the basis of the existence and uniqueness of solutions of the S-AP,
an iterative algorithm for the S-GMELP is constructed. It is proved that the iterative sequence converges some
solution of S-GMELP. Finally, an example is given to well exemplify our main result.
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1 Introduction
When Hartman-Stampacchia [1] created the variation-
al inequality theory in 1966, they researched the first
variational inequality defined on finite-dimension s-
paces. In recent years, many authors have generalized
the variational inequality problems in two main as-
pects: the model of the variational inequalities and the
framework of spaces mainly including Hilbert spaces
and Banach spaces. Parida-Sen [2] in 1987 introduced
the variational-like inequality problems closely relat-
ed to the convex mathematical programming problem-
s in finite-dimension spaces. In [3-10] authors dis-
cussed the mixed variational-like inequality problem-
s (in short, MVLIP) in Banach spaces. The authors
in [11-14] generalized the MVLIP to the generalized
set-valued mixed variational-like inequality problems
(in short, GMVLIP), and investigated the GMVLIP in
Hilbert spaces, and so did the authors in [15, 16] in
Banach spaces.

In the sequel, Kazmi-Khan [17] presented a sys-
tem of MVLIP (in short, S-MVLIP), constructed an
algorithm for it by exploiting auxiliary principle tech-
nique and investigated the convergence analysis of
the algorithm in Hilbert spaces. Recently, Wang-
Ding [18] generalized the S-MVLIP to a system of
GMVLIP (in short, S-GMVLIP) and studied the S-
GMVLIP in Banach spaces.

The equilibrium theory is one of the most im-

portant tools to analyze a system, since it provides
a new unified framework for those problems which
arise from physics, economics, traffic, optimization
theory, etc. As a matter of fact, equilibrium problem-
s include variational inequality problems, fixed-point
problems, mathematical programming problems and
others as their special cases. The class of equilibrium-
like problems is a useful generalization of the class
of variational-like inequality problems and has some
potential and significant applications in optimization
and economics. To the best of our knowledge, the re-
sults on the existence of solutions of equilibrium-like
problems by constructing iterative algorithms are few.
Inspired by the recent works involving the system of
variational-like inequality problems in [17, 18], we
introduce a system of generalized set-valued mixed
equilibrium-like problems and discussed the existence
of its solutions by using auxiliary principle technique
in Banach spaces. The introduced system includes the
problems discussed in [3-17] as its special cases and
its framework of spaces is generalized from Hilbert s-
paces in [5, 6, 11-15, 17] to Banach spaces. The rest
of this paper is organized as follows. In Section 2, the
main problem discussed in this paper is presented and
some preliminaries are list. In Sections 3, a theorem
on the existence and uniqueness of solutions of a sys-
tem of related auxiliary problems is proved. In Section
4, by the theorem presented in Section 3, an iterative

WSEAS TRANSACTIONS on MATHEMATICS De-Ning Qu, Cao-Zong Cheng

E-ISSN: 2224-2880 313 Issue 4, Volume 11, April 2012



algorithm for the main problem is proposed. In Sec-
tion 5, a main theorem on the existence of solutions
of the main problem is shown by studying the conver-
gence analysis of the iterative algorithm presented in
Section 4. Finally, an example is given to well exem-
plify our main result in Section 6.

2 Preliminaries
LetE be a real Banach space with norm ∥·∥ and topo-
logical dual E∗, ⟨·, ·⟩ be generalized duality pairing
between E∗ and E, and CB(E) be the family of all
nonempty, bounded and closed subsets of E. Define
the Hausdorff metric H(·, ·) on CB(E) by

H(A,B) = max{sup
u∈A

d(u,B), sup
v∈B

d(A, v)},

∀ A, B ∈ CB(E),

where
d(A, v) = inf

u∈A
∥u− v∥

and
d(u,B) = inf

v∈B
∥u− v∥.

Throughout this paper, unless other stated, R and
J are denoted by the set of the real numbers and the set
{1, 2, 3}, respectively. Suppose that for each i ∈ J,
Ei is a real reflexive Banach space with the norm ∥·∥i
and the topological dual E∗

i , ⟨·, ·⟩i is the generalized
duality between E∗

i and Ei, Hi(·, ·) is the Hausdorff
metric on CB(Ei) and CB(E∗

i ), di is the distance
between a point and a point set on E∗

i and Ii and I are
denoted by the identity mappings defined on Ei and
E, respectively. If the norm ∥ · ∥∗ on E1×E2×E3 is
defined by

∥(u1, u2, u3)∥∗ = ∥u1∥1 + ∥u2∥2 + ∥u3∥3,
∀ (u1, u2, u3) ∈ E1 × E2 × E3,

then (E1 × E2 × E3, ∥ · ∥∗) is a Banach space.
The system of generalized set-valued mixed

equilibrium-like problems (in short, S-GMELP) is s-
tated as follows:

Suppose that E1, E2 and E3 are real Ba-
nach spaces. For each i ∈ J, let Ri : E1 →
CB(E∗

1), Si : E2 → CB(E∗
2), Ti : E3 → CB(E∗

3)
and Fi : Ei → CB(Ei) be set-valued map-
pings, let Ni : E∗

1 × E∗
2 × E∗

3 → E∗
i , Ki :

Ei → E∗
i , ηi : Ei × Ei → Ei and

Mi : Ei → Ei be single-valued mappings, and
let Gi : E∗

i × Ei → R and Bi : Ei × Ei → R
be bi-functions. The problem is to find
(u1, u2, u3, x1, x2, x3, y1, y2, y3, z1, z2, z3, p1, p2, p3),
where (u1, u2, u3) ∈ E1 × E2 × E3, (xi, yi, zi) ∈

Ri(u1) × Si(u2) × Ti(u3) and pi ∈ Fi(ui) (i ∈ J),
such that for all (w1, w2, w3) ∈ E1 × E2 × E3 and
for each i ∈ J,

Gi(Ni(xi, yi, zi), ηi(wi, ui))
+⟨Ki(ui), ηi(wi, ui)⟩i
+Bi(pi,Mi(wi))−Bi(pi,Mi(ui)) ≥ 0,

where for each i ∈ J, Bi satisfies the following prop-
erties:
(A1) for each fixed pi ∈ Ei, ui 7→ Bi(pi,Mi(ui)) is
convex;
(A2) there exists a constant bi > 0 such that

Bi(pi, qi) +Bi(p̂i, q̂i)−Bi(pi, q̂i)−Bi(p̂i, qi)
≥ −bi∥pi − p̂i∥i · ∥qi − q̂i∥i,

∀ pi, p̂i, qi, q̂i ∈ Ei;

(A3) Bi(pi, 0) = Bi(0, qi) = 0, ∀ pi, qi ∈ Ei.

Remark 1 It follows from (A2) and (A3) that for each
i ∈ J,
(i) Bi is bounded, that is, there exists a constant bi >
0 such that

|Bi(pi, qi)| ≤ bi∥pi∥i · ∥qi∥i, ∀ pi, qi ∈ Ei;

(ii) |Bi(pi, qi)−Bi(pi, q̂i)|
≤ bi∥pi∥i · ∥qi − q̂i∥i, ∀ pi, qi, q̂i ∈ Ei

and
|Bi(pi, qi)−Bi(p̂i, qi)|

≤ bi∥qi∥i · ∥pi − p̂i∥i, ∀ pi, p̂i, qi ∈ Ei,
which imply thatBi is continuous in both the first vari-
able and the second variable.

Remark 2 Let E be a real reflexive Banach space.
Many authors (see [8, 12][14]-[17]) usually consid-
ered the case that the bi-function B : E×E → R has
the following properties:
(a1) B(p, q) is linear in the first variable;
(a2)B(p, q)−B(p, q̂) ≤ B(p, q− q̂), ∀ p, q, q̂ ∈ E;
(a3) B(p, q) is bounded;
(a4) for each fixed p ∈ E, q 7→ B(p, q) is convex.
In addition, Qu [10] considered the case that B sat-
isfies (A2)-(A3), (a4) and for each fixed q ∈ C, p 7→
B(F (p), q) is convex, where C is a nonempty closed
convex subset of E and F : C → E is a single-
valued mapping. Zeng-Guu-Yao [13] and Wang-Ding
[18] dealt with the case that B satisfies (a1)-(a3) and
(A1). It’s worth mentioning that another distinctive
case that B is skew-symmetric and diagonally convex
in the second variable was considered in [9]. In [3]-
[7][11] authors required that B is a (proper convex)
lower semi-continuous single-variable function.
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Note that (a1)-(a3) imply thatB is indeed bilinear
and (a4) holds trivially. It is sufficient to show that B
is linear in the second variable. First, we claim that

B(p, q) +B(p, q̂)
= B(p, q + q̂), ∀ p, q, q̂ ∈ E

(1)

In fact, replacing p by −p in (a2) and using (a1), we
have

B(p, q)−B(p, q̂)
≥ B(p, q − q̂), ∀ p, q, q̂ ∈ E.

(2)

Similarly, (2) implies (a2) under the condition (a1).
Thus (a2) is equivalent to (2) under the condition (a1),
and so (1) holds. Second, we claim that for any k ∈ R,

B(p, kq) = kB(p, q), ∀ p, q ∈ E. (3)

In fact, combining (1) with B(p, 0) = 0 for all p ∈ E
that follows from (a3), we see that (3) holds for any
integer k and so does for any rational number k. Now
let k be any irrational number and {kn} be a rational
number sequence such that kn → k as n → ∞. It
follows from (a3) that B is continuous in the second
variable. Hence,

B(p, kq) = lim
n→∞

B(p, knq)

= lim
n→∞

knB(p, q)

= kB(p, q), ∀ p, q ∈ E.

Finally, we show thatB is linear in the second variable
by (1) and (3).

If M = I and B satisfies (a1)-(a4), then B has
the properties (A1)-(A3). Now let B : R × R → R
be defined by B(p, q) = | sin p| · (

√
1 + q2 − 1) and

M = I . It is easy to see that B has the properties
(A1)-(A3), but B is nonlinear in both the variables.

Some special and related cases are list here:
(a) If J = {1, 2}, and if for each i ∈ J, Gi =

⟨·, ·⟩i, Ri = Si = Mi = Fi = Ii and Ki(ui) = 0,
then the S-GMELP reduces to the S-MVLIP: to find
(u1, u2) ∈ E1×E2 such that for all (w1, w2) ∈ E1×
E2 and for each i ∈ J,

⟨Ni(u1, u2), ηi(wi, ui)⟩i
+Bi(ui, wi)−Bi(ui, ui) ≥ 0.

The S-MVLIP was discussed by Kazmi-Khan [17] in
Hilbert spaces.

(b) If for each i ∈ J, Ei = E, E∗
i =

E∗, Gi = ⟨·, ·⟩, Ri = R, Si = S, Fi = I, Mi =
M, Bi = B, Ni(x, y, z) = N(x, y), ηi(u, v) =
η(M(u),M(v)) and Ki(u) = ϖ∗ (where ϖ∗ is a
given point in E∗), then the S-GMELP becomes the

GMVLIP: to find u ∈ E and (x, y) ∈ R(u) × S(u)
such that for all w ∈ E,

⟨N(x, y) +ϖ∗, η(M(w),M(u))⟩
+B(u,M(w))−B(u,M(u)) ≥ 0.

(4)

The GMVLIP (4) was studied by Ding-Yao-Zeng [16]
in Banach spaces, and by Huang-Deng [12], Zeng-
Guu-Yao [13], Zeng-Schaible-Yao [14] and Xu-Guo
[15] under the case that ϖ∗ = 0 in Hilbert spaces,
respectively.

(c) If for each i ∈ J, Ei = E, E∗
i = E∗ and C

is a nonempty (closed) convex subset of E, if Gi =
⟨·, ·⟩, Ri = R, Si = S, Fi = F, Mi = I, ηi =
η, Bi = B and Ni(x, y, z) = N(x, y), and if R, S
and F are single-valued mappings defined on C, both
η andB are defined on E×E or C×C and Ki(u) =
ϖ∗ (where ϖ∗ is a given point in E∗), then the S-
GMELP reduces to the MVLIP: to find u ∈ C such
that for all w ∈ C,

⟨N(R(u), S(u)) +ϖ∗, η(w, u)⟩
+B(F (u), w)−B(F (u), u) ≥ 0.

(5)

The MVLIP (5) was discussed by Ding [8, 9] and Qu
[10] in Banach space.

(d) If for each i ∈ J, Ei = E, E∗
i = E∗, Gi =

⟨·, ·⟩, Ri = R, Si = S, Mi = I, ηi = η, Ki(u) =
0, Ni(x, y, z) = N(x, y) andBi(u,w) = B(w), then
the S-GMELP reduces to the GMVLIP: to find u ∈ E
and (x, y) ∈ R(u)× S(u) such that for all w ∈ E,

⟨N(x, y), η(w, u)⟩+B(w)−B(u) ≥ 0. (6)

The GMVLIP (6) was studied in [11] by discussing
the convergence analysis of a predictor-corrector iter-
ative algorithm in Hilbert spaces.

(e) If for each i ∈ J, Ei = E, E∗
i = E∗

and C is a nonempty convex subset of E, and if
Gi = ⟨·, ·⟩, Ri = R, Si = S, Mi = I, ηi =
η, Bi(u,w) = B(w), Ni(x, y, z) = N(x, y) and
Ki(u) = 0, and ifR, S andB are single-valued map-
pings defined on C and η is defined on C × C, then
the S-GMELP reduces to the MVLIP: to find u ∈ C
such that for all w ∈ C,

⟨N(R(u), S(u)), η(w, u)⟩
+B(w)−B(u) ≥ 0.

(7)

In [7] the existence and uniqueness of solutions of
the MVLIP (7) were directly proved and a general
algorithm to approximate the solution of the MVLIP
(7) was proposed by using an auxiliary minimization
problem in Banach spaces.

(f) If for each i ∈ J, Ei = E, E∗
i = E∗

and C is a nonempty convex subset of E, and if
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Gi = ⟨·, ·⟩, Ri = R, Si = S, Mi = I, ηi =
η, Ni(x, y, z) = x − y and Bi(u,w) = B(w), and
if R, S and B are single-valued mappings defined on
C, η is defined onC×C and Ki(u) = ϖ∗ (whereϖ∗

is a given point in E∗), then the S-GMELP reduces to
the MVLIP: to find u ∈ C such that for all w ∈ C,

⟨R(u)− S(u) +ϖ∗, η(w, u)⟩
+B(w)−B(u) ≥ 0.

(8)

The MVLIP (8) was discussed by Zeng [5] and
Ansari-Yao [6] in Hilbert spaces, and by Ding [3] and
Chen-Liu [4] in Banach spaces, respectively.

Some other related cases were discussed by
Wang-Ding [18] and Fang-Huang [19] in Banach s-
paces and by Chadli-Yao [20] in Hausdorff topologi-
cal linear spaces, respectively.

Definition 3 Let E be a real Banach space, and let
S : E → CB(E∗), η : E × E → E, M : E → E
and g : E → E∗ be mappings.

(i) S is said to be s-H- Lipschitz continuous , if
there exists a constant s > 0 such that

H(S(u), S(v)) ≤ s∥u− v∥, ∀ u, v ∈ E.

(ii) η is said to be ξ- Lipschitz continuous, if there
exists a constant ξ > 0 such that

∥η(u, v)∥ ≤ ξ∥u− v∥, ∀ u, v ∈ E.

(iii) M is said to be m-Lipschitz continuous , if
there exists a constant m > 0 such that

∥M(u)−M(v)∥ ≤ m∥u− v∥, ∀ u, v ∈ E.

(iv)([16]) g is said to be τ -η-strongly monotone,
if there exists a constant τ > 0 such that

⟨g(u)− g(v), η(u, v)⟩ ≥ τ∥u− v∥2, ∀ u, v ∈ E.

Remark 4 If η(u, v) = u−v (resp., η(u, v) = v−u),
the η-strong monotonicity of g reduces to the strong
monotonicity of g (resp., −g).

Definition 5 ([18]) Let E1, E2 and E3 be Banach s-
paces, and N : E∗

1 × E∗
2 × E∗

3 → E∗
1 be a mapping.

N is said to be (µ, θ, ϑ)-mixed Lipschitz continuous,
if there exist three positive constants µ, θ, ϑ such that

∥N(x, y, z)−N(x̂, ŷ, ẑ)∥1
≤ µ∥x− x̂∥1 + θ∥y − ŷ∥2 + ϑ∥z − ẑ∥3,
∀ (x, y, z), (x̂, ŷ, ẑ) ∈ E∗

1 ×E∗
2 × E∗

3 .

Lemma 6 ([21]) Let X be a nonempty closed convex
subset of a Hausdorff linear topological space E and
ϕ, ψ : X × X → R be bi-functions satisfying the
following conditions :
(i) ψ(x, y) ≤ ϕ(x, y), ∀ x, y ∈ X and ψ(x, x) ≥
0, ∀ x ∈ X;
(ii) for each x ∈ X, ϕ(x, y) is upper semi-continuous
with respect to y;
(iii) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is
convex ;
(iv) there exists a nonempty compact set Ω ⊂ X and
x0 ∈ Ω such that ψ(x0, y) < 0, ∀ y ∈ X \ Ω. Then
there exists an ȳ ∈ Ω such that ϕ(x, ȳ) ≥ 0, ∀ x ∈ X.

We shall also make use of the following result
which is a variation of Lemma 1 in [22] and is also
noted implicitly in [23].

Lemma 7 Let (E, d) be a complete metric space and
S : E → CB(E) be a set-valued mapping. Then for
any ε > 0, any u, v ∈ E, and any x ∈ S(u), there
exists y ∈ S(v) such that

d(x, y) ≤ (1 + ε)H(S(u), S(v)).

Remark 8 Let E be a normal linear space. If f :
E → R is concave and upper semi-continuous, then
f is weakly upper semi-continuous.

3 A system of auxiliary problems

Now a system of auxiliary problems (in short, S-AP)
for the S-GMELP is given below:

Suppose that E1, E2 and E3 are real reflexive
Banach spaces. For each i ∈ J, let Ri : E1 →
CB(E∗

1), Si : E2 → CB(E∗
2), Ti : E3 → CB(E∗

3)
and Fi : Ei → CB(Ei) be set-valued mappings,
let Ki, gi : Ei → E∗

i , Mi : Ei → Ei, Ni :
E∗

1 × E∗
2 × E∗

3 → E∗
i and ηi : Ei × Ei → Ei be

single-valued mappings, and let Gi : E
∗
i × Ei → R

and Bi : Ei × Ei → R be bi-functions. Giv-
en (u1, u2, u3) ∈ E1 × E2 × E3, for each i ∈
J, (xi, yi, zi) ∈ Ri(u1) × Si(u2) × Ti(u3) and pi ∈
Fi(ui), the S-AP is to find (v1, v2, v3) ∈ E1×E2×E3

such that for all (w1, w2, w3) ∈ E1×E2×E3 and for
each i ∈ J,

⟨gi(vi)− gi(ui), ηi(wi, vi)⟩i
+ρGi(Ni(xi, yi, zi), ηi(wi, vi))
+ρ⟨Ki(ui), ηi(wi, vi)⟩i
+ρBi(pi,Mi(wi))− ρBi(pi,Mi(vi))
≥ 0,

where ρ > 0 is a constant.
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Theorem 9 Suppose that for each i ∈ J, (A1)-(A3)
and the following conditions hold:
(B1) Ki and gi −Ki are λi- and γi- Lipschitz contin-
uous, respectively, and gi is τi-ηi- strongly monotone;
(B2) Mi is mi-Lipschitz continuous;
(B3) ηi is ξi-Lipschitz continuous;
(B4) ηi(wi, vi) = −ηi(vi, wi) and ηi(ei, vi) −
ηi(ei, wi) = ηi(vi, wi), ∀ ei, vi, wi ∈ Ei;
(B5) for any fixed wi ∈ Ei and w∗

i ∈ E∗
i , both

vi 7→ Gi(w
∗
i , ηi(wi, vi)) and vi 7→ ⟨w∗

i , ηi(wi, vi)⟩i
are concave;
(B6) Gi(·,−vi) = −Gi(·, vi), ∀ vi ∈ Ei, and there
exists a constant κi > 0 such that

|Gi(v
∗
i , vi)−Gi(v̂

∗
i , vi)|

≤ κi∥vi∥i · ∥v∗i − v̂∗i ∥i, ∀ vi ∈ Ei, v
∗
i , v̂

∗
i ∈ E∗

i ,
|Gi(v

∗
i , vi)−Gi(v

∗
i , v̂i)|

≤ κi∥v∗i ∥i · ∥vi − v̂i∥i, ∀ vi, v̂i ∈ Ei, v
∗
i ∈ E∗

i .

Then the S-AP has a unique solution.

Remark 10 The conditions (B4)-(B6) imply that
(i) ηi(vi, vi) = 0, ∀vi ∈ Ei;
(ii) Gi(v

∗
i , 0) = 0, ∀ v∗i ∈ E∗

i ;
(iii) |Gi(v

∗
i , vi)| ≤ κi∥vi∥i · ∥v∗i ∥i, ∀ vi ∈ Ei, v

∗
i ∈

E∗
i ;

(iv) for any fixed wi ∈ Ei and w∗
i ∈ E∗

i , both
vi 7→ Gi(w

∗
i , ηi(vi, wi)) and vi 7→ ⟨w∗

i , ηi(vi, wi)⟩i
are convex.

Remark 11 It follows from (B1) and (B3) that gi is
βi-Lipschitz continuous and

τi ≤ βiξi ≤ ξi(λi + γi).

In fact, for any ui, vi ∈ Ei,

∥gi(ui)− gi(vi)∥i
≤ ∥(gi −Ki)(ui)− (gi −Ki)(vi)∥i
+ ∥Ki(ui)−Ki(vi)∥i

≤ (λi + γi)∥ui − vi∥i.

Letting

βi = inf{β∗i : ∥gi(ui)− gi(vi)∥i ≤ β∗i ∥ui − vi∥i},

we have that βi ≤ λi + γi. In view of (B1) and (B3),
for any ui, vi ∈ Ei, the following inequalities hold:

τi∥ui − vi∥2i
≤ ⟨gi(ui)− gi(vi), ηi(ui, vi)⟩i
≤ ∥gi(ui)− gi(vi)∥i · ∥ηi(ui, vi)∥i
≤ βiξi∥ui − vi∥2i ,

which implies that τi ≤ βiξi and βi > 0. Thus gi is
βi-Lipschitz continuous and τi ≤ βiξi ≤ ξi(λi + γi).

Proof of theorem 9. For each i ∈ J, define the map-
pings ϕi, ψi : Ei × Ei → R by

ϕi(wi, vi)
= ⟨gi(wi)− gi(ui), ηi(wi, vi)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(wi, vi))
+ ρ⟨Ki(ui), ηi(wi, vi)⟩i
+ ρBi(pi,Mi(wi))− ρBi(pi,Mi(vi)),
ψi(wi, vi)

= ⟨gi(vi)− gi(ui), ηi(wi, vi)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(wi, vi)))
+ ρ⟨Ki(ui), ηi(wi, vi)⟩i
+ ρBi(pi,Mi(wi))− ρBi(pi,Mi(vi)),

respectively. We complete this proof by three steps.

Step 1. Show that for each given (u1, u2, u3) ∈ E1 ×
E2 × E3, (xi, yi, zi) ∈ Ri(u1) × Si(u2) × Ti(u3),
and pi ∈ Fi(ui) (i ∈ J), ϕi and ψi satisfy all the
conditions of Lemma 6 in the weak topology.

(i) Show that ψi(wi, vi) ≤ ϕi(wi, vi) and
ψi(wi, wi) ≥ 0, ∀ wi, vi ∈ Ei. Indeed, since gi is
τi-ηi-strongly monotone, it is clear that the two in-
equalities above hold.

(ii) Show that for each wi ∈ Ei, vi 7→ ϕi(wi, vi)
is weakly upper semi-continuous. In fact, by (B3)-
(B4) and (B6), for each wi, vi, v̂i ∈ Ei, we have

|⟨gi(wi)− gi(ui), ηi(wi, vi)⟩i
− ⟨gi(wi)− gi(ui), ηi(wi, v̂i)⟩i|

= |⟨gi(wi)− gi(ui), ηi(vi, v̂i)⟩i|
≤ ξi∥gi(wi)− gi(ui)∥i · ∥vi − v̂i∥i,

|Gi(Ni(xi, yi, zi), ηi(wi, vi))
−Gi(Ni(xi, yi, zi), ηi(wi, v̂i))|

≤ κi∥Ni(xi, yi, zi)∥i · ∥ηi(wi, vi)− ηi(wi, v̂i)∥i
= κi∥Ni(xi, yi, zi)∥i · ∥ηi(vi, v̂i)∥i
≤ κiξi∥Ni(xi, yi, zi)∥i · ∥vi − v̂i∥i,

and

|⟨Ki(ui), ηi(wi, vi)⟩i − ⟨Ki(ui), ηi(wi, v̂i)⟩i|
≤ ξi∥Ki(ui)∥i · ∥vi − v̂i∥i.

By Remark 1 (ii) and (B3), for each vi, v̂i ∈ Ei, we
have

|Bi(pi,Mi(vi))−Bi(pi,Mi(v̂i))|
≤ bimi∥pi∥i · ∥vi − v̂i∥i.

Thus vi 7→ ϕi(wi, vi) is continuous. Noting that vi 7→
ϕi(wi, vi) is concave by (A1) and (B5), we see that
vi 7→ ϕi(wi, vi) is weakly upper semi-continuous by
Remark 8.

(iii) Show that for each fixed vi ∈ Ei, the setCi =
{wi ∈ Ei : ψi(wi, vi) < 0} is convex. If Ci = ∅, then
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the i-th inequality of the S-AP holds trivially. Hence
we only discuss the case that Ci ̸= ∅. It follows from
(A1) and Remark 10 (iv) that wi 7→ ψi(wi, vi) is con-
vex. Thus Ci is convex.

(iv) Show that there exists a nonempty weak-
ly compact set Ωi ⊂ Ei and w̄i ∈ Ω such that
ψi(w̄i, vi) < 0, ∀ vi ∈ Ei \ Ωi. Now take

δi = τ−1
i [ξi∥gi(ui) + ρKi(ui)∥i

+ ρξiκi∥Ni(xi, yi, zi)∥i + ρbimi∥pi∥i],
Ωi = {wi ∈ Ei : ∥wi∥i ≤ δi}.

Then Ωi is a weakly compact subset of Ei. For any
fixed vi ∈ Ei \ Ωi, take w̄i = 0 ∈ Ωi. It follows from
(B2)-(B3), Remark 1(ii) and Remark 10 (ii) and (iv)
that

ψi(w̄i, vi) = ψi(0, vi)
= −⟨gi(0)− gi(vi), ηi(0, vi)⟩i
+ ⟨gi(ui) + ρKi(ui), ηi(0, vi)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(0, vi))
+ ρ[Bi(pi,Mi(0))−Bi(pi,Mi(vi))]

≤ −τi∥vi∥2i + (ξi∥gi(ui) + ρKi(ui)∥i
+ ρξiκi∥Ni(xi, yi, zi)∥i + ρbimi∥pi∥i) · ∥vi∥i

= −τi∥vi∥i(∥vi∥i − δi)
< 0.

Therefore, by Lemma 6, there exists a v̄i ∈ Ei such
that for all wi ∈ Ei, ϕi(wi, v̄i) ≥ 0, that is,

⟨gi(wi)− gi(ui), ηi(wi, v̄i)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(wi, v̄i))
+ ρ⟨Ki(ui), ηi(wi, v̄i)⟩i
+ ρ[Bi(pi,Mi(wi))−Bi(pi,Mi(v̄i))]
≥ 0.

(9)

Step 2 Show that when Ci ̸= ∅, there exists a solution
of the i-th inequality of the S-AP.

For each i ∈ J, arbitrary t ∈ (0, 1] and any fixed
wi ∈ Ei, let wi(t) = twi + (1 − t)v̄i. Replacing wi

by wi(t) in (9) and applying Remark 10 (i), (iv) and
(A1), we have

0 ≤ ⟨gi(wi(t))− gi(ui), ηi(twi + (1− t)v̄i, v̄i)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(twi + (1− t)v̄i, v̄i))
+ ρ⟨Ki(ui), ηi(twi + (1− t)v̄i, v̄i)⟩i
+ ρBi(pi,Mi(twi + (1− t)v̄i))
− ρBi(pi,Mi(v̄i))

≤ t[⟨gi(wi(t))− gi(ui), ηi(wi, v̄i)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(wi, v̄i))
+ ρ⟨Ki(ui), ηi(wi, v̄i)⟩i
+ ρBi(pi,Mi(v̄i))− ρBi(pi,Mi(wi))].

Hence,

⟨gi(wi(t))− gi(ui), ηi(wi, v̄i)⟩i
+ ρGi(Ni(xi, yi, zi), ηi(wi, v̄i))
+ ρ⟨Ki(ui), ηi(wi, v̄i)⟩i
+ ρBi(pi,Mi(wi))− ρBi(pi,Mi(v̄i))
≥ 0.

(10)

Letting t → 0+ in (10) and applying Remark 11, we
obtain

⟨gi(v̄i)− gi(ui), ηi(wi, v̄i)⟩i
+ρGi(Ni(xi, yi, zi), ηi(wi, v̄i))
+ρ⟨Ki(ui), ηi(wi, v̄i)⟩i
+ρBi(pi,Mi(wi))− ρBi(pi,Mi(v̄i))
≥ 0.

Therefore, the existence of solutions of the S-AP is
shown.

Step 3 Show that the solution of the S-AP is unique.
Let (v̄1, v̄2, v̄3), (v̂1, v̂2, v̂3) ∈ E1 × E2 × E3 be

two solutions of the S-AP. Then for each i ∈ J and for
all (w1, w2, w3) ∈ E1 × E2 ×E3,

⟨gi(v̄i), ηi(wi, v̄i)⟩i
≥ ⟨gi(ui), ηi(wi, v̄i)⟩i
− ρGi(Ni(xi, yi, zi), ηi(wi, v̄i))
− ρ⟨Ki(ui), ηi(wi, v̄i)⟩i
+ ρBi(pi,Mi(v̄i))− ρBi(pi,Mi(wi)),

(11)

and

⟨gi(v̂i), ηi(wi, v̂i)⟩i
≥ ⟨gi(ui), ηi(wi, v̂i)⟩i
− ρGi(Ni(xi, yi, zi), ηi(wi, v̂i))
− ρ⟨Ki(ui), ηi(wi, v̂i)⟩i
+ ρBi(pi,Mi(v̂i))− ρBi(pi,Mi(wi)).

(12)

By taking wi = v̂i in (11) and wi = v̄i in (12) and
utilizing (B4) and (B6),

⟨gi(v̄i)− gi(v̂i), ηi(v̂i, v̄i)⟩i
≥ −ρ[Gi(Ni(xi, yi, zi), ηi(v̄i, v̂i))
+Gi(Ni(xi, yi, zi), ηi(v̂i, v̄i))]
− ρ⟨Ki(ui), ηi(v̄i, v̂i) + ηi(v̂i, v̄i)⟩i

= ρ[Gi(Ni(xi, yi, zi), ηi(v̂i, v̄i))
−Gi(Ni(xi, yi, zi), ηi(v̂i, v̄i))]

= 0.

Since gi is τi-ηi-strongly monotone, the following in-
equality holds:

τi∥v̄i − v̂i∥2i
≤ ⟨gi(v̄i)− gi(v̂i), ηi(v̄i, v̂i)⟩i
≤ 0,

which implies that v̄i = v̂i. This completes the proof
of Theorem 9. �
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4 An iterative algorithm for S-
GMELP

On the basis of Theorem 9, now an iterative algorith-
m for solving the S-GMELP is constructed in real
reflexive Banach spaces. For each i ∈ J and giv-
en (u01, u

0
2, u

0
3) ∈ E1 × E2 × E3, (x0i , y

0
i , z

0
i ) ∈

Ri(u
0
1)×Si(u02)×Ti(u03) and p0i ∈ Fi(u

0
i ), the unique

solution (u11, u
1
2, u

1
3) ∈ E1×E2×E3 of the S-AP sat-

isfies that for all (w1, w2, w3) ∈ E1 × E2 × E3 and
for each i ∈ J,

⟨gi(u1i )− gi(u
0
i ), ηi(wi, u

1
i )⟩i

+ρGi(Ni(x
0
i , y

0
i , z

0
i ), ηi(wi, u

1
i ))

+ρ⟨Ki(u
0
i ), ηi(wi, u

1
i )⟩i

+ρBi(p
0
i ,Mi(wi))− ρBi(p

0
i ,Mi(u

1
i ))

≥ 0.

By Lemma 7, there exist (x1i , y
1
i , z

1
i ) ∈ Ri(u

1
1) ×

Si(u
1
2)× Ti(u

1
3) and p1i ∈ Fi(u

1
i ) such that

∥x0i − x1i ∥1 ≤ (1 + 1)H1(Ri(u
0
1), Ri(u

1
1)),

∥y0i − y1i ∥2 ≤ (1 + 1)H2(Si(u
0
2), Si(u

1
2)),

∥z0i − z1i ∥3 ≤ (1 + 1)H3(Ti(u
0
3), Ti(u

1
3)),

∥p0i − p1i ∥i ≤ (1 + 1)Hi(Fi(u
0
i ), Fi(u

1
i )).

By induction, an iterative algorithm for solving the S-
GMELP is established in real reflexive Banach spaces
E1, E2 and E3 as follows:

Algorithm I For each i ∈ J and for any given
(u01, u

0
2, u

0
3) ∈ E1×E2×E3, (x

0
i , y

0
i , z

0
i ) ∈ Ri(u

0
1)×

Si(u
0
2) × Ti(u

0
3) and p0i ∈ Fi(u

0
i ), there exists a se-

quence {Qn}∞n=1, where

Qn = (un1 , u
n
2 , u

n
3 , x

n
1 , x

n
2 , x

n
3 , y

n
1 , y

n
2 , y

n
3 ,

zn1 , z
n
2 , z

n
3 , p

n
1 , p

n
2 , p

n
3 ),

such that xni ∈ Ri(u
n
1 ), yni ∈ Si(u

n
2 ), zni ∈

Ti(u
n
3 ), p

n
i ∈ Fi(u

n
i ) and

∥xni − xn+1
i ∥1 ≤ (1 + 1

n+1)H1(Ri(u
n
1 ), Ri(u

n+1
1 )),

∥yni − yn+1
i ∥2 ≤ (1 + 1

n+1)H2(Si(u
n
2 ), Si(u

n+1
2 )),

∥zni − zn+1
i ∥3 ≤ (1 + 1

n+1)H3(Ti(u
n
3 ), Ti(u

n+1
3 )),

∥pni − pn+1
i ∥i ≤ (1 + 1

n+1)Hi(Fi(u
n
i ), Fi(u

n+1
i )),

(13)
and for all (w1, w2, w3) ∈ E1×E2×E3 and for each
i ∈ J,

⟨gi(un+1
i )− gi(u

n
i ), ηi(wi, u

n+1
i )⟩i

+ ρGi(Ni(x
n
i , y

n
i , z

n
i ), ηi(wi, u

n+1
i ))

+ ρ⟨Ki(u
n
i ), ηi(wi, u

n+1
i )⟩i

+ ρBi(p
n
i ,Mi(wi))− ρBi(p

n
i ,Mi(u

n+1
i ))

≥ 0,
(14)

where ρ > 0 is a constant.

5 Existence of solutions of S-
GMELP and convergence analysis

In this section, we shall show that the sequence
{Qn}∞n=1 generalized by Algorithm I strongly con-
verges to some solution of the S-GMELP.

Theorem 12 Let E1, E2 and E3 be real reflexive Ba-
nach spaces. Suppose that for each i ∈ J, (A1)-(A3),
(B1)-(B6) and the following conditions hold:
(C1) Ni is (µi, θi, ϑi)-mixed Lipschitz continuous;
(C2) Ri, Si, Ti and Fi are ri-H1-, si-H2-, ti-H3-
and fi-Hi-Lipschitz continuous, respectively.

If there exists a constant ρ > 0 such that

σ = max{σ1, σ2, σ3} < 1, (15)

where for each i ∈ J,

σi = τ−1
i ξi(γi + |1− ρ|λi) + ρτ−1

i αi,

α1 = b1f1m1 +
3∑

i=1
κiξiµiri,

α2 = b2f2m2 +
3∑

i=1
κiξiθisi,

α3 = b3f3m3 +
3∑

i=1
κiξiϑiti,

(16)

then for each i ∈ J, the sequence {Qn}∞n=1 gen-
eralized by Algorithm I strongly converges to Q =
(ū1, ū2, ū3, x̄1, x̄2, x̄3, ȳ1, ȳ2, ȳ3, z̄1, z̄2, z̄3, p̄1, p̄2, p̄3),
and Q is a solution of the S-GMELP, where
(ū1, ū2, ū3) ∈ E1 × E2 × E3 and for each
i ∈ J, (x̄i, ȳi, z̄i) ∈ Ri(ū1) × Si(ū2) × Ti(ū3) and
p̄i ∈ Fi(ūi).

Proof. It follows from (14) that for any
(w1, w2, w3) ∈ E1 × E2 × E3 and for each i ∈ J,

⟨gi(uni )− gi(u
n−1
i ), ηi(wi, u

n
i )⟩i

+ ρGi(Ni(x
n−1
i , yn−1

i , zn−1
i ), ηi(wi, u

n
i ))

+ ρ⟨Ki(u
n−1
i ), ηi(wi, u

n
i )⟩i

+ ρBi(p
n−1
i ,Mi(wi))− ρBi(p

n−1
i ,Mi(u

n
i ))

≥ 0,
(17)

and

⟨gi(un+1
i )− gi(u

n
i ), ηi(wi, u

n+1
i )⟩i

+ ρGi(Ni(x
n
i , y

n
i , z

n
i ), ηi(wi, u

n+1
i ))

+ ρ⟨Ki(u
n
i ), ηi(wi, u

n+1
i )⟩i

+ ρBi(p
n
i ,Mi(wi))− ρBi(p

n
i ,Mi(u

n+1
i ))

≥ 0.
(18)
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Taking wi = un+1
i in (17) and wi = uni in (18), re-

spectively, we get that for each i ∈ J,

⟨gi(uni )− gi(u
n−1
i ), ηi(u

n+1
i , uni )⟩i

+ ρGi(Ni(x
n−1
i , yn−1

i , zn−1
i ), ηi(u

n+1
i , uni ))

+ ρ⟨Ki(u
n−1
i ), ηi(u

n+1
i , uni )⟩i

+ ρ[Bi(p
n−1
i ,Mi(u

n+1
i ))−Bi(p

n−1
i ,Mi(u

n
i ))]

≥ 0,
(19)

and

⟨gi(un+1
i )− gi(u

n
i ), ηi(u

n
i , u

n+1
i )⟩i

+ ρGi(Ni(x
n
i , y

n
i , z

n
i ), ηi(u

n
i , u

n+1
i ))

+ ρ⟨Ki(u
n
i ), ηi(u

n
i , u

n+1
i )⟩i

+ ρ[Bi(p
n
i ,Mi(u

n
i ))−Bi(p

n
i ,Mi(u

n+1
i ))]

≥ 0.
(20)

Combining (19)-(20) with (B3), we have

⟨gi(uni )− gi(u
n+1
i ), ηi(u

n
i , u

n+1
i )⟩i

≤ ⟨gi(un−1
i )− gi(u

n
i ), ηi(u

n
i , u

n+1
i )⟩i

+ ρ⟨Ki(u
n
i )−Ki(u

n−1
i ), ηi(u

n
i , u

n+1
i )⟩i

+ ρ[Gi(Ni(x
n
i , y

n
i , z

n
i ), ηi(u

n
i , u

n+1
i ))

−Gi(Ni(x
n−1
i , yn−1

i , zn−1
i ), ηi(u

n
i , u

n+1
i ))]

+ ρ[Bi(p
n−1
i ,Mi(u

n+1
i )) +Bi(p

n
i ,Mi(u

n
i ))

−Bi(p
n−1
i ,Mi(u

n
i ))−Bi(p

n
i ,Mi(u

n+1
i ))]

≤ ⟨gi(un−1
i )− gi(u

n
i )− (Ki(u

n−1
i )−Ki(u

n
i )),

ηi(u
n
i , u

n+1
i )⟩i

+ (1− ρ)⟨Ki(u
n−1
i )−Ki(u

n
i ), ηi(u

n
i , u

n+1
i )⟩i

+ ρ[Gi(Ni(x
n−1
i , yn−1

i , zn−1
i ), ηi(u

n+1
i , uni ))

−Gi(Ni(x
n
i , y

n
i , z

n
i ), ηi(u

n+1
i , uni ))]

+ ρ[Bi(p
n−1
i ,Mi(u

n+1
i )) +Bi(p

n
i ,Mi(u

n
i ))

−Bi(p
n−1
i ,Mi(u

n
i ))−Bi(p

n
i ,Mi(u

n+1
i ))].

(21)
It follows from (B1) and (B3) that

⟨gi(uni )− gi(u
n+1
i ), ηi(u

n
i , u

n+1
i )⟩i

≥ τi∥un+1
i − uni ∥2i ,

(22)

∥gi(un−1
i )− gi(u

n
i )− [Ki(u

n−1
i )−Ki(u

n
i )]∥i

≤ γi∥uni − un−1
i ∥i,

(23)

∥Ki(u
n−1
i )−Ki(u

n
i )∥i ≤ λi∥uni − un−1

i ∥i,
(24)

and

∥ηi(un+1
i , uni )∥i ≤ ξi∥un+1

i − uni ∥i. (25)

By using (B3), (B6), (C1) and (C2), the following in-
equality holds:

|Gi(Ni(x
n−1
i , yn−1

i , zn−1
i ), ηi(u

n+1
i , uni ))

−Gi(Ni(x
n
i , y

n
i , z

n
i ), ηi(u

n+1
i , uni ))|

≤ (1 + 1
n)κiξi∥u

n+1
i − uni ∥i

· (µiri∥un1 − un−1
1 ∥1 + θisi∥un2 − un−1

2 ∥2
+ ϑiti∥un3 − un−1

3 ∥3).
(26)

The conditions (A2), (B2) and (C2) imply that

|Bi(p
n−1
i ,Mi(u

n+1
i )) +Bi(p

n
i ,Mi(u

n
i ))

−Bi(p
n−1
i ,Mi(u

n
i ))−Bi(p

n
i ,Mi(u

n+1
i ))|

≤ (1 + 1
n)bimiHi(Fi(u

n
i ), Fi(u

n−1
i ))

· ∥un+1
i − uni ∥i

≤ (1 + 1
n)bimifi∥un+1

i − uni ∥i · ∥uni − un−1
i ∥i.

(27)
It follows from (21)-(27) that

∥un+1
i − uni ∥i

≤ τ−1
i [γiξi + |1− ρ|λiξi

+ (1 + 1
n)ρbifimi]∥uni − un−1

i ∥i
+ τ−1

i (1 + 1
n)ρκiξi · (µiri∥u

n
1 − un−1

1 ∥1
+ θisi∥un2 − un−1

2 ∥2 + ϑiti∥un3 − un−1
3 ∥3),

and

∥un+1
1 − un1∥1 + ∥un+1

2 − un2∥2 + ∥un+1
3 − un3∥3

≤ τ−1
1 [γ1ξ1 + |1− ρ|λ1ξ1

+ (1 + 1
n)ρb1f1m1]∥un1 − un−1

1 ∥1
+ ρτ−1

1 (1 + 1
n)κ1ξ1(µ1r1∥u

n
1 − un−1

1 ∥1
+ θ1s1∥un2 − un−1

2 ∥2 + ϑ1t1∥un3 − un−1
3 ∥3)

+ τ−1
2 [γ2ξ2 + |1− ρ|λ2ξ2

+ (1 + 1
n)ρb2f2m2]∥un2 − un−1

2 ∥2
+ ρτ−1

2 (1 + 1
n)κ2ξ2(µ2r2∥u

n
1 − un−1

1 ∥1
+ θ2s2∥un2 − un−1

2 ∥2 + ϑ2t2∥un3 − un−1
3 ∥3)

+ τ−1
3 [γ3ξ3 + |1− ρ|λ3ξ3

+ (1 + 1
n)ρb3f3m3]∥un3 − un−1

3 ∥3
+ ρτ−1

3 (1 + 1
n)κ3ξ3(µ3r3∥u

n
1 − un−1

1 ∥1
+ θ3s3∥un2 − un−1

2 ∥2 + ϑ3t3∥un3 − un−1
3 ∥3)

= σ1(n)∥un1 − un−1
1 ∥1 + σ2(n)∥un2 − un−1

2 ∥2
+ σ3(n)∥un3 − un−1

3 ∥3,
(28)

where for each i ∈ J,

σi(n) = τ−1
i ξi(γi + |1− ρ|λi) + τ−1

i (1 + 1
n)ραi,

and αi is defined by (16). It’s easy to see that

∥(un+1
1 , un+1

2 , un+1
3 )− (un1 , u

n
2 , u

n
3 )∥∗

≤ σ(n)∥(un1 , un2 , un3 )− (un−1
1 , un−1

2 , un−1
3 )∥∗,

(29)
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by (28), where

σ(n) = max{σ1(n), σ2(n), σ3(n)} → σ

as n→ ∞. It follows from (15) that there exist a pos-
itive number σ0 < 1 and a sufficiently large integer
n0 ≥ 0 such that σ(n) ≤ σ0 for all n > n0, which
implies that {(un1 , un2 , un3 )} is a Cauchy sequence in
E1 ×E2 ×E3 by (29). Since (E1 ×E2 ×E3, ∥ · ∥∗)
is a Banach space, {(un1 , un2 , un3 )} strongly converges
to some (ū1, ū2, ū3) ∈ E1 × E2 × E3. We claim
that {xni }, {yni }, {zni } and {pni } are also Cauchy
sequences and strongly converge x̄i ∈ E∗

1 , ȳi ∈
E∗

2 , z̄i ∈ E∗
3 and p̄i ∈ Ei, respectively. In fact, for

each (xni , y
n
i , z

n
i ) ∈ Ri(u

n
1 ) × Si(u

n
2 ) × Ti(u

n
3 ) and

pni ∈ Fi(u
n
i ),

∥xni − xn+1
i ∥1 ≤ (1 + 1

n+1)ri∥u
n
1 − un+1

1 ∥1,
∥yni − yn+1

i ∥2 ≤ (1 + 1
n+1)si∥u

n
2 − un+1

2 ∥2,
∥zni − zn+1

i ∥3 ≤ (1 + 1
n+1)ti∥u

n
3 − un+1

3 ∥3,
∥pni − pn+1

i ∥i ≤ (1 + 1
n+1)fi∥u

n
i − un+1

i ∥i,

by (13) and (C2). We also see that for each i ∈ J,
x̄i ∈ Ri(ū1), since

d1(x̄i, Ri(ū1))
≤ ∥x̄i − xni ∥1 + d1(x

n
i , Ri(u

n
1 ))

+H1(Ri(u
n
1 ), Ri(ū1))

≤ ∥x̄i − xni ∥1 + ri∥ū1 − un1∥1 → 0 as n→ ∞.

Similarly, ȳi ∈ Si(ū2), z̄i ∈ Ti(ū3) and p̄i ∈
Fi(ūi). Hence, Qn → Q as n→ ∞, where

Q = (ū1, ū2, ū3, x̄1, x̄2, x̄3, ȳ1, ȳ2, ȳ3, z̄1,
z̄2, z̄3, p̄1, p̄2, p̄3).

Rewrite (14) as follows: for all (w1, w2, w3) ∈ E1×
E2 × E3 and for each i ∈ J,

⟨gi(un+1
i )− gi(u

n
i ), ηi(wi, u

n+1
i )⟩i

+ ρGi(Ni(x
n
i , y

n
i , z

n
i ), ηi(wi, u

n+1
i ))

+ ρ⟨Ki(u
n
i ), ηi(wi, u

n+1
i )⟩i

+ ρBi(z
n
i ,Mi(wi))− ρBi(z

n
i ,Mi(u

n+1
i ))

≥ 0.
(30)

Since Qn → Q as n → ∞ and gi is βi-Lipschitz
continuous (See Remark 11),

|⟨gi(un+1
i )− gi(u

n
i ), ηi(wi, u

n+1
i )⟩i|

≤ ξiβi(∥un+1
i − ūi∥i + ∥uni − ūi∥i) · ∥wi − un+1

i ∥i
→ 0 as n→ ∞.

(31)

Also,

|Gi(Ni(x
n
i , y

n
i , z

n
i ), ηi(wi, u

n+1
i ))

−Gi(Ni(x̄i, ȳi, z̄i), ηi(wi, ūi))|
≤ |Gi(Ni(x

n
i , y

n
i , z

n
i ), ηi(wi, u

n+1
i ))

−Gi(Ni(x̄i, ȳi, z̄i), ηi(wi, u
n+1
i ))|

+ |Gi(Ni(x̄i, ȳi, z̄i), ηi(wi, u
n+1
i ))

−Gi(Ni(x̄i, ȳi, z̄i), ηi(wi, ūi))|
≤ κiξi∥wi − un+1

i ∥i
· (ri∥xni − x̄i∥1 + si∥yni − ȳi∥2 + ti∥zni − z̄i∥3)
+ κiξi∥Ni(x̄i, ȳi, z̄i)∥i · ∥uni − un+1

i ∥i
→ 0 as n→ ∞,

(32)

|⟨Ki(u
n
i ), ηi(wi, u

n+1
i )⟩i − ⟨Ki(ūi), ηi(wi, ūi)⟩i|

≤ |⟨Ki(u
n
i )−Ki(ūi), ηi(wi, u

n+1
i )⟩i|

+ |⟨Ki(ūi), ηi(wi, u
n+1
i )− ηi(wi, ūi)⟩i|

≤ λiξi∥wi − un+1
i ∥i · ∥uni − ūi∥i

+ ξi∥Ki(ūi)∥i · ∥un+1
i − ūi∥i

→ 0 as n→ ∞,
(33)

and

|Bi(p
n
i ,Mi(wi))−Bi(p

n
i ,Mi(u

n+1
i ))

− [Bi(p̄i,Mi(wi))−Bi(p̄i,Mi(ūi))]|
≤ |Bi(p

n
i ,Mi(wi)) +Bi(p

n
i ,Mi(ūi))

−Bi(p̄i,Mi(wi))−Bi(p̄i,Mi(ūi))|
+ |Bi(p

n
i ,Mi(u

n+1
i ))−Bi(p

n
i ,Mi(ūi))|

≤ bi∥Mi(wi)−Mi(ūi)∥i · ∥pni − p̄i∥i
+ bimi∥pni ∥i · ∥u

n+1
i − ūi∥i

→ 0 as n→ ∞.
(34)

By letting n → ∞ in (29) and applying (30)-(34), for
all (w1, w2, w3) ∈ E1 × E2 ×E3,

Gi(Ni(x̄i, ȳi, z̄i), ηi(wi, ūi)) + ⟨Ki(ūi), ηi(wi, ūi)⟩i
+Bi(p̄i,Mi(wi))−Bi(p̄i,Mi(ūi)) ≥ 0, i ∈ J,

that is,

Q = (ū1, ū2, ū3, x̄1, x̄2, x̄3, ȳ1, ȳ2, ȳ3,
z̄1, z̄2, z̄3, p̄1, p̄2, p̄3)

is a solution of the S-GMELP. �

Remark 13 Under some suitable assumptions, the
condition (15) is well-defined. For example, in the
case that for each i ∈ J, λi − αi > Θi, where
Θi = ξi(γi + λi) − τi ≥ 0 by Remark 11, we can
take

ρ ∈ (max{ Θ1
λ1−α1

, Θ2
λ2−α2

, Θ3
λ3−α3

}, 1)

such that (15) holds.
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6 Example

The following example is given to exemplify Theorem
12

Example Suppose that E1 = R1 = R, E2 = R2

and E3 = R3. For each i ∈ J, let Ri, F1 :
R1 → CB(R1), Si, F2 : R2 → CB(R2) and
Ti, F3 : R3 → CB(R3) be set-valued mappings, let
Ni : R1 × R2 × R3 → Ri, ηi : Ri × Ri → Ri and
Ki, gi, Mi : Ri → Ri be single-valued mappings,
and let Gi, Bi : Ri × Ri → R be bi-functions. For
any

u1, v1, x1, x2, x3, p1, q1, c1, d1 ∈ R1,
u2, v2, y1, y2, y3, p2, q2, c2, d2 ∈ R2,

and

u3, v3, z1, z2, z3, p3, q3, c3, d3 ∈ R3,

and for each i ∈ J, define Ri, Si, Ti, Fi, Ni, ηi,
Ki, gi, Gi and Bi as follows:

R1(u1) = {a : |a| ≤ |u1|},
S1(u2) = {a : ∥a− u2∥2 ≤ 1},
T1(u3) = {a : ∥a∥3 ≤ ∥u3∥3},
F1(u1) = [18(u1 − 1), 18u1],

N1(x1, y1, z1) =
√

1 + x21 − y11 − z11,
η1(v1, u1) = v1 − u1,
K1(u1) = u1 +

1
5 sinu1,

g1(u1) =M1(u1) = u1,

G1(c1, d1) =
1
10(e

−|c1| − 1)d1,

B1(p1, q1) = | sin p1|(
√

1 + q21 − 1);

R2(u1) = [u1 − 9, u1 − 8],
S2(u2) = {a : ∥a∥2 ≤ ∥u2∥2},
T2(u3) = {a : ∥a− u3∥3 ≤ 1},
F2(u2) = {(1, a) : 0 ≤ a ≤ 1

10 |u21|},
N2(x2, y2, z2) = (x2 + y22 + z21, 0),
η2(v2, u2) = v2 − u2,
K2(u2) =

4
5u2,

g2(u2) =M2(u2) = u2,
G2(c2, d2) =

1
10(c21d21 + c22d22),

B2(p2, q2) = p22q22;

R3(u1) = [u1, u1 + 1],
S3(u2) = {(−1, a) : |a| ≤ |u22|},
T3(u3) = [u31, u31 + 1]× {(0, 0)},
F3(u3) = {a : ∥a− 1

10u3∥3 ≤ 1},
N3(x3, y3, z3) = (0, 0, x3 − y31 − z33),
η3(v3, u3) = v3 − u3,
K3(u3) =

6
5u3,

g3(u3) =M3(u3) = u3,
G3(c3, d3) =

1
5c31d31,

B3(p3, q3) = p33q33,

where ∥ · ∥2 and ∥ · ∥3 are the Euclidean norms in
R2 and R3, respectively, and the form ∗ij is denoted
by the j-th component of ∗i. Then, we have for each
i ∈ J,

(i) Ri, Si, Ti and Fi satisfy (C2) with ri = si =
ti = 1, f1 =

1
8 , f2 =

1
10 and f3 = 1

10 ;
(ii) Ni satisfies (C1) with (µi, θi, ϑi) = (1, 1, 1);
(iii) ηi satisfies (B3)-(B5) with ξi = 1;
(iv) Ki and gi satisfy (B1) with λ1 = 6

5 , λ2 =
4
5 , λ3 =

6
5 , γi = 1

5 and τi = 1;
(v) Mi satisfies (B2) with mi = 1;
(vi) Gi satisfies (B6) with κ1 = 1

10 , κ2 = 1
10 and

κ3 =
1
5 ;

(vii) Bi satisfies (A1)-(A3) with bi = 1.
By simply calculating, it follows that

σ1 =
1
5 + 6

5 |1− ρ|+ 21
40ρ,

σ2 =
1
5 + 4

5 |1− ρ|+ 1
2ρ,

σ3 =
1
5 + 6

5 |1− ρ|+ 1
2ρ,

and for all ρ ∈ (1627 ,
80
69), σ < 1, that is, (15) holds. It

follows from theorem 12 that this S-GMELP at least
has a solution. In fact,

(u1, u2, u3, x1, x2, x3, y1, y2, y3, z1, z2, z3, p1, p2, p3)

is a solution of S-GMELP, where

u1 = 0 ∈ R1, u2 = (1, 0) ∈ R2,
u3 = (0, 0,−1

6) ∈ R3,
x1 = 0 ∈ R1(u1), x2 = −8 ∈ R2(u1),
x3 = 1 ∈ R3(u1),
y1 = (1, 0) ∈ S1(u2), y2 = (0, 0) ∈ S2(u2),
y3 = (−1, 0) ∈ S3(u2),
z1 = (0, 0, 0) ∈ T1(u3), z2 = (0, 12 ,−

1
3) ∈ T2(u3),

z3 = (23 , 0, 0) ∈ T3(u3),
p1 = 0 ∈ F1(u1), p2 = (1, 0) ∈ F2(u2),
p3 = (0, 0, 15) ∈ F3(u3).
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