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Abstract: In this article, we apply the modified variational iteration method for solving the (1+1)- dimensional Ra-
mani equations and the (1+1)-dimensional Joulent Moidek (JM) equations together with the initial conditions. The
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functional. The analytical results are calculated in terms of convergent series with easily computated components.
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1 Introduction

The nonlinear coupled evolution equations have many
wide array of applications of many fields, which de-
scribed the motion of the isolated waves, localized in
a small part of space, in many fields such as physics,
mechanics, biology, hydrodynamics, plasma physic-
s, etc.. To further explain some physical phenom-
ena, searching for exact solutions of nonlinear par-
tial differential equations is very important. Up to
now, many researches in mathematical physics have
paid attention to these topics, and a lot of power-
ful methods have been presented such as the modi-
fied extended tanh-function method [7,10,12,38], gen-
eralized F-expansion method [34], Adomian decom-
position method [1-3,39], homotopy analysis method
[5,8,35], Jacobi elliptic function method [36], the
tanh-hyperbolic function method [25-26], the extend-
ed F-expansion method [23]. He [15-22] developed
the variational iteration method and homotopy pertur-
bation method for solving linear and nonlinear initial
and boundary value problems. It is worth mentioning
that the origin of the variational iteration method can
be traced by Inokuti [24], but the real potential of this
method was explored by He [15]. Moreover, He real-
ized the physical significance of the variational itera-
tion method, its compatibility with the physical prob-
lems and applied this promising technique to a wide
class of linear and nonlinear, ordinary, partial, deter-
ministic or stochastic differential equation. The ho-
motopy perturbation method [9,13,17,19-22] was also
developed by He by merging two techniques, the stan-
dard homotopy and the perturbation. The homotopy
perturbation method was formulated by taking full ad-
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vantage of the standard homotopy and perturbation
methods. The variational iteration and homotopy per-
turbation methods have been applied to a wide class
of functional equations. In these methods the solution
is given in an infinite series usually converging to an
accurate solution. In a later work Ghorbani et.al. [14]
splited the nonlinear term into a series of polynomials
calling them as the He’s polynomials. Most recently,
Noor and Mohyud- Din used this concept for solving
nonlinear boundary value problems (see Ref.[29-31])
and anther authors [4]. The basic motivation of this
paper is an extension of the modified variational iter-
ation method which is formulated by the coupled of
variational iteration method and He’s polynomials for
solving the (1+1)-dimensional Ramani equations and
the (1+1)-dimensional Jaulent-Miodek (JM) equation-
s. The MVIM provides the solution in a rapid conver-
gent series which may lead the solution to a closed
form. In this method, the correct functional is de-
veloped [15,31-33] and the Lagrange multipliers are
calculated optimally via variational theory. The use
of Lagrange multipliers reduce the successive appli-
cation of the integral operator and the cumbersome
of huge computational work while still maintaining
a very high level of accuracy. Finally, He’s polyno-
mials are introduced in the correction functional and
the comparison of like powers of p gives solutions of
various orders. In this paper, we use the modified vari-
ational iteration method (MVIM) to solve
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the (1+1)-dimensional Ramani equations [37]
Uge + 19Uz U3 + DUz U4, + 45u3;um —
5(ugzt + 3Uzzpts + Sugtge) — duy + 18v, = 0,
(1

and the (1+1)-dimensional Jaulent-Miodek (JM) e-
quations[11]

Vg — V3 — SVpUp — VUL, = 0,

Ut + Uggy + §vazx + ivzvzx -

3
buu, — 6uvy, — iuxvz =0,

15
Vt + Vppa — OULV — BUV, — ?vzvg =0.2)

2 Variational iteration method

To illustrate the basic concept of the technique, we
consider the following general differential equation

3)

where L is a linear operator, IV is a nonlinear operator
and g is the forcing term. According to variational it-
eration method [15,31-33], we can construct a correct
functional as follows

Lu+ Nu=yg.

Un1 (2, 1) = up(x,t) + /Ot A7) [Lug (2, 7) +
Ny (z,7) — gldr, (n > 0), 4

where A is a Lagrange multiplier [15], which
can be identified optimally via variational iteration
method. The subscript n denotes the nth approxi-
mation, u is considered as restricted variation. i.e.
o0u = 0. Eq.(4) is called as a correct functional. The
solution of the linear problem can be solved in a sin-
gle iteration step due to the exact identification of the
Lagrange multiplier. The principals of variational it-
eration method and its applicability for various kinds
of differential equations are given in [31-33]. In this
method, it is required first to determine the Lagrange
multiplier A optimally. The successive approximation
Up+1,n > 0 of the solution u will be readily obtained
upon using the determined Lagrange multiplier and
any selective function ug. Consequently, the solution
is given by

u= lim u,.
n—oo

&)

3 Homotopy perturbation method
The homotopy perturbation method is considered as

spacial case of homotopy analysis method. To illus-
trate the homotopy perturbation method [9,13,27], we
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consider a general equation of the type,

(6)

where L is any integral or differential operator. We
define a convex homotopy H (u, p) by
H(u,p) = (1 —p)F(u) + pL(u), (7)
where F'(u) is a functional operator with known solu-
tion vg, which can be obtained easily. It is clear that,
for
H(u,

p) =0, ®)

we have

H(u,0) = F(u), H(u,1) = L(u). (9)
This shows that H (u,p) continuously traces an im-
plicitly defined curve from a starting point H (vg, 0)
to a solution function H(f,1). The embedding pa-
rameter monotonically increases from zero to unit as
the trivial problem F'(u) = 0 is continuously deform-
s the original problem L(u) = 0. The embedding
parameter p € [0, 1] can be considered as an expand-
ing parameter [9,13,27]. The homotopy perturbation
method uses the homotopy parameter p as an expand-

ing parameter to obtain

o0
U= szui = ug + pui + p*us + pPus + ... (10)

=0

If p — 1, then (10) corresponds to (7) and be-
comes the approximate solution of the form,

Zul (n

=limu =
p—1

It is well known that the series (10) is convergent
for most of the cases and also the rate of convergence
is depending on L(u); (see[19-22]). we assume that
(10) has a unique solution. The comparisons of like
powers of p give solutions of various orders.

4 Modified variational iteration
method (MVIM) with He’s poly-
nomials

The modified variational iteration method is obtained
by the elegant coupling of the correction functional
formula (4) with the He’s polynomial [16-22]. Ac-
cording to [16-22] He has been considered the solu-
tion u of the homptopy equation as a series of p which
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obtained in Eq. (10), and the method considered the
nonlinear term N (u)as

o0
=Y p'H; = Hy+pHy + p*Hy + ..., (12)
i=0

N(u)

where H] s are the so-called He’s polynomials [16-
22], which can be calculated by using the formula
1 0"

) =

Hn(”Oaula'” T[,' 8p”

n
N p'ui)tp—0,n=0,1,2,..  (13)
i=0
The modified variational iteration method is obtained
by the elegant coupling of correction functional (4) of

VIM with He’s polynomial [16-22] and is given by

3w =ty R 3" L) +
;)p"N(an)]dr — /Ot A7) gdr.

Comparisons of like powers of p give solutions of var-
ious orders.

(14)

S Applications

The modified variational iteration method is used to
solve the (1+1)-dimensional Ramani equations (1),
and the (1+1)-dimensional Jaulent-Miodek (JM) e-
quations (2).

5.1 Solving the (1+1)-dimensional Ramani

equations using MVIM

In this subsection, we find the solutions u(x,t) and
v(z, t) satisfying the coupled nonlinear Ramani equa-
tions (1) with the following initial conditions [37]:
u(z,0) = ag + 2a coth(ax),
ut(x,0) + 2t,8a2csch2(ozm)

16
_,Ba —=ab

- + BQQ
166

v(a: 0) = 7153 +

( U5t + (15)

These 1n1t1a1 condltlons follow by setting ¢ = 0 in the
following exact solutions of Egs. (1):

u(z,t) = ap + 2a coth(a(),

ﬁ2a2) coth?(az).

i) =gt~ G

5 8, 16 ¢

5*45 ( ﬁ + = 9

gﬁ%e?) cothz(a(), (16)
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where ( = (x — ft), ag, § and « are arbitrary con-
stants. These exact solutions have been derived by
Yusufoglu et al. [37] using the tanh method. Let us
now solve the initial value problem (1) with the ini-
tial conditions (15) using the MVIM. To this end, we
convey the basic idea of the modified variational iter-
ation method for the equations (1), let us consider the
functional iteration formula

un+1 7t) Up + / )\1 un rr T+ (an)ﬁx +

(un)mc(un)Sx + 15( n)z(un)4a: +
( n)m(un)m} + 18(5n):6}d7'7

ot = v+ [ A () [(0n)r — Bn)as —
3(0n)z(Un)z — 3(0n) (Un,) pa)dT.

Making the correct functional stationary, the Lagrange
multipliers can be identified as A\;(7) = =T and
A2(T) = —1, consequently, we have

Up1(2,t) = up + /Ot [=5(un)rr + (un)ex +

15(un )z (Un)3e + 15(un )z (tn) 4z +
45(un)§(un)xa: — 5{(un)3zr +
3(tn)zz(Un)r + 3(tn)a(tn)ar b + 18(vn)aldr,

(e t) = - [ [(0n)r = (va)se —
3(vn)z(tun)z — 3vn (up) gz |dT. (18)

Applying the modified variational iteration method,
hence

ZP un_u0+p/ ZP un TT
n=0

(Z pnun)ﬁx + 15(2 pnun)xa:(z pnun)Sx
n=0 n=0 n=0

o0 [e.e]

+ 15(2;1)“%)1(2)19"%)41 +
Zp Un)s Zp Un)ae —
5[(2017"%)(3@7 +
3(ip”un)m(§p”un)f +
7 e(3 1)) +

18(2 p" o)z )dT
n=0

a7

5

t—1T1

t—T

19)
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and
> JABES
p'on =0 —p p"n)r —
n=0 ’ 0 p=0
(Z pnvn)Saz - 3(2 pnvn)x(z pnun)x -
n=0 n=0 n=0
S(Z p”vn)(z P " Up )z )dT (20)
n=0 n=0

using Egs. (19) and (20) to compare the coefficients
of like powers of p then we have

uo(z,t) = u(x,0) + uy(x,0),
tt—r
wl@t) = [ w0)os + 15(u0)is(u)as +

15(71,0)3;(“0)4:5 + 45(“0)3(“0)xm -
5{(“0)(3x)r + 3(u0) 2z (uo)r +
3(uo)z(u0)er} + 18(vo)s]dT,
b —r

(e, t) = /0 =5+ () +
15{(“0 :cr(ul)3r + (Ul)mm(u(])&s} +
15{(u0)x (u1)4a + (u1)z(u0)aa} +
45{(u0)3 (u1)za + 2(u1)2(u0)a (u0) s} —
5{(u1)(3x + 3{(u0)za(u1)r +
(u1)aa(uo)r} + 3{(u0)z(u1)ar +

( ) ( )x‘r}} + 18(Ul)m]d7_7

21

vo(z,t) = v(x,0),

alst) = [ (w0)se + 3w +
3vo(uo)zz)dr,

wa(ast) = = [ I(on)s = (01)se —

3{(v0)a(u1)z + (v1)z(uo)z} —
3{”0(“1)2:90 + v1 (UO)xx}]dTa

the other components can be found similarly. After
some reduction, we have

(22)

ug(z,t) = ag + 2a coth(ax) + 2tBa’csch? (ax),
up(z,t) = 2a3ﬁ2t2 coth(azx)esch? (o)
ug(x,t) = 4ﬁ3t3{2 coth?(azx)esch? (o) +
csch(a )}, (23)
4 g 16 of 2,2 _
t) = —— -
1
53453 ( ﬂ +— 6 ab — 62042) coth?(az),
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@0—%@(5 +§
§ﬂ2a2) coth(om?)csch2 (ax),
va(,t) = ( 5 -1-16 6 _ ﬁ2a2)t2

x {20232 coth2(am)csch2(am) + csch4(ax)}. (24)
Therefore, using the Eq.(10), then approximate solu-
tions of the system of equations of Eqgs. (1) take the
following forms:

u(z,t) = ag + 2a coth(azx) + 2tfa’csch? (ax) —
2
203 6%t? coth(ax)csch? (azx) + §a453t3

{2 coth?(ax)csch? (ax) + csch? (ax)} + ...,(25)

v(z,t) = —*Ba ~5r@ + 52 2

3 3 = j D92 2

54B+(9Ba+9 gﬁa)

x {coth?(ax) 4 2tafB coth(ax)csch? (azx) —
2t%a? 5% coth? (ax)csch? (ax) —
t2csch?(ax)} + ...

(26)

The accuracy of the modified variational iteration
method for the Eqgs. (1) under conditions (15) is con-
trollable and the absolute errors are very small with
the present choice of x,¢. These results are listed in
Tables 1, 2 and Figures 1-4. It is also clear that when
more terms for MVIM are computed, the numerical
results are much more closer to the corresponding ex-
act solution.

Table 1. The MVIM results of u(x, t) for the first
three approximation in comparison with the exact so-
lution if ag = 1, = a = .0l,and ¢ = 20 for the
solution of the system (1) with the initial condition-
s(15).

z Upyact Univim |uEm,ct - UMVIM|
-50  0.956868 0.956869 1.27251607E-6
-40  0.947597 0.9476 2.48972102E-6
-30 0.931774 0.93178 5.90319012E-6
20 0.899647 0.899667 1.98912333E-5
-10  0.803242 0.8034 1.58430305E-4
10 1.20473 1.20457 1.58430305E-4
20  1.10233 1.10231 2.00989070E-5
30 1.06909 1.06908 5.94270457E-6
40  1.05288 1.05287 2.50222741E-6
50  1.04343 1.04343 1.27764171E-6
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Figure 1: The exact solution of u(x,t) for the equations
Difag=1,8=a=.01.

Figure 2: The approximate solution of u(x,t) for the
first three approximation of the equations (1) if ag =
1,8=a=.01.

Table 2. The MVIM results of v(z, t) for the first
three approximation in comparison with the analytical
solution if ag = 1, 8 = a = .01,and t = 20 for the so-
lution of the system (1) with the initial conditions(15).

T Vpgact Univim |UE:L'act _UMVIM|
-50  -1.1204856E-7 -1.12232E-7 1.853690E-7
-40  -1.2401512E-7 -1.24375E-7 1.855450E-7
-30  -1.4991042E-7 -1.50764E-7 1.860388E-7
20 -2.2395349E-7 -2.26833E-7 1.880649E-7
-10  -6.2401173E-7 -6.46982E-7 2.081564E-7

10 -6.2401173E-7 -6.00746E-7 1.619202E-7
20  -2.2395349E-7 -2.21054E-7 1.822860E-7

30 -1.4991042E-7 -1.49052E-7 1.843273E-7
40  -1.2401512E-7 -1.23653E-7 1.848238E-7

50 -1.1204856E-7 -1.11863E-7 1.850006E-7
5.2 Solving the (1+1)-dimensional Jaulent-

Miodek (JM) equations using MVIM
In this subsection, we find the solutions wu(x,t),

v(z,t) satisfying the (1+1)-dimensional Jaulent-
Miodek (JM) equations with the following initial con-
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Figure 3: The exact solution of v(x,t) for the equations
(ifag=1,5=a= .01

Figure 4: The approximate solution of v(x,t) for the
first three approximation for the equations (1) if ag =
1, 8=a= .01

ditions [11]:

u(z,0) = %(c —b?) — %bﬁ sech(v/cx) —

3
chechz(ﬁ ),

v(x,0) = b+ v/csech(v/c z).

These initial conditions follow by setting ¢ = 0 in the
following exact solutions of egs. (2):

27

w(z, t) = %(c— b2) — %b\ﬁ

2 C
(6b2+ )t))_
(60 + o)t
T))a

sech(v/c (z +

%sechZ(ﬁ (x +
v(z,t) =b+ e
2+e
x sech(v/c (z + (60" + o)t

=),

where ¢ and b are arbitrary constants. These exac-
t solutions have been derived by Fan [11] using the
unified algebraic method. Let us now solve the initial
value problem (2) and (27) using the MVIM. To this

(28)
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end, we convey the basic idea of the modified vari-
ational iteration method for the equations (2), let us
consider the functional iteration formula

i1, 8) = w6+ [ Ml an)e +

3 ~

_ - 9 . -
(un)xa::(; + §(Un)(vn)a:mc + i(vn)x(vn)xx -

6{(an)(an)x + (671)(571)(571)96} -
3

§(aN)x(1~’n)2]d7'a

Va1 (z,t) = vp(x, t) + /Ot Ao (T)[(vn)r +

6{(Un)z(vn) +

(77n)x:cac -
15 e (B2

(ﬂn)@n)x} - 92
Making the correct functional stationary, the Lagrange
multipliers can be identified as A1 (7) = —1=Xa(7) =
—1, consequently

(29)

1, 0) = ) = [ [+ () +

3 9

5(”71)(”71)11‘:): + Q(Un)a:(vn)mc -

6{un)(un)s + (un)(vn)(vn)} —
3

9 (Un)o (Un)z]dT,

Vpy1(,t) = vp (2, t) — /Ot[(vn)r + (Vn) e —
6{(un)z(vn) + (un)(vn)s} —

15
?(Un)x(vn)Q]dT. (30)
Applying the modified variational iteration

method, we have
00 t 00
anun = Uo _p/ [(Z P un)r +
n=0 0 n=0
o9 3 X 0
(Z pnun)mcm + 5(2 pnvn)(z pnvn)x:px +
n=0 n=0 n=0
9 & 9]
5(2 pnvn)z(z pnvn)mc -
n=0 n=0
9] [e9)
60> p"un) (D pun)s +
n=0 n=0
9 00 0
(Z pnun)(z pnvn)(z P"vn)a} —
n=0 n=0 n=0

3 o0 [e.e]

2O Pun)a( S "),

n=0 n=0

ip "on = w0l 6) ~ /OtKvn)T 4 (vn)ose —
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6{ (un)x(vn) + (un)(vn)a} —

15 & o
5 (O P on)a (3 ")l 31)
n=0 n=0

Using egs. (31) to compare the coefficient of like pow-
ers of p then we have

uo(x,t) = u(x,0),

01(00) = = [ [0)ase + 3(00)(00)aze +

© (00)a(t0)as — 6{uo) (o). +
(10) (00) (o)} — © (110). (02,

2
02 0) = = [ 10)r(ur)ase + 2{(01) w0} +

(UO)(Ul)xazr} + g{(vo)x(vl)xz + (Ul)x(vo)azx} —
6{{uo)(uo)s + u1)(u1)z} + {(u1)(vo)(vo)z +
(uo)(v1)(v0)x + (uo)(vo)(v1)a}} —

2 a)e0)? + 2(u0)eCo0) o)

vo(x,t) = v(x,0),

’Ul(.%',t) = — /OtK'UO)xxm - 6{(UO)£(UO) +

15

(uo)(vo)s} — g(vo)x(vo)Q]dT,

et = | [(00)r = 01)aze — 6¢{ (o) (v1) +
(1) (00)} + {(10) (01)s + (1) (w0)a }} —

2{(01)1:(00)2 + 2(vo)zv100 dT, (33)

The other components can be found similarly. After
some reduction, we have

ug(z,t) = i(c —v?) — %bﬁ sech(v/c ) —

%sech%ﬁ x),

(1) = fi(c + 66%){be sech(+/e z) tanh(v/c 2)

+ 3¢3/2 sech?(v/c x) tanh(v/c )},
ug(x,t) = —t82(c + 66%)2{bc/? (sech®(vc x) +
sech(v/c z) tanh?(v/c 2)) + 3¢%(sech? (Ve )
+ 2sech?(v/c ) tanh?(v/c z))},
(34)
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vo(z,t) = b+ v/csech(y/c x),
i, t) = %t(c + 65%)sech(v/c ) tanh(v/e ),

B/242
1 (c+ 6b%)2{sech®(v/c z) +

sech(y/c z) tanh?(v/c 2)},

In this manner the other components can be eas-
ily obtained. We construct the solutions u(x,t) and
v(z,t) as follows:

vo(z,t) =

(35)

u(z,t) = %(c —b?) — %b\/é sech(y/c ) —

% sech?(Ve x) - i(c + 6b%){be sech(v/e z)

4

x tanh(v/c ) 4 3¢3/2 sech?(v/c z)
c3/242

tanh(v/c )} — (¢ + 6b%)2{bc>/?

('sech®(v/c ) + sech(y/c ) tanh?(v/c z)) +

3c?(sech®(v/c x) + 2sech?(y/c )
x tanh?(v/c2))} + ...,

t
%(c—i— 66%)

3/2 42
(c+ 6b%)?

v(z,t) = b+ +/esech(vex) +

x sech(y/c z) tanh(v/c z) + .

x {sech®(y/c x) + sech(y/c z)

x tanh?(v/c z)} + ... (37)

E. M. E. Zayed, H. M. Abdel Rahman

Figure 6: The approximate solution of u(x,t) for the
first three approximation for the equations (2) if b =
.1,¢=.01.

Table 3. The MVIM results of u(x, t) for the first
three approximation in comparison with the exact so-
lution if b = .1, ¢ = .01 and ¢ = .2 for the solution of
the Egs. (2) with the initial conditions (27).

(36)

L Upzact WUnrv i |uEa;act “Uyvim |
-50  -0.00006878  -0.000068786 1.03236E-9
-40  -0.00019329  -0.000193286 7.98438E-9
-30  -0.00057108  -0.000571017 6.75572E-8
-20  -0.00186051 -0.00185984 6.65449E-7
00  -0.00639517 -0.00638898 6.18910E-6
00 -0.0125 -0.0124967 3.29510E-6

10 -0.00638499 -0.00639128 6.28541E-6
20  -0.00185728 -0.00185806 7.81587E-7
30 -0.000570186  -0.00057026 8.12470E-8
40  -0.00019301 -0.00019302 9.60074E-9
50 -0.000068689  -0.00006869 1.22044E-9

The accuracy of the MVIM for the egs. (2) under con-
ditions (27) are controllable and the absolute errors
are very small with the present choice of x,¢. These
results are listed in Tables 3, 4 and Figures 5-8. Itis al-
so clear that when more terms for homotopy analysis
method are computed, the numerical results are much

Table 4. The MMVIM results of v(z,t) for the
first three approximation in comparison with the exact
solution if b = .1, ¢ = .01 and ¢t = .2 for the solution
of the eqgs. (2) with the initial conditions (27).

1 3 xz UEZL‘(LCt U]\/IVIIW ‘/UE:):act — ,U]\/IVIM‘
more closer to the corresponding exact solution. S0 0103348 0101347 557901 Bt
-40 0.103664 0.10366 4.8481756E-6
30 0.10994  0.109915 2.5172504E-5
20 0.126598  0.126426 1.7214243E-4
-10  0.16484  0.163784 1.0560166E-3
00 0.2 0.199999 1.1865000E-6
10  0.164771 0.165828 1.0567760E-3
20 0.126562 0.126735 1.7238910E-4
30 0.109926 0.109951 2.5211635E-5
40 0.103659 0.103664 4.8552982E-6
50 0.101347 0.101348 1.7027722E-6

6 Conclusion

Figure 5: The exact solution of u(x,t) for the equations
)ifb=.1,c = .01.

In the present paper, the modified variational itera-
tion method (MVIM) is used to find the solutions of

E-ISSN: 2224-2880 300 Issue 4, Volume 11, April 2012
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Figure 7: The exact solution of v(x,t) for the equations
)ifb=.1,c¢ = .01.

Figure 8: The approximate solution of v(x,t) for the
first three approximation for the equations (2) if b =
.1,¢=.01.

the nonlinear coupled equations in the mathematical
physics via the (1+1)-dimensional Ramani equation-
s and the (1+1)-dimensional Jaulent-Miodek (JM) e-
quations together with the initial conditions. It can
be concluded that the MVIM is very powerful and ef-
ficient in finding the exact solutions for wide classes
of problems. It is worth pointing out that the MVIM
presents rapid convergence solutions.
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