Existence and iterative algorithm of solutions for a new system of generalized set-valued mixed equilibrium-like problems in Banach spaces

De-ning Qu
Beijing University of Technology
College of Applied Science
Beijing 100124, CHINA
Also: Jilin Normal University
College of Mathematics
Jilin 136000, CHINA
qudening@tom.com, qudening@emails.bjut.edu.cn

Cao-zong Cheng
Beijing University of Technology
College of Applied Science
Beijing 100124
CHINA
czcheng@bjut.edu.cn

Abstract

A new system of generalized set-valued mixed equilibrium-like problems (in short, S-GMELP) in Banach spaces is discussed. In order to obtain the existence of solutions of S-GMELP, a system of related auxiliary problems (in short, S-AP) is established. On the basis of the existence and uniqueness of solutions of the S-AP, an iterative algorithm for the S-GMELP is constructed. It is proved that the iterative sequence converges some solution of S-GMELP. Finally, an example is given to well exemplify our main result.

Key-Words: Equilibrium-like problem, Auxiliary principle technique, Existence, Iterative algorithm, Banach space

1 Introduction

When Hartman-Stampacchia [1] created the variational inequality theory in 1966, they researched the first variational inequality defined on finite-dimension spaces. In recent years, many authors have generalized the variational inequality problems in two main aspects: the model of the variational inequalities and the framework of spaces mainly including Hilbert spaces and Banach spaces. Parida-Sen [2] in 1987 introduced the variational-like inequality problems closely related to the convex mathematical programming problems in finite-dimension spaces. In [3-10] authors discussed the mixed variational-like inequality problems (in short, MVLIP) in Banach spaces. The authors in [11-14] generalized the MVLIP to the generalized set-valued mixed variational-like inequality problems (in short, GMVLIP), and investigated the GMVLIP in Hilbert spaces, and so did the authors in [15, 16] in Banach spaces.

In the sequel, Kazmi-Khan [17] presented a system of MVLIP (in short, S-MVLIP), constructed an algorithm for it by exploiting auxiliary principle technique and investigated the convergence analysis of the algorithm in Hilbert spaces. Recently, WangDing [18] generalized the S-MVLIP to a system of GMVLIP (in short, S-GMVLIP) and studied the SGMVLIP in Banach spaces.

The equilibrium theory is one of the most im-
portant tools to analyze a system, since it provides a new unified framework for those problems which arise from physics, economics, traffic, optimization theory, etc. As a matter of fact, equilibrium problems include variational inequality problems, fixed-point problems, mathematical programming problems and others as their special cases. The class of equilibriumlike problems is a useful generalization of the class of variational-like inequality problems and has some potential and significant applications in optimization and economics. To the best of our knowledge, the results on the existence of solutions of equilibrium-like problems by constructing iterative algorithms are few. Inspired by the recent works involving the system of variational-like inequality problems in [17, 18], we introduce a system of generalized set-valued mixed equilibrium-like problems and discussed the existence of its solutions by using auxiliary principle technique in Banach spaces. The introduced system includes the problems discussed in [3-17] as its special cases and its framework of spaces is generalized from Hilbert spaces in $[5,6,11-15,17]$ to Banach spaces. The rest of this paper is organized as follows. In Section 2, the main problem discussed in this paper is presented and some preliminaries are list. In Sections 3, a theorem on the existence and uniqueness of solutions of a system of related auxiliary problems is proved. In Section 4, by the theorem presented in Section 3, an iterative
algorithm for the main problem is proposed. In Section 5, a main theorem on the existence of solutions of the main problem is shown by studying the convergence analysis of the iterative algorithm presented in Section 4. Finally, an example is given to well exemplify our main result in Section 6.

2 Preliminaries

Let E be a real Banach space with norm $\|\cdot\|$ and topological dual $E^{*},\langle\cdot, \cdot\rangle$ be generalized duality pairing between E^{*} and E, and $C B(E)$ be the family of all nonempty, bounded and closed subsets of E. Define the Hausdorff metric $H(\cdot, \cdot)$ on $C B(E)$ by

$$
\begin{gathered}
H(A, B)=\max \left\{\sup _{u \in A} d(u, B), \sup _{v \in B} d(A, v)\right\}, \\
\forall A, B \in C B(E),
\end{gathered}
$$

where

$$
d(A, v)=\inf _{u \in A}\|u-v\|
$$

and

$$
d(u, B)=\inf _{v \in B}\|u-v\| .
$$

Throughout this paper, unless other stated, \mathbb{R} and \mathbb{J} are denoted by the set of the real numbers and the set $\{1,2,3\}$, respectively. Suppose that for each $i \in \mathbb{J}$, E_{i} is a real reflexive Banach space with the norm $\|\cdot\|_{i}$ and the topological dual $E_{i}^{*},\langle\cdot, \cdot\rangle_{i}$ is the generalized duality between E_{i}^{*} and $E_{i}, H_{i}(\cdot, \cdot)$ is the Hausdorff metric on $C B\left(E_{i}\right)$ and $C B\left(E_{i}^{*}\right), d_{i}$ is the distance between a point and a point set on E_{i}^{*} and I_{i} and I are denoted by the identity mappings defined on E_{i} and E, respectively. If the norm $\|\cdot\|^{*}$ on $E_{1} \times E_{2} \times E_{3}$ is defined by

$$
\begin{aligned}
& \left\|\left(u_{1}, u_{2}, u_{3}\right)\right\|^{*}=\left\|u_{1}\right\|_{1}+\left\|u_{2}\right\|_{2}+\left\|u_{3}\right\|_{3} \\
& \quad \forall\left(u_{1}, u_{2}, u_{3}\right) \in E_{1} \times E_{2} \times E_{3}
\end{aligned}
$$

then $\left(E_{1} \times E_{2} \times E_{3},\|\cdot\|^{*}\right)$ is a Banach space.
The system of generalized set-valued mixed equilibrium-like problems (in short, S-GMELP) is stated as follows:

Suppose that E_{1}, E_{2} and E_{3} are real Banach spaces. For each $i \in \mathbb{J}$, let $R_{i}: E_{1} \rightarrow$ $C B\left(E_{1}^{*}\right), S_{i}: E_{2} \rightarrow C B\left(E_{2}^{*}\right), T_{i}: E_{3} \rightarrow C B\left(E_{3}^{*}\right)$ and $F_{i}: E_{i} \rightarrow C B\left(E_{i}\right)$ be set-valued mappings, let $N_{i}: E_{1}^{*} \times E_{2}^{*} \times E_{3}^{*} \rightarrow E_{i}^{*}, K_{i}:$ $E_{i} \quad \rightarrow \quad E_{i}^{*}, \quad \eta_{i}: E_{i} \times E_{i} \quad \rightarrow \quad E_{i}$ and $M_{i}: E_{i} \rightarrow E_{i}$ be single-valued mappings, and let $G_{i}: E_{i}^{*} \times E_{i} \rightarrow \mathbb{R}$ and $B_{i}: E_{i} \times E_{i} \rightarrow \mathbb{R}$ be bi-functions. The problem is to find $\left(u_{1}, u_{2}, u_{3}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}, p_{1}, p_{2}, p_{3}\right)$, where $\left(u_{1}, u_{2}, u_{3}\right) \in E_{1} \times E_{2} \times E_{3},\left(x_{i}, y_{i}, z_{i}\right) \in$
$R_{i}\left(u_{1}\right) \times S_{i}\left(u_{2}\right) \times T_{i}\left(u_{3}\right)$ and $p_{i} \in F_{i}\left(u_{i}\right)(i \in \mathbb{J})$, such that for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ and for each $i \in \mathbb{J}$,

$$
\begin{aligned}
& G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, u_{i}\right)\right) \\
+ & \left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, u_{i}\right)\right\rangle_{i} \\
+ & B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-B_{i}\left(p_{i}, M_{i}\left(u_{i}\right)\right) \geq 0
\end{aligned}
$$

where for each $i \in \mathbb{J}, B_{i}$ satisfies the following properties:
$\left(\mathbf{A}_{1}\right)$ for each fixed $p_{i} \in E_{i}, u_{i} \mapsto B_{i}\left(p_{i}, M_{i}\left(u_{i}\right)\right)$ is convex;
$\left(\mathbf{A}_{2}\right)$ there exists a constant $b_{i}>0$ such that

$$
\begin{aligned}
& B_{i}\left(p_{i}, q_{i}\right)+B_{i}\left(\hat{p}_{i}, \hat{q}_{i}\right)-B_{i}\left(p_{i}, \hat{q}_{i}\right)-B_{i}\left(\hat{p}_{i}, q_{i}\right) \\
\geq & -b_{i}\left\|p_{i}-\hat{p}_{i}\right\|_{i} \cdot\left\|q_{i}-\hat{q}_{i}\right\|_{i}, \\
& \forall p_{i}, \hat{p}_{i}, q_{i}, \hat{q}_{i} \in E_{i} ;
\end{aligned}
$$

$\left(\mathbf{A}_{3}\right) B_{i}\left(p_{i}, 0\right)=B_{i}\left(0, q_{i}\right)=0, \forall p_{i}, q_{i} \in E_{i}$.

Remark 1 It follows from $\left(\boldsymbol{A}_{2}\right)$ and $\left(\boldsymbol{A}_{3}\right)$ that for each $i \in \mathbb{J}$,
(i) B_{i} is bounded, that is, there exists a constant $b_{i}>$ 0 such that

$$
\left|B_{i}\left(p_{i}, q_{i}\right)\right| \leq b_{i}\left\|p_{i}\right\|_{i} \cdot\left\|q_{i}\right\|_{i}, \forall p_{i}, q_{i} \in E_{i}
$$

(ii) $\left|B_{i}\left(p_{i}, q_{i}\right)-B_{i}\left(p_{i}, \hat{q}_{i}\right)\right|$
$\leq b_{i}\left\|p_{i}\right\|_{i} \cdot\left\|q_{i}-\hat{q}_{i}\right\|_{i}, \forall p_{i}, q_{i}, \hat{q}_{i} \in E_{i}$
and
$\left|B_{i}\left(p_{i}, q_{i}\right)-B_{i}\left(\hat{p}_{i}, q_{i}\right)\right|$
$\leq b_{i}\left\|q_{i}\right\|_{i} \cdot\left\|p_{i}-\hat{p}_{i}\right\|_{i}, \forall p_{i}, \hat{p}_{i}, q_{i} \in E_{i}$,
which imply that B_{i} is continuous in both the first variable and the second variable.

Remark 2 Let E be a real reflexive Banach space. Many authors (see [8, 12][14]-[17]) usually considered the case that the bi-function $B: E \times E \rightarrow \mathbb{R}$ has the following properties:
$\left(\boldsymbol{a}_{1}\right) B(p, q)$ is linear in the first variable;
$\left(\boldsymbol{a}_{2}\right) B(p, q)-B(p, \hat{q}) \leq B(p, q-\hat{q}), \forall p, q, \hat{q} \in E$; $\left(\boldsymbol{a}_{3}\right) B(p, q)$ is bounded;
$\left(\boldsymbol{a}_{4}\right)$ for each fixed $p \in E, q \mapsto B(p, q)$ is convex. In addition, Qu [10] considered the case that B satisfies $\left(\boldsymbol{A}_{2}\right)-\left(\boldsymbol{A}_{3}\right),\left(\boldsymbol{a}_{4}\right)$ and for each fixed $q \in C, p \mapsto$ $B(F(p), q)$ is convex, where C is a nonempty closed convex subset of E and $F: C \rightarrow E$ is a singlevalued mapping. Zeng-Guu-Yao [13] and Wang-Ding [18] dealt with the case that B satisfies $\left(\boldsymbol{a}_{1}\right)-\left(\boldsymbol{a}_{3}\right)$ and $\left(\boldsymbol{A}_{1}\right)$. It's worth mentioning that another distinctive case that B is skew-symmetric and diagonally convex in the second variable was considered in [9]. In [3][7][11] authors required that B is a (proper convex) lower semi-continuous single-variable function.

Note that $\left(\mathbf{a}_{1}\right)-\left(\mathbf{a}_{3}\right)$ imply that B is indeed bilinear and $\left(\mathbf{a}_{4}\right)$ holds trivially. It is sufficient to show that B is linear in the second variable. First, we claim that

$$
\begin{align*}
& B(p, q)+B(p, \hat{q}) \\
= & B(p, q+\hat{q}), \forall p, q, \hat{q} \in E \tag{1}
\end{align*}
$$

In fact, replacing p by $-p$ in $\left(\mathbf{a}_{2}\right)$ and using $\left(\mathbf{a}_{1}\right)$, we have

$$
\begin{align*}
& B(p, q)-B(p, \hat{q}) \\
\geq & B(p, q-\hat{q}), \forall p, q, \hat{q} \in E \tag{2}
\end{align*}
$$

Similarly, (2) implies (\mathbf{a}_{2}) under the condition $\left(\mathbf{a}_{1}\right)$. Thus $\left(\mathbf{a}_{2}\right)$ is equivalent to (2) under the condition $\left(\mathbf{a}_{1}\right)$, and so (1) holds. Second, we claim that for any $k \in \mathbb{R}$,

$$
\begin{equation*}
B(p, k q)=k B(p, q), \forall p, q \in E \tag{3}
\end{equation*}
$$

In fact, combining (1) with $B(p, 0)=0$ for all $p \in E$ that follows from (\mathbf{a}_{3}), we see that (3) holds for any integer k and so does for any rational number k. Now let k be any irrational number and $\left\{k_{n}\right\}$ be a rational number sequence such that $k_{n} \rightarrow k$ as $n \rightarrow \infty$. It follows from (\mathbf{a}_{3}) that B is continuous in the second variable. Hence,

$$
\begin{aligned}
& B(p, k q)=\lim _{n \rightarrow \infty} B\left(p, k_{n} q\right) \\
= & \lim _{n \rightarrow \infty} k_{n} B(p, q) \\
= & k B(p, q), \forall p, q \in E .
\end{aligned}
$$

Finally, we show that B is linear in the second variable by (1) and (3).

If $M=I$ and B satisfies $\left(\mathbf{a}_{1}\right)-\left(\mathbf{a}_{4}\right)$, then B has the properties $\left(\mathbf{A}_{1}\right)-\left(\mathbf{A}_{3}\right)$. Now let $B: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by $B(p, q)=|\sin p| \cdot\left(\sqrt{1+q^{2}}-1\right)$ and $M=I$. It is easy to see that B has the properties $\left(\mathbf{A}_{1}\right)-\left(\mathbf{A}_{3}\right)$, but B is nonlinear in both the variables.

Some special and related cases are list here:
(a) If $\mathbb{J}=\{1,2\}$, and if for each $i \in \mathbb{J}, G_{i}=$ $\langle\cdot, \cdot\rangle_{i}, R_{i}=S_{i}=M_{i}=F_{i}=I_{i}$ and $K_{i}\left(u_{i}\right)=0$, then the S-GMELP reduces to the S-MVLIP: to find $\left(u_{1}, u_{2}\right) \in E_{1} \times E_{2}$ such that for all $\left(w_{1}, w_{2}\right) \in E_{1} \times$ E_{2} and for each $i \in \mathbb{J}$,

$$
\begin{aligned}
& \left\langle N_{i}\left(u_{1}, u_{2}\right), \eta_{i}\left(w_{i}, u_{i}\right)\right\rangle_{i} \\
+ & B_{i}\left(u_{i}, w_{i}\right)-B_{i}\left(u_{i}, u_{i}\right) \geq 0 .
\end{aligned}
$$

The S-MVLIP was discussed by Kazmi-Khan [17] in Hilbert spaces.
(b) If for each $i \in \mathbb{J}, E_{i}=E, E_{i}^{*}=$ $E^{*}, G_{i}=\langle\cdot, \cdot\rangle, R_{i}=R, S_{i}=S, F_{i}=I, M_{i}=$ $M, B_{i}=B, N_{i}(x, y, z)=N(x, y), \eta_{i}(u, v)=$ $\eta(M(u), M(v))$ and $K_{i}(u)=\varpi^{*}$ (where ϖ^{*} is a given point in E^{*}), then the S-GMELP becomes the

GMVLIP: to find $u \in E$ and $(x, y) \in R(u) \times S(u)$ such that for all $w \in E$,

$$
\begin{align*}
& \left\langle N(x, y)+\varpi^{*}, \eta(M(w), M(u))\right\rangle \\
+ & B(u, M(w))-B(u, M(u)) \geq 0 \tag{4}
\end{align*}
$$

The GMVLIP (4) was studied by Ding-Yao-Zeng [16] in Banach spaces, and by Huang-Deng [12], Zeng-Guu-Yao [13], Zeng-Schaible-Yao [14] and Xu-Guo [15] under the case that $\varpi^{*}=0$ in Hilbert spaces, respectively.
(c) If for each $i \in \mathbb{J}, E_{i}=E, E_{i}^{*}=E^{*}$ and C is a nonempty (closed) convex subset of E, if $G_{i}=$ $\langle\cdot, \cdot\rangle, R_{i}=R, S_{i}=S, F_{i}=F, M_{i}=I, \eta_{i}=$ $\eta, B_{i}=B$ and $N_{i}(x, y, z)=N(x, y)$, and if R, S and F are single-valued mappings defined on C, both η and B are defined on $E \times E$ or $C \times C$ and $K_{i}(u)=$ ϖ^{*} (where ϖ^{*} is a given point in E^{*}), then the SGMELP reduces to the MVLIP: to find $u \in C$ such that for all $w \in C$,

$$
\begin{align*}
& \left\langle N(R(u), S(u))+\varpi^{*}, \eta(w, u)\right\rangle \\
+ & B(F(u), w)-B(F(u), u) \geq 0 . \tag{5}
\end{align*}
$$

The MVLIP (5) was discussed by Ding [8, 9] and Qu [10] in Banach space.
(d) If for each $i \in \mathbb{J}, E_{i}=E, E_{i}^{*}=E^{*}, G_{i}=$ $\langle\cdot, \cdot\rangle, R_{i}=R, S_{i}=S, M_{i}=I, \eta_{i}=\eta, K_{i}(u)=$ $0, N_{i}(x, y, z)=N(x, y)$ and $B_{i}(u, w)=B(w)$, then the S-GMELP reduces to the GMVLIP: to find $u \in E$ and $(x, y) \in R(u) \times S(u)$ such that for all $w \in E$,

$$
\begin{equation*}
\langle N(x, y), \eta(w, u)\rangle+B(w)-B(u) \geq 0 \tag{6}
\end{equation*}
$$

The GMVLIP (6) was studied in [11] by discussing the convergence analysis of a predictor-corrector iterative algorithm in Hilbert spaces.
(e) If for each $i \in \mathbb{J}, E_{i}=E, E_{i}^{*}=E^{*}$ and C is a nonempty convex subset of E, and if $G_{i}=\langle\cdot, \cdot\rangle, R_{i}=R, S_{i}=S, M_{i}=I, \eta_{i}=$ $\eta, B_{i}(u, w)=B(w), N_{i}(x, y, z)=N(x, y)$ and $K_{i}(u)=0$, and if R, S and B are single-valued mappings defined on C and η is defined on $C \times C$, then the S-GMELP reduces to the MVLIP: to find $u \in C$ such that for all $w \in C$,

$$
\begin{align*}
& \langle N(R(u), S(u)), \eta(w, u)\rangle \tag{7}\\
+ & B(w)-B(u) \geq 0 .
\end{align*}
$$

In [7] the existence and uniqueness of solutions of the MVLIP (7) were directly proved and a general algorithm to approximate the solution of the MVLIP (7) was proposed by using an auxiliary minimization problem in Banach spaces.
(f) If for each $i \in \mathbb{J}, E_{i}=E, E_{i}^{*}=E^{*}$ and C is a nonempty convex subset of E, and if
$G_{i}=\langle\cdot, \cdot\rangle, R_{i}=R, S_{i}=S, M_{i}=I, \eta_{i}=$ $\eta, N_{i}(x, y, z)=x-y$ and $B_{i}(u, w)=B(w)$, and if R, S and B are single-valued mappings defined on C, η is defined on $C \times C$ and $K_{i}(u)=\varpi^{*}$ (where ϖ^{*} is a given point in E^{*}), then the S-GMELP reduces to the MVLIP: to find $u \in C$ such that for all $w \in C$,

$$
\begin{align*}
& \left\langle R(u)-S(u)+\varpi^{*}, \eta(w, u)\right\rangle \tag{8}\\
+ & B(w)-B(u) \geq 0
\end{align*}
$$

The MVLIP (8) was discussed by Zeng [5] and Ansari-Yao [6] in Hilbert spaces, and by Ding [3] and Chen-Liu [4] in Banach spaces, respectively.

Some other related cases were discussed by Wang-Ding [18] and Fang-Huang [19] in Banach spaces and by Chadli-Yao [20] in Hausdorff topological linear spaces, respectively.

Definition 3 Let E be a real Banach space, and let $S: E \rightarrow C B\left(E^{*}\right), \eta: E \times E \rightarrow E, M: E \rightarrow E$ and $g: E \rightarrow E^{*}$ be mappings.
(i) S is said to be s - H-Lipschitz continuous, if there exists a constant $s>0$ such that

$$
H(S(u), S(v)) \leq s\|u-v\|, \forall u, v \in E .
$$

(ii) η is said to be ξ-Lipschitz continuous, if there exists a constant $\xi>0$ such that

$$
\|\eta(u, v)\| \leq \xi\|u-v\|, \forall u, v \in E .
$$

(iii) M is said to be m-Lipschitz continuous, if there exists a constant $m>0$ such that

$$
\|M(u)-M(v)\| \leq m\|u-v\|, \forall u, v \in E .
$$

(iv)([16]) g is said to be τ - η-strongly monotone, if there exists a constant $\tau>0$ such that

$$
\langle g(u)-g(v), \eta(u, v)\rangle \geq \tau\|u-v\|^{2}, \forall u, v \in E .
$$

Remark $4 \operatorname{If} \eta(u, v)=u-v($ resp., $\eta(u, v)=v-u)$, the η-strong monotonicity of g reduces to the strong monotonicity of g (resp., -g).

Definition 5 ([18]) Let E_{1}, E_{2} and E_{3} be Banach spaces, and $N: E_{1}^{*} \times E_{2}^{*} \times E_{3}^{*} \rightarrow E_{1}^{*}$ be a mapping. N is said to be (μ, θ, ϑ)-mixed Lipschitz continuous, if there exist three positive constants μ, θ, ϑ such that

$$
\begin{aligned}
& \|N(x, y, z)-N(\hat{x}, \hat{y}, \hat{z})\|_{1} \\
\leq & \mu\|x-\hat{x}\|_{1}+\theta\|y-\hat{y}\|_{2}+\vartheta\|z-\hat{z}\|_{3}, \\
& \forall(x, y, z),(\hat{x}, \hat{y}, \hat{z}) \in E_{1}^{*} \times E_{2}^{*} \times E_{3}^{*} .
\end{aligned}
$$

Lemma 6 ([21]) Let X be a nonempty closed convex subset of a Hausdorff linear topological space E and $\phi, \psi: X \times X \rightarrow \mathbb{R}$ be bi-functions satisfying the following conditions :
(i) $\psi(x, y) \leq \phi(x, y), \forall x, y \in X$ and $\psi(x, x) \geq$ $0, \forall x \in X$;
(ii) for each $x \in X, \phi(x, y)$ is upper semi-continuous with respect to y;
(iii) for each $y \in X$, the set $\{x \in X: \psi(x, y)<0\}$ is convex ;
(iv) there exists a nonempty compact set $\Omega \subset X$ and $x_{0} \in \Omega$ such that $\psi\left(x_{0}, y\right)<0, \forall y \in X \backslash \Omega$. Then there exists an $\bar{y} \in \Omega$ such that $\phi(x, \bar{y}) \geq 0, \forall x \in X$.

We shall also make use of the following result which is a variation of Lemma 1 in [22] and is also noted implicitly in [23].

Lemma 7 Let (E, d) be a complete metric space and $S: E \rightarrow C B(E)$ be a set-valued mapping. Then for any $\varepsilon>0$, any $u, v \in E$, and any $x \in S(u)$, there exists $y \in S(v)$ such that

$$
d(x, y) \leq(1+\varepsilon) H(S(u), S(v))
$$

Remark 8 Let E be a normal linear space. If f : $E \rightarrow \mathbb{R}$ is concave and upper semi-continuous, then f is weakly upper semi-continuous.

3 A system of auxiliary problems

Now a system of auxiliary problems (in short, S-AP) for the S-GMELP is given below:

Suppose that E_{1}, E_{2} and E_{3} are real reflexive Banach spaces. For each $i \in \mathbb{J}$, let $R_{i}: E_{1} \rightarrow$ $C B\left(E_{1}^{*}\right), S_{i}: E_{2} \rightarrow C B\left(E_{2}^{*}\right), T_{i}: E_{3} \rightarrow C B\left(E_{3}^{*}\right)$ and $F_{i}: E_{i} \rightarrow C B\left(E_{i}\right)$ be set-valued mappings, let $K_{i}, g_{i}: E_{i} \rightarrow E_{i}^{*}, M_{i}: E_{i} \rightarrow E_{i}, N_{i}:$ $E_{1}^{*} \times E_{2}^{*} \times E_{3}^{*} \rightarrow E_{i}^{*}$ and $\eta_{i}: E_{i} \times E_{i} \rightarrow E_{i}$ be single-valued mappings, and let $G_{i}: E_{i}^{*} \times E_{i} \rightarrow \mathbb{R}$ and $B_{i}: E_{i} \times E_{i} \rightarrow \mathbb{R}$ be bi-functions. Given $\left(u_{1}, u_{2}, u_{3}\right) \in E_{1} \times E_{2} \times E_{3}$, for each $i \in$ $\mathbb{J},\left(x_{i}, y_{i}, z_{i}\right) \in R_{i}\left(u_{1}\right) \times S_{i}\left(u_{2}\right) \times T_{i}\left(u_{3}\right)$ and $p_{i} \in$ $F_{i}\left(u_{i}\right)$, the S-AP is to find $\left(v_{1}, v_{2}, v_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ such that for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ and for each $i \in \mathbb{J}$,

$$
\begin{aligned}
& \left\langle g_{i}\left(v_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(v_{i}\right)\right) \\
\geq & 0
\end{aligned}
$$

where $\rho>0$ is a constant.

Theorem 9 Suppose that for each $i \in \mathbb{J}$, $\left(\boldsymbol{A}_{1}\right)-\left(\boldsymbol{A}_{3}\right)$ and the following conditions hold:
$\left(\boldsymbol{B}_{1}\right) K_{i}$ and $g_{i}-K_{i}$ are $\lambda_{i^{-}}$and $\gamma_{i^{-}}$Lipschitz continuous, respectively, and g_{i} is $\tau_{i}-\eta_{i}$ - strongly monotone;
$\left(\boldsymbol{B}_{2}\right) M_{i}$ is m_{i}-Lipschitz continuous;
$\left(\boldsymbol{B}_{3}\right) \eta_{i}$ is ξ_{i}-Lipschitz continuous;
$\left(\boldsymbol{B}_{4}\right) \eta_{i}\left(w_{i}, v_{i}\right)=-\eta_{i}\left(v_{i}, w_{i}\right)$ and $\eta_{i}\left(e_{i}, v_{i}\right)-$ $\eta_{i}\left(e_{i}, w_{i}\right)=\eta_{i}\left(v_{i}, w_{i}\right), \forall e_{i}, v_{i}, w_{i} \in E_{i}$;
$\left(\boldsymbol{B}_{5}\right)$ for any fixed $w_{i} \in E_{i}$ and $w_{i}^{*} \in E_{i}^{*}$, both $v_{i} \mapsto G_{i}\left(w_{i}^{*}, \eta_{i}\left(w_{i}, v_{i}\right)\right)$ and $v_{i} \mapsto\left\langle w_{i}^{*}, \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i}$ are concave;
$\left(\boldsymbol{B}_{6}\right) G_{i}\left(\cdot,-v_{i}\right)=-G_{i}\left(\cdot, v_{i}\right), \forall v_{i} \in E_{i}$, and there exists a constant $\kappa_{i}>0$ such that

$$
\begin{aligned}
& \quad\left|G_{i}\left(v_{i}^{*}, v_{i}\right)-G_{i}\left(\hat{v}_{i}^{*}, v_{i}\right)\right| \\
& \leq \kappa_{i}\left\|v_{i}\right\|_{i} \cdot\left\|v_{i}^{*}-\hat{v}_{i}^{*}\right\|_{i}, \forall v_{i} \in E_{i}, v_{i}^{*}, \hat{v}_{i}^{*} \in E_{i}^{*}, \\
& \quad\left|G_{i}\left(v_{i}^{*}, v_{i}\right)-G_{i}\left(v_{i}^{*}, \hat{v}_{i}\right)\right| \\
& \leq \kappa_{i}\left\|v_{i}^{*}\right\|_{i} \cdot\left\|v_{i}-\hat{v}_{i}\right\|_{i}, \forall v_{i}, \hat{v}_{i} \in E_{i}, v_{i}^{*} \in E_{i}^{*} .
\end{aligned}
$$

Then the S-AP has a unique solution.
Remark 10 The conditions $\left(\boldsymbol{B}_{4}\right)-\left(\boldsymbol{B}_{6}\right)$ imply that
(i) $\eta_{i}\left(v_{i}, v_{i}\right)=0, \forall v_{i} \in E_{i}$;
(ii) $G_{i}\left(v_{i}^{*}, 0\right)=0, \forall v_{i}^{*} \in E_{i}^{*}$;
(iii) $\left|G_{i}\left(v_{i}^{*}, v_{i}\right)\right| \leq \kappa_{i}\left\|v_{i}\right\|_{i} \cdot\left\|v_{i}^{*}\right\|_{i}, \forall v_{i} \in E_{i}, v_{i}^{*} \in$ E_{i}^{*};
(iv) for any fixed $w_{i} \in E_{i}$ and $w_{i}^{*} \in E_{i}^{*}$, both $v_{i} \mapsto G_{i}\left(w_{i}^{*}, \eta_{i}\left(v_{i}, w_{i}\right)\right)$ and $v_{i} \mapsto\left\langle w_{i}^{*}, \eta_{i}\left(v_{i}, w_{i}\right)\right\rangle_{i}$ are convex.

Remark 11 It follows from $\left(\boldsymbol{B}_{1}\right)$ and $\left(\boldsymbol{B}_{3}\right)$ that g_{i} is β_{i}-Lipschitz continuous and

$$
\tau_{i} \leq \beta_{i} \xi_{i} \leq \xi_{i}\left(\lambda_{i}+\gamma_{i}\right)
$$

In fact, for any $u_{i}, v_{i} \in E_{i}$,

$$
\begin{aligned}
& \left\|g_{i}\left(u_{i}\right)-g_{i}\left(v_{i}\right)\right\|_{i} \\
\leq & \left\|\left(g_{i}-K_{i}\right)\left(u_{i}\right)-\left(g_{i}-K_{i}\right)\left(v_{i}\right)\right\|_{i} \\
& +\left\|K_{i}\left(u_{i}\right)-K_{i}\left(v_{i}\right)\right\|_{i} \\
\leq & \left(\lambda_{i}+\gamma_{i}\right)\left\|u_{i}-v_{i}\right\|_{i} .
\end{aligned}
$$

Letting

$$
\beta_{i}=\inf \left\{\beta_{i}^{*}:\left\|g_{i}\left(u_{i}\right)-g_{i}\left(v_{i}\right)\right\|_{i} \leq \beta_{i}^{*}\left\|u_{i}-v_{i}\right\|_{i}\right\},
$$

we have that $\beta_{i} \leq \lambda_{i}+\gamma_{i}$. In view of $\left(\boldsymbol{B}_{1}\right)$ and $\left(\boldsymbol{B}_{3}\right)$, for any $u_{i}, v_{i} \in E_{i}$, the following inequalities hold:

$$
\begin{aligned}
& \tau_{i}\left\|u_{i}-v_{i}\right\|_{i}^{2} \\
\leq & \left\langle g_{i}\left(u_{i}\right)-g_{i}\left(v_{i}\right), \eta_{i}\left(u_{i}, v_{i}\right)\right\rangle_{i} \\
\leq & \left\|g_{i}\left(u_{i}\right)-g_{i}\left(v_{i}\right)\right\|_{i} \cdot\left\|\eta_{i}\left(u_{i}, v_{i}\right)\right\|_{i} \\
\leq & \beta_{i} \xi_{i}\left\|u_{i}-v_{i}\right\|_{i}^{2}
\end{aligned}
$$

which implies that $\tau_{i} \leq \beta_{i} \xi_{i}$ and $\beta_{i}>0$. Thus g_{i} is β_{i}-Lipschitz continuous and $\tau_{i} \leq \beta_{i} \xi_{i} \leq \xi_{i}\left(\lambda_{i}+\gamma_{i}\right)$.

Proof of theorem 9. For each $i \in \mathbb{J}$, define the mappings $\phi_{i}, \psi_{i}: E_{i} \times E_{i} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \phi_{i}\left(w_{i}, v_{i}\right) \\
= & \left\langle g_{i}\left(w_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
& +\rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right) \\
& +\rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
& +\rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(v_{i}\right)\right) \\
& \psi_{i}\left(w_{i}, v_{i}\right) \\
= & \left\langle g_{i}\left(v_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
& \left.+\rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right)\right) \\
& +\rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
\quad & +\rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(v_{i}\right)\right)
\end{aligned}
$$

respectively. We complete this proof by three steps.
Step 1. Show that for each given $\left(u_{1}, u_{2}, u_{3}\right) \in E_{1} \times$ $E_{2} \times E_{3},\left(x_{i}, y_{i}, z_{i}\right) \in R_{i}\left(u_{1}\right) \times S_{i}\left(u_{2}\right) \times T_{i}\left(u_{3}\right)$, and $p_{i} \in F_{i}\left(u_{i}\right)(i \in \mathbb{J}), \phi_{i}$ and ψ_{i} satisfy all the conditions of Lemma 6 in the weak topology.
(i) Show that $\psi_{i}\left(w_{i}, v_{i}\right) \leq \phi_{i}\left(w_{i}, v_{i}\right)$ and $\psi_{i}\left(w_{i}, w_{i}\right) \geq 0, \forall w_{i}, v_{i} \in E_{i}$. Indeed, since g_{i} is $\tau_{i}-\eta_{i}$-strongly monotone, it is clear that the two inequalities above hold.
(ii) Show that for each $w_{i} \in E_{i}, v_{i} \mapsto \phi_{i}\left(w_{i}, v_{i}\right)$ is weakly upper semi-continuous. In fact, by $\left(\mathbf{B}_{3}\right)$ $\left(\mathbf{B}_{4}\right)$ and $\left(\mathbf{B}_{6}\right)$, for each $w_{i}, v_{i}, \hat{v}_{i} \in E_{i}$, we have

$$
\begin{aligned}
& \mid\left\langle g_{i}\left(w_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i} \\
& -\left\langle g_{i}\left(w_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right\rangle_{i} \mid \\
= & \left|\left\langle g_{i}\left(w_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(v_{i}, \hat{v}_{i}\right)\right\rangle_{i}\right| \\
\leq & \xi_{i}\left\|g_{i}\left(w_{i}\right)-g_{i}\left(u_{i}\right)\right\|_{i} \cdot\left\|v_{i}-\hat{v}_{i}\right\|_{i}, \\
\mid & G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right) \\
& -G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right) \mid \\
\leq & \kappa_{i}\left\|N_{i}\left(x_{i}, y_{i}, z_{i}\right)\right\|_{i} \cdot\left\|\eta_{i}\left(w_{i}, v_{i}\right)-\eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right\|_{i} \\
= & \kappa_{i}\left\|N_{i}\left(x_{i}, y_{i}, z_{i}\right)\right\|_{i} \cdot\left\|\eta_{i}\left(v_{i}, \hat{v}_{i}\right)\right\|_{i} \\
\leq & \kappa_{i} \xi_{i}\left\|N_{i}\left(x_{i}, y_{i}, z_{i}\right)\right\|_{i} \cdot\left\|v_{i}-\hat{v}_{i}\right\|_{i},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, v_{i}\right)\right\rangle_{i}-\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right\rangle_{i}\right| \\
\leq & \xi_{i}\left\|K_{i}\left(u_{i}\right)\right\|_{i} \cdot\left\|v_{i}-\hat{v}_{i}\right\|_{i} .
\end{aligned}
$$

By Remark 1 (ii) and $\left(\mathbf{B}_{3}\right)$, for each $v_{i}, \hat{v}_{i} \in E_{i}$, we have

$$
\begin{aligned}
& \left|B_{i}\left(p_{i}, M_{i}\left(v_{i}\right)\right)-B_{i}\left(p_{i}, M_{i}\left(\hat{v}_{i}\right)\right)\right| \\
\leq & b_{i} m_{i}\left\|p_{i}\right\|_{i} \cdot\left\|v_{i}-\hat{v}_{i}\right\|_{i} .
\end{aligned}
$$

Thus $v_{i} \mapsto \phi_{i}\left(w_{i}, v_{i}\right)$ is continuous. Noting that $v_{i} \mapsto$ $\phi_{i}\left(w_{i}, v_{i}\right)$ is concave by $\left(\mathbf{A}_{1}\right)$ and $\left(\mathbf{B}_{5}\right)$, we see that $v_{i} \mapsto \phi_{i}\left(w_{i}, v_{i}\right)$ is weakly upper semi-continuous by Remark 8.
(iii) Show that for each fixed $v_{i} \in E_{i}$, the set $C_{i}=$ $\left\{w_{i} \in E_{i}: \psi_{i}\left(w_{i}, v_{i}\right)<0\right\}$ is convex. If $C_{i}=\emptyset$, then
the i-th inequality of the S-AP holds trivially. Hence we only discuss the case that $C_{i} \neq \emptyset$. It follows from (\mathbf{A}_{1}) and Remark 10 (iv) that $w_{i} \mapsto \psi_{i}\left(w_{i}, v_{i}\right)$ is convex. Thus C_{i} is convex.
(iv) Show that there exists a nonempty weakly compact set $\Omega_{i} \subset E_{i}$ and $\bar{w}_{i} \in \Omega$ such that $\psi_{i}\left(\bar{w}_{i}, v_{i}\right)<0, \forall v_{i} \in E_{i} \backslash \Omega_{i}$. Now take

$$
\begin{aligned}
\delta_{i}= & \tau_{i}^{-1}\left[\xi_{i}\left\|g_{i}\left(u_{i}\right)+\rho K_{i}\left(u_{i}\right)\right\|_{i}\right. \\
& \left.+\rho \xi_{i} \kappa_{i}\left\|N_{i}\left(x_{i}, y_{i}, z_{i}\right)\right\|_{i}+\rho b_{i} m_{i}\left\|p_{i}\right\|_{i}\right] \\
\Omega_{i} & =\left\{w_{i} \in E_{i}:\left\|w_{i}\right\|_{i} \leq \delta_{i}\right\}
\end{aligned}
$$

Then Ω_{i} is a weakly compact subset of E_{i}. For any fixed $v_{i} \in E_{i} \backslash \Omega_{i}$, take $\bar{w}_{i}=0 \in \Omega_{i}$. It follows from $\left(\mathbf{B}_{2}\right)-\left(\mathbf{B}_{3}\right)$, Remark 1(ii) and Remark 10 (ii) and (iv) that

$$
\begin{aligned}
& \quad \psi_{i}\left(\bar{w}_{i}, v_{i}\right)=\psi_{i}\left(0, v_{i}\right) \\
& =-\left\langle g_{i}(0)-g_{i}\left(v_{i}\right), \eta_{i}\left(0, v_{i}\right)\right\rangle_{i} \\
& \quad+\left\langle g_{i}\left(u_{i}\right)+\rho K_{i}\left(u_{i}\right), \eta_{i}\left(0, v_{i}\right)\right\rangle_{i} \\
& \quad+\rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(0, v_{i}\right)\right) \\
& \quad+\rho\left[B_{i}\left(p_{i}, M_{i}(0)\right)-B_{i}\left(p_{i}, M_{i}\left(v_{i}\right)\right)\right] \\
& \leq-\tau_{i}\left\|v_{i}\right\|_{i}^{2}+\left(\xi_{i}\left\|g_{i}\left(u_{i}\right)+\rho K_{i}\left(u_{i}\right)\right\|_{i}\right. \\
& \left.\quad+\rho \xi_{i} \kappa_{i}\left\|N_{i}\left(x_{i}, y_{i}, z_{i}\right)\right\|_{i}+\rho b_{i} m_{i}\left\|p_{i}\right\|_{i}\right) \cdot\left\|v_{i}\right\|_{i} \\
& =-\tau_{i}\left\|v_{i}\right\|_{i}\left(\left\|v_{i}\right\|_{i}-\delta_{i}\right) \\
& <
\end{aligned}
$$

Therefore, by Lemma 6, there exists a $\bar{v}_{i} \in E_{i}$ such that for all $w_{i} \in E_{i}, \phi_{i}\left(w_{i}, \bar{v}_{i}\right) \geq 0$, that is,

$$
\begin{align*}
& \left\langle g_{i}\left(w_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \tag{9}\\
+ & \rho\left[B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-B_{i}\left(p_{i}, M_{i}\left(\bar{v}_{i}\right)\right)\right] \\
\geq & 0
\end{align*}
$$

Step 2 Show that when $C_{i} \neq \emptyset$, there exists a solution of the i-th inequality of the S-AP.

For each $i \in \mathbb{J}$, arbitrary $t \in(0,1]$ and any fixed $w_{i} \in E_{i}$, let $w_{i}(t)=t w_{i}+(1-t) \bar{v}_{i}$. Replacing w_{i} by $w_{i}(t)$ in (9) and applying Remark 10 (i), (iv) and $\left(\mathbf{A}_{1}\right)$, we have

$$
\begin{aligned}
0 \leq & \left\langle g_{i}\left(w_{i}(t)\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(t w_{i}+(1-t) \bar{v}_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
& +\rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(t w_{i}+(1-t) \bar{v}_{i}, \bar{v}_{i}\right)\right) \\
& +\rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(t w_{i}+(1-t) \bar{v}_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
& +\rho B_{i}\left(p_{i}, M_{i}\left(t w_{i}+(1-t) \bar{v}_{i}\right)\right) \\
& -\rho B_{i}\left(p_{i}, M_{i}\left(\bar{v}_{i}\right)\right) \\
\leq & t\left[\left\langle g_{i}\left(w_{i}(t)\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i}\right. \\
& +\rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right) \\
& +\rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
& \left.+\rho B_{i}\left(p_{i}, M_{i}\left(\bar{v}_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \left\langle g_{i}\left(w_{i}(t)\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \tag{10}\\
+ & \rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(\bar{v}_{i}\right)\right) \\
\geq & 0
\end{align*}
$$

Letting $t \rightarrow 0^{+}$in (10) and applying Remark 11, we obtain

$$
\begin{aligned}
& \left\langle g_{i}\left(\bar{v}_{i}\right)-g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(\bar{v}_{i}\right)\right) \\
\geq & 0
\end{aligned}
$$

Therefore, the existence of solutions of the S-AP is shown.

Step 3 Show that the solution of the $\mathrm{S}-\mathrm{AP}$ is unique.
Let $\left(\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right),\left(\hat{v}_{1}, \hat{v}_{2}, \hat{v}_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ be two solutions of the S-AP. Then for each $i \in \mathbb{J}$ and for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$,

$$
\begin{align*}
& \left\langle g_{i}\left(\bar{v}_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
\geq & \left\langle g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
- & \rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right) \tag{11}\\
- & \rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}, M_{i}\left(\bar{v}_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right),
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle g_{i}\left(\hat{v}_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right\rangle_{i} \\
\geq & \left\langle g_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right\rangle_{i} \\
- & \rho G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right) \tag{12}\\
- & \rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(w_{i}, \hat{v}_{i}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}, M_{i}\left(\hat{v}_{i}\right)\right)-\rho B_{i}\left(p_{i}, M_{i}\left(w_{i}\right)\right) .
\end{align*}
$$

By taking $w_{i}=\hat{v}_{i}$ in (11) and $w_{i}=\bar{v}_{i}$ in (12) and utilizing (\mathbf{B}_{4}) and (\mathbf{B}_{6}),

$$
\begin{aligned}
& \left\langle g_{i}\left(\bar{v}_{i}\right)-g_{i}\left(\hat{v}_{i}\right), \eta_{i}\left(\hat{v}_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
\geq & -\rho\left[G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(\bar{v}_{i}, \hat{v}_{i}\right)\right)\right. \\
& \left.+G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(\hat{v}_{i}, \bar{v}_{i}\right)\right)\right] \\
& -\rho\left\langle K_{i}\left(u_{i}\right), \eta_{i}\left(\bar{v}_{i}, \hat{v}_{i}\right)+\eta_{i}\left(\hat{v}_{i}, \bar{v}_{i}\right)\right\rangle_{i} \\
= & \rho\left[G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(\hat{v}_{i}, \bar{v}_{i}\right)\right)\right. \\
& \left.-G_{i}\left(N_{i}\left(x_{i}, y_{i}, z_{i}\right), \eta_{i}\left(\hat{v}_{i}, \bar{v}_{i}\right)\right)\right] \\
= & 0 .
\end{aligned}
$$

Since g_{i} is $\tau_{i}-\eta_{i}$-strongly monotone, the following inequality holds:

$$
\begin{aligned}
& \tau_{i}\left\|\bar{v}_{i}-\hat{v}_{i}\right\|_{i}^{2} \\
\leq & \left\langle g_{i}\left(\bar{v}_{i}\right)-g_{i}\left(\hat{v}_{i}\right), \eta_{i}\left(\bar{v}_{i}, \hat{v}_{i}\right)\right\rangle_{i} \\
\leq & 0
\end{aligned}
$$

which implies that $\bar{v}_{i}=\hat{v}_{i}$. This completes the proof of Theorem 9 .

4 An iterative algorithm for S GMELP

On the basis of Theorem 9, now an iterative algorithm for solving the S-GMELP is constructed in real reflexive Banach spaces. For each $i \in \mathbb{J}$ and given $\left(u_{1}^{0}, u_{2}^{0}, u_{3}^{0}\right) \in E_{1} \times E_{2} \times E_{3},\left(x_{i}^{0}, y_{i}^{0}, z_{i}^{0}\right) \in$ $R_{i}\left(u_{1}^{0}\right) \times S_{i}\left(u_{2}^{0}\right) \times T_{i}\left(u_{3}^{0}\right)$ and $p_{i}^{0} \in F_{i}\left(u_{i}^{0}\right)$, the unique solution $\left(u_{1}^{1}, u_{2}^{1}, u_{3}^{1}\right) \in E_{1} \times E_{2} \times E_{3}$ of the S-AP satisfies that for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ and for each $i \in \mathbb{J}$,

$$
\begin{aligned}
& \left\langle g_{i}\left(u_{i}^{1}\right)-g_{i}\left(u_{i}^{0}\right), \eta_{i}\left(w_{i}, u_{i}^{1}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}^{0}, y_{i}^{0}, z_{i}^{0}\right), \eta_{i}\left(w_{i}, u_{i}^{1}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}^{0}\right), \eta_{i}\left(w_{i}, u_{i}^{1}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}^{0}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}^{0}, M_{i}\left(u_{i}^{1}\right)\right) \\
\geq & 0
\end{aligned}
$$

By Lemma 7, there exist $\left(x_{i}^{1}, y_{i}^{1}, z_{i}^{1}\right) \in R_{i}\left(u_{1}^{1}\right) \times$ $S_{i}\left(u_{2}^{1}\right) \times T_{i}\left(u_{3}^{1}\right)$ and $p_{i}^{1} \in F_{i}\left(u_{i}^{1}\right)$ such that

$$
\begin{aligned}
& \left\|x_{i}^{0}-x_{i}^{1}\right\|_{1} \leq(1+1) H_{1}\left(R_{i}\left(u_{1}^{0}\right), R_{i}\left(u_{1}^{1}\right)\right) \\
& \left\|y_{i}^{0}-y_{i}^{1}\right\|_{2} \leq(1+1) H_{2}\left(S_{i}\left(u_{2}^{0}\right), S_{i}\left(u_{2}^{1}\right)\right) \\
& \left\|z_{i}^{0}-z_{i}^{1}\right\|_{3} \leq(1+1) H_{3}\left(T_{i}\left(u_{3}^{0}\right), T_{i}\left(u_{3}^{1}\right)\right), \\
& \left\|p_{i}^{0}-p_{i}^{1}\right\|_{i} \leq(1+1) H_{i}\left(F_{i}\left(u_{i}^{0}\right), F_{i}\left(u_{i}^{1}\right)\right)
\end{aligned}
$$

By induction, an iterative algorithm for solving the S GMELP is established in real reflexive Banach spaces E_{1}, E_{2} and E_{3} as follows:

Algorithm I For each $i \in \mathbb{J}$ and for any given $\left(u_{1}^{0}, u_{2}^{0}, u_{3}^{0}\right) \in E_{1} \times E_{2} \times E_{3},\left(x_{i}^{0}, y_{i}^{0}, z_{i}^{0}\right) \in R_{i}\left(u_{1}^{0}\right) \times$ $S_{i}\left(u_{2}^{0}\right) \times T_{i}\left(u_{3}^{0}\right)$ and $p_{i}^{0} \in F_{i}\left(u_{i}^{0}\right)$, there exists a sequence $\left\{Q_{n}\right\}_{n=1}^{\infty}$, where

$$
\begin{aligned}
& Q_{n}=\left(u_{1}^{n}, u_{2}^{n}, u_{3}^{n}, x_{1}^{n}, x_{2}^{n}, x_{3}^{n}, y_{1}^{n}, y_{2}^{n}, y_{3}^{n}\right. \\
& \left.\quad z_{1}^{n}, z_{2}^{n}, z_{3}^{n}, p_{1}^{n}, p_{2}^{n}, p_{3}^{n}\right)
\end{aligned}
$$

such that $x_{i}^{n} \in R_{i}\left(u_{1}^{n}\right), y_{i}^{n} \in S_{i}\left(u_{2}^{n}\right), z_{i}^{n} \in$ $T_{i}\left(u_{3}^{n}\right), p_{i}^{n} \in F_{i}\left(u_{i}^{n}\right)$ and

$$
\begin{align*}
& \left\|x_{i}^{n}-x_{i}^{n+1}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) H_{1}\left(R_{i}\left(u_{1}^{n}\right), R_{i}\left(u_{1}^{n+1}\right)\right), \\
& \left\|y_{i}^{n}-y_{i}^{n+1}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) H_{2}\left(S_{i}\left(u_{2}^{n}\right), S_{i}\left(u_{2}^{n+1}\right)\right), \\
& \left\|z_{i}^{n}-z_{i}^{n+1}\right\|_{3} \leq\left(1+\frac{1}{n+1}\right) H_{3}\left(T_{i}\left(u_{3}^{n}\right), T_{i}\left(u_{3}^{n+1}\right)\right), \\
& \left\|p_{i}^{n}-p_{i}^{n+1}\right\|_{i} \leq\left(1+\frac{1}{n+1}\right) H_{i}\left(F_{i}\left(u_{i}^{n}\right), F_{i}\left(u_{i}^{n+1}\right)\right), \tag{13}
\end{align*}
$$

and for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ and for each $i \in \mathbb{J}$,

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n+1}\right)-g_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}^{n}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right) \\
\geq & 0 \tag{14}
\end{align*}
$$

5 Existence of solutions of S GMELP and convergence analysis

In this section, we shall show that the sequence $\left\{Q_{n}\right\}_{n=1}^{\infty}$ generalized by Algorithm I strongly converges to some solution of the S-GMELP.

Theorem 12 Let E_{1}, E_{2} and E_{3} be real reflexive $B a$ nach spaces. Suppose that for each $i \in \mathbb{J},\left(\boldsymbol{A}_{1}\right)-\left(\boldsymbol{A}_{3}\right)$, $\left(\boldsymbol{B}_{1}\right)-\left(\boldsymbol{B}_{6}\right)$ and the following conditions hold:
$\left(\boldsymbol{C}_{1}\right) N_{i}$ is $\left(\mu_{i}, \theta_{i}, \vartheta_{i}\right)$-mixed Lipschitz continuous;
($\left.\boldsymbol{C}_{2}\right) R_{i}, S_{i}, T_{i}$ and F_{i} are $r_{i}-H_{1^{-}}, s_{i}-H_{2^{-}}, t_{i}-H_{3}-$ and $f_{i}-H_{i}$-Lipschitz continuous, respectively.

If there exists a constant $\rho>0$ such that

$$
\begin{equation*}
\sigma=\max \left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}<1 \tag{15}
\end{equation*}
$$

where for each $i \in \mathbb{J}$,

$$
\left\{\begin{align*}
\sigma_{i} & =\tau_{i}^{-1} \xi_{i}\left(\gamma_{i}+|1-\rho| \lambda_{i}\right)+\rho \tau_{i}^{-1} \alpha_{i} \tag{16}\\
\alpha_{1} & =b_{1} f_{1} m_{1}+\sum_{i=1}^{3} \kappa_{i} \xi_{i} \mu_{i} r_{i} \\
\alpha_{2} & =b_{2} f_{2} m_{2}+\sum_{i=1}^{3} \kappa_{i} \xi_{i} \theta_{i} s_{i} \\
\alpha_{3} & =b_{3} f_{3} m_{3}+\sum_{i=1}^{3} \kappa_{i} \xi_{i} \vartheta_{i} t_{i}
\end{align*}\right.
$$

then for each $i \in \mathbb{J}$, the sequence $\left\{Q_{n}\right\}_{n=1}^{\infty}$ generalized by Algorithm I strongly converges to $Q=$ $\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}, \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}, \bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}, \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}\right)$, and Q is a solution of the S-GMELP, where $\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ and for each $i \in \mathbb{J},\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right) \in R_{i}\left(\bar{u}_{1}\right) \times S_{i}\left(\bar{u}_{2}\right) \times T_{i}\left(\bar{u}_{3}\right)$ and $\bar{p}_{i} \in F_{i}\left(\bar{u}_{i}\right)$.

Proof. It follows from (14) that for any $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ and for each $i \in \mathbb{J}$,

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n}\right)-g_{i}\left(u_{i}^{n-1}\right), \eta_{i}\left(w_{i}, u_{i}^{n}\right)\right\rangle_{i} \\
& \quad+\rho G_{i}\left(N_{i}\left(x_{i}^{n-1}, y_{i}^{n-1}, z_{i}^{n-1}\right), \eta_{i}\left(w_{i}, u_{i}^{n}\right)\right) \\
& \quad+\rho\left\langle K_{i}\left(u_{i}^{n-1}\right), \eta_{i}\left(w_{i}, u_{i}^{n}\right)\right\rangle_{i} \\
& \quad+\rho B_{i}\left(p_{i}^{n-1}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n}\right)\right) \\
& \quad \geq 0 \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n+1}\right)-g_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(p_{i}^{n}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right) \\
\geq & 0 \tag{18}
\end{align*}
$$

Taking $w_{i}=u_{i}^{n+1}$ in (17) and $w_{i}=u_{i}^{n}$ in (18), respectively, we get that for each $i \in \mathbb{J}$,

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n}\right)-g_{i}\left(u_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}^{n-1}, y_{i}^{n-1}, z_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right\rangle_{i} \\
+ & \rho\left[B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n+1}\right)\right)-B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n}\right)\right)\right] \\
\geq & 0 \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n+1}\right)-g_{i}\left(u_{i}^{n}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}^{n}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho\left[B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n}\right)\right)-B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right)\right] \\
\geq & 0 \tag{20}
\end{align*}
$$

Combining (19)-(20) with $\left(\mathbf{B}_{3}\right)$, we have

$$
\begin{align*}
& \quad\left\langle g_{i}\left(u_{i}^{n}\right)-g_{i}\left(u_{i}^{n+1}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
& \leq\left\langle g_{i}\left(u_{i}^{n-1}\right)-g_{i}\left(u_{i}^{n}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
& \quad+\rho\left\langle K_{i}\left(u_{i}^{n}\right)-K_{i}\left(u_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
& \quad+\rho\left[G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right)\right. \\
& \left.\quad-G_{i}\left(N_{i}\left(x_{i}^{n-1}, y_{i}^{n-1}, z_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right)\right] \\
& \quad+\rho\left[B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n+1}\right)\right)+B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n}\right)\right)\right. \\
& \left.\quad-B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n}\right)\right)-B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right)\right] \\
& \leq\left\langle g_{i}\left(u_{i}^{n-1}\right)-g_{i}\left(u_{i}^{n}\right)-\left(K_{i}\left(u_{i}^{n-1}\right)-K_{i}\left(u_{i}^{n}\right)\right),\right. \\
& \left.\quad \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
& \quad+(1-\rho)\left\langle K_{i}\left(u_{i}^{n-1}\right)-K_{i}\left(u_{i}^{n}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \\
& \quad+\rho\left[G_{i}\left(N_{i}\left(x_{i}^{n-1}, y_{i}^{n-1}, z_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right)\right. \\
& \left.\quad-G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right)\right] \\
& \quad+\rho\left[B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n+1}\right)\right)+B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n}\right)\right)\right. \\
& \left.\quad-B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n}\right)\right)-B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right)\right] . \tag{21}
\end{align*}
$$

It follows from $\left(\mathbf{B}_{1}\right)$ and $\left(\mathbf{B}_{3}\right)$ that

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n}\right)-g_{i}\left(u_{i}^{n+1}\right), \eta_{i}\left(u_{i}^{n}, u_{i}^{n+1}\right)\right\rangle_{i} \tag{22}\\
\geq & \tau_{i}\left\|u_{i}^{n+1}-u_{i}^{n}\right\|_{i}^{2},
\end{align*}
$$

$$
\begin{align*}
& \left\|g_{i}\left(u_{i}^{n-1}\right)-g_{i}\left(u_{i}^{n}\right)-\left[K_{i}\left(u_{i}^{n-1}\right)-K_{i}\left(u_{i}^{n}\right)\right]\right\|_{i} \\
\leq & \gamma_{i}\left\|u_{i}^{n}-u_{i}^{n-1}\right\|_{i}, \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\left\|K_{i}\left(u_{i}^{n-1}\right)-K_{i}\left(u_{i}^{n}\right)\right\|_{i} \leq \lambda_{i}\left\|u_{i}^{n}-u_{i}^{n-1}\right\|_{i} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right\|_{i} \leq \xi_{i}\left\|u_{i}^{n+1}-u_{i}^{n}\right\|_{i} \tag{25}
\end{equation*}
$$

By using $\left(\mathbf{B}_{3}\right),\left(\mathbf{B}_{6}\right),\left(\mathbf{C}_{1}\right)$ and $\left(\mathbf{C}_{2}\right)$, the following inequality holds:

$$
\begin{align*}
& \mid G_{i}\left(N_{i}\left(x_{i}^{n-1}, y_{i}^{n-1}, z_{i}^{n-1}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right) \\
& \quad-G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(u_{i}^{n+1}, u_{i}^{n}\right)\right) \mid \\
& \leq\left(1+\frac{1}{n}\right) \kappa_{i} \xi_{i}\left\|u_{i}^{n+1}-u_{i}^{n}\right\|_{i} \\
& \quad \cdot\left(\mu_{i} r_{i}\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1}+\theta_{i} s_{i}\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2}\right. \\
& \left.\quad+\vartheta_{i} t_{i}\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3}\right) . \tag{26}
\end{align*}
$$

The conditions $\left(\mathbf{A}_{2}\right),\left(\mathbf{B}_{2}\right)$ and $\left(\mathbf{C}_{2}\right)$ imply that

$$
\begin{align*}
& \mid B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n+1}\right)\right)+B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n}\right)\right) \\
& -B_{i}\left(p_{i}^{n-1}, M_{i}\left(u_{i}^{n}\right)\right)-B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right) \mid \\
\leq & \left(1+\frac{1}{n}\right) b_{i} m_{i} H_{i}\left(F_{i}\left(u_{i}^{n}\right), F_{i}\left(u_{i}^{n-1}\right)\right) \\
& \cdot\left\|u_{i}^{n+1}-u_{i}^{n}\right\|_{i} \\
\leq & \left(1+\frac{1}{n}\right) b_{i} m_{i} f_{i}\left\|u_{i}^{n+1}-u_{i}^{n}\right\|_{i} \cdot\left\|u_{i}^{n}-u_{i}^{n-1}\right\|_{i} . \tag{27}
\end{align*}
$$

It follows from (21)-(27) that

$$
\begin{aligned}
& \left\|u_{i}^{n+1}-u_{i}^{n}\right\|_{i} \\
& \leq \\
& \tau_{i}^{-1}\left[\gamma_{i} \xi_{i}+|1-\rho| \lambda_{i} \xi_{i}\right. \\
& \left.\quad+\left(1+\frac{1}{n}\right) \rho b_{i} f_{i} m_{i}\right]\left\|u_{i}^{n}-u_{i}^{n-1}\right\|_{i} \\
& \quad+\tau_{i}^{-1}\left(1+\frac{1}{n}\right) \rho \kappa_{i} \xi_{i} \cdot\left(\mu_{i} r_{i}\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1}\right. \\
& \left.\quad+\theta_{i} s_{i}\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2}+\vartheta_{i} t_{i}\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3}\right)
\end{aligned}
$$

and

$$
\begin{align*}
&\left\|u_{1}^{n+1}-u_{1}^{n}\right\|_{1}+\left\|u_{2}^{n+1}-u_{2}^{n}\right\|_{2}+\left\|u_{3}^{n+1}-u_{3}^{n}\right\|_{3} \\
& \leq \tau_{1}^{-1}\left[\gamma_{1} \xi_{1}+|1-\rho| \lambda_{1} \xi_{1}\right. \\
&\left.+\left(1+\frac{1}{n}\right) \rho b_{1} f_{1} m_{1}\right]\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1} \\
& \quad+\rho \tau_{1}^{-1}\left(1+\frac{1}{n}\right) \kappa_{1} \xi_{1}\left(\mu_{1} r_{1}\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1}\right. \\
& \quad\left.+\theta_{1} s_{1}\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2}+\vartheta_{1} t_{1}\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3}\right) \\
& \quad+\tau_{2}^{-1}\left[\gamma_{2} \xi_{2}+|1-\rho| \lambda_{2} \xi_{2}\right. \\
& \quad\left.+\left(1+\frac{1}{n}\right) \rho b_{2} f_{2} m_{2}\right]\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2} \\
& \quad+\rho \tau_{2}^{-1}\left(1+\frac{1}{n}\right) \kappa_{2} \xi_{2}\left(\mu_{2} r_{2}\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1}\right. \\
&\left.\quad+\theta_{2} s_{2}\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2}+\vartheta_{2} t_{2}\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3}\right) \\
& \quad+\tau_{3}^{-1}\left[\gamma_{3} \xi_{3}+|1-\rho| \lambda_{3} \xi_{3}\right. \\
&\left.\quad+\left(1+\frac{1}{n}\right) \rho b_{3} f_{3} m_{3}\right]\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3} \\
& \quad+\rho \tau_{3}^{-1}\left(1+\frac{1}{n}\right) \kappa_{3} \xi_{3}\left(\mu_{3} r_{3}\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1} \|_{3}\right. \\
&\left.\quad+\theta_{3} s_{3}\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2}+\vartheta_{3} t_{3}\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3}\right) \\
&= \sigma_{1}(n)\left\|u_{1}^{n}-u_{1}^{n-1}\right\|_{1}+\sigma_{2}(n)\left\|u_{2}^{n}-u_{2}^{n-1}\right\|_{2} \\
& \quad+\sigma_{3}(n)\left\|u_{3}^{n}-u_{3}^{n-1}\right\|_{3}, \tag{28}
\end{align*}
$$

where for each $i \in \mathbb{J}$,

$$
\sigma_{i}(n)=\tau_{i}^{-1} \xi_{i}\left(\gamma_{i}+|1-\rho| \lambda_{i}\right)+\tau_{i}^{-1}\left(1+\frac{1}{n}\right) \rho \alpha_{i}
$$

and α_{i} is defined by (16). It's easy to see that

$$
\begin{align*}
& \left\|\left(u_{1}^{n+1}, u_{2}^{n+1}, u_{3}^{n+1}\right)-\left(u_{1}^{n}, u_{2}^{n}, u_{3}^{n}\right)\right\|^{*} \\
\leq & \sigma(n)\left\|\left(u_{1}^{n}, u_{2}^{n}, u_{3}^{n}\right)-\left(u_{1}^{n-1}, u_{2}^{n-1}, u_{3}^{n-1}\right)\right\|^{*}, \tag{29}
\end{align*}
$$

by (28), where

$$
\sigma(n)=\max \left\{\sigma_{1}(n), \sigma_{2}(n), \sigma_{3}(n)\right\} \rightarrow \sigma
$$

as $n \rightarrow \infty$. It follows from (15) that there exist a positive number $\sigma_{0}<1$ and a sufficiently large integer $n_{0} \geq 0$ such that $\sigma(n) \leq \sigma_{0}$ for all $n>n_{0}$, which implies that $\left\{\left(u_{1}^{n}, u_{2}^{n}, u_{3}^{n}\right)\right\}$ is a Cauchy sequence in $E_{1} \times E_{2} \times E_{3}$ by (29). Since $\left(E_{1} \times E_{2} \times E_{3},\|\cdot\|^{*}\right)$ is a Banach space, $\left\{\left(u_{1}^{n}, u_{2}^{n}, u_{3}^{n}\right)\right\}$ strongly converges to some $\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right) \in E_{1} \times E_{2} \times E_{3}$. We claim that $\left\{x_{i}^{n}\right\},\left\{y_{i}^{n}\right\},\left\{z_{i}^{n}\right\}$ and $\left\{p_{i}^{n}\right\}$ are also Cauchy sequences and strongly converge $\bar{x}_{i} \in E_{1}^{*}, \bar{y}_{i} \in$ $E_{2}^{*}, \bar{z}_{i} \in E_{3}^{*}$ and $\bar{p}_{i} \in E_{i}$, respectively. In fact, for each $\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right) \in R_{i}\left(u_{1}^{n}\right) \times S_{i}\left(u_{2}^{n}\right) \times T_{i}\left(u_{3}^{n}\right)$ and $p_{i}^{n} \in F_{i}\left(u_{i}^{n}\right)$,

$$
\begin{aligned}
& \left\|x_{i}^{n}-x_{i}^{n+1}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) r_{i}\left\|u_{1}^{n}-u_{1}^{n+1}\right\|_{1}, \\
& \left\|y_{i}^{n}-y_{i}^{n+1}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) s_{i}\left\|u_{2}^{n}-u_{2}^{n+1}\right\|_{2}, \\
& \left\|z_{i}^{n}-z_{i}^{n+1}\right\|_{3} \leq\left(1+\frac{1}{n+1}\right) t_{i}\left\|u_{3}^{n}-u_{3}^{n+1}\right\|_{3}, \\
& \left\|p_{i}^{n}-p_{i}^{n+1}\right\|_{i} \leq\left(1+\frac{1}{n+1}\right) f_{i}\left\|u_{i}^{n}-u_{i}^{n+1}\right\|_{i},
\end{aligned}
$$

by (13) and $\left(\mathbf{C}_{2}\right)$. We also see that for each $i \in \mathbb{J}$, $\bar{x}_{i} \in R_{i}\left(\bar{u}_{1}\right)$, since

$$
\begin{aligned}
& d_{1}\left(\bar{x}_{i}, R_{i}\left(\bar{u}_{1}\right)\right) \\
\leq & \left\|\bar{x}_{i}-x_{i}^{n}\right\|_{1}+d_{1}\left(x_{i}^{n}, R_{i}\left(u_{1}^{n}\right)\right) \\
& +H_{1}\left(R_{i}\left(u_{1}^{n}\right), R_{i}\left(\bar{u}_{1}\right)\right) \\
\leq & \left\|\bar{x}_{i}-x_{i}^{n}\right\|_{1}+r_{i}\left\|\bar{u}_{1}-u_{1}^{n}\right\|_{1} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Similarly, $\bar{y}_{i} \in S_{i}\left(\bar{u}_{2}\right), \bar{z}_{i} \in T_{i}\left(\bar{u}_{3}\right)$ and $\bar{p}_{i} \in$ $F_{i}\left(\bar{u}_{i}\right)$. Hence, $Q_{n} \rightarrow Q$ as $n \rightarrow \infty$, where

$$
\begin{aligned}
& Q=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}, \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}, \bar{z}_{1},\right. \\
& \left.\quad \bar{z}_{2}, \bar{z}_{3}, \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}\right) .
\end{aligned}
$$

Rewrite (14) as follows: for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times$ $E_{2} \times E_{3}$ and for each $i \in \mathbb{J}$,

$$
\begin{align*}
& \left\langle g_{i}\left(u_{i}^{n+1}\right)-g_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \\
+ & \rho\left\langle K_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i} \\
+ & \rho B_{i}\left(z_{i}^{n}, M_{i}\left(w_{i}\right)\right)-\rho B_{i}\left(z_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right) \\
\geq & 0 \tag{30}
\end{align*}
$$

Since $Q_{n} \rightarrow Q$ as $n \rightarrow \infty$ and g_{i} is β_{i}-Lipschitz continuous (See Remark 11),

$$
\begin{align*}
& \left|\left\langle g_{i}\left(u_{i}^{n+1}\right)-g_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i}\right| \\
\leq & \xi_{i} \beta_{i}\left(\left\|u_{i}^{n+1}-\bar{u}_{i}\right\|_{i}+\left\|u_{i}^{n}-\bar{u}_{i}\right\|_{i}\right) \cdot\left\|w_{i}-u_{i}^{n+1}\right\|_{i} \\
\rightarrow & 0 \text { as } n \rightarrow \infty \tag{31}
\end{align*}
$$

Also,

$$
\begin{aligned}
& \quad \mid G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \\
& \quad-G_{i}\left(N_{i}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right), \eta_{i}\left(w_{i}, \bar{u}_{i}\right)\right) \mid \\
& \leq \mid G_{i}\left(N_{i}\left(x_{i}^{n}, y_{i}^{n}, z_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \\
& \quad-G_{i}\left(N_{i}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \mid \\
& \quad+\mid G_{i}\left(N_{i}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right) \\
& \quad-G_{i}\left(N_{i}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right), \eta_{i}\left(w_{i}, \bar{u}_{i}\right)\right) \mid \\
& \leq \\
& \leq \kappa_{i} \xi_{i}\left\|w_{i}-u_{i}^{n+1}\right\|_{i} \\
& \quad \cdot\left(r_{i}\left\|x_{i}^{n}-\bar{x}_{i}\right\|_{1}+s_{i}\left\|y_{i}^{n}-\bar{y}_{i}\right\|_{2}+t_{i}\left\|z_{i}^{n}-\bar{z}_{i}\right\|_{3}\right) \\
& \quad+\kappa_{i} \xi_{i}\left\|N_{i}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right)\right\|_{i} \cdot\left\|u_{i}^{n}-u_{i}^{n+1}\right\|_{i} \\
& \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

$$
\begin{align*}
& \left|\left\langle K_{i}\left(u_{i}^{n}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i}-\left\langle K_{i}\left(\bar{u}_{i}\right), \eta_{i}\left(w_{i}, \bar{u}_{i}\right)\right\rangle_{i}\right| \tag{32}\\
\leq & \left|\left\langle K_{i}\left(u_{i}^{n}\right)-K_{i}\left(\bar{u}_{i}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)\right\rangle_{i}\right| \\
\quad & +\left|\left\langle K_{i}\left(\bar{u}_{i}\right), \eta_{i}\left(w_{i}, u_{i}^{n+1}\right)-\eta_{i}\left(w_{i}, \bar{u}_{i}\right)\right\rangle_{i}\right| \\
\leq & \lambda_{i} \xi_{i}\left\|w_{i}-u_{i}^{n+1}\right\|_{i} \cdot\left\|u_{i}^{n}-\bar{u}_{i}\right\|_{i} \\
& +\xi_{i}\left\|K_{i}\left(\bar{u}_{i}\right)\right\|_{i} \cdot\left\|u_{i}^{n+1}-\bar{u}_{i}\right\|_{i} \\
\rightarrow & 0 \text { as } n \rightarrow \infty, \tag{33}
\end{align*}
$$

and

$$
\begin{align*}
& \mid B_{i}\left(p_{i}^{n}, M_{i}\left(w_{i}\right)\right)-B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right) \\
& \quad-\left[B_{i}\left(\bar{p}_{i}, M_{i}\left(w_{i}\right)\right)-B_{i}\left(\bar{p}_{i}, M_{i}\left(\bar{u}_{i}\right)\right)\right] \mid \\
& \leq \mid B_{i}\left(p_{i}^{n}, M_{i}\left(w_{i}\right)\right)+B_{i}\left(p_{i}^{n}, M_{i}\left(\bar{u}_{i}\right)\right) \\
& \quad-B_{i}\left(\bar{p}_{i}, M_{i}\left(w_{i}\right)\right)-B_{i}\left(\bar{p}_{i}, M_{i}\left(\bar{u}_{i}\right)\right) \mid \\
& \quad+\left|B_{i}\left(p_{i}^{n}, M_{i}\left(u_{i}^{n+1}\right)\right)-B_{i}\left(p_{i}^{n}, M_{i}\left(\bar{u}_{i}\right)\right)\right| \\
& \leq b_{i}\left\|M_{i}\left(w_{i}\right)-M_{i}\left(\bar{u}_{i}\right)\right\|_{i} \cdot\left\|p_{i}^{n}-\bar{p}_{i}\right\|_{i} \\
& \quad+b_{i} m_{i}\left\|p_{i}^{n}\right\|_{i} \cdot\left\|u_{i}^{n+1}-\bar{u}_{i}\right\|_{i} \\
& \rightarrow 0 \text { as } n \rightarrow \infty \text {. } \tag{34}
\end{align*}
$$

By letting $n \rightarrow \infty$ in (29) and applying (30)-(34), for all $\left(w_{1}, w_{2}, w_{3}\right) \in E_{1} \times E_{2} \times E_{3}$,

$$
\begin{aligned}
& G_{i}\left(N_{i}\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right), \eta_{i}\left(w_{i}, \bar{u}_{i}\right)\right)+\left\langle K_{i}\left(\bar{u}_{i}\right), \eta_{i}\left(w_{i}, \bar{u}_{i}\right)\right\rangle_{i} \\
& +B_{i}\left(\bar{p}_{i}, M_{i}\left(w_{i}\right)\right)-B_{i}\left(\bar{p}_{i}, M_{i}\left(\bar{u}_{i}\right)\right) \geq 0, i \in \mathbb{J},
\end{aligned}
$$

that is,

$$
\begin{aligned}
& Q=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}, \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3},\right. \\
& \left.\quad \bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}, \bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}\right)
\end{aligned}
$$

is a solution of the S-GMELP.

Remark 13 Under some suitable assumptions, the condition (15) is well-defined. For example, in the case that for each $i \in \mathbb{J}, \lambda_{i}-\alpha_{i}>\Theta_{i}$, where $\Theta_{i}=\xi_{i}\left(\gamma_{i}+\lambda_{i}\right)-\tau_{i} \geq 0$ by Remark 11, we can take

$$
\rho \in\left(\max \left\{\frac{\Theta_{1}}{\lambda_{1}-\alpha_{1}}, \frac{\Theta_{2}}{\lambda_{2}-\alpha_{2}}, \frac{\Theta_{3}}{\lambda_{3}-\alpha_{3}}\right\}, 1\right)
$$

such that (15) holds.

6 Example

The following example is given to exemplify Theorem 12

Example Suppose that $E_{1}=\mathbb{R}^{1}=\mathbb{R}, E_{2}=\mathbb{R}^{2}$ and $E_{3}=\mathbb{R}^{3}$. For each $i \in \mathbb{J}$, let R_{i}, F_{1} : $\mathbb{R}^{1} \rightarrow C B\left(\mathbb{R}^{1}\right), S_{i}, F_{2}: \mathbb{R}^{2} \rightarrow C B\left(\mathbb{R}^{2}\right)$ and $T_{i}, F_{3}: \mathbb{R}^{3} \rightarrow C B\left(\mathbb{R}^{3}\right)$ be set-valued mappings, let $N_{i}: \mathbb{R}^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{i}, \eta_{i}: \mathbb{R}^{i} \times \mathbb{R}^{i} \rightarrow \mathbb{R}^{i}$ and $K_{i}, g_{i}, M_{i}: \mathbb{R}^{i} \rightarrow \mathbb{R}^{i}$ be single-valued mappings, and let $G_{i}, B_{i}: \mathbb{R}^{i} \times \mathbb{R}^{i} \rightarrow \mathbb{R}$ be bi-functions. For any
$u_{1}, v_{1}, x_{1}, x_{2}, x_{3}, p_{1}, q_{1}, c_{1}, d_{1} \in \mathbb{R}^{1}$
$u_{2}, v_{2}, y_{1}, y_{2}, y_{3}, p_{2}, q_{2}, c_{2}, d_{2} \in \mathbb{R}^{2}$
and
$u_{3}, v_{3}, z_{1}, z_{2}, z_{3}, p_{3}, q_{3}, c_{3}, d_{3} \in \mathbb{R}^{3}$,
and for each $i \in \mathbb{J}$, define $R_{i}, S_{i}, T_{i}, F_{i}, N_{i}, \eta_{i}$, K_{i}, g_{i}, G_{i} and B_{i} as follows:

$$
\begin{aligned}
& R_{1}\left(u_{1}\right)=\left\{a:|a| \leq\left|u_{1}\right|\right\} \\
& S_{1}\left(u_{2}\right)=\left\{a:\left\|a-u_{2}\right\|_{2} \leq 1\right\}, \\
& T_{1}\left(u_{3}\right)=\left\{a:\|a\|_{3} \leq\left\|u_{3}\right\|_{3}\right\}, \\
& F_{1}\left(u_{1}\right)=\left[\frac{1}{8}\left(u_{1}-1\right), \frac{1}{8} u_{1}\right], \\
& N_{1}\left(x_{1}, y_{1}, z_{1}\right)=\sqrt{1+x_{1}^{2}}-y_{11}-z_{11}, \\
& \eta_{1}\left(v_{1}, u_{1}\right)=v_{1}-u_{1}, \\
& K_{1}\left(u_{1}\right)=u_{1}+\frac{1}{5} \sin u_{1}, \\
& g_{1}\left(u_{1}\right)=M_{1}\left(u_{1}\right)=u_{1}, \\
& G_{1}\left(c_{1}, d_{1}\right)=\frac{1}{10}\left(e^{-\left|c_{1}\right|}-1\right) d_{1}, \\
& B_{1}\left(p_{1}, q_{1}\right)=\left|\sin p_{1}\right|\left(\sqrt{1+q_{1}^{2}}-1\right) \\
& R_{2}\left(u_{1}\right)=\left[u_{1}-9, u_{1}-8\right] \\
& S_{2}\left(u_{2}\right)=\left\{a:\|a\|_{2} \leq\left\|u_{2}\right\|_{2}\right\}, \\
& T_{2}\left(u_{3}\right)=\left\{a:\left\|a-u_{3}\right\|_{3} \leq 1\right\}, \\
& F_{2}\left(u_{2}\right)=\left\{(1, a): 0 \leq a \leq \frac{1}{10}\left|u_{21}\right|\right\}, \\
& N_{2}\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{2}+y_{22}+z_{21}, 0\right), \\
& \eta_{2}\left(v_{2}, u_{2}\right)=v_{2}-u_{2}, \\
& K_{2}\left(u_{2}\right)=\frac{4}{5} u_{2}, \\
& g_{2}\left(u_{2}\right)=M_{2}\left(u_{2}\right)=u_{2}, \\
& G_{2}\left(c_{2}, d_{2}\right)=\frac{1}{10}\left(c_{21} d_{21}+c_{22} d_{22}\right), \\
& B_{2}\left(p_{2}, q_{2}\right)=p_{22} q_{22} ; \\
& \\
& R_{3}\left(u_{1}\right)=\left[u_{1}, u_{1}+1\right], \\
& S_{3}\left(u_{2}\right)=\left\{(-1, a):|a| \leq\left|u_{22}\right|\right\}, \\
& T_{3}\left(u_{3}\right)=\left[u_{31}, u_{31}+1\right] \times\{(0,0)\}, \\
& F_{3}\left(u_{3}\right)=\left\{a:\left\|a-\frac{1}{10} u_{3}\right\|_{3} \leq 1\right\}, \\
& N_{3}\left(x_{3}, y_{3}, z_{3}\right)=\left(0,0, x_{3}-y_{31}-z_{33}\right), \\
& \eta_{3}\left(v_{3}, u_{3}\right)=v_{3}-u_{3}, \\
& K_{3}\left(u_{3}\right)=\frac{6}{5} u_{3}, \\
& g_{3}\left(u_{3}\right)=M M_{3}\left(u_{3}\right)=u_{3}, \\
& G_{3}\left(c_{3}, d_{3}\right)=\frac{1}{5} c_{31} d_{31}, \\
& B_{3}\left(p_{3}, q_{3}\right)=p_{33} q_{33},
\end{aligned}
$$

where $\|\cdot\|_{2}$ and $\|\cdot\|_{3}$ are the Euclidean norms in \mathbb{R}^{2} and \mathbb{R}^{3}, respectively, and the form $*_{i j}$ is denoted by the j-th component of $*_{i}$. Then, we have for each $i \in \mathbb{J}$,
(i) R_{i}, S_{i}, T_{i} and F_{i} satisfy $\left(\mathbf{C}_{2}\right)$ with $r_{i}=s_{i}=$ $t_{i}=1, f_{1}=\frac{1}{8}, f_{2}=\frac{1}{10}$ and $f_{3}=\frac{1}{10}$;
(ii) N_{i} satisfies $\left(\mathbf{C}_{1}\right)$ with $\left(\mu_{i}, \theta_{i}, \vartheta_{i}\right)=(1,1,1)$;
(iii) η_{i} satisfies $\left(\mathbf{B}_{3}\right)-\left(\mathbf{B}_{5}\right)$ with $\xi_{i}=1$;
(iv) K_{i} and g_{i} satisfy $\left(\mathbf{B}_{1}\right)$ with $\lambda_{1}=\frac{6}{5}, \lambda_{2}=$ $\frac{4}{5}, \lambda_{3}=\frac{6}{5}, \gamma_{i}=\frac{1}{5}$ and $\tau_{i}=1$;
(v) M_{i} satisfies $\left(\mathbf{B}_{2}\right)$ with $m_{i}=1$;
(vi) G_{i} satisfies $\left(\mathbf{B}_{6}\right)$ with $\kappa_{1}=\frac{1}{10}, \kappa_{2}=\frac{1}{10}$ and $\kappa_{3}=\frac{1}{5}$;
(vii) B_{i} satisfies $\left(\mathbf{A}_{1}\right)$-($\left.\mathbf{A}_{3}\right)$ with $b_{i}=1$.

By simply calculating, it follows that

$$
\left\{\begin{array}{l}
\sigma_{1}=\frac{1}{5}+\frac{6}{5}|1-\rho|+\frac{21}{40} \rho, \\
\sigma_{2}=\frac{1}{5}+\frac{4}{5}|1-\rho|+\frac{1}{2} \rho, \\
\sigma_{3}=\frac{1}{5}+\frac{6}{5}|1-\rho|+\frac{1}{2} \rho,
\end{array}\right.
$$

and for all $\rho \in\left(\frac{16}{27}, \frac{80}{69}\right), \sigma<1$, that is, (15) holds. It follows from theorem 12 that this S-GMELP at least has a solution. In fact,

$$
\left(u_{1}, u_{2}, u_{3}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}, p_{1}, p_{2}, p_{3}\right)
$$

is a solution of S-GMELP, where

$$
\begin{array}{ll}
u_{1}=0 \in \mathbb{R}^{1}, & u_{2}=(1,0) \in \mathbb{R}^{2}, \\
u_{3}=\left(0,0,-\frac{1}{6}\right) \in \mathbb{R}^{3}, & \\
x_{1}=0 \in R_{1}\left(u_{1}\right), & x_{2}=-8 \in R_{2}\left(u_{1}\right), \\
x_{3}=1 \in R_{3}\left(u_{1}\right), & \\
y_{1}=(1,0) \in S_{1}\left(u_{2}\right), & y_{2}=(0,0) \in S_{2}\left(u_{2}\right), \\
y_{3}=(-1,0) \in S_{3}\left(u_{2}\right), & \\
z_{1}=(0,0,0) \in T_{1}\left(u_{3}\right), & z_{2}=\left(0, \frac{1}{2},-\frac{1}{3}\right) \in T_{2}\left(u_{3}\right), \\
z_{3}=\left(\frac{2}{3}, 0,0\right) \in T_{3}\left(u_{3}\right), & \\
p_{1}=0 \in F_{1}\left(u_{1}\right), & p_{2}=(1,0) \in F_{2}\left(u_{2}\right), \\
p_{3}=\left(0,0, \frac{1}{5}\right) \in F_{3}\left(u_{3}\right) . &
\end{array}
$$

References.

[1] P. Hartman, G. Stampacchia, On some nonlinear elliptic differential functional equations, $A c$ ta mathematica, Vol.115, 1966, pp.271-310.
[2] J. Parida, A. Sen, A variational-like inequality for multifunctions with applications, Journal of Mathematical Analysis and Applications, Vol.124, 1987, pp.73-84.
[3] X. P. Ding, Algorithm of solutions for mixed nonlinear variational-like inequalities in reflexive Banach space, Applied Mathematics and Mechanics (English Edition), Vol.19, No.6, 1998, pp.521-529.
[4] X. H. Chen, Y. F. Liu, On the generalized nonlinear variational-like inequality in reflexive Ba nach space (in Chinese), Journal of Nanjing University Mathematical Biquarterly, Vol.18, No.1, 2001, pp.96-103.
[5] L. C. Zeng, Iterative algorithm for finding approxiamte solutions of a class of mixed variational-like inequalities, Acta Mathematicae Applicatae Sinica (English Series) Vol.20, No.3, 2004, pp.477-486.
[6] Q. H. Ansari, J. C. Yao, Iterative schemes for solving mixed variational-like inequalities, Journal of Optimization Theory and Applications, Vol.108, No.3, 2001, pp.527-541.
[7] X. P. Ding, Existence of solutions and an agorithm for mixed variational-like inequalities in Banach spaces, Journal of Optimization Theory and Applications, Vol.127, No.2, 2005, pp.285-302.
[8] X. P. Ding, Existence and algorithm of solutions for nonlinear mixed variational-like inequalities in Banach spaces, Journal of Computational and Applied Mathematics, Vol.157, 2003, pp.419434.
[9] X. P. Ding, Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces, Computers and Mathematics with Applications, Vol.49, 2005, pp.857-869.
[10] D. N. Qu, A class of nonlinear mixed variational-like inequalities in Banach spaces (in Chinese), Journal of Sichuan Normal Universityr (Natural Science), Vol.28, No.1, 2005, pp.19-23.
[11] X. P. Ding, Predictor-corrector iterative algorithms for solving generalized mixed variational-like inequalities, Applied Mathematics and Computation, Vol.152, 2004, pp.855-865.
[12] N. J. Huang, C. X. Deng, Auxiliary principle and iterative algorithms for generalized setvalued strongly nonlinear mixed variational-like inequalities, Journal of Mathematical Analysis and Applications, Vol.256, 2001, pp.345-359.
[13] L. C. Zeng, S. M. Guu, J. C. Yao, Iterative algorithm for completely generalized setvalued strongly nonlinear mixed variational-like inequalities, Computers and Mathematics with Applications, Vol.50, 2005, pp.935-945.
[14] L. C. Zeng, S. Schaible, J. C. Yao, Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities, Journal of Optimization Theory and Applications, Vol.124, No.3, 2005, pp.725-738.
[15] H. L. Xu, X. M. Guo, Auxiliary principle and three-step iterative algorithms for generalized set-valued strongly nonlinear mixed variationallike inequalities, Applied Mathematics and Mechanics (English Edition), Vol. 28, No.6, 2007, pp.721-729.
[16] X. P. Ding, J. C. Yao, L. C. Zeng, Existence and algorithm of solutions of generalized strongly nonlinear mixed variational-like inequalities in Banach spaces, Computers and Mathematics with Applications, Vol.55, 2008, pp.669-679.
[17] K. R. Kazmi, F. A. Khan, Auxiliary problems and algorithm for a system of generalized variational-like inequality problems, $A p$ plied Mathematics and Computation, Vol.187, 2007, pp.789-796.
[18] B. A. Wang, X. P. Ding, Existence and iterative algorithm of solutions for a system of generalized set-valued strongly nonlinear mixed variational-like inequalities problems in Banach spaces, Journal of Applied Mathematics and Computing, Vol.33, 2010, pp.209-225.
[19] Y. P. Fang, N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, Journal of Optimization Theory and Applications, Vol.118, No.2, 2003, pp.327338.
[20] O. Chadli, J. C. Yao, On generalized variationallike inequalities, Archiv der Mathematik, Vol.80, 2003, pp.331-336.
[21] S. S. Chang, S. W. Xiang, On the existence of solutions for a class of quasi-bilinear variational inequalities (in Chinese), Journal of System Science and Mathematical Science, Vol.16, 1996, pp.136-140.
[22] N. A. Assad, W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific Journal of Mathematics, Vol.43, No.3, 1972, pp.553-562.
[23] S. B. Nadler Jr, Multi-valued contraction mappings, Pacific Journal of Mathematics, Vol.30, No.2, 1969, pp.475-488.

