The Solutions of Initial Value Problems for Nonlinear Fourth-Order Impulsive Integro-Differential Equations in Banach Spaces

Zhang Lingling, Yin Jingyi, Liu Junguo
Department of mathematics of Tai Yuan University of Technology
Taiyuan 030024, Shanxi, PR China
zllww@126.com,yjy-yuer@163.com,qing88qing88@163.com

Abstract

In this paper, we investigate the maximal and minimal solutions for initial value problem of fourth order impulsive differential equations by using cone theory and the monotone iterative method to some existence results of solution are obtained. As an application, we give an example to illustrate our results.

Key-words: Banach space, Cone, Initial value problem, Impulsive integro-differential equations

1. Introduction

Impulsive integro-differential equations have become more important in recent years in some mathematical models in physics, chemical technology, population dynamics, biotechnology and economics. For an introduction of the basic theory of impulsive differential equations in R_{n}, see [1]. Impulsive integro-differential equations both for first and second order have been studied by many authors, see [4-13].Only a few papers have implemented the fourth order impulsive equations, see [14-15].In [14],the author use variation methods and a three critical points theorem to investigate impulsive equation without impulsive differential inequalities.

In this paper, by applying a new corresponding result connected with fourth-order impulsive differential inequalities, we apply cone theory and the monotone iterative method to investigate the maximal and minimal solutions.

Consider the following initial value problem of fourth order impulsive differential equations:

$$
\left\{\begin{align*}
& x^{(4)}(t)= f\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime}(t),\right. \\
&(T x)(t),(S x)(t)), \forall t \in J, t \neq t_{k,}, \\
&\left.\Delta x\right|_{t=t_{k}}= I_{0 k}\left(x^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta x^{\prime}\right|_{t=t_{k}}=I_{1 k}\left(x^{\prime}\left(t_{k}\right), x^{\prime \prime}\left(t_{k}\right)\right), \tag{1}\\
&\left.\Delta x^{\prime \prime}\right|_{t=t_{k}}= I_{2 k}\left(x^{\prime \prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta x^{\prime \prime \prime}\right|_{t=t_{k}}= I_{3 k}\left(x\left(t_{k}\right), x^{\prime}\left(t_{k}\right), x^{\prime \prime}\left(t_{k}\right), x^{\prime \prime \prime}\left(t_{k}\right)\right) \\
& \quad(k=1,2, \cdots, m), \\
& x(0)=x_{0, x^{*}}^{*}(0)=x_{1}^{*}, x^{\prime \prime}(0)=x_{2}^{*}, x^{\prime \prime \prime}(0)=x_{3}^{*}
\end{align*}\right.
$$

where $J=[0, a](a>0), x_{0}^{*}, x_{1}^{*}, x_{2}^{*}, x_{3}^{*} \in E, \theta$ is the zero element of E,

$$
f \in C[J \times E \times E \times E \times E \times E \times E, E]
$$

$$
0<t_{1}<\cdots<t_{k}<\cdots<t_{m}<a, I_{0 k} \in C[E, E],
$$

$$
\begin{aligned}
& I_{1 \mathrm{k}} \in C[E \times E, E], I_{2 k} \in C[E, E], \\
& I_{3 k} \in C[E \times E \times E \times E, E] \quad(k=1,2, \cdots, m), \\
& \quad(T x)(t)=\int_{0}^{t} k(t, s) x(s) d s, \\
& \quad(S x)(t)=\int_{0}^{a} h(t, s) x(s) d s, \\
& \forall t \in J, k \in C\left[D, R_{+}\right], D=\{(t, s) \in J \times J \mid t \geq s\}, \\
& h \in C\left[J \times J, R_{+}\right], R_{+}=[0,+\infty) . \\
& \left.\Delta x\right|_{t=t_{k}}=x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right), \\
& \left.\Delta x^{\prime}\right|_{t=t_{k}}=x^{\prime}\left(t_{k}^{+}\right)-x^{\prime}\left(t_{k}^{-}\right),
\end{aligned}
$$

$x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$denote the right and left limits of x at t_{k}, respectively. Similarly, $x^{\prime}\left(t_{k}^{+}\right)$and $x^{\prime}\left(t_{k}^{-}\right)$ denote the right and left limits of x^{\prime} at t_{k}, respectively.

$$
\begin{aligned}
\left.\Delta x^{\prime \prime}\right|_{t=t_{k}} & =x^{\prime \prime}\left(t_{k}^{+}\right)-x^{\prime \prime}\left(t_{k}^{-}\right), \\
\left.\Delta x^{\prime \prime \prime}\right|_{t=t_{k}} & =x^{\prime \prime \prime}\left(t_{k}^{+}\right)-x^{\prime \prime \prime}\left(t_{k}^{-}\right),
\end{aligned}
$$

$x^{\prime \prime}\left(t_{k}^{+}\right)$and $x^{\prime \prime}\left(t_{k}^{-}\right)$denote the right and left limits of $x^{\prime \prime}$ at t_{k}, respectively. Similarly, $x^{\prime \prime \prime}\left(t_{k}^{+}\right)$and $x^{\prime \prime \prime}\left(t_{k}^{-}\right)$denote the right and left limits of $x^{\prime \prime \prime}$ at t_{k}, respectively.

Let $P C[J, E]=\{x: J \rightarrow E \mid x(t)$ is continuous at $t \neq \boldsymbol{t}_{k}, x\left(t_{k}^{+}\right)$exist, $\left.x\left(t_{k}^{-}\right)=x\left(t_{k}\right)\right\}$.

Indeed, $P C[J, E]$ is a Banach space with the norm

$$
\|x\|_{P C}=\sup _{t \in J}\|x(t)\|
$$

Let $P C^{3}[J, E]=\left\{x \in P C[J, E] \mid x^{\prime \prime \prime}(t)\right.$ is continuous at $t \neq t_{k}, x^{\prime \prime \prime}\left(t_{k}^{+}\right)$and $x^{\prime \prime \prime}\left(t_{k}^{-}\right)$exist $\}$

For $x \in P C^{3}[J, E]$, we have

$$
\begin{gather*}
x^{\prime \prime}\left(t_{k}-\varepsilon\right)=x^{\prime \prime}(t)+\int_{t}^{t_{k}-\varepsilon} x^{\prime \prime \prime}(s) d s \\
\forall t_{k-1}<t<t_{k}-\varepsilon<t_{k}, \varepsilon>0 \tag{2}
\end{gather*}
$$

Because $x^{\prime \prime \prime}\left(t_{k}^{-}\right)$exists, there exists the limit $x^{\prime \prime}\left(t_{k}^{-}\right)$of (2) as $\varepsilon \rightarrow 0^{+}$, and

$$
x^{\prime \prime}\left(t_{k}^{-}\right)=x^{\prime \prime}(t)+\int_{t}^{t_{k}} x^{\prime \prime \prime}(s) d s, \forall t_{k-1}<t<t_{k}
$$

In the same way, we obtain

$$
x^{\prime \prime}\left(t_{k}^{+}\right), x^{\prime}\left(t_{k}^{-}\right), x^{\prime}\left(t_{k}^{+}\right)
$$

Let $x^{\prime}\left(t_{k}\right)=x^{\prime}\left(t_{k}^{-}\right), x^{\prime \prime}\left(t_{k}\right)=x^{\prime \prime}\left(t_{k}^{-}\right), x^{\prime \prime \prime}\left(t_{k}\right)=x^{\prime \prime \prime}\left(t_{k}^{-}\right)$.
Obviously, $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime} \in P C[J, E]$.Indeed, $P C^{3}[J, E]$ is a Banach space with the respective norm:
$\|x\|_{P C^{3}}=\max \left\{\|x\|_{P C},\left\|x^{\prime}\right\|_{P C},\left\|x^{\prime \prime}\right\|_{P C},\left\|x^{\prime \prime \prime}\right\|_{P C}\right\}$.
Let $P C^{2}[J, E]=\left\{x \in P C[J, E] \mid x^{\prime \prime}(t)\right.$ is continuous at $t \neq t_{k}, x^{\prime \prime}\left(t_{k}^{-}\right)$and $x^{\prime \prime}\left(t_{k}^{+}\right)$exist $\}$. For $x \in P C^{2}[J, E]$, similarly, $x^{\prime}\left(t_{k}^{-}\right), x^{\prime}\left(t_{k}^{+}\right)$exist.
Let $x^{\prime}\left(t_{k}\right)=x^{\prime}\left(t_{k}^{-}\right), x^{\prime \prime}\left(t_{k}\right)=x^{\prime \prime}\left(t_{k}^{-}\right)$. Obviously, $x^{\prime}, x^{\prime \prime} \in P C[J, E]$. Indeed, $P C^{2}[J, E]$ is a Banach space with the respective norm:

$$
\|x\|_{P C^{2}}=\max \left\{\|x\|_{P C},\left\|x^{\prime}\right\|_{P C},\left\|x^{\prime \prime}\right\|_{P C}\right\}
$$

Let $P C^{1}[J, E]=\left\{x \in P C[J, E] \mid x^{\prime}(t)\right.$ is continuous at $t \neq t_{k}, x^{\prime}\left(t_{k}^{-}\right)$and $x^{\prime}\left(t_{k}^{+}\right)$exist $\}$.
For $x \in P C^{1}[J, E]$, let $x^{\prime}\left(t_{k}\right)=x^{\prime}\left(t_{k}^{-}\right)$. Obviously $x^{\prime} \in P C[J, E]$. Indeed, $P C^{1}[J, E]$ is a Banach space with respect to the norm:

$$
\|x\|_{P C^{1}}=\max \left\{\|x\|_{P C},\left\|x^{\prime}\right\|_{P C}\right\}
$$

Let $J^{\prime}=J \backslash\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}, \quad t_{0}=0, t_{m+1}=a, \quad J_{0}=$ $\left[0, t_{1}\right], J_{1}=\left(t_{1}, t_{2}\right], \cdots, J_{m-1}=\left(t_{m-1}, t_{m}\right], J_{m}=\left(t_{m}, a\right]$, $\tau=\max \left\{t_{i}-t_{i-1} \mid i=1,2, \cdots, m+1\right\}$.Denote the norm $\|\cdot\|_{C^{1}\left[J_{0}, E\right]}$ in the space $C^{1}\left[J_{0}, E\right]$ and denote the norm $\|\cdot\|_{P C^{1}\left[\bar{J}_{i}, E\right]}$ and $\|\cdot\|_{P C^{1}\left[J_{i}, E\right]}$ in the space $P C^{1}\left[\bar{J}_{i}, E\right]$ and $P C^{1}\left[J_{i}, E\right]$ respectively. \bar{J}_{i} is the closure of J_{i}. If there exists x such that $x \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$ and IVP (1), then x is called the solution of IVP (1).

2. Preliminaries

Suppose that E is a real Banach space which is partially ordered by a cone $P \subset E$. we say " $x \leq y$ " if and only if $y-x \in P$.Moreover P is called
normal if there exists a constant $N>0$ such that for all $x, y \in E, \theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$. In the case N is called the normality constant of $P . P$ is called regular if there exists $y \in E$ such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \cdots \leq y \quad$ implies $\quad x^{*} \in E$ such that $\left\|x_{n}-x^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$.Further information can be found in [2].
Lemma 2.1. Assume that
$p \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ satisfies
$\left\{\begin{array}{l}p^{\prime \prime}(t) \leq-M_{1}(t) p(t)-M_{2}(t) p^{\prime}(t), \forall t \in J, t \neq t_{k}, \\ \left.\Delta p\right|_{t=t_{k}}=C_{k} p^{\prime}\left(t_{k}\right),(k=1,2, \cdots, m) \\ \left.\Delta p^{\prime}\right|_{t=t_{k}} \leq-L_{k} p\left(t_{k}\right)-L_{k}^{*} p^{\prime}\left(t_{k}\right), \\ p^{\prime}(0) \leq p(0) \leq \theta,\end{array}\right.$
where $M_{1}(t), M_{2}(t)$ are bounded with $M_{1} \geq 0$, $M_{2} \geq 0$ on J and $M_{1}, M_{2} \in L^{1}[0, a] . C_{k}, L_{k}, L_{k}^{*}$ are all nonnegative constants, and we have
(i) $a\left(M_{1}^{*}\left(1+a+\sum_{k=1}^{m} C_{k}\right)+M_{2}^{*}\right)+\sum_{k=1}^{m}\left(L_{k}(1\right.$

$$
\begin{equation*}
\left.\left.+t_{k}+\sum_{i=0}^{k-1} C_{i}\right)+L_{k}^{*}\right) \leq 1 \tag{4}
\end{equation*}
$$

(ii) $M_{2}^{*}>0, a M_{1}^{*}\left(\left(e^{a M_{2}^{*}}\right)+\frac{\left(e^{a M_{2}^{*}}\right)-1}{M_{2}^{*}}\right.$

$$
\begin{aligned}
& +\left(e^{a M_{2}^{*}}\right) \sum_{k=1}^{m}\left(C_{k}\left(e^{-M_{2}^{*} t_{k}}\right)\right) \\
& +\sum_{k=1}^{m}\left(L _ { k } \left(\left(e^{M_{2}^{*} t_{k}}\right)+\frac{\left(e^{a M_{2}^{*} t_{k}}\right)-1}{M_{2}^{*}}\right.\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.+\sum_{i=0}^{k-1} C_{i}\left(e^{M_{2}^{*}\left(t_{k}-t_{i}\right)}\right)\right)+L_{k}^{*}\right) \leq 1 \tag{5}
\end{equation*}
$$

where
$M_{1}^{*}=\sup \left\{M_{1}(t) \mid t \in J\right\}, M_{2}^{*}=\sup \left\{M_{2}(t) \mid t \in J\right\}$, $C_{0}=0$, then $p(t) \leq \theta, p^{\prime}(t) \leq \theta, \forall t \in J$.
Proof. Let $P^{*}=\left\{g \in E^{*} \mid g(x) \geq 0, \forall x \in P\right\}$.For any $g \in P^{*}$ such that $v(t)=g(p(t))$, then $v \in P C^{1}[J, R] \cap C^{2}\left[J^{\prime}, R\right]$ and $v^{\prime \prime}(t)=g\left(p^{\prime \prime}(t)\right)$, $v^{\prime}(t)=g\left(p^{\prime}(t)\right), \forall t \in J$. By (3) we have

$$
\left\{\begin{array}{l}
v^{\prime \prime}(t) \leq-M_{1}(t) v(t)-M_{2}(t) v^{\prime}(t), \forall t \in J, t \neq t_{k} \tag{6}\\
\left.\Delta v\right|_{t=t_{k}}=C_{k} v^{\prime}\left(t_{k}\right), \\
\left.\Delta v^{\prime}\right|_{t=t_{k}} \leq-L_{k} v\left(t_{k}\right)-L_{k}^{*} v^{\prime}\left(t_{k}\right),(k=1,2, \cdots m), \\
v^{\prime}(0) \leq v(0) \leq 0
\end{array}\right.
$$

Put
$v_{*}(t)=v^{\prime}(t)(t \in J)$, then $v_{*} \in P C[J, R] \cap C^{1}\left[J^{\prime}, R\right]$ and

$$
\begin{align*}
v(t) & =v(0)+\int_{0}^{t} v_{*}(s) d s+\left.\sum_{0<t_{k}<t} \Delta v\right|_{t=t_{k}} \\
& =v(0)+\int_{0}^{t} v_{*}(s) d s+\sum_{0<t_{k}<t} C_{k} v_{*}\left(t_{k}\right), \forall t \in J \tag{7}
\end{align*}
$$

So we have by (6)

$$
\left\{\begin{aligned}
v_{*}^{\prime}(t) \leq & -M_{1}(t)\left(v(0)+\int_{0}^{t} v_{*}(s) d s+\sum_{0<t_{k}<t} C_{k} v_{*}\left(t_{k}\right)\right) \\
& -M_{2}(t) v_{*}(t), \forall t \in J, t \neq t_{k} \\
\left.\Delta v_{*}\right|_{t=t_{k}} \leq & -L_{k}\left(v(0)+\int_{0}^{t_{k}} v_{*}(s) d s\right. \\
& \left.+\sum_{i=0}^{k-1} C_{i} v_{*}\left(t_{i}\right)\right)-L_{k}^{*} v_{*}\left(t_{k}\right) \\
v_{*}(0) \leq & v(0) \leq 0,(k=1,2, \cdots, m)
\end{aligned}\right.
$$

Next, we show

$$
\begin{equation*}
v_{*}(t) \leq 0, \forall t \in J \tag{9}
\end{equation*}
$$

We suppose the inequality $v_{*}(t) \leq 0, t \in J$ is not true. This means that we can find $t^{*} \in J$ such that $v_{*}\left(t^{*}\right)>0$.We have the next two cases:
Case (a): Assume that $t^{*} \in J_{j}=\left(t_{j}, t_{j+1}\right]$.Let

$$
\inf _{0 \leq t \leq t^{*}} v_{*}(t)=-\lambda .
$$

Then $\lambda \geq 0$.

$$
\begin{aligned}
& \text { (i) } \lambda=0 . \text { By (8), we have } \\
& \qquad v_{*}^{\prime}(t) \leq 0,\left.\Delta v_{*}\right|_{t=t_{k}} \leq 0 .
\end{aligned}
$$

Then $v_{*}(t)$ is decreasing on $\left[0, t^{*}\right]$, so

$$
v_{*}\left(t^{*}\right) \leq v_{*}(0) \leq 0
$$

This is a contradiction with $V_{*}\left(t^{*}\right)>0$.
(ii) $\lambda>0$. There exists $t_{*} \in J_{n}, n \in\{1,2, \cdots, m\}$ such that $\nu_{*}\left(t_{*}\right)=-\lambda$ or $v_{*}\left(t_{n}^{+}\right)=-\lambda$. Below we discuss only the situation when $v_{*}\left(t_{*}\right)=-\lambda$. (The proof is similar, when $v_{*}\left(t_{n}^{+}\right)=-\lambda$).We obtain by (8)

$$
\begin{gather*}
v_{*}^{\prime}(t) \leq M_{1}^{*}\left(1+a+\sum_{k=1}^{m} C_{k}\right) \lambda+M_{2}^{*} \lambda=M_{0} \lambda, \\
\forall t \in\left[0, t^{*}\right], t \neq t_{k} \tag{10}
\end{gather*}
$$

$\left.\Delta v_{*}\right|_{t=t_{k}} \leq L_{k}\left(1+t_{k}+\sum_{i=0}^{k-1} C_{i}\right) \lambda+L_{k}^{*} \lambda, \forall t_{k} \leq t^{*}$
where

$$
\begin{equation*}
M_{0}=M_{1}^{*}\left(1+a+\sum_{k=1}^{m} C_{k}\right)+M_{2}^{*} \tag{12}
\end{equation*}
$$

Then we have

$$
\left\{\begin{array}{c}
v_{*}\left(t^{*}\right)-v_{*}\left(t_{j}^{+}\right)=v_{*}^{\prime}\left(\xi_{j}\right)\left(t^{*}-t_{j}\right), t_{j}<\xi_{j}<t^{*}, \\
v_{*}\left(t_{j}\right)-v_{*}\left(t_{j-1}^{+}\right)=v_{*}^{\prime}\left(\xi_{j-1}\right)\left(t_{j}-t_{j-1}\right), t_{j-1}<\xi_{j-1}<t_{j}, \\
\ldots \\
v_{*}\left(t_{n+2}\right)-v_{*}\left(t_{n+1}^{+}\right)=v_{*}^{\prime}\left(\xi_{n+1}\right)\left(t_{n+2}-t_{n+1}\right) \\
t_{n+1}<\xi_{n+1}<t_{n+2}, \\
v_{*}\left(t_{n+1}\right)-v_{*}\left(t_{*}\right)=v_{*}^{\prime}\left(\xi_{n}\right)\left(t_{n+1}-t_{*}\right), t_{*}<\xi_{n}<t_{n+1} .
\end{array}\right.
$$

By (11) we know
$v_{*}\left(t_{k}^{+}\right)=v_{*}\left(t_{k}\right)+\left.\Delta v_{*}\right|_{t=t_{k}} \leq v_{*}\left(t_{k}\right)+L_{k}\left(1+t_{k}+\sum_{i=0}^{k-1} C_{i}\right) \lambda$

$$
\begin{equation*}
+L_{k}^{*} \lambda \tag{14}
\end{equation*}
$$

Combing (10), (11) and (13),(14), this yields

$$
\left\{\begin{align*}
v_{*}\left(t^{*}\right)-v_{*}\left(t_{j}\right) \leq & L_{j}\left(1+t_{j}+\sum_{i=0}^{j-1} C_{i}\right) \lambda+L_{j}^{*} \lambda \\
& +\lambda M_{0}\left(t^{*}-t_{j}\right) \\
v_{*}\left(t_{j}\right)-v_{*}\left(t_{j-1}\right) & \leq L_{j-1}\left(1+t_{j-1}+\sum_{i=0}^{j-2} C_{i}\right) \lambda+L_{j-1}^{*} \lambda \\
& +\lambda M_{0}\left(t_{j}-t_{j-1}\right), \tag{15}
\end{align*}\right.
$$

$$
\begin{aligned}
& v_{*}\left(t_{n+2}\right)-v_{*}\left(t_{n+1}\right) \leq L_{n+1}\left(1+t_{n+1}+\sum_{i=0}^{n} C_{i}\right) \lambda \\
& \quad+L_{n+1}^{*} \lambda+\lambda M_{0}\left(t_{n+2}-t_{n+1}\right) \\
& v_{*}\left(t_{n+1}\right)+\lambda \leq \lambda M_{0}\left(t_{n+1}-t_{*}\right) .
\end{aligned}
$$

Adding those inequalities, we have

$$
\begin{align*}
\lambda< & v_{*}\left(t^{*}\right)+\lambda \\
\leq & \lambda \sum_{k=n+1}^{j} L_{k}\left(1+t_{k}+\sum_{i=0}^{k-1} C_{i}\right)+\lambda \sum_{k=n+1}^{j} L_{k}^{*} \\
& +\lambda M_{0}\left(t^{*}-t_{*}\right) \\
\leq & \lambda \sum_{k=1}^{m} L_{k}\left(1+t_{k}+\sum_{i=0}^{k-1} C_{i}\right) \\
& +\lambda \sum_{k=1}^{m} L_{k}^{*}+\lambda M_{0} a, \tag{16}
\end{align*}
$$

This means that

$$
\begin{equation*}
1<\sum_{k=1}^{m} L_{k}\left(1+t_{k}+\sum_{i=0}^{k-1} C_{i}\right)+\sum_{k=1}^{m} L_{k}^{*}+M_{0} a \tag{17}
\end{equation*}
$$

This is a contradiction with (4).
Case (b): when (ii) satisfies, putting

$$
w(t)=v_{*}(t) e^{\int_{0}^{t_{M_{2}}(s) d s}}
$$

by (8) we have

$$
\left\{\begin{aligned}
& w^{\prime}(t) \leq-M_{1}(t)\left(v (0) \left(e^{\int_{0}^{t} M_{2}(s) d s}+\int_{0}^{t}\left(e^{\int_{s}^{t} M_{2}(r) d r}\right) w(s) d s\right.\right. \\
&+\sum_{0<t_{k}<t} C_{k}\left(e^{\int_{t_{k}}^{t} M_{2}(s) d s}\right) w\left(t_{k}\right), \quad \forall t \in J, t \neq t_{k}, \\
&\left.\Delta w\right|_{t=t_{k}} \leq-L_{k}\left(v(0)\left(e^{\int_{0}^{t_{0} M_{2}(s) d s}}\right)\right. \\
&+\int_{0}^{t_{k}}\left(e^{\int_{s}^{t_{k}} M_{2}(r) d r}\right) w(s) d s \\
&\left.+\sum_{i=0}^{k-1} C_{i}\left(e^{\int_{t_{i}}^{t_{k}} M_{2}(r) d r}\right) w\left(t_{i}\right)\right)-L_{k}^{*} w\left(t_{k}\right), \\
& w(0) \leq v(0) \leq 0,(k=1,2, \cdots, m) .
\end{aligned}\right.
$$

In the same way, we have

$$
w(t) \leq 0
$$

Hence, $v_{*}(t) \leq 0$. It means that $v^{\prime}(t) \leq 0, \forall t \in J$. This yields
$v(t)=v(0)+\int_{0}^{t} v_{*}(s) d s+\sum_{0<t_{k}<t} C_{k} v_{*}\left(t_{k}\right) \leq 0, \forall t \in J$.
Moreover, for any $g \in P^{*}$, we have $p(t) \leq \theta$, $p^{\prime}(t) \leq \theta, \forall t \in J$. This ends the proof.
Lemma 2.2. ${ }^{[1]}$ Let $m \in P C\left[J, R_{+}\right], k \in C\left[D, R_{+}\right]$, $\beta_{i} \geq 0(i=1,2, \cdots, m)$ is constant and

$$
m(t) \leq \int_{0}^{t} k(t, s) m(s) d s+\sum_{0<t_{i}<t} \beta_{i} m\left(t_{i}\right), \forall t \in J .
$$

Then $m(t) \leq 0$.
Lemma 2.3. ${ }^{[1]}$ If $H \subset P C[J, E]$ is a bounded and countable set, then we have $\alpha(H(t)) \in L\left[J, R_{+}\right]$ and

$$
\alpha\left(\left\{\int_{0}^{a} x(t) d t: x \in H\right\}\right) \leq 2 \int_{0}^{a} \alpha(H(t)) d t
$$

Lemma 2.4. ${ }^{[1]}$ Assume that $H \subset P C^{1}[J, E]$ is bounded set, and the functions belonging to H^{\prime} are equicontinuity on $J_{k}(k=1,2, \cdots m)$

$$
\alpha_{P C^{1}}(H)=\max \left\{\sup _{t \in J} \alpha(H(t)), \sup _{t \in J} \alpha\left(H^{\prime}(t)\right)\right\} .
$$

where $\alpha_{P C^{1}}$ is a measure of noncompactness in $P C^{1}[J, E]$.

In order to study the fourth-order impulsive integro-differential equations, we study the secondorder impulsive differential equations firstly by method of the reduction of order.

3. Some results of the second order impulsive differential equations

We investigate the following second order
impulsive differential equations:

$$
\left\{\begin{align*}
u^{\prime \prime}(t)= & f\left(t,(B u)(t),(F u)(t), u(t), u^{\prime}(t),\right. \\
& (T B u)(t),(S B u)(t)), \forall t \in J, t \neq t_{k}, \\
\left.\Delta u\right|_{t=t_{k}}= & I_{2 k}\left(u^{\prime}\left(t_{k}\right)\right), \tag{18}\\
\left.\Delta u^{\prime}\right|_{t=t_{k}}= & I_{3 k}\left((B u)\left(t_{k}\right),(F u)\left(t_{k}\right), u\left(t_{k}\right), u^{\prime}\left(t_{k}\right)\right) \\
& (k=1,2, \cdots m), \\
u(0)= & x_{2}^{*}, u^{\prime}(0)=x_{3}^{*}
\end{align*}\right.
$$

where $J=[0, a](a>0), f \in C[J \times E \times E \times E \times E \times$
$E \times E, E], 0<t_{1}<\cdots<t_{k}<\cdots<t_{m}<a, I_{2 k} \in C$
$[E, E], I_{3 k} \in C[E \times E \times E \times E, E](k=1,2, \cdots, m)$,
$x_{2}^{*}, x_{3}^{*} \in E,(T u)(t)=\int_{0}^{t} k(t, s) u(s) d s,(S u)(t)=$
$\int_{0}^{a} h(t, s) u(s) d s, \forall t \in J, k \in C\left[D, R_{+}\right], D=\{(t, s)$
$\in J \times J \mid t \geq s\}, \quad h \in C\left[J \times J, R_{+}\right], R_{+}=[0,+\infty)$.
$\left.\Delta u\right|_{t=t_{k}}=u\left(t_{k}^{+}\right)-u\left(t_{k}^{-}\right),\left.\Delta u^{\prime}\right|_{t=t_{k}}=u^{\prime}\left(t_{k}^{+}\right)-u^{\prime}\left(t_{k}^{-}\right)$.
$u\left(t_{k}^{+}\right)$and $u\left(t_{k}^{-}\right)$denote the right and left limits of u at t_{k}, respectively. Similarly, $u^{\prime}\left(t_{k}^{+}\right)$and $u^{\prime}\left(t_{k}^{-}\right)$ denote the right and left limits of u^{\prime} at t_{k}, respectively. Define two operators B and F $B: P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right] \rightarrow P C^{3}[J, E] \cap$
$C^{4}\left[J^{\prime}, E\right]$
$F: P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right] \rightarrow P C^{2}[J, E] \cap$
$C^{3}\left[J^{\prime}, E\right]$
They are continuous and increasing operators.
Assume that the following conditions are satisfied:
$\left(H_{1}\right)$ There exist $u_{0}, v_{0} \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ such that $u_{0}(t) \leq v_{0}(t), u_{0}^{\prime}(t) \leq v_{0}^{\prime}(t), \forall t \in J$ and

$$
\begin{align*}
& \left(u_{0}^{\prime \prime}(t) \leq f\left(t,\left(B u_{0}\right)(t),\left(F u_{0}\right)(t), u_{0}(t), u_{0}^{\prime}(t),\right.\right. \\
& \left.\left(T B u_{0}\right)(t),\left(S B u_{0}\right)(t)\right), \forall t \in J, t \neq t_{k}, \\
& \left.\Delta u_{0}\right|_{t=t_{k}}=I_{2 k}\left(u_{0}^{\prime}\left(t_{k}\right)\right) \text {, } \\
& \left.\Delta u_{0}^{\prime}\right|_{t=t_{k}} \leq I_{3 k}\left(\left(B u_{0}\right)\left(t_{k}\right),\left(F u_{0}\right)\left(t_{k}\right), u_{0}\left(t_{k}\right), u_{0}^{\prime}\left(t_{k}\right)\right) \\
& (k=1,2, \cdots m), \\
& u_{0}(0) \leq x_{2}^{*}, u_{0}^{\prime}(0)-u_{0}(0) \leq x_{3}^{*}-x_{2}^{*} \text {, } \\
& v_{0}^{\prime \prime}(t) \geq f\left(t,\left(B v_{0}\right)(t),\left(F v_{0}\right)(t), v_{0}(t), v_{0}^{\prime}(t),\right. \\
& \left.\left(T B v_{0}\right)(t),\left(S B v_{0}\right)(t)\right), \forall t \in J, t \neq t_{k} \\
& \left.\Delta v_{0}\right|_{t=t_{k}}=I_{2 k}\left(v_{0}^{\prime}\left(t_{k}\right)\right), \tag{20}\\
& \left.\Delta v_{0}^{\prime}\right|_{t=t_{k}} \geq I_{3 k}\left(\left(B v_{0}\right)\left(t_{k}\right),\left(F v_{0}\right)\left(t_{k}\right), v_{0}\left(t_{k}\right), v_{0}^{\prime}\left(t_{k}\right)\right) \\
& (k=1,2, \cdots m), \\
& v_{0}(0) \geq x_{2}^{*}, v_{0}^{\prime}(0)-v_{0}(0) \geq x_{3}^{*}-x_{2}^{*}
\end{align*}
$$

$\left(H_{2}\right)$ There exist $M_{1}(t), M_{2}(t)$ are bounded with $M_{1} \geq 0, M_{2} \geq 0$ on J and $M_{1}, M_{2} \in L^{1}[0, a] . C_{k}$ $\geq 0, L_{k} \geq 0, L_{k}^{*} \geq 0,(k=1,2, \cdots m)$ such that
$f(t, x, y, z, u, v, w)-f(t, \bar{x}, \bar{y}, \bar{z}, \bar{u}, \bar{v}, \bar{w})$ $\geq-M_{1}(t)(z-\bar{z})-M_{2}(t)(u-\bar{u}), \forall t \in J$,
$I_{2 k}(u)-I_{2 k}(\bar{u})=C_{k}(u-\bar{u})$,
$I_{3 k}(x, y, z, u)-I_{3 k}(\bar{x}, \bar{y}, \bar{z}, \bar{u})$
$\geq-L_{k}(z-\bar{z})-L_{k}^{*}(u-\bar{u})$,
$\left(B u_{0}\right)(t) \leq \bar{x} \leq x \leq\left(B v_{0}\right)(t)$,
$\left(F u_{0}\right)(t) \leq \bar{y} \leq y \leq\left(F v_{0}\right)(t)$,
$u_{0}(t) \leq \bar{z} \leq z \leq v_{0}(t), u_{0}^{\prime}(t) \leq \bar{u} \leq u \leq v_{0}^{\prime}(t)$,
$\left(T B u_{0}\right)(t) \leq \bar{v} \leq v \leq\left(T B v_{0}\right)(t)$
$\left(S B u_{0}\right)(t) \leq \bar{w} \leq w \leq\left(S B v_{0}\right)(t)$.
$\left(H_{3}\right)$ For any $r>0$, there exist $d_{r} \geq 0, d_{r}^{*} \geq 0$, and $b_{r}^{(k)} \geq 0, a_{r}^{(k)} \geq 0,(k=1,2, \cdots m)$ such that
$\alpha\left(f\left(J, U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}\right)\right)$
$\leq d_{r} \alpha\left(U_{3}\right)+d_{r}^{*} \alpha\left(U_{4}\right)$,

$$
\forall U_{i} \subset B_{r},(i=1,2,3,4,5,6)
$$

$\alpha\left(I_{3 k}\left(V_{1}, V_{2}, V_{3}, V_{4}\right)\right) \leq b_{r}^{(k)} \max \left\{\alpha\left(V_{3}\right), \alpha\left(V_{4}\right)\right\}$,
$\forall V_{j} \subset B_{r},(j=1,2,3,4),(k=1,2, \cdots, m)$,
$\alpha\left(I_{2 k}\left(V_{4}\right)\right) \leq a_{r}^{(k)} \alpha\left(V_{4}\right), \forall V_{4} \subset B_{r}(k=1,2, \cdots, m)$, where $B_{r}=\{u \in E \mid\|u\| \leq r\} . \alpha$ is the measure of noncompactness in E with the Kuratowski property.

Denote
$\left[u_{0}, v_{0}\right]=\left\{u \in P C^{1}[J, E] \mid u_{0}(t) \leq u(t) \leq v_{0}(t), u_{0}^{\prime}(t) \leq\right.$ $\left.u^{\prime}(t) \leq v_{0}^{\prime}(t), \forall t \in J\right\}$.
Theorem 3.1. Suppose E is a real Banach space, P is a normal cone, B and F are bounded operators, and $\left(H_{1}\right)-\left(H_{3}\right)$ hold, assume that (4) or (5) is satisfied. Then there exist monotone sequences

$$
\left\{u_{n}\right\},\left\{v_{n}\right\} \subset P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]
$$

are uniform convergence at

$$
u^{*}, v^{*} \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]
$$

where u^{*} is a minimal solution and v^{*} is a maximal solution of (18) on $\left[u_{0}, v_{0}\right]$ and $\left\{u_{n}^{\prime}\right\},\left\{v_{n}^{\prime}\right\}$ are convergent at $\left(u^{*}\right)^{\prime},\left(v^{*}\right)^{\prime}$ respectively, and

$$
\begin{aligned}
& u_{0}(t) \leq u_{1}(t) \leq \cdots \leq u_{n}(t) \leq \cdots \leq u^{*}(t) \leq u(t) \\
& \leq v^{*}(t) \leq \cdots \leq v_{n}(t) \leq \cdots \leq v_{1}(t) \leq v_{0}(t) \quad \forall t \in J \\
& u_{0}^{\prime}(t) \leq u_{1}^{\prime}(t) \leq \cdots \leq u_{n}^{\prime}(t) \leq \cdots \leq\left(u^{*}\right)^{\prime}(t) \leq u^{\prime}(t)
\end{aligned}
$$

$\leq\left(v^{*}\right)^{\prime}(t) \leq \cdots \leq v_{n}^{\prime}(t) \leq \cdots \leq v_{1}^{\prime}(t) \leq v_{0}^{\prime}(t) \quad \forall t \in J$.
Proof. For any $\eta \in\left[u_{0}, v_{0}\right]$, we consider the solution of linear impulsive differential equation of type

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=-M_{1}(t) u(t)-M_{2}(t) u^{\prime}(t)+\sigma(t), \forall t \in J, t \neq t_{k} \\
\left.\Delta u\right|_{t=t_{k}}= \tag{22}\\
\Delta I_{2 k}\left(\eta^{\prime}\left(t_{k}\right)\right)+C_{k}\left(u^{\prime}\left(t_{k}\right)-\eta^{\prime}\left(t_{k}\right)\right), \\
\\
\quad-L_{k}\left(u\left(t_{k}\right)-\eta\left(t_{k}\right)\right)-L_{k}^{*}\left(u^{\prime}\left(t_{k}\right)-\eta^{\prime}\left(t_{k}\right)\right) \\
\quad(k=1,2, \cdots m) \\
u(0)=x_{2}^{*}, u^{\prime}(0)=x_{3}^{*},
\end{array}\right.
$$

where
$\sigma(t)=f\left(t,(B \eta)(t),(F \eta)(t), \eta(t), \eta^{\prime}\left(t_{k}\right),(T B \eta)(t)\right.$,

$$
\left.(S B \eta)(t))+M_{1}(t) \eta(t)+M_{2}(t) \eta^{\prime}\left(t_{k}\right)\right) .
$$

Obviously, $u \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a solution of (22) if and only if $u \in P C^{1}[J, E]$ and

$$
\begin{align*}
u(t) & =x_{2}^{*}+t x_{3}^{*}+\int_{0}^{t}(t-s)\left(\sigma(s)-M_{1}(s) u(s)\right. \\
& \left.-M_{2}(s) u^{\prime}(s)\right) d s+\sum_{0<t_{k}<t}\left(I_{2 k}\left(\eta^{\prime}\left(t_{k}\right)\right)\right. \\
& \left.+C_{k}\left(u^{\prime}\left(t_{k}\right)-\eta^{\prime}\left(t_{k}\right)\right)\right)+\sum_{0<t_{k}<t}\left(t-t_{k}\right) \\
& \left(I_{3 k}\left((B \eta)\left(t_{k}\right),(F \eta)\left(t_{k}\right), \eta\left(t_{k}\right), \eta^{\prime}\left(t_{k}\right)\right)\right. \\
& \left.-L_{k}\left(u\left(t_{k}\right)-\eta\left(t_{k}\right)\right)-L_{k}^{*}\left(u^{\prime}\left(t_{k}\right)-\eta^{\prime}\left(t_{k}\right)\right)\right) . \tag{23}
\end{align*}
$$

Next, we show that u is a unique solution of IVP (22).Let

$$
f_{*}\left(t, u, u^{\prime}\right)=\sigma(t)-M_{1}(t) u(t)-M_{2}(t) u^{\prime}(t), t \in J
$$

Firstly, we consider the following linear differential equation:

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=f_{*}\left(t, u, u^{\prime}\right), t \in J_{0} \tag{24}\\
u(0)=x_{2}^{*}, u^{\prime}(0)=x_{3}^{*}
\end{array}\right.
$$

It's easy to prove that $u \in C^{2}\left[J_{0}, E\right]$ is a solution of (24) if and only if $u \in C^{1}\left[J_{0}, E\right]$

$$
\begin{aligned}
u(t) & =x_{2}^{*}+t x_{3}^{*}+\int_{0}^{t}(t-s)\left(\sigma(s)-M_{1}(s) u(s)\right. \\
& \left.-M_{2}(s) u^{\prime}(s)\right) d s
\end{aligned}
$$

Let

$$
\begin{align*}
\left(A_{0} u\right)(t) & =x_{2}^{*}+t x_{3}^{*}+\int_{0}^{t}(t-s)\left(\sigma(s)-M_{1}(s) u(s)\right. \\
& \left.-M_{2}(s) u^{\prime}(s)\right) d s \tag{25}
\end{align*}
$$

Then $\left(A_{0} u\right)^{\prime}(t)=x_{3}^{*}+\int_{0}^{t}\left(\sigma(s)-M_{1}(s) u(s)\right.$

$$
\begin{equation*}
\left.-M_{2}(s) u^{\prime}(s)\right) d s \tag{26}
\end{equation*}
$$

For any $u, v \in C^{1}\left[J_{0}, E\right]$, by (25) and (26) we have

$$
\begin{aligned}
& \left\|\left(A_{0} u\right)(t)-\left(A_{0} v\right)(t)\right\| \\
\leq & \int_{0}^{t}(t-s)\left(M_{1}^{*}\|u(s)-v(s)\|\right. \\
& \left.+M_{2}^{*}\left\|u^{\prime}(s)-v^{\prime}(s)\right\|\right) d s \\
\leq & \int_{0}^{t} \tau\left(M_{1}^{*}\|u(s)-v(s)\|+M_{2}^{*}\left\|u^{\prime}(s)-v^{\prime}(s)\right\|\right) d s \\
\leq & (\tau+1)\left(M_{1}^{*}+M_{2}^{*}\right) t\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0} . \\
& \left\|\left(A_{0} u\right)^{\prime}(t)-\left(A_{0} v\right)^{\prime}(t)\right\| \\
\leq & \int_{0}^{t}\left(M_{1}^{*}\|u(s)-v(s)\|+M_{2}^{*}\left\|u^{\prime}(s)-v^{\prime}(s)\right\|\right) d s \\
\leq & (\tau+1)\left(M_{1}^{*}+M_{2}^{*}\right) t\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0} \\
& \left\|\left(A_{0}^{2} u\right)(t)-\left(A_{0}^{2} v\right)(t)\right\| \\
\leq & \int_{0}^{t} \tau\left(M_{1}^{*}\left\|\left(A_{0} u\right)(s)-\left(A_{0} v\right)(s)\right\|\right. \\
& \left.+M_{2}^{*}\left\|\left(A_{0} u\right)^{\prime}(s)-\left(A_{0} v\right)^{\prime}(s)\right\|\right) d s \\
\leq & (\tau+1)^{2}\left(M_{1}^{*}+M_{2}^{*}\right)^{2}\left(\frac{t^{2}}{2}\right)\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0} \\
& \left\|\left(A_{0}^{2} u\right)^{\prime}(t)-\left(A_{0}^{2} v\right)^{\prime}(t)\right\| \\
\leq & (\tau+1)^{2}\left(M_{1}^{*}+M_{2}^{*}\right)^{2}\left(\frac{t^{2}}{2}\right)\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|\left(A_{0}^{n} u\right)(t)-\left(A_{0}^{n} v\right)(t)\right\| \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& \leq(\tau+1)^{n}\left(M_{1}^{*}+M_{2}^{*}\right)^{n}\left(\frac{t^{n}}{n!}\right)\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0} \\
& \quad\left\|\left(A_{0}^{n} u\right)^{\prime}(t)-\left(A_{0}^{n} v\right)^{\prime}(t)\right\| \tag{28}
\end{align*}
$$

$\leq(\tau+1)^{n}\left(M_{1}^{*}+M_{2}^{*}\right)^{n}\left(\frac{t^{n}}{n!}\right)\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0}$
and

$$
\begin{equation*}
\left\|\left(A_{0}^{n} u\right)-\left(A_{0}^{n} v\right)\right\|_{C^{1}\left[J_{0}, E\right]} \tag{29}
\end{equation*}
$$

$\leq(\tau+1)^{n}\left(M_{1}^{*}+M_{2}^{*}\right)^{n}\left(\frac{\tau^{n}}{n!}\right)\|u-v\|_{C^{1}\left[J_{0}, E\right]}, t \in J_{0}$.
There exists $n_{0} \in N$ such that

$$
\begin{equation*}
(\tau+1)^{n_{0}}\left(M_{1}^{*}+M_{2}^{*}\right)^{n_{0}}\left(\frac{\tau^{n_{0}}}{n_{0}!}\right)<1 \tag{30}
\end{equation*}
$$

So by (29), (30) and the Banach fixed point theorem, then $A_{0}^{n_{0}}$ has a unique fixed point $w_{0} \in C^{1}\left[J_{0}, E\right]$.
It means that $w_{0} \in C^{2}\left[J_{0}, E\right]$ is a unique solution of the (24) such that

$$
\left\{\begin{array}{l}
w_{0}^{\prime \prime}(t)=f_{*}\left(t, w_{0}, w_{0}^{\prime}\right), t \in J_{0} \tag{31}\\
w_{0}(0)=x_{2}^{*}, w_{0}^{\prime}(0)=x_{3}^{*}
\end{array}\right.
$$

In the following we consider

$$
\left\{\begin{aligned}
& u^{\prime \prime}=f_{*}\left(t, u, u^{\prime}\right), t \in J_{1} \\
& u\left(t_{1}^{+}\right)=I_{21}\left(\eta^{\prime}\left(t_{1}\right)\right)+C_{1}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right)+w_{0}\left(t_{1}\right) \\
& u^{\prime}\left(t_{1}^{+}\right)=I_{31}\left((B \eta)\left(t_{1}\right),(F \eta)\left(t_{1}\right), \eta\left(t_{1}\right), \eta^{\prime}\left(t_{1}\right)\right) \\
&-L_{1}\left(w_{0}\left(t_{1}\right)-\eta\left(t_{1}\right)\right)-L_{1}^{*}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right) \\
&+w_{0}^{\prime}\left(t_{1}\right)
\end{aligned}\right.
$$

It is easy to prove that $u \in P C^{1}\left[J_{1}, E\right] \cap$ $C^{2}\left[\left(t_{1}, t_{2}\right), E\right]$ is a solution of (32) if and only if $u \in P C^{1}\left[J_{1}, E\right]$ such that

$$
\begin{aligned}
u(t)= & I_{21}\left(\eta^{\prime}\left(t_{1}\right)\right)+C_{1}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right) \\
& +w_{0}\left(t_{1}\right)+\left(t-t_{1}\right)\left(I _ { 3 1 } \left((B \eta)\left(t_{1}\right),\right.\right. \\
& \left.(F \eta)\left(t_{1}\right), \eta\left(t_{1}\right), \eta^{\prime}\left(t_{1}\right)\right)-L_{1}\left(w_{0}\left(t_{1}\right)-\eta\left(t_{1}\right)\right) \\
& \left.-L_{1}^{*}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right)+w_{0}^{\prime}\left(t_{1}\right)\right) \\
& +\int_{t_{1}}^{t}(t-s)\left(\sigma(s)-M_{1}(s) u(s)\right. \\
& \left.-M_{2}(s) u^{\prime}(s)\right) d s
\end{aligned}
$$

Put

$$
\begin{align*}
\left(A_{1} u\right)(t)= & I_{21}\left(\eta^{\prime}\left(t_{1}\right)\right)+C_{1}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right) \\
+w_{0}\left(t_{1}\right)+ & \left(t-t_{1}\right)\left(I _ { 3 1 } \left((B \eta)\left(t_{1}\right),\right.\right. \\
& \left.(F \eta)\left(t_{1}\right), \eta\left(t_{1}\right), \eta^{\prime}\left(t_{1}\right)\right) \\
& -L_{1}\left(w_{0}\left(t_{1}\right)-\eta\left(t_{1}\right)\right) \\
& \left.-L_{1}^{*}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right)+w_{0}^{\prime}\left(t_{1}\right)\right) \\
& +\int_{t_{1}}^{t}(t-s)\left(\sigma(s)-M_{1}(s) u(s)\right. \\
& \left.-M_{2}(s) u^{\prime}(s)\right) d s, \quad t \in \bar{J}_{1} . \tag{33}
\end{align*}
$$

Then for any $t \in \bar{J}_{1}$ we have
$\left(A_{1} u\right)^{\prime}(t)=\left(I_{31}\left((B \eta)\left(t_{1}\right),(F \eta)\left(t_{1}\right), \eta\left(t_{1}\right)\right.\right.$,

$$
\begin{aligned}
& \left.\eta^{\prime}\left(t_{1}\right)\right)-L_{1}\left(w_{0}\left(t_{1}\right)-\eta\left(t_{1}\right)\right) \\
- & \left.L_{1}^{*}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right)+w_{0}^{\prime}\left(t_{1}\right)\right) \\
+ & \int_{t_{1}}^{t}\left(\sigma(s)-M_{1}(s) u(s)-M_{2}(s) u^{\prime}(s)\right) d s
\end{aligned}
$$

Obviously, $A_{1}: P C^{1}\left[\bar{J}_{1}, E\right] \rightarrow P C^{1}\left[\bar{J}_{1}, E\right]$.
For any $u, v \in P C^{1}\left[\bar{J}_{1}, E\right]$, using the similar method used in (29) we obtain

$$
\begin{align*}
& \left\|\left(A_{1}^{n} u\right)-\left(A_{1}^{n} v\right)\right\|_{P C^{1}\left[\bar{J}_{1}, E\right]} \\
\leq & (\tau+1)^{n}\left(M_{1}^{*}+M_{2}^{*}\right)^{n}\left(\frac{\tau^{n}}{n!}\right)\|u-v\|_{P C^{1}\left[\bar{J}_{1}, E\right]} \tag{34}
\end{align*}
$$

By (30), (34) and the Banach fixed point theorem, $A_{1}^{n_{0}}$ has a unique fixed point $w_{1} \in P C^{1}\left[\bar{J}_{1}, E\right]$.

It means that $w_{1} \in P C^{1}\left[\bar{J}_{1}, E\right]$ is a unique solution to (32) such that

$$
\left\{\begin{aligned}
& w_{1}^{\prime \prime}=f_{*}\left(t, w_{1}, w_{1}^{\prime}\right), t \in J_{1} \\
& w_{1}\left(t_{1}^{+}\right)=I_{21}\left(\eta^{\prime}\left(t_{1}\right)\right)+C_{1}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right)+w_{0}\left(t_{1}\right) \\
& w_{1}^{\prime}\left(t_{1}^{+}\right)=I_{31}\left((B \eta)\left(t_{1}\right),(F \eta)\left(t_{1}\right), \eta\left(t_{1}\right), \eta^{\prime}\left(t_{1}\right)\right) \\
&-L_{1}\left(w_{0}\left(t_{1}\right)-\eta\left(t_{1}\right)\right) \\
&-L_{1}^{*}\left(w_{0}^{\prime}\left(t_{1}\right)-\eta^{\prime}\left(t_{1}\right)\right)+w_{0}^{\prime}\left(t_{1}\right)
\end{aligned}\right.
$$

Again, we want to prove that linear differential equation for any $i,(i=1,2, \cdots m)$

$$
\left\{\begin{aligned}
u^{\prime \prime}= & f_{*}\left(t, u, u^{\prime}\right), t \in J_{i} \\
u\left(t_{i}^{+}\right) & =I_{2 i}\left(\eta^{\prime}\left(t_{i}\right)\right)+C_{i}\left(w_{i-1}^{\prime}\left(t_{i}\right)-\eta^{\prime}\left(t_{i}\right)\right)+w_{i-1}\left(t_{i}\right) \\
u^{\prime}\left(t_{i}^{+}\right) & =I_{3 i}\left((B \eta)\left(t_{i}\right),(F \eta)\left(t_{i}\right), \eta\left(t_{i}\right), \eta^{\prime}\left(t_{i}\right)\right) \\
& -L_{i}\left(w_{i-1}\left(t_{i}\right)-\eta\left(t_{i}\right)\right) \\
& -L_{i}^{*}\left(w_{i-1}^{\prime}\left(t_{i}\right)-\eta^{\prime}\left(t_{i}\right)\right)+w_{i-1}^{\prime}\left(t_{i}\right)
\end{aligned}\right.
$$

has a unique solution
$w_{i} \in P C^{1}\left[J_{i}, E\right] \cap C^{2}\left[\left(t_{i}, t_{i+1}\right), E\right]$ such that

$$
\left\{\begin{aligned}
& w_{i}^{\prime \prime}=f_{*}\left(t, w_{i}, w_{i}^{\prime}\right), t \in J_{i}, \\
& w_{i}\left(t_{i}^{+}\right)=I_{2 i}\left(\eta^{\prime}\left(t_{i}\right)\right)+C_{i}\left(w_{i-1}^{\prime}\left(t_{i}\right)-\eta^{\prime}\left(t_{i}\right)\right)+w_{i-1}\left(t_{i}\right), \\
& w_{i}^{\prime}\left(t_{i}^{+}\right)=I_{3 i}\left((B \eta)\left(t_{i}\right),(F \eta)\left(t_{i}\right), \eta\left(t_{i}\right), \eta^{\prime}\left(t_{i}\right)\right) \quad(36) \\
&-L_{i}\left(w_{i-1}\left(t_{i}\right)-\eta\left(t_{i}\right)\right)-L_{i}^{*}\left(w_{i-1}^{\prime}\left(t_{i}\right)-\eta^{\prime}\left(t_{i}\right)\right) \\
&+w_{i-1}^{\prime}\left(t_{i}\right) .
\end{aligned}\right.
$$

Let

$$
u_{\eta}(t)=\left\{\begin{array}{l}
w_{0}(t), t \in J_{0}, \tag{37}\\
w_{1}(t), t \in J_{1}, \\
\cdots \cdots \cdots \cdots \\
w_{m}(t), t \in J_{m} .
\end{array}\right.
$$

Combing (31) and (35), (36), (37), we have $u_{\eta} \in$ $P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a unique solution of IVP (22).

Putting $u_{\eta}=A \eta$, Then

$$
A:\left[u_{0}, v_{0}\right] \rightarrow P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]
$$

Next we prove two cases:
Case (1): $u_{0} \leq A u_{0}, u_{0}^{\prime} \leq\left(A u_{0}\right)^{\prime}$,

$$
A v_{0} \leq v_{0},\left(A v_{0}\right)^{\prime} \leq v_{0}^{\prime}
$$

Case (2): if $\eta_{1}, \eta_{2} \in\left[u_{0}, v_{0}\right]$ and $\eta_{1} \leq \eta_{2}, \eta_{1}^{\prime} \leq \eta_{2}^{\prime}$, then $A \eta_{1} \leq A \eta_{2},\left(A \eta_{1}\right)^{\prime} \leq\left(A \eta_{2}\right)^{\prime}$. First, consider case (1).
Put $u_{1}=A u_{0}, p=u_{0}-u_{1}$. By (22), we have

$$
\begin{aligned}
u_{1}^{\prime \prime}(t) & =-M_{1}(t) u_{1}(t)-M_{2}(t) u_{1}^{\prime}(t)+M_{1}(t) u_{0}(t) \\
& +M_{2}(t) u_{0}^{\prime}(t)+f\left(t,\left(B u_{0}\right)(t),\left(F u_{0}\right)(t)\right. \\
& \left.u_{0}(t), u_{0}^{\prime}(t),\left(T B u_{0}\right)(t),\left(S B u_{0}\right)(t)\right), \forall t \in J, t \neq t_{k}
\end{aligned}
$$

$$
\begin{aligned}
\left.\Delta u_{1}\right|_{t=t_{k}}= & I_{2 k}\left(u_{0}^{\prime}\left(t_{k}\right)\right)+C_{k}\left(u_{1}^{\prime}\left(t_{k}\right)-u_{0}^{\prime}\left(t_{k}\right)\right), \\
\left.\Delta u_{1}^{\prime}\right|_{t=t_{k}}= & I_{3 k}\left(\left(B u_{0}\right)\left(t_{k}\right),\left(F u_{0}\right)\left(t_{k}\right), u_{0}\left(t_{k}\right)\right. \\
& \left.u_{0}\left(t_{k}\right), u_{0}^{\prime}\left(t_{k}\right)\right)-L_{k}\left(u_{1}\left(t_{k}\right)-u_{0}\left(t_{k}\right)\right) \\
& -L_{k}^{*}\left(u_{1}^{\prime}\left(t_{k}\right)-u_{0}^{\prime}\left(t_{k}\right)\right)(k=1,2, \cdots, m), \\
u_{1}(0)= & x_{2}^{*}, u_{1}^{\prime}(0)=x_{3}^{*}
\end{aligned}
$$

Moreover, by $\left(H_{1}\right)$ we have

$$
\left\{\begin{align*}
p^{\prime \prime}(t) & =u_{0}^{\prime \prime}(t)-u_{1}^{\prime \prime}(t) \\
& \leq-M_{1}(t) p(t)-M_{2}(t) p^{\prime}(t), \forall t \in J, t \neq t_{k}, \\
\left.\Delta p\right|_{t=t_{k}} & =\left.\Delta u_{0}\right|_{t=t_{k}}-\left.\Delta u_{1}\right|_{t=t_{k}}=C_{k} p^{\prime}\left(t_{k}\right), \\
\left.\Delta p^{\prime}\right|_{t=t_{k}} & =\left.\Delta u_{0}^{\prime}\right|_{t=t_{k}}-\left.\Delta u_{1}^{\prime}\right|_{t=t_{k}} \tag{38}\\
& \leq-L_{k} p\left(t_{k}\right)-L_{k}^{*} p^{\prime}\left(t_{k}\right)(k=1,2, \cdots, m), \\
p^{\prime}(0) & =u_{0}^{\prime}(0)-u_{1}^{\prime}(0)=u_{0}^{\prime}(0)-x_{3}^{*} \\
& \leq u_{0}(0)-x_{2}^{*}=p(0) \leq \theta .
\end{align*}\right.
$$

Hence, by Lemma 2.1 we obtain $p(t) \leq \theta, p^{\prime}(t) \leq \theta, \forall t \in J$.
This means that

$$
u_{0} \leq A u_{0}, u_{0}^{\prime} \leq\left(A u_{0}\right)^{\prime}
$$

In the same way, $A v_{0} \leq v_{0},\left(A v_{0}\right)^{\prime} \leq v_{0}^{\prime}$,
Next, consider case (2):
Let $\eta_{1}, \eta_{2} \in\left[u_{0}, v_{0}\right]$ such that $\eta_{1} \leq \eta_{2}, \eta_{1}^{\prime} \leq \eta_{2}^{\prime}$ and put $p=\lambda_{1}-\lambda_{2}$, where $\lambda_{1}=A \eta_{1}, \lambda_{2}=A \eta_{2}$.
Combing (22) and $\left(\mathrm{H}_{2}\right)$, we have

$$
\left\{\begin{aligned}
p^{\prime \prime}(t)= & \lambda_{1}^{\prime \prime \prime}(t)-\lambda_{2}^{\prime \prime}(t)=-M_{1}(t) p(t)-M_{2}(t) p^{\prime}(t) \\
- & \left(f \left(t,\left(B \eta_{2}\right)(t),\left(F \eta_{2}\right)(t), \eta_{2}(t), \eta_{2}^{\prime}(t),\right.\right. \\
& \left.\left(T B \eta_{2}\right)(t),\left(S B \eta_{2}\right)(t)\right)-f\left(t,\left(B \eta_{1}\right)(t),\right. \\
& \left.\left(F \eta_{1}\right)(t), \eta_{1}(t), \eta_{1}^{\prime}(t),\left(T B \eta_{1}\right)(t),\left(S B \eta_{1}\right)(t)\right) \\
+ & \left.M_{1}(t)\left(\eta_{2}(\mathrm{t})-\eta_{1}(t)\right)+M_{2}(t)\left(\eta_{2}^{\prime}(t)-\eta_{1}^{\prime}(t)\right)\right) \\
\leq & -M_{1}(t) p(t)-M_{2}(t) p^{\prime}(t), \forall t \in J, t \neq t_{k}, \\
\left.\Delta p\right|_{t=t_{k}}= & \left.\Delta \lambda_{1}\right|_{t=t_{k}}-\left.\Delta \lambda_{2}\right|_{t=t_{k}}=I_{2 k}\left(\eta_{1}^{\prime}\left(t_{k}\right)\right) \\
+ & C_{k}\left(\lambda_{1}^{\prime}\left(t_{k}\right)-\eta_{1}^{\prime}\left(t_{k}\right)\right)-I_{2 k}\left(\eta_{2}^{\prime}\left(t_{k}\right)\right) \\
& -C_{k}\left(\lambda_{2}^{\prime}\left(t_{k}\right)-\eta_{2}^{\prime}\left(t_{k}\right)\right)=C_{k} p^{\prime}\left(t_{k}\right), \\
\left.\Delta p^{\prime}\right|_{t=t_{k}}= & \left.\Delta \lambda_{1}^{\prime}\right|_{t=t_{k}}-\left.\Delta \lambda_{2}^{\prime}\right|_{t=t_{k}} \\
= & I_{3 k}\left(\left(B \eta_{1}\right)\left(t_{k}\right),\left(F \eta_{1}\right)\left(t_{k}\right), \eta_{1}\left(t_{k}\right), \eta_{1}^{\prime}\left(t_{k}\right)\right) \\
& -L_{k}\left(\lambda_{1}\left(t_{k}\right)-\eta_{1}\left(t_{k}\right)\right)-L_{k}^{*}\left(\lambda_{1}^{\prime}\left(t_{k}\right)-\eta_{1}^{\prime}\left(t_{k}\right)\right) \\
& -I_{3 k}\left(\left(B \eta_{2}\right)\left(t_{k}\right),\left(F \eta_{2}\right)\left(t_{k}\right), \eta_{2}\left(t_{k}\right), \eta_{2}^{\prime}\left(t_{k}\right)\right) \\
& +L_{k}\left(\lambda_{2}\left(t_{k}\right)-\eta_{2}\left(t_{k}\right)\right)+L_{k}^{*}\left(\lambda_{2}^{\prime}\left(t_{k}\right)-\eta_{2}^{\prime}\left(t_{k}\right)\right) \\
\leq & -L_{k} p\left(t_{k}\right)-L_{k}^{*} p^{\prime}\left(t_{k}\right)(k=1,2 \cdots, m), \\
p^{\prime}(0)= & p(0)=\theta .
\end{aligned}\right.
$$

Moreover, by Lemma2.1 we obtain

$$
p(t) \leq \theta, p^{\prime}(t) \leq \theta, \forall t \in J
$$

this means that

$$
\left(A \eta_{1}\right)(t) \leq\left(A \eta_{2}\right)(t),\left(A \eta_{1}\right)^{\prime}(t) \leq\left(A \eta_{2}\right)^{\prime}(t)
$$

Let

$$
\begin{equation*}
u_{n}=A u_{n-1}, v_{n}=A v_{n-1}(n=1,2, \cdots) \tag{39}
\end{equation*}
$$

By Case (1) and Case (2), we have

$$
u_{0}(t) \leq u_{1}(t) \leq \cdots \leq u_{n}(t) \leq \cdots
$$

$$
\leq v_{n}(t) \leq \cdots \leq v_{1}(t) \leq v_{0}(t), \forall t \in J
$$

$$
\begin{align*}
u_{0}^{\prime}(t) \leq & u_{1}^{\prime}(t) \leq \cdots \leq u_{n}^{\prime}(t) \leq \cdots \tag{40}\\
& \leq v_{n}^{\prime}(t) \leq \cdots \leq v_{1}^{\prime}(t) \leq v_{0}^{\prime}(t), \forall t \in J
\end{align*}
$$

Let

$$
\begin{gathered}
U=\left\{u_{n} \mid n=1,2 \cdots\right\}, U^{\prime}=\left\{u_{n}^{\prime} \mid n=1,2, \cdots\right\}, \\
U(t)=\left\{u_{n}(t) \mid n=1,2, \cdots\right\}, \\
U^{\prime}(t)=\left\{u_{n}^{\prime}(t) \mid n=1,2, \cdots\right\}, t \in J .
\end{gathered}
$$

By normality of P and (40), then U, U^{\prime} are both bounded sets in $P C[J, E]$. For any $\eta \in\left[u_{0}, v_{0}\right]$, combing $\left(H_{1}\right)$ and $\left(H_{2}\right)$, we have

$$
\begin{align*}
& u_{0}^{\prime \prime}(t)+M_{1}(t) u_{0}(t)+M_{2}(t) u_{0}^{\prime}(t) \\
\leq & f\left(t,\left(B u_{0}\right)(t),\left(F u_{0}\right)(t), u_{0}(t), u_{0}^{\prime}(t),\left(T B u_{0}\right)(t),\right. \\
& \left.\left(S B u_{0}\right)(t)\right)+M_{1}(t) u_{0}(t)+M_{2}(t) u_{0}^{\prime}(t) \\
\leq & f\left(t,(B \eta)(t),(F \eta)(t), \eta(t), \eta^{\prime}(t),(T B \eta)(t)\right. \\
& (S B \eta)(t))+M_{1}(t) \eta(t)+M_{2}(t) \eta^{\prime}(t) \\
\leq & f\left(t,\left(B v_{0}\right)(t),\left(F v_{0}\right)(t), v_{0}(t), v_{0}^{\prime}(t),\left(T B v_{0}\right)(t),\right. \\
& \left.\left(S B v_{0}\right)(t)\right)+M_{1}(t) v_{0}(t)+M_{2}(t) v_{0}^{\prime}(t) \\
\leq & v_{0}^{\prime \prime}(t)+M_{1}(t) v_{0}(t)+M_{2}(t) v_{0}^{\prime}(t) \tag{41}
\end{align*}
$$

Moreover, we obtain

$$
\begin{aligned}
& \left\{f\left(t, B \eta, F \eta, \eta, \eta^{\prime}, T B \eta, S B \eta\right)\right. \\
& \left.\quad+M_{1}(t) \eta+M_{2}(t) \eta^{\prime} \mid \eta \in\left[u_{0}, v_{0}\right]\right\}
\end{aligned}
$$

is a bounded set. Hence, there exists a constant $\gamma>0$ such that
$\| f\left(t,\left(B u_{n-1}\right)(t),\left(F u_{n-1}\right)(t), u_{n-1}(t), u_{n-1}^{\prime}(t)\right.$,
$\left.\left(T B u_{n-1}\right)(t),\left(S B u_{n-1}\right)(t)\right)-M_{1}(t)\left(u_{n}(t)-u_{n-1}(t)\right)$
$-M_{2}(t)\left(u_{n}^{\prime}(t)-u_{n-1}^{\prime}(t)\right) \| \leq \gamma, \forall t \in J(n=1,2, \cdots)$,
and $\left\{\sigma_{n} \mid n=1,2, \cdots\right\}$ is a bounded set in $P C[J, E]$, where
$\sigma_{n}(t)=f\left(t,\left(B u_{n-1}\right)(t),\left(F u_{n-1}\right)(t), u_{n-1}(t), u_{n-1}^{\prime}(t)\right.$,

$$
\begin{gathered}
\left.\left(T B u_{n-1}\right)(t),\left(S B u_{n-1}\right)(t)\right) \\
+M_{1}(t) u_{n-1}(t)+M_{2}(t) u_{n-1}^{\prime}(t) .
\end{gathered}
$$

By the definition of $u_{n}(t)$ and (23), we have
$u_{n}(t)=x_{2}^{*}+t x_{3}^{*}+\int_{0}^{t}(t-s)\left(f\left(s,\left(B u_{n-1}\right)(s)\right.\right.$,

$$
\begin{align*}
& \left(F u_{n-1}\right)(s), u_{n-1}(s), u_{n-1}^{\prime}(s),\left(T B u_{n-1}\right)(s), \\
& \left.\left(S B u_{n-1}\right)(s)\right)+M_{1}(s) u_{n-1}(s) \\
+ & M_{2}(s) u_{n-1}^{\prime}(s)-M_{1}(s) u_{n}(s) \\
- & \left.M_{2}(s) u_{n}^{\prime}(s)\right) d s+\sum_{0<t_{k}<t}\left(I_{2 k}\left(u_{n-1}^{\prime}\left(t_{k}\right)\right)\right. \\
+ & \left.C_{k}\left(u_{n}^{\prime}\left(t_{k}\right)-u_{n-1}^{\prime}\left(t_{k}\right)\right)\right) \tag{43}\\
+ & \sum_{0<t_{k}<t}\left(t-t_{k}\right)\left(I _ { 3 k } \left(\left(B u_{n-1}\right)\left(t_{k}\right),\right.\right. \\
& \left.\left(F u_{n-1}\right)\left(t_{k}\right), u_{n-1}\left(t_{k}\right), u_{n-1}^{\prime}\left(t_{k}\right)\right) \\
- & L_{k}\left(u_{n}\left(t_{k}\right)-u_{n-1}\left(t_{k}\right)\right) \\
- & \left.L_{k}^{*}\left(u_{n}^{\prime}\left(t_{k}\right)-u_{n-1}^{\prime}\left(t_{k}\right)\right)\right), \forall t \in J(n=1,2, \cdots) .
\end{align*}
$$

Then, we have

$$
\begin{align*}
u_{n}^{\prime}(t)= & x_{3}^{*}+\int_{0}^{t}\left(f \left(s,\left(B u_{n-1}\right)(s),\left(F u_{n-1}\right)(s),\right.\right. \\
& \left.u_{n-1}(s), u_{n-1}^{\prime}(s),\left(T B u_{n-1}\right)(s),\left(S B u_{n-1}\right)(s)\right) \\
+ & M_{1}(s) u_{n-1}(s)+M_{2}(s) u_{n-1}^{\prime}(s) \\
- & \left.M_{1}(s) u_{n}(s)-M_{2}(s) u_{n}^{\prime}(s)\right) d s \\
+ & \sum_{0<t_{k}<t}\left(I _ { 3 k } \left(\left(B u_{n-1}\right)\left(t_{k}\right),\left(F u_{n-1}\right)\left(t_{k}\right),\right.\right. \tag{44}\\
& \left.u_{n-1}\left(t_{k}\right), u_{n-1}^{\prime}\left(t_{k}\right)\right)-L_{k}\left(u_{n}\left(t_{k}\right)-u_{n-1}\left(t_{k}\right)\right) \\
- & \left.L_{k}^{*}\left(u_{n}^{\prime}\left(t_{k}\right)-u_{n-1}^{\prime}\left(t_{k}\right)\right)\right), \forall t \in J(n=1,2, \cdots) .
\end{align*}
$$

By (42), (43) and (44), the functions belonging to U, U^{\prime} are equiv-continuity on $J_{k}(k=0,1,2, \cdots m)$. So by Lemma 2.4, we have $\forall t \in J$

$$
\alpha_{P C^{1}}(U)=\max \left\{\sup _{t \in J} \alpha(U(t)), \sup _{t \in J} \in \alpha\left(U^{\prime}(t)\right)\right\} .
$$

By $\left(H_{3}\right)$, there exist constants $d \geq 0, d^{*} \geq 0$ and $b^{(k)} \geq 0, a^{(k)} \geq 0(k=1,2, \cdots, m)$ such that $\alpha\left(f\left(t,(B U)(t),(F U)(t), U(t), U^{\prime}(t)\right.\right.$, $(T B U)(t),(S B U)(t)))$
$\leq d \alpha(U(t))+d^{*} \alpha\left(U^{\prime}(t)\right), \forall t \in J$.
$\alpha\left(I_{3 k}\left((B U)\left(t_{k}\right),(F U)\left(t_{k}\right), U\left(t_{k}\right), U^{\prime}\left(t_{k}\right)\right)\right)$
$\leq b^{(k)} \max \left\{\alpha\left(U\left(t_{k}\right)\right), \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right\}$

$$
\begin{equation*}
(k=1,2, \cdots, m) \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
\alpha\left(I_{2 k}\left(U^{\prime}\left(t_{k}\right)\right)\right) \leq a^{(k)} \alpha\left(U^{\prime}\left(t_{k}\right)\right)(k=1,2, \cdots, m) \tag{47}
\end{equation*}
$$

Hence, for any $t \in J$, combing (43), (45), (46), (47) and Lemma 2.3, we have

$$
\begin{aligned}
\alpha(U(t)) \leq & 2 a \int_{0}^{t}(\alpha(f(s,(B U)(s),(F U)(s), \\
& \left.\left.U(s), U^{\prime}(s),(T B U)(s),(S B U)(s)\right)\right) \\
+ & \left.2 M_{1}^{*} \alpha(U(s))+2 M_{2}^{*} \alpha\left(U^{\prime}(s)\right)\right) d s
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{0<t_{k}<t}\left(a^{(k)} \alpha\left(U^{\prime}\left(t_{k}\right)\right)+2 C_{k} \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right) \\
& +\sum_{0<t_{k}<t}\left(a b^{(k)} \max \left\{\alpha\left(U\left(t_{k}\right)\right), \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right\}\right. \\
& \left.+2 a L_{k} \alpha\left(U\left(t_{k}\right)\right)+2 a L_{k}^{*} \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right) \\
& \leq 2 a \int_{0}^{t}\left(d \alpha(U(s))+d^{*} \alpha\left(U^{\prime}(s)\right)\right. \\
& \left.+2 M_{1}^{*} \alpha(U(s))+2 M_{2}^{*} \alpha\left(U^{\prime}(s)\right)\right) d s \\
& +\sum_{0<t_{k}<t}\left(a^{(k)} \alpha\left(U^{\prime}\left(t_{k}\right)\right)+2 C_{k} \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right) \\
& +\sum_{0<t_{k}<t}\left(a b^{(k)} \max \left\{\alpha\left(U\left(t_{k}\right)\right), \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right\}\right. \\
& \left.+2 a L_{k} \alpha\left(U\left(t_{k}\right)\right)+2 a L_{k}^{*} \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right) \tag{48}\\
& \alpha\left(U^{\prime}(t)\right) \leq 2 \int_{0}^{t}\left(d \alpha(U(s))+d^{*} \alpha\left(U^{\prime}(s)\right)\right. \\
& \left.\quad+2 M_{1}^{*} \alpha(U(s))+2 M_{2}^{*} \alpha\left(U^{\prime}(s)\right)\right) d s \\
& \quad+\sum_{0<t_{k}<t}\left(b^{(k)} \max \left\{\alpha\left(U\left(t_{k}\right)\right), \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right\}\right. \\
& \tag{49}\\
& \left.+2 L_{k} \alpha\left(U\left(t_{k}\right)\right)+2 L_{k}^{*} \alpha\left(U^{\prime}\left(t_{k}\right)\right)\right)
\end{align*}
$$

Let

$$
m(t)=\max \left\{\alpha(U(t)), \alpha\left(U^{\prime}(t)\right)\right\}
$$

Because the functions belonging to U, U^{\prime} are equiv-continuity on $J_{k}(k=1,2, \cdots m) \quad$ and U, U^{\prime} are bounded, we have $m(t) \in P C[J, E]$, $m(t) \geq 0$. Combing (48) and (49), we obtain

$$
\begin{align*}
m(t) & \leq 2(a+1)\left(d+d^{*}+2 M_{1}^{*}+2 M_{2}^{*}\right) \int_{0}^{t} m(s) d s \tag{50}\\
& +\sum_{0<t_{k}<t}\left(a^{(k)}+2 C_{k}+(a+1)\left(b^{(k)}+2 L_{k}+2 L_{k}^{*}\right)\right) m\left(t_{k}\right) .
\end{align*}
$$

Moreover, by Lemma 2.2, we have $m(t) \leq 0$, this means $m(t) \equiv 0, t \in J$, moreover,

$$
\alpha(U(t)) \equiv 0, \alpha\left(U^{\prime}(t)\right) \equiv 0, t \in J .
$$

This yields that U possesses the relatively compactness in $P C^{1}[J, E], U^{\prime}$ possesses the relatively compactness in $P C[J, E]$.Hence, by (40) and the normality of $P,\left\{u_{n}\right\}$ is convergent at $u^{*} \in P C^{1}[J, E],\left\{u_{n}^{\prime}\right\}$ is convergent at $\left(u^{*}\right)^{\prime}$ and

$$
\begin{equation*}
\left\|u_{n}-u^{*}\right\|_{P C^{1}} \rightarrow 0,\left\|u_{n}^{\prime}-\left(u^{*}\right)^{\prime}\right\|_{P C} \rightarrow 0 \tag{51}
\end{equation*}
$$

Because f is continuous, by the definition of σ_{n} and (51), we have

$$
\begin{equation*}
\left\|\sigma_{n}-\sigma^{*}\right\|_{P C} \rightarrow 0,(n \rightarrow \infty) \tag{52}
\end{equation*}
$$

where
$\sigma^{*}(t)=f\left(t,\left(B u^{*}\right)(t),\left(F u^{*}\right)(t), u^{*}(t)\right.$,
$\left.\left(u^{*}\right)^{\prime}(t),\left(T B u^{*}\right)(t),\left(S B u^{*}\right)(t)\right)$

$$
+M_{1}(t) u^{*}(t)+M_{2}(t)\left(u^{*}\right)^{\prime}(t)
$$

By (42), (51), (52) and Lebesgue control convergent theorem, we have

$$
\lim _{n \rightarrow \infty} u_{n}=u^{*}(t), \lim _{n \rightarrow \infty} u_{n}^{\prime}=\left(u^{*}\right)^{\prime}(t)
$$

Moreover,

$$
\begin{aligned}
& u^{*}(t)= x_{2}^{*}+t x_{3}^{*}+\int_{0}^{t}(t-s) f\left(s,\left(B u^{*}\right)(s),\right. \\
&\left(F u^{*}\right)(s), u^{*}(s),\left(u^{*}\right)^{\prime}(s),\left(T B u^{*}\right)(s), \\
&\left.\left(S B u^{*}\right)(s)\right) d s+\sum_{0<t_{k}<t} I_{2 k}\left(\left(u^{*}\right)^{\prime}\left(t_{k}\right)\right) \\
&+ \sum_{0<t_{k}<t}\left(t-t_{k}\right) I_{3 k}\left(\left(B u^{*}\right)\left(t_{k}\right),\left(F u^{*}\right)\left(t_{k}\right),\right. \\
&\left.u^{*}\left(t_{k}\right),\left(u^{*}\right)^{\prime}\left(t_{k}\right)\right), \forall t \in J, \\
&\left(u^{*}\right)^{\prime}(t)= x_{3}^{*}+\int_{0}^{t} f\left(s,\left(B u^{*}\right)(s),\left(F u^{*}\right)(s), u^{*}(s),\right. \\
&\left.\left(u^{*}\right)^{\prime}(s),\left(T B u^{*}\right)(s),\left(S B u^{*}\right)(s)\right) d s \\
&+\sum_{0<t_{k}<t} I_{3 k}\left(\left(B u^{*}\right)\left(t_{k}\right),\left(F u^{*}\right)\left(t_{k}\right),\right. \\
&\left.u^{*}\left(t_{k}\right),\left(u^{*}\right)^{\prime}\left(t_{k}\right)\right), \forall t \in J,
\end{aligned}
$$

It is easy to prove that $u^{*} \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a solution of IVP (18).In the same way, there exists $v^{*} \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ such that

$$
\left\|v_{n}-v^{*}\right\|_{P C^{1}} \rightarrow 0,\left\|v_{n}^{\prime}-\left(v^{*}\right)^{\prime}\right\|_{P C} \rightarrow 0
$$

v^{*} is a solution of IVP (18), and by (40), we have

$$
\begin{align*}
u_{0}(t) & \leq u_{1}(t) \leq \cdots \leq u_{n}(t) \leq \cdots \leq u^{*}(t) \leq v^{*}(t) \\
& \leq \cdots \leq v_{n}(t) \leq \cdots \leq v_{1}(t) \leq v_{0}(t), \forall t \in J . \tag{53}\\
u_{0}^{\prime}(t) & \leq u_{1}^{\prime}(t) \leq \cdots \leq u_{n}^{\prime}(t) \leq \cdots \leq\left(u^{*}\right)^{\prime}(t) \leq\left(v^{*}\right)^{\prime}(t) \\
& \leq \cdots \leq v_{n}^{\prime}(t) \leq \cdots \leq v_{1}^{\prime}(t) \leq v_{0}^{\prime}(t) \forall t \in J .
\end{align*}
$$

For $u \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is any solution of $\operatorname{IVP}(18)$ on $\left[u_{0}, v_{0}\right]$, then

$$
u_{0}(t) \leq u(t) \leq v_{0}(t), u_{0}^{\prime}(t) \leq u^{\prime}(t) \leq v_{0}^{\prime}(t), \forall t \in J .
$$

Assume that $u_{n-1}(t) \leq u(t) \leq v_{n-1}(t), u_{n-1}^{\prime}(t) \leq u^{\prime}(t)$ $\leq v_{n-1}^{\prime}(t), \forall t \in J$. Let $p(t)=u_{n}(t)-u(t)$. By (22),
(39) and $\left(H_{2}\right)$, we have

$$
\begin{aligned}
p^{\prime \prime}(t)= & -M_{1}(t) p(t)-M_{2}(t) p^{\prime}(t) \\
& -\left(f \left(t,(B u)(t),(F u)(t), u(t), u^{\prime}(t),\right.\right. \\
& (T B u)(t),(S B u)(t)) \\
& -f\left(t,\left(B u_{n-1}\right)(t),\left(F u_{n-1}\right)(t), u_{n-1}(t),\right. \\
& \left.u_{n-1}^{\prime}(t),\left(T B u_{n-1}\right)(t),\left(S B u_{n-1}\right)(t)\right) \\
& +M_{1}(t)\left(u(t)-u_{n-1}(t)\right) \\
& \left.+M_{2}(t)\left(u^{\prime}(t)-u_{n-1}^{\prime}(t)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & -M_{1}(t) p(t)-M_{2}(t) p^{\prime}(t), \forall t \in J, t \neq t_{k}, \\
\left.\Delta p\right|_{t=t_{k}}= & I_{2 k}\left(u_{n-1}^{\prime}\left(t_{k}\right)\right)+C_{k}\left(u_{n}^{\prime}\left(t_{k}\right)-u_{n-1}^{\prime}\left(t_{k}\right)\right) \\
& -I_{2 k}\left(u^{\prime}\left(t_{k}\right)\right)=C_{k} p^{\prime}\left(t_{k}\right), \\
\left.\Delta p^{\prime}\right|_{t=t_{k}}= & I_{3 k}\left(\left(B u_{n-1}\right)\left(t_{k}\right),\left(F u_{n-1}\right)\left(t_{k}\right), u_{n-1}\left(t_{k}\right),\right. \\
& \left.u_{n-1}^{\prime}\left(t_{k}\right)\right)-L_{k}\left(u_{n}\left(t_{k}\right)-u_{n-1}\left(t_{k}\right)\right) \\
& -L_{k}^{*}\left(u_{n}^{\prime}\left(t_{k}\right)-u_{n-1}^{\prime}\left(t_{k}\right)\right) \\
& -I_{3 k}\left((B u)\left(t_{k}\right),(F u)\left(t_{k}\right), u\left(t_{k}\right), u^{\prime}\left(t_{k}\right)\right) \\
\leq & -L_{k} p\left(t_{k}\right)-L_{k}^{*} p^{\prime}\left(t_{k}\right)(k=1,2, \cdots m),
\end{aligned}
$$

$p^{\prime}(0)=p(0)=\theta$.
By Lemma 2.1, we have $p(t) \leq \theta, p^{\prime}(t) \leq \theta, \forall t \in J$.
Moreover, $u_{n}(t) \leq u(t), u_{n}^{\prime}(t) \leq u^{\prime}(t), \forall t \in J$.In the same way, we can show that

$$
u(t) \leq v_{n}(t), u^{\prime}(t) \leq v_{n}^{\prime}(t), \forall t \in J,
$$

Hence, we obtain

$$
\begin{array}{r}
u_{n}(t) \leq u(t) \leq v_{n}(t), u_{n}^{\prime}(t) \leq u^{\prime}(t) \leq v_{n}^{\prime}(t), \\
\forall t \in J(n=0,1,2, \cdots) . \tag{54}
\end{array}
$$

Now if $n \rightarrow \infty$, for any $t \in J$,

$$
u^{*}(t) \leq u(t) \leq v^{*}(t),\left(u^{*}\right)^{\prime}(t) \leq u^{\prime}(t) \leq\left(v^{*}\right)^{\prime}(t) .
$$

By (53), then (22) holds. This ends the proof.
Theorem 3.2. Suppose E is a real Banach space, P is a regular cone, and $\left(H_{1}\right),\left(H_{2}\right)$ hold. Assume (4) or (5) is satisfied, then (21) holds.

Proof. The proof is similar to the proof of Theorem 3.1, the only difference is that we verify relative compactness of U, U^{\prime} and the regularity of P by (40) instead of H_{3}.This ends the proof.

Corollary 3.1. If E is a weak sequentially complete Banach space, P is a normal cone, H_{1}, H_{2} hold, and (4) or (5) is satisfied, then (21) holds.
Proof. If E is a weak sequentially complete Banach space, the normality of P is equivalent to the regularity. Hence, (21) holds by Theorem 3.2. This ends the proof.
Remark 3.1. f is relative to operators B, F. To my knowledge, in all papers connected with the second order impulsive integro-differential equation has been not investigated this situation, so IVP (18) is a new problem.
Remark 3.2. B, F relative to Theorem 3.1 are bounded and continuous operators, however, B, F relative to Theorem 3.2 are continuous and increasing.

4. Some results of the four order impulsive differential equations

Let us list the following assumptions for convenience:
$\left(G_{1}\right)$ There exist

$$
y_{0}, z_{0} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]
$$

such that $y_{0}(t) \leq z_{0}(t), y_{0}^{\prime}(t) \leq z_{0}^{\prime}(t), y_{0}^{\prime \prime}(t) \leq z_{0}^{\prime \prime}(t)$, $y_{0}^{\prime \prime \prime}(t) \leq \mathrm{z}_{0}^{\prime \prime \prime}(t), t \in J$,

$$
\left\{\begin{align*}
& y_{0}^{(4)}(t) \leq f\left(t, y_{0}(t), y_{0}^{\prime}(t), y_{0}^{\prime \prime}(t), y^{\prime \prime \prime}(t),\right. \\
& \quad\left.\quad\left(y_{0}\right)(t),\left(S y_{0}\right)(t)\right), \forall t \in J, t \neq t_{k}, \\
&\left.\Delta y_{0}\right|_{t=t_{k}}= I_{0 k}\left(y_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta y_{0}^{\prime}\right|_{t=t_{k}}= I_{1 k}\left(y_{0}^{\prime}\left(t_{k}\right), y_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta y_{0}^{\prime \prime}\right|_{t=t_{k}}= I_{2 k}\left(y_{0}^{\prime \prime \prime}\left(t_{k}\right)\right),(k=1,2, \cdots, m), \tag{55}\\
&\left.\Delta y_{0}^{\prime \prime \prime}\right|_{t=t_{k}} \leq I_{3 k}\left(y_{0}\left(t_{k}\right), y_{0}^{\prime}\left(t_{k}\right), y_{0}^{\prime \prime}\left(t_{k}\right) y_{0}^{\prime \prime \prime}\left(t_{k}\right)\right) \\
& y_{0}(0)=x_{0}^{*}, y_{0}^{\prime}(0)=x_{1}^{*}, y_{0}^{\prime \prime}(0) \leq x_{2}^{*}, \\
& \quad y_{0}^{\prime \prime}(0)-y_{0}^{\prime \prime}(0) \leq x_{3}^{*}-x_{2}^{*} .
\end{align*}\right.
$$

$$
\left\{\begin{align*}
& z_{0}^{(4)}(t) \geq f\left(t, z_{0}(t), z_{0}^{\prime}(t), z_{0}^{\prime \prime}(t), z_{0}^{\prime \prime \prime}(t),\left(T z_{0}\right)(t),\right. \tag{56}\\
&\left.\left(S z_{0}\right)(t)\right), \forall t \in J, t \neq t_{k}, \\
&\left.\Delta z_{0}\right|_{t=t_{k}}= I_{0 k}\left(z_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta z_{0}^{\prime}\right|_{t t_{k_{k}}}= I_{1 k}\left(z_{0}^{\prime}\left(t_{k}\right), z_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta z_{0}^{\prime \prime}\right|_{t t_{k}}= I_{2 k}\left(z_{0}^{\prime \prime \prime}\left(t_{k}\right)\right),(k=1,2, \cdots, m), \\
&\left.\Delta z_{0}^{\prime \prime}\right|_{t=t_{k}} \geq I_{3 k}\left(z_{0}\left(t_{k}\right), z_{0}^{\prime}\left(t_{k}\right), z_{0}^{\prime \prime}\left(t_{k}\right), z_{0}^{\prime \prime \prime}\left(t_{k}\right)\right), \\
& z_{0}(0)=x_{0}^{*}, z_{0}^{\prime}(0)=x_{1}^{*}, z_{0}^{\prime \prime}(0) \geq x_{2}^{*}, \\
& z_{0}^{\prime \prime \prime}(0)-z_{0}^{\prime \prime}(0) \geq x_{3}^{*}-x_{2}^{*}
\end{align*}\right.
$$

$\left(G_{1}^{\prime}\right)$ There exist

$$
y_{0}, z_{0} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]
$$

such that $y_{0}(t) \leq z_{0}(t), y_{0}^{\prime}(t) \leq z_{0}^{\prime}(t), y_{0}^{\prime \prime}(t) \leq z_{0}^{\prime \prime}(t)$, $y_{0}^{\prime \prime \prime}(t) \leq z_{0}^{\prime \prime \prime}(t), t \in J$,

$$
\left\{\begin{align*}
& y_{0}^{(4)}(t) \leq f\left(t, y_{0}(t), y_{0}^{\prime}(t), y_{0}^{\prime \prime}(t), y_{0}^{\prime \prime \prime}(t),\right. \\
&\left.\left(T y_{0}\right)(t),\left(S y_{0}\right)(t)\right), \forall t \in J, t \neq t_{k}, \\
&\left.\Delta y_{0}\right|_{t=t_{k}} \leq I_{0 k}\left(y_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta y_{0}^{\prime}\right|_{t=t_{k}} \leq I_{1 k}\left(y_{0}^{\prime}\left(t_{k}\right), y_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta y_{0}^{\prime \prime}\right|_{t=t_{k}}=I_{2 k}\left(y^{\prime \prime \prime}\left(t_{k}\right)\right), \tag{57}\\
&\left.\Delta y_{0}^{\prime \prime \prime}\right|_{t=t_{k}} \leq I_{3 k}\left(y_{0}\left(t_{k}\right), y_{0}^{\prime}\left(t_{k}\right), y_{0}^{\prime \prime}\left(t_{k}\right), y_{0}^{\prime \prime \prime}\left(t_{k}\right)\right), \\
& y_{0}(0) \leq x_{0}^{*}, y_{0}^{\prime}(0) \leq x_{1}^{*}, y_{0}^{\prime \prime}(0) \leq x_{2}^{*}, \\
& y_{0}^{\prime \prime \prime}(0)-y_{0}^{\prime \prime}(0) \leq x_{3}^{*}-x_{2}^{*},
\end{align*}\right.
$$

$$
\left\{\begin{align*}
& z_{0}^{(4)}(t) \geq f\left(t, z_{0}(t), z_{0}^{\prime}(t), z_{0}^{\prime \prime}(t), z_{0}^{\prime \prime \prime}(t),\left(T z_{0}\right)(t),\right. \\
&\left.\left(S z_{0}\right)(t)\right), \forall t \in J, t \neq t_{k}, \\
&\left.\Delta z_{0}\right|_{t=t_{k}} \geq I_{0 k}\left(z_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta z_{0}^{\prime}\right|_{t=t_{k}} \geq I_{1 \mathrm{k}}\left(z_{0}^{\prime}\left(t_{k}\right), z_{0}^{\prime \prime}\left(t_{k}\right)\right), \\
&\left.\Delta z_{0}^{\prime \prime}\right|_{t=t_{k}}= I_{2 k}\left(z_{0}^{\prime \prime \prime}\left(t_{k}\right)\right), \tag{58}\\
&\left.\Delta z^{\prime \prime \prime}\right|_{t=t_{k}} \geq I_{3 k}\left(z_{0}\left(t_{k}\right), z_{0}^{\prime}\left(t_{k}\right), z_{0}^{\prime \prime}\left(t_{k}\right), z_{0}^{\prime \prime \prime}\left(t_{k}\right)\right), \\
& \quad(k=1,2, \cdots, m), \\
& z_{0}(0) \geq x_{0}^{*}, z_{0}^{\prime}(0) \geq x_{1}^{*}, z_{0}^{\prime \prime}(0) \geq x_{2}^{*} \\
& z_{0}^{\prime \prime \prime}(0)-z_{0}^{\prime \prime}(0) \geq x_{3}^{*}-x_{2}^{*}
\end{align*}\right.
$$

$\left(G_{2}\right)$ There exist $M_{1}(t), M_{2}(t)$ are bounded with $M_{1} \geq 0, M_{2} \geq 0 \quad$ on J and M_{1}, M_{2} $\in L^{1}[0, a] . \quad C_{k}, \quad L_{k}, L_{k}^{*} \quad(k=1,2, \cdots m) \quad$ are all nonnegative constants such that

$$
f(t, x, y, z, u, v, w)-f(t, \bar{x}, \bar{y}, \bar{z}, \bar{u}, \bar{v}, \bar{w})
$$

$$
\geq-M_{1}(t)(z-\bar{z})-M_{2}(t)(u-\bar{u}), \forall t \in J
$$

$$
I_{0 k}(z) \geq I_{0 k}(\bar{z}), I_{1 \mathrm{k}}(y, z) \geq I_{1 \mathrm{k}}(\bar{y}, \bar{z})
$$

$$
I_{2 k}(u)-I_{2 k}(\bar{u})=C_{k}(u-\bar{u})
$$

$$
I_{3 k}(x, y, z, u)-I_{3 k}(\bar{x}, \bar{y}, \bar{z}, \bar{u})
$$

$$
\geq-L_{k}(z-\bar{z})-L_{k}^{*}(u-\bar{u})(k=1,2, \cdots, m)
$$

where
$y_{0}(t) \leq \bar{x} \leq x \leq z_{0}(t), y_{0}^{\prime}(t) \leq \bar{y} \leq y \leq z_{0}^{\prime}(t)$,
$y_{0}^{\prime \prime}(t) \leq \bar{z} \leq z \leq z_{0}^{\prime \prime}(t), y_{0}^{\prime \prime \prime}(t) \leq \bar{u} \leq u \leq z_{0}^{\prime \prime \prime}(t)$,
$\left(T y_{0}\right)(t) \leq \bar{v} \leq v \leq\left(T z_{0}\right)(t)$,
$\left(S y_{0}\right)(t) \leq \bar{w} \leq w \leq\left(S z_{0}\right)(t), \forall t \in J$
$\left(G_{3}\right)$ There exist

$$
b_{0 k} \geq 0, a_{1 \mathrm{k}} \geq 0, b_{1 \mathrm{k}} \geq 0,(k=1,2, \cdots, m)
$$

such that
$\left\|I_{0 k}(z)-I_{0 k}(\bar{z})\right\| \leq b_{0 k}\|z-\bar{z}\|$,
$\left\|I_{1 \mathrm{k}}(y, z)-I_{1 \mathrm{k}}(\bar{y}, \bar{z})\right\| \leq a_{1 \mathrm{k}}\|y-\bar{y}\|+b_{1 \mathrm{k}}\|z-\bar{z}\|$,
$y, z, \bar{y}, \bar{z} \in E(k=1,2, \cdots, m)$.
Denote

$$
\begin{aligned}
{\left[y_{0}, z_{0}\right]=} & \left\{y \in P C^{3}[J, E] \mid y_{0}(t) \leq y(t) \leq z_{0}(t)\right. \\
& y_{0}^{\prime}(t) \leq y^{\prime}(t) \leq z_{0}^{\prime}(t), y_{0}^{\prime \prime}(t) \leq y^{\prime \prime}(t) \leq z_{0}^{\prime \prime}(t), \\
& \left.y_{0}^{\prime \prime \prime}(t) \leq y^{\prime \prime \prime}(t) \leq z_{0}^{\prime \prime \prime}(t), \forall t \in J\right\}
\end{aligned}
$$

Theorem 4.1 Suppose E is a real Banach space, P is normal cone, and $\left(G_{1}\right),\left(G_{2}\right),\left(G_{3}\right),\left(H_{3}\right)$ hold. Assume (4) or (5) is satisfied, then IVP (1) has the maximal and minimal solutions
$y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$
on $\left[y_{0}, z_{0}\right]$.

Proof. Consider IVP (1). Let $x^{\prime \prime}(t)=u(t), t \in J$. Then we have

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=u(t), \forall t \in J, t \neq t_{k}, \\
u^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t), u(t), u^{\prime}(t),(T x)(t),(S x)(t)\right), \\
\forall t \in J, t \neq t_{k}, \\
\left.\Delta x\right|_{t=t_{k}}=I_{0 k}\left(u\left(t_{k}\right)\right), \\
\left.\Delta x^{\prime}\right|_{t=t_{k}}=I_{1 k}\left(x^{\prime}\left(t_{k}\right), u\left(t_{k}\right)\right), \tag{59}\\
\left.\Delta u\right|_{t=t_{k}}=I_{2 k}\left(u^{\prime}\left(t_{k}\right)\right), \\
\left.\Delta u^{\prime}\right|_{t=t_{k}}=I_{3 k}\left(x\left(t_{k}\right), x^{\prime}\left(t_{k}\right), u\left(t_{k}\right), u^{\prime}\left(t_{k}\right)\right) \\
\quad(k=1,2, \cdots, m), \\
x(0)=x_{0}^{*}, x^{\prime}(0)=x_{1}^{*}, u(0)=x_{2}^{*}, u^{\prime}(0)=x_{3}^{*}
\end{array}\right.
$$

For any $u \in P C[J, E]$, we have

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=u(t), \forall t \in J, t \neq t_{k} \tag{60}\\
\left.\Delta x\right|_{t=t_{k}}=I_{0 k}\left(u\left(t_{k}\right)\right) \\
\left.\Delta x^{\prime}\right|_{t=t_{k}}=I_{1 \mathrm{k}}\left(x^{\prime}\left(t_{k}\right), u\left(t_{k}\right)\right)(k=1,2, \cdots, m) \\
x(0)=x_{0}^{*}, x^{\prime}(0)=x_{1}^{*}
\end{array}\right.
$$

Obviously, if $x \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a solution of (60) if and only if

$$
\begin{align*}
x(t) & =x_{0}^{*}+x_{1}^{*} t+\int_{0}^{t}(t-s) u(s) d s+\sum_{0<t_{k}<t} I_{0 k}\left(u\left(t_{k}\right)\right) \\
& +\sum_{0<t_{k}<t}\left(t-t_{k}\right) I_{1 \mathrm{k}}\left(x^{\prime}\left(t_{k}\right), u\left(t_{k}\right)\right) \tag{61}
\end{align*}
$$

and

$$
\begin{equation*}
x^{\prime}(t)=x_{1}^{*}+\int_{0}^{t} u(s) d s+\sum_{0<t_{k}<t} I_{1 k}\left(x^{\prime}\left(t_{k}\right), u\left(t_{k}\right)\right) . \tag{62}
\end{equation*}
$$

Let

$$
\begin{align*}
x(t) & =(B u)(t), t \in J \tag{63}\\
x^{\prime}(t) & =(F u)(t), t \in J \tag{64}
\end{align*}
$$

Then define two operators B, F,
$B: P C[J, E] \rightarrow P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$,
$F: P C[J, E] \rightarrow P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$.
Next, we show that
(i) B is bounded and continuous.

When $m=3,4, \cdots$, for any $y_{1}, y_{2} \in P C[J, E]$, by
(62),(63), we have

$$
\begin{aligned}
& \left\|\left(B y_{1}\right)(t)-\left(B y_{2}\right)(t)\right\| \\
\leq & \int_{0}^{t}(t-s)\left\|y_{1}(s)-y_{2}(s)\right\| d s \\
& +\sum_{0<t<t}\left\|I_{0 k}\left(y_{1}\left(t_{k}\right)\right)-I_{0 k}\left(y_{2}\left(t_{k}\right)\right)\right\| \\
+ & \sum_{0<t_{k}<t}\left(t-t_{k}\right) \| I_{1 k}\left(\left(F y_{1}\right)\left(t_{k}\right), y_{1}\left(t_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
&-I_{1 k}\left(\left(F y_{2}\right)\left(t_{k}\right), y_{2}\left(t_{k}\right)\right) \| \\
& \leq \frac{a^{2}}{2}\left\|y_{1}-y_{2}\right\|_{P C}+\sum_{k=1}^{m} b_{0 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a \sum_{k=1}^{m} a_{1 k}\left\|\left(F y_{1}\right)\left(t_{k}\right)-\left(F y_{2}\right)\left(t_{k}\right)\right\| \\
&+a \sum_{k=1}^{m} b_{1 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&= \frac{a^{2}}{2}\left\|y_{1}-y_{2}\right\|_{P C}+\sum_{k=1}^{m} b_{0 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a \sum_{k=1}^{m} b_{1 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a\left(a_{1 m}\left\|\left(F y_{1}\right)\left(t_{m}\right)-\left(F y_{2}\right)\left(t_{m}\right)\right\|\right. \\
&\left.+\sum_{k=1}^{m-1} a_{1 k}\left\|\left(F y_{1}\right)\left(t_{k}\right)-\left(F y_{2}\right)\left(t_{k}\right)\right\|\right) \\
& \leq \frac{a^{2}}{2}\left\|y_{1}-y_{2}\right\|_{P C}+\sum_{k=1}^{m} b_{0 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a \sum_{k=1}^{m} b_{1 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a\left(\left(a_{1 m}+1\right) \sum_{k=1}^{m-1} a_{1 k}\left\|\left(F y_{1}\right)\left(t_{k}\right)-\left(F y_{2}\right)\left(t_{k}\right)\right\|\right. \\
&\left.+a_{1 m} t_{m}\left\|y_{1}-y_{2}\right\|_{P C}+a_{1 m} \sum_{k=1}^{m-1} b_{1 k}\left\|y_{1}-y_{2}\right\|_{P C}\right) \\
& \leq \frac{a^{2}}{2}\left\|y_{1}-y_{2}\right\|_{P C}+\sum_{k=1}^{m} b_{0 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a \sum_{k=1}^{m} b_{1 k}\left\|y_{1}-y_{2}\right\|_{P C} \\
&+a\left(a_{1 m} \sum_{k=1}^{m-1} b_{1 k}+\sum_{k=2}^{m-1}\left(a_{1 k}\left(\prod_{j=k+1}^{m}\left(a_{1 j}+1\right)\right) \sum_{i=1}^{k-1} b_{1 i}\right)\right. \\
&\left.+a a_{1 m} t_{m}+\sum_{k=1}^{m-1} a_{1 k} t_{k} \prod_{j=k+1}^{m}\left(a_{1 j}+1\right)\right)\left\|y_{1}-y_{2}\right\|_{P C} .
\end{aligned}
$$

Hence,

$$
\left\|B y_{1}-B y_{2}\right\|_{P C} \leq N_{1}^{*}\left\|y_{1}-y_{2}\right\|_{P C}
$$

where

$$
\begin{align*}
N_{1}^{*} & =\frac{a^{2}}{2}+\sum_{k=1}^{m} b_{0 k}+a \sum_{k=1}^{m} b_{1 k}+a\left(a_{1 m} \sum_{k=1}^{m-1} b_{1 k}\right. \\
& +\sum_{k=2}^{m-1}\left(a_{1 k}\left(\prod_{j=k+1}^{m}\left(a_{1 j}+1\right)\right) \sum_{i=1}^{k-1} b_{1 i}\right) \\
& \left.+a_{1 m} t_{m}+\sum_{k=1}^{m-1} a_{1 k} t_{k} \prod_{j=k+1}^{m}\left(a_{1 j}+1\right)\right) \tag{67}
\end{align*}
$$

In the same way,

$$
\left\|\left(B y_{1}\right)^{\prime}-\left(B y_{2}\right)^{\prime}\right\|_{P C} \leq N_{2}^{*}\left\|y_{1}-y_{2}\right\|_{P C},
$$

where

$$
\begin{align*}
N_{2}^{*}= & a+\sum_{k=1}^{m} b_{1 k}+\left(a_{1 m} \sum_{k=1}^{m-1} b_{1 k}\right. \tag{68}\\
& +\sum_{k=2}^{m-1}\left(a_{1 k}\left(\prod_{j=k+1}^{m}\left(a_{1 j}+1\right)\right) \sum_{i=2}^{k-1} b_{1 i}\right. \\
& \left.+a_{1 m} t_{m}+\sum_{k=1}^{m-1} a_{1 k} t_{k} \prod_{j=k+1}^{m}\left(a_{1 j}+1\right)\right) .
\end{align*}
$$

So

$$
\left\|B y_{1}-B y_{2}\right\|_{P C^{1}} \leq N^{*}\left\|y_{1}-y_{2}\right\|_{P C},
$$

where $N^{*}=\max \left\{N_{1}^{*}, N_{2}^{*}\right\}$. Hence, B is bounded and continuous. When $m=1,2$, the proof is similar. (ii) B is increasing.

For any $y_{1}, y_{2} \in P C[J, E], y_{1} \leq y_{2}$, by $\left(G_{2}\right)$ and (61), we have
$\left(B y_{1}\right)(t)-\left(B y_{2}\right)(t)$
$=\int_{0}^{t}(t-s)\left(y_{1}(s)-y_{2}(s)\right) d s \leq \theta, t \in J_{0}$.
Then

$$
\left(B y_{1}\right)(t) \leq\left(B y_{2}\right)(t), \forall t \in J_{0} .
$$

In particular, $\left(B y_{1}\right)\left(t_{1}\right) \leq\left(B y_{2}\right)\left(t_{1}\right)$. Moreover, for any $t \in J_{1}$, we have

$$
\begin{align*}
& \sum_{0<t_{k}<t}\left(I_{0 k}\left(y_{1}\left(t_{k}\right)\right)-I_{0 k}\left(y_{2}\left(t_{k}\right)\right)\right) \\
+ & \sum_{0 \ll_{k}<t}\left(t-t_{k}\right)\left(I_{1 \mathrm{k}}\left(\left(B y_{1}\right)\left(t_{k}\right), y_{1}\left(t_{k}\right)\right)\right. \\
- & \left.I_{1 \mathrm{k}}\left(\left(B y_{2}\right)\left(t_{k}\right), y_{2}\left(t_{k}\right)\right)\right) \tag{69}\\
= & I_{01}\left(y_{1}\left(t_{1}\right)\right)-I_{01}\left(y_{2}\left(t_{1}\right)\right) \\
+ & \left(t-t_{1}\right)\left(I_{11}\left(\left(B y_{1}\right)\left(t_{1}\right), y_{1}\left(t_{1}\right)\right)\right. \\
- & \left.I_{11}\left(\left(B y_{2}\right)\left(t_{1}\right), y_{2}\left(t_{1}\right)\right)\right) \leq \theta .
\end{align*}
$$

Then

$$
\left(B y_{1}\right)(t) \leq\left(B y_{2}\right)(t), \forall t \in J_{1} .
$$

In particular, $\left(B y_{1}\right)\left(t_{2}\right) \leq\left(B y_{2}\right)\left(t_{2}\right)$. In the same way, we have
$\left(B y_{1}\right)(t) \leq\left(B y_{2}\right)(t), \forall t \in J_{k}$,
$\left(B y_{1}\right)\left(t_{k+1}\right) \leq\left(B y_{2}\right)\left(t_{k+1}\right)(k=1,2, \cdots, m)$.
Hence,

$$
\left(B y_{1}\right)(t) \leq\left(B y_{2}\right)(t), \forall t \in J,
$$

then $B y_{1} \leq B y_{2}$. In the same way, F is a bounded continuous operator with increasing. Combing (61) and (62), it is easy to show if

$$
y \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right],
$$

then $B y \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$,
and if

$$
y \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]
$$

then $F y \in P C^{2}[J, E] \cap C^{3}\left[J^{\prime}, E\right]$.
In the same way, we can show
$B: P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right] \rightarrow P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$ $\mathrm{F}: P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right] \rightarrow P C^{2}[J, E] \cap C^{3}\left[J^{\prime}, E\right]$
They are all bounded continuous operators with increasing. Hence, by (59)-(64), IVP (1) is equivalent to IVP (18).

Obviously, if $u \in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ is a solution of IVP (18), then

$$
x(t) \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]
$$

is a solution of IVP (1) by(63).
Putting $u_{0}(t)=y_{0}^{\prime \prime}(t), v_{0}(t)=z_{0}^{\prime \prime}(t), t \in J$, we have $u_{0} \leq v_{0}$. By $\left(G_{1}\right)$, we obtain

$$
\begin{align*}
y_{0}(t)= & x_{0}^{*}+x_{1}^{*} t+\int_{0}^{t}(t-s) u_{0}(s) d s \\
& +\sum_{0<t_{k}<t} I_{0 k}\left(u_{0}\left(t_{k}\right)\right) \tag{70}\\
& +\sum_{0<t_{k}<t}\left(t-t_{k}\right) I_{1 k}\left(y_{0}^{\prime}\left(t_{k}\right), u_{0}\left(t_{k}\right)\right), \forall t \in J, \\
z_{0}(t)= & x_{0}^{*}+x_{1}^{*} t+\int_{0}^{t}(t-s) v_{0}(s) d s \\
& +\sum_{0<t_{k}<t} I_{0 k}\left(v_{0}\left(t_{k}\right)\right) \tag{71}\\
& +\sum_{0<t_{k}<t}\left(t-t_{k}\right) I_{1 k}\left(z_{0}^{\prime}\left(t_{k}\right), v_{0}\left(t_{k}\right)\right), \forall t \in J \\
y_{0}^{\prime}(t)= & x_{1}^{*}+\int_{0}^{t} u_{0}(s) d s \\
& +\sum_{0<t_{k}<t} I_{1 k}\left(y_{0}^{\prime}\left(t_{k}\right), u_{0}\left(t_{k}\right)\right), \forall t \in J, \tag{72}\\
z_{0}^{\prime}(t)= & x_{1}^{*}+\int_{0}^{t} v_{0}(s) d s \\
& +\sum_{0<t_{k}<t} I_{1 k}\left(z_{0}^{\prime}\left(t_{k}\right), v_{0}\left(t_{k}\right)\right), \forall t \in J, \tag{73}
\end{align*}
$$

then

$$
\begin{gathered}
y_{0}(t)=\left(B u_{0}\right)(t), z_{0}(t)=\left(B v_{0}\right)(t), \\
y_{0}^{\prime}(t)=\left(F u_{0}\right)(t), z_{0}^{\prime}(t)=\left(F v_{0}\right)(t), \forall t \in J,
\end{gathered}
$$

where u_{0}, v_{0} satisfy $\left(H_{1}\right)$.
By $\left(G_{2}\right)$, it is easy to know that $\left(H_{2}\right)$ holds. Hence, applying Theorem3.1, there exist the maximal and minimal solutions $u^{*}, v^{*} \in P C^{1}[J, E] \cap$ $C^{2}\left[J^{\prime}, E\right]$ of IVP (18) on [u_{0}, v_{0}].

Let $y^{*}=B u^{*}, z^{*}=B v^{*}$. Then

$$
y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]
$$

and

$$
\begin{align*}
y^{*}(t) & =x_{0}^{*}+x_{1}^{*} t+\int_{0}^{t}(t-s) u^{*}(s) d s \\
& +\sum_{0<t_{k}<t} I_{0 k}\left(u^{*}\left(t_{k}\right)\right) \tag{74}\\
& +\sum_{0<t_{k}<t}\left(t-t_{k}\right) I_{1 k}\left(\left(y^{*}\right)^{\prime}\left(t_{k}\right), u^{*}\left(t_{k}\right)\right), \forall t \in J .
\end{align*}
$$

By (74), we have

$$
\left\{\begin{array}{l}
\left(y^{*}\right)^{\prime \prime}(t)=u^{*}(t), \forall t \in J, t \neq t_{k}, \\
\left.\Delta y^{*}\right|_{t=t_{k}}=I_{0 k}\left(u^{*}\left(t_{k}\right)\right), \tag{75}\\
\left.\Delta\left(y^{*}\right)^{\prime}\right|_{t=t_{k}}=I_{1 k}\left(\left(y^{*}\right)^{\prime}\left(t_{k}\right), u^{*}\left(t_{k}\right)\right)(k=1,2, \cdots, m), \\
y^{*}(0)=x_{0}^{*},\left(y^{*}\right)^{\prime}(0)=x_{1}^{*},
\end{array}\right.
$$

If there exist u^{*} such that (18) and y^{*} such that (75), then y^{*} is a solution of IVP (1).In the same way, z^{*} is a solution of IVP (1).It is easy to verify $y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$ are the maximal and minimal solutions of IVP of (1) on $\left[y_{0}, z_{0}\right]$, respectively. This ends the proof.
Theorem 4.2. Suppose E is a real Banach space, P is a regular cone, and $\left(G_{1}\right),\left(G_{2}\right),\left(G_{3}\right)$ hold. Assume (4) or (5) is satisfied, then there exist the maximal and minimal solutions $y^{*}, z^{*} \in P C^{3}[J, E]$ $\cap C^{4}\left[J^{\prime}, E\right]$ of IVP (1) on $\left[y_{0}, z_{0}\right]$, respectively.
Proof. The proof is similar to the proof of Theorem 4.1.If Theorem 3.2 satisfies, then there exist u^{*}, v^{*} $\in P C^{1}[J, E] \cap C^{2}\left[J^{\prime}, E\right]$ the maximal and minimal solutions of IVP (1) respectively. This ends the proof.
Corollary 4.1. If E is a weak sequentially complete Banach space, P is a normal cone, $\left(G_{1}\right),\left(G_{2}\right),\left(G_{3}\right)$ hold, and (4) or (5) is satisfied, then IVP (1) has the maximal and minimal solutions $y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$ on $\left[y_{0}, z_{0}\right]$.
Proof. If E is a weak sequentially complete Banach space, the normality of P is equivalent to the regularity of P.Hence the conclusion of Corollary4.1 holds by Theorem 4.2.This ends the proof.
Theorem 4.3. Suppose E is a real Banach space. P is regular cone, and $\left(G_{1}^{\prime}\right),\left(G_{2}\right),\left(G_{3}\right),\left(H_{3}\right)$ hold. Assume (4) or (5) is satisfied. If for any $z, u \in E$,
$f(t, x, y, z, u, v, w) \geq f(t, \bar{x}, \bar{y}, z, u, \bar{v}, \bar{w})$
$\forall x \geq \bar{x}, y \geq \bar{y}, v \geq \bar{v}, w \geq \bar{w}$,
then IVP (1) has the maximal and minimal solutions
$y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$ on $\left[y_{0}, z_{0}\right]$.
Proof. Similar to the proof of Theorem 4.1, we consider IVP (1). Let $x^{\prime \prime}(t)=u(t), t \in J$, then

$$
x(t)=(B u)(t), x^{\prime}(t)=(F u)(t), t \in J .
$$

Hence, IVP (1) is equivalent to IVP (18).Let

$$
\begin{equation*}
u_{0}(t)=y_{0}^{\prime \prime}(t), v_{0}(t)=z_{0}^{\prime \prime}(t), t \in J \tag{77}
\end{equation*}
$$

Then $u_{0} \leq v_{0}$.Combing (77) and $\left(G_{1}^{\prime}\right)$, for any $t \in J$, we have

$$
\begin{aligned}
y_{0}(t)= & y_{0}(0)+y_{0}^{\prime}(0) t+\int_{0}^{t}(t-s) u_{0}(s) d s \\
& +\sum_{0<t_{k}<t} \Delta y_{0}\left(t_{k}\right)+\sum_{0<t_{k}<t}\left(t-t_{k}\right) \Delta y_{0}^{\prime}\left(t_{k}\right) \\
y_{0}^{\prime}(t)= & y_{0}(0)+\int_{0}^{t} u_{0}(s) d s+\sum_{0<t_{k}<t} \Delta y_{0}^{\prime}\left(t_{k}\right), \forall t \in J \\
z_{0}(t)= & z_{0}(0)+z_{0}^{\prime}(0) t+\int_{0}^{t}(t-s) v_{0}(s) d s \\
& +\sum_{0<t_{k}<t} \Delta z_{0}\left(t_{k}\right)+\sum_{0<t_{k}<t}\left(t-t_{k}\right) \Delta z_{0}^{\prime}\left(t_{k}\right) \\
z_{0}^{\prime}(t)= & z_{0}(0)+\int_{0}^{t} v_{0}(s) d s+\sum_{0<t_{k}<t} \Delta z_{0}^{\prime}\left(t_{k}\right)
\end{aligned}
$$

It is easy to verify

$$
\begin{gathered}
y_{0}(t) \leq\left(B u_{0}\right)(t), y_{0}^{\prime}(t) \leq\left(F u_{0}\right)(t), \\
\left(B v_{0}\right)(t) \leq z_{0}(t),\left(F v_{0}\right)(t) \leq z_{0}^{\prime}(t), \quad t \in J_{0}
\end{gathered}
$$

In particular,

$$
\begin{gathered}
y_{0}\left(t_{1}\right) \leq\left(B u_{0}\right)\left(t_{1}\right), y_{0}^{\prime}\left(t_{1}\right) \leq\left(F u_{0}\right)\left(t_{1}\right) \\
\left(B v_{0}\right)\left(t_{1}\right) \leq z_{0}\left(t_{1}\right),\left(F v_{0}\right)\left(t_{1}\right) \leq z_{0}^{\prime}\left(t_{1}\right)
\end{gathered}
$$

Moreover, we have for any $k,(k=1,2, \cdots, m)$

$$
\begin{gathered}
y_{0}(t) \leq\left(B u_{0}\right)(t), y_{0}^{\prime}(t) \leq\left(F u_{0}\right)(t), \\
\left(B v_{0}\right)(t) \leq z_{0}(t),\left(F v_{0}\right)(t) \leq z_{0}^{\prime}(t), t \in J_{k} \\
y_{0}\left(t_{k+1}\right) \leq\left(B u_{0}\right)\left(t_{k+1}\right), y_{0}^{\prime}\left(t_{k+1}\right) \leq\left(F u_{0}\right)\left(t_{k+1}\right), \\
\left(B v_{0}\right)\left(t_{k+1}\right) \leq z_{0}\left(t_{k+1}\right),\left(F v_{0}\right)\left(t_{k+1}\right) \leq z_{0}^{\prime}\left(t_{k+1}\right)
\end{gathered}
$$

So we have

$$
y_{0} \leq B u_{0}, y_{0}^{\prime} \leq F u_{0}, B v_{0} \leq z_{0}, F v_{0} \leq z_{0}^{\prime}
$$

Hence, by $\left(G_{1}^{\prime}\right)$, we know $\left(H_{1}\right)$ holds. Similar to the proof Theorem 4.1,we obtain the conclusion. This ends the proof.
Theorem 4.4. Suppose E is a real Banach space. P is regular cone, $\left(G_{1}^{\prime}\right),\left(G_{2}\right),\left(G_{3}\right)$ hold. Assume (4) or (5) is satisfied. If for any $z, u \in E$, (76) holds, then IVP (1) has the maximal and minimal solutions

$$
y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]
$$

on $\left[y_{0}, z_{0}\right]$.
Proof. Similar to Theorem 4.3, it is easy to know $\left(H_{1}\right)$ holds. Then the rest of the proof is similar to
the proof of Theorem 4.3.This ends of the proof.
Corollary 4.2. If E is a weak sequentially complete Banach space, P is a normal cone, $\left(G_{1}^{\prime}\right)$, $\left(G_{2}\right),\left(G_{3}\right)$ hold. Assume (4) or (5) is satisfied. If for any $z, u \in E$, (76) holds, then IVP (1) has the maximal and minimal solutions

$$
y^{*}, z^{*} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]
$$

on $\left[y_{0}, z_{0}\right]$.
Proof. If E is a weak sequentially complete Banach space, the normality of P is equivalent to the regularity of P. Hence, the conclusion of Corollary 4.2 holds by Theorem 4.4.This ends the proof.
Remark 4.1. In Theorem 3.2 and Theorem 4.2, Theorem 4.4, the condition $\left(H_{3}\right)$ is more easy to use and verify.

5 Application

Example 5.1. Consider the following initial value problem for fourth-order impulsive integrodifferential equations:

$$
\left\{\begin{align*}
x_{n}^{(4)}(t)= & \frac{1}{3 n}\left(t^{2}+x_{2 n}(t)\right)+\frac{1}{4 n}\left(\frac{t}{n}+x_{n}^{\prime}(t)\right) \\
& +\frac{t}{18 n}\left(\frac{t^{2}}{2 n}-x_{n}^{\prime \prime}(t)\right)+\frac{t^{2}}{9}\left(\frac{t}{n}-x_{n}^{\prime \prime \prime}(t)\right) \\
& +\frac{1}{6 n}\left(t+\int_{0}^{t} e^{-t s} x_{n}(s) d s\right) \\
& +\frac{1}{2 n} \int_{0}^{1} \frac{1}{1+t+s} x_{2 n}(s) d s, \forall 0 \leq t \leq 1, t \neq \frac{1}{2}, \\
\left.\Delta x_{n}\right|_{t=\frac{1}{2}}= & \frac{1}{25(n+1)^{2}} x_{n}^{\prime \prime}\left(\frac{1}{2}\right), \\
\left.\Delta x_{n}^{\prime}\right|_{t=\frac{1}{2}}= & \frac{1}{12} x_{n}^{\prime}\left(\frac{1}{2}\right)+\frac{1}{10 n^{2}} x_{n}^{\prime \prime}\left(\frac{1}{2}\right) \tag{78}\\
\left.\Delta x_{n}^{\prime \prime}\right|_{t=\frac{1}{2}}= & \frac{1}{4} x_{n}^{\prime \prime \prime}\left(\frac{1}{2}\right), \\
\left.\Delta x_{n}^{\prime \prime \prime}\right|_{t=\frac{1}{2}}= & \frac{1}{2 n} x_{n}\left(\frac{1}{2}\right)+\frac{1}{4 n} x_{n}^{\prime}\left(\frac{1}{2}\right)-\frac{1}{15} x_{n}^{\prime \prime}\left(\frac{1}{2}\right) \\
& -\frac{1}{8 n} x_{n}^{\prime \prime \prime}\left(\frac{1}{2}\right),(n=1,2,3, \cdots) \\
x_{n}(0)= & 0, x_{n}^{\prime}(0)=0, x_{n}^{\prime \prime}(0)=0, x_{n}^{\prime \prime \prime}(0)=0
\end{align*}\right.
$$

Conclusion IVP (78) has the maximal and minimal solutions belonging to C^{4} on $\left.\left[0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)\right]$ such that
$0 \leq x_{n}(t) \leq\left\{\begin{array}{l}\frac{t^{4}}{24 n}, t \in\left[0, \frac{1}{2}\right], \\ \frac{t^{4}}{12 n}, t \in\left(\frac{1}{2}, 1\right],\end{array} \quad(n=1,2, \cdots)\right.$
$0 \leq x_{n}^{\prime}(t) \leq\left\{\begin{array}{l}\frac{t^{3}}{6 n}, t \in\left[0, \frac{1}{2}\right], \\ \frac{t^{3}}{3 n}, t \in\left(\frac{1}{2}, 1\right],\end{array} \quad(n=1,2, \cdots)\right.$
$0 \leq x_{n}^{\prime \prime}(t) \leq\left\{\begin{array}{l}\frac{t^{2}}{2 n}, t \in\left[0, \frac{1}{2}\right], \\ \frac{t^{2}}{n}, t \in\left(\frac{1}{2}, 1\right],\end{array} \quad(n=1,2, \cdots)\right.$
$0 \leq x_{n}^{\prime \prime \prime}(t) \leq\left\{\begin{array}{l}\frac{t}{n}, t \in\left[0, \frac{1}{2}\right], \\ \frac{2 t}{n}, t \in\left(\frac{1}{2}, 1\right],\end{array} \quad(n=1,2, \cdots)\right.$.
Proof. Let

$$
E=c_{0}=\left\{x=\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right): x_{n} \rightarrow 0\right\}
$$

with the norm $\|x\|=\sup \left|x_{n}\right|$,
$P=\left\{x=\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right) \in c_{0}: x_{n} \geq 0, n=1,2,3, \cdots\right\}$
Then P is a normal cone in E, and (78) is a initial value problem in E,where

$$
\begin{gathered}
a=1, k(t, s)=e^{-t s}, h(t, s)=\frac{1}{1+t+s}, \\
x_{0}^{*}=x_{1}^{*}=x_{2}^{*}=x_{3}^{*}=(0, \cdots, 0, \cdots), \\
x=\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right), y=\left(y_{1}, y_{2}, \cdots, y_{n}, \cdots\right), \\
z=\left(z_{1}, z_{2}, \cdots, z_{n}, \cdots\right), u=\left(u_{1}, u_{2}, \cdots, u_{n}, \cdots\right), \\
v=\left(v_{1}, v_{2}, \cdots, v_{n}, \cdots\right), w=\left(w_{1}, w_{2}, \cdots, w_{n}, \cdots\right), \\
f=\left(f_{1}, f_{2}, \cdots, f_{n}, \cdots\right)
\end{gathered}
$$

and

$$
\begin{align*}
f_{n}(t, x, y, z, u, v, w) & =\frac{1}{3 n}\left(t^{2}+x_{2 n}\right)+\frac{1}{4 n}\left(\frac{t}{n}+y_{n}\right) \\
& +\frac{t}{18 n}\left(\frac{t^{2}}{2 n}-z_{n}\right)+\frac{t^{2}}{9}\left(\frac{t}{n}-u_{n}\right) \\
& +\frac{1}{6 n}\left(t+v_{n}\right)+\frac{1}{2 n} w_{2 n}, \tag{79}
\end{align*}
$$

$m=1, t_{1}=\frac{1}{2}, I_{01}=\left(I_{011}, I_{012}, \cdots, I_{01 n}, \cdots\right)$,
$I_{11}=\left(I_{111}, I_{112}, \cdots, I_{11 n}, \cdots\right), I_{21}=\left(I_{211}, I_{212}, \cdots, I_{21 n}, \cdots\right)$, $I_{31}=\left(I_{311}, I_{312}, \cdots, I_{31 n}, \cdots\right)$,
where
$I_{01 n}(z)=\frac{1}{25(n+1)^{2}} z_{n}$,
$I_{11 n}(y, z)=\frac{1}{12} y_{n}+\frac{1}{10 n^{2}} z_{n}, I_{21 n}(u)=\frac{1}{4} u_{n}$,
$I_{31 n}(x, y, z, u)=\frac{1}{2 n} x_{n}+\frac{1}{4 n} y_{n}-\frac{1}{15} z_{n}-\frac{1}{8 n} u_{n}$.
Let $J=[0,1]$, obviously,
$f \in C[J \times E \times E \times E \times E \times E \times E, E]$.
Let $y_{0}(t)=(0,0, \cdots 0, \cdots), t \in[0,1]$,
$z_{0}(t)=\left\{\begin{array}{l}\left(\frac{t^{4}}{24}, \frac{t^{4}}{48}, \cdots, \frac{t^{4}}{24 n}, \cdots\right), t \in\left[0, \frac{1}{2}\right], \\ \left(\frac{t^{4}}{12}, \frac{t^{4}}{24}, \cdots, \frac{t^{4}}{12 n}, \cdots\right), t \in\left(\frac{1}{2}, 1\right] .\end{array}\right.$
We have

$$
\begin{aligned}
& y_{0}^{\prime}(t)=(0,0, \cdots, 0, \cdots), t \in[0,1], \\
& y_{0}^{\prime \prime}(t)=(0,0, \cdots, 0, \cdots), t \in[0,1] \text {, } \\
& y^{\prime \prime \prime}(t)=(0,0, \cdots, 0, \cdots), t \in[0,1] \text {, } \\
& y_{0}^{(4)}(t)=(0,0, \cdots, 0, \cdots), t \in[0,1], \\
& z_{0}^{\prime}(t)=\left\{\begin{array}{l}
\left(\frac{t^{3}}{6}, \frac{t^{3}}{12}, \cdots, \frac{t^{3}}{6 n}, \cdots\right), t \in\left[0, \frac{1}{2}\right], \\
\left(\frac{t^{3}}{3}, \frac{t^{3}}{6}, \cdots, \frac{t^{3}}{3 n}, \cdots\right), t \in\left(\frac{1}{2}, 1\right],
\end{array}\right. \\
& z_{0}^{\prime \prime}(t)=\left\{\begin{array}{l}
\left(\frac{t^{2}}{2}, \frac{t^{2}}{4}, \cdots, \frac{t^{2}}{2 n}, \cdots\right), t \in\left[0, \frac{1}{2}\right], \\
\left(t^{2}, \frac{t^{2}}{2}, \cdots, \frac{t^{2}}{n}, \cdots\right), t \in\left(\frac{1}{2}, 1\right],
\end{array}\right. \\
& z_{0}^{\prime \prime \prime}(t)=\left\{\begin{array}{l}
\left(t, \frac{t}{2}, \cdots, \frac{t}{n}, \cdots\right), t \in\left[0, \frac{1}{2}\right], \\
\left(2 t, t, \cdots, \frac{2 t}{n}, \cdots\right), t \in\left(\frac{1}{2}, 1\right],
\end{array}\right. \\
& z_{0}^{(4)}(t)=\left\{\begin{array}{l}
\left(1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\right), t \in\left[0, \frac{1}{2}\right], \\
\left(2,1, \cdots, \frac{2}{n}, \cdots\right), t \in\left(\frac{1}{2}, 1\right] .
\end{array}\right.
\end{aligned}
$$

Hence, we have $y_{0}, z_{0} \in P C^{3}[J, E] \cap C^{4}\left[J^{\prime}, E\right]$, $y_{0}^{\prime}(t) \leq z_{0}^{\prime}(t), y_{0}^{\prime \prime}(t) \leq z_{0}^{\prime \prime}(t), y_{0}^{\prime \prime \prime}(t) \leq z_{0}^{\prime \prime \prime}(t), t \in J$ and

$$
\begin{aligned}
& y_{0}(0)=z_{0}(0) \\
& y_{0}^{\prime}(0)=z_{0}^{\prime}(0) \\
& y_{0}^{\prime}(0, \cdots, \cdots, 0, \cdots)=x_{0}^{*}, \\
& y_{0}^{\prime \prime}(0)=z_{0}^{\prime \prime}(0)=(0, \cdots, 0, \cdots)=x_{1}^{*}, \\
& y_{0}^{\prime \prime(}(0)=z_{0}^{\prime \prime \prime}(0)=(0,0, \cdots, 0, \cdots)=x_{2}^{*}, \\
&,
\end{aligned},
$$

$$
\begin{aligned}
& f_{n}\left(t, y_{0}(t), y_{0}^{\prime}(t), y_{0}^{\prime \prime}(t), y_{0}^{\prime \prime \prime}(t),\left(T y_{0}\right)(t),\left(S y_{0}\right)(t)\right) \\
= & \frac{t^{2}}{3 n}+\frac{t}{4 n^{2}}+\frac{t^{3}}{36 n^{2}}+\frac{t^{3}}{9 n}+\frac{t}{6 n} \geq 0, \forall t \in[0,1]
\end{aligned}
$$

when $0 \leq t \leq \frac{1}{2}$,

$$
\begin{aligned}
& f_{n}\left(t, z_{0}(t), z_{0}^{\prime}(t), z_{0}^{\prime \prime}(t), z^{\prime \prime \prime}(t),\left(T z_{0}\right)(t),\left(S z_{0}\right)(t)\right) \\
& \leq \frac{1}{3 n}\left(t^{2}+\frac{t^{4}}{48 n}\right)+\frac{1}{4 n}\left(\frac{t}{n}+\frac{t^{3}}{6 n}\right) \\
&+ \frac{1}{6 n}\left(t+\int_{0}^{t} \frac{s^{4}}{24 n} d s\right)+\frac{1}{2 n} \int_{0}^{1} \frac{s^{4}}{48 n} d s \leq \frac{1}{n} \\
& \text { when } \frac{1}{2}<t \leq 1,
\end{aligned}
$$

$$
\begin{aligned}
& f_{n}\left(t, z_{0}(t), z_{0}^{\prime}(t), z_{0}^{\prime \prime}(t), z_{0}^{\prime \prime \prime}(t),\left(T z_{0}\right)(t),\left(S z_{0}\right)(t)\right) \\
\leq & \frac{1}{3 n}\left(t^{2}+\frac{t^{4}}{24 n}\right)+\frac{1}{4 n}\left(\frac{t}{n}+\frac{t^{3}}{3 n}\right)+\frac{t}{18 n}\left(\frac{t^{2}}{2 n}-\frac{t^{2}}{n}\right) \\
+ & \frac{t^{2}}{9}\left(\frac{t}{n}-\frac{2 t}{n}\right)+\frac{1}{6 n}\left(t+\int_{0}^{t} \frac{s^{4}}{12 n} d s\right)+\frac{1}{2 n} \int_{0}^{1} \frac{s^{4}}{24 n} d s \\
\leq & \frac{2}{n}
\end{aligned}
$$

$$
\left.\Delta y_{0}\right|_{t=\frac{1}{2}}=(0,0, \cdots, 0, \cdots)=I_{01}\left(y_{0}^{\prime \prime}\left(\frac{1}{2}\right)\right)
$$

$$
\left.\Delta y_{0}^{\prime}\right|_{t=\frac{1}{2}}=(0,0, \cdots, 0, \cdots)=I_{11}\left(y_{0}^{\prime}\left(\frac{1}{2}\right), y_{0}^{\prime \prime}\left(\frac{1}{2}\right)\right),
$$

$$
\left.\Delta y_{0}^{\prime \prime}\right|_{t=\frac{1}{2}}=(0,0, \cdots, 0, \cdots)=I_{21}\left(y_{0}^{\prime \prime \prime}\left(\frac{1}{2}\right)\right)
$$

$$
\left.\Delta y_{0}^{\prime \prime \prime}\right|_{t=\frac{1}{2}}=(0,0, \cdots, 0, \cdots)
$$

$$
=I_{31}\left(y_{0}\left(\frac{1}{2}\right), y_{0}^{\prime}\left(\frac{1}{2}\right), y_{0}^{\prime \prime}\left(\frac{1}{2}\right), y_{0}^{\prime \prime \prime}\left(\frac{1}{2}\right)\right),
$$

$$
\left.\Delta z_{0}\right|_{t=\frac{1}{2}}=\left(\frac{1}{384}, \frac{1}{768}, \cdots, \frac{1}{384 n}, \cdots\right) \geq I_{01}\left(z_{0}^{\prime \prime}\left(\frac{1}{2}\right)\right),
$$

$$
\left.\Delta z_{0}^{\prime}\right|_{t=\frac{1}{2}}=\left(\frac{1}{48}, \frac{1}{96}, \cdots, \frac{1}{48 n}, \cdots\right) \geq I_{11}\left(z_{0}^{\prime}\left(\frac{1}{2}\right), z_{0}^{\prime \prime}\left(\frac{1}{2}\right)\right),
$$

$$
\left.\Delta z_{0}^{\prime \prime}\right|_{t=\frac{1}{2}}=\left(\frac{1}{8}, \frac{1}{16}, \cdots, \frac{1}{8 n}, \cdots\right)=I_{21}\left(z_{0}^{\prime \prime \prime}\left(\frac{1}{2}\right)\right),
$$

$$
\left.\Delta z_{0}^{\prime \prime \prime}\right|_{t=\frac{1}{2}}=\left(\frac{1}{2}, \frac{1}{4}, \cdots, \frac{1}{2 n}, \cdots\right)
$$

$$
\geq I_{31}\left(z_{0}\left(\frac{1}{2}\right), z_{0}^{\prime}\left(\frac{1}{2}\right), z_{0}^{\prime \prime}\left(\frac{1}{2}\right), z_{0}^{\prime \prime \prime}\left(\frac{1}{2}\right)\right),
$$

so $\left(G_{1}^{\prime}\right)$ is satisfied. On the other hand, for any $t \in J$,
$y_{0}(t) \leq \bar{x} \leq x \leq z_{0}(t), y_{0}^{\prime}(t) \leq \bar{y} \leq y \leq z_{0}^{\prime}(t)$,
$y_{0}^{\prime \prime}(t) \leq \bar{z} \leq z \leq z_{0}^{\prime \prime}(t), y_{0}^{\prime \prime \prime}(t) \leq \bar{u} \leq u \leq z_{0}^{\prime \prime \prime}(t)$,
$T y_{0}(t) \leq \bar{v} \leq v \leq T z_{0}(t), S y_{0}(t) \leq \bar{w} \leq w \leq S z_{0}(t)$ we have

$$
\begin{aligned}
& f(t, x, y, z, u, v, w)-f(t, \bar{x}, \bar{y}, \bar{z}, \bar{u}, \bar{v}, \bar{w}) \\
&= \frac{1}{3 n}\left(x_{2 n}-\bar{x}_{2 n}\right)+\frac{1}{4 n}\left(y_{n}-\bar{y}_{n}\right)+\frac{t}{18 n}\left(\bar{z}_{n}-z_{n}\right) \\
&+ \frac{t^{2}}{9}\left(\bar{u}_{n}-u_{n}\right)+\frac{1}{6 n}\left(v_{n}-\bar{v}_{n}\right)+\frac{1}{2 n}\left(w_{2 n}-\bar{w}_{2 n}\right) \\
& \geq-\frac{t}{18}\left(z_{n}-\bar{z}_{n}\right)-\frac{t^{2}}{9}\left(u_{n}-\bar{u}_{n}\right)(n=1,2,3, \cdots) \\
& I_{01}(z) \geq I_{01}(\bar{z}), I_{11}(y, z) \geq I_{11}(\bar{y}, \bar{z}), \\
& I_{21}(u)-I_{21}(\bar{u})=\frac{1}{4}(u-\bar{u}), \\
& I_{31}(x, y, z, u)-I_{31}(\bar{x}, \bar{y}, \bar{z}, \bar{u}) \\
& \geq-\frac{1}{15}(z-\bar{z})-\frac{1}{8}(u-\bar{u}),
\end{aligned}
$$

$$
\text { so }\left(G_{2}\right) \text { is satisfied, where }
$$

$$
M_{1}(t)=\frac{t}{18}, M_{2}(t)=\frac{t^{2}}{9}, C_{1}=\frac{1}{4}, L_{1}=\frac{1}{15}, L_{1}^{*}=\frac{1}{8},
$$

It is easy to verify (4) holds.
Obviously, for any $y, z, \bar{y}, \bar{z} \in E$, we have
$\left\|I_{01}(z)-I_{01}(\bar{z})\right\| \leq \frac{1}{100}\|z-\bar{z}\|$,
$\left\|I_{11}(y, z)-I_{11}(\bar{y}, \bar{z})\right\| \leq \frac{1}{12}\|y-\bar{y}\|+\frac{1}{10}\|z-\bar{z}\|$,
so $\left(G_{3}\right)$ is satisfied. By (79), then
$f=f^{(1)}+f^{(2)}, f^{(1)}=\left(f_{1}^{(1)}, f_{2}^{(1)}, \cdots, f_{n}^{(1)}, \cdots\right)$,
$f^{(2)}=\left(f_{1}^{(2)}, f_{2}^{(2)}, \cdots, f_{n}^{(2)}, \cdots\right)$,
where

$$
\begin{align*}
& f_{n}^{(1)}(t, x, y, z, u, v, w) \\
= & \frac{1}{3 n}\left(t^{2}+x_{2 n}\right)+\frac{1}{4 n}\left(\frac{t}{n}+y_{n}\right) \\
+ & \frac{t}{18 n}\left(\frac{t^{2}}{2 n}-z_{n}\right)+\frac{1}{6 n}\left(t+v_{n}\right)+\frac{1}{2 n} w_{2 n}, \tag{80}\\
& f_{n}^{(2)}(t, x, y, z, u, v, w)=\frac{t^{2}}{9}\left(\frac{t}{n}-u_{n}\right) . \tag{81}
\end{align*}
$$

For any $r>0$, assume $\left\{t^{(b)}\right\}_{b=1}^{\infty} \subset J$,
$\left\{x^{(b)}\right\}_{b=1}^{\infty},\left\{y^{(b)}\right\}_{b=1}^{\infty},\left\{z^{(b)}\right\}_{b=1}^{\infty},\left\{u^{(b)}\right\}_{b=1}^{\infty},\left\{v^{(b)}\right\}_{b=1}^{\infty}$, $\left\{w^{(b)}\right\}_{b=1}^{\infty} \subset B_{r}$,
where

$$
\begin{aligned}
& x^{(b)}=\left(x_{1}^{(b)}, x_{2}^{(b)}, \cdots, x_{n}^{(b)}, \cdots\right), \\
& y^{(b)}=\left(y_{1}^{(b)}, y_{2}^{(b)}, \cdots, y_{n}^{(b)}, \cdots\right),
\end{aligned}
$$

$$
\begin{aligned}
z^{(b)} & =\left(z_{1}^{(b)}, z_{2}^{(b)}, \cdots, z_{n}^{(b)}, \cdots\right), \\
u^{(b)} & =\left(u_{1}^{(b)}, u_{2}^{(b)}, \cdots, u_{n}^{(b)}, \cdots\right), \\
v^{(b)} & =\left(v_{1}^{(b)}, v_{2}^{(b)}, \cdots, v_{n}^{(b)}, \cdots\right), \\
w^{(b)} & =\left(w_{1}^{(b)}, w_{2}^{(b)}, \cdots, w_{n}^{(b)}, \cdots\right)
\end{aligned}
$$

By (80), we have

$$
\begin{align*}
& f_{n}^{(1)}\left(t^{(b)}, x^{(b)}, y^{(b)}, z^{(b)}, u^{(b)}, v^{(b)}, w^{(b)}\right) \\
\leq & \frac{1}{3 n}\left(1+\left\|x^{(b)}\right\|\right)+\frac{1}{4 n}\left(\frac{1}{n}+\left\|y^{(b)}\right\|\right) \\
+ & \frac{1}{18 n}\left(\frac{1}{2 n}+\left\|z^{(b)}\right\|\right)+\frac{1}{6 n}\left(1+\left\|v^{(b)}\right\|\right)+\frac{1}{2 n}\left\|w^{(b)}\right\| \\
\leq & \frac{1}{3 n}(1+r)+\frac{1}{4 n}\left(\frac{1}{n}+r\right)+\frac{1}{18 n}\left(\frac{1}{2 n}+r\right) \\
+ & \frac{1}{6 n}(1+r)+\frac{1}{2 n} r(b, n=1,2,3, \cdots) \tag{82}
\end{align*}
$$

So

$$
\left\{f_{n}^{(1)}\left(t^{(b)}, x^{(b)}, y^{(b)}, z^{(b)}, u^{(b)}, v^{(b)}, w^{(b)}\right)\right\}
$$

is bounded, moreover, we choose subsequence $\subset\{b\}$ such that

$$
\begin{gather*}
f_{n}^{(1)}\left(t^{\left(b_{i}\right)}, x^{\left(b_{i}\right)}, y^{\left(b_{i}\right)}, z^{\left(b_{i}\right)}, u^{\left(b_{i}\right)}, v^{\left(b_{i}\right)}, w^{\left(b_{i}\right)}\right) \rightarrow \zeta_{n}, \\
i \tag{83}
\end{gather*} \rightarrow \infty(n=1,2,3, \cdots) .
$$

Combing (82) and (83), we have
$\left|\zeta_{n}\right| \leq \frac{1}{3 n}(1+r)+\frac{1}{4 n}\left(\frac{1}{n}+r\right)+\frac{1}{18 n}\left(\frac{1}{2 n}+r\right)$
$+\frac{1}{6 n}(1+r)+\frac{1}{2 n} r(n=1,2,3, \cdots)$,
so $\zeta=\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}, \cdots\right) \in c_{0}=E$. For any $\varepsilon>0$, by (82) and (84),there exists a positive integer n_{0} such that
$\left|f_{n}^{(1)}\left(t^{\left(b_{i}\right)}, x^{\left(b_{i}\right)}, y^{\left(b_{i}\right)}, z^{\left(b_{i}\right)}, u^{\left(b_{i}\right)}, v^{\left(b_{i}\right)}, w^{\left(b_{i}\right)}\right)\right|<\varepsilon$,
$\left|\zeta_{n}\right|<\varepsilon, \forall n>n_{0}, \quad(i=1,2,3, \cdots)$.
By (83), there exists a positive integer i_{0} such that
$\left|f_{n}^{(1)}\left(t^{\left(b_{i}\right)}, x^{\left(b_{i}\right)}, y^{\left(b_{i}\right)}, z^{\left(b_{i}\right)}, u^{\left(b_{i}\right)}, v^{\left(b_{i}\right)}, w^{\left(b_{i}\right)}\right)-\zeta_{n}\right|<\varepsilon$,
$\forall i>i_{0},\left(n=1,2, \cdots, n_{0}\right)$.
Then, combing (85) and (86), we have

$$
\begin{aligned}
& \left\|f^{(1)}\left(t^{\left(b_{i}\right)}, x^{\left(b_{i}\right)}, y^{\left(b_{i}\right)}, z^{\left(b_{i}\right)}, u^{\left(b_{i}\right)}, v^{\left(b_{i}\right)}, w^{\left(b_{i}\right)}\right)-\zeta\right\| \\
= & \sup _{n}\left|f_{n}^{(1)}\left(t^{\left(b_{i}\right)}, x^{\left(b_{i}\right)}, y^{\left(b_{i}\right)}, z^{\left(b_{i}\right)}, u^{\left(b_{j}\right)}, v^{\left(b_{i}\right)}, w^{\left(b_{i}\right)}\right)-\zeta_{n}\right| \\
\leq & 2 \varepsilon, \forall i>i_{0} .
\end{aligned}
$$

Hence,

$$
\left\|f^{(1)}\left(t^{\left(b_{i}\right)}, x^{\left(b_{i}\right)}, y^{\left(b_{i}\right)}, z^{\left(b_{i}\right)}, u^{\left(b_{i}\right)}, v^{\left(b_{i}\right)}, w^{\left(b_{i}\right)}\right)-\zeta\right\|
$$

$\rightarrow 0, \quad i \rightarrow \infty$.
Thus,
$\alpha\left(f^{(1)}\left(J, U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}\right)\right)=0$,
$\forall U_{i} \subset B_{r}(i=1,2,3,4,5,6)$.
On the other hand, applying (81),

$$
\begin{align*}
& \alpha\left(f^{(2)}\left(J, U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}\right)\right) \leq \frac{1}{9} \alpha\left(U_{4}\right) \\
& \forall U_{i} \subset B_{r}(i=1,2,3,4,5,6) \tag{88}
\end{align*}
$$

By (87) and (88), we have

$$
\begin{align*}
& \alpha\left(f\left(J, U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}\right)\right) \leq \frac{1}{9} \alpha\left(U_{4}\right) \\
& \forall U_{i} \subset B_{r}(i=1,2,3,4.5,6) \tag{89}
\end{align*}
$$

In the same way,

$$
\begin{align*}
& \alpha\left(I_{31}\left(V_{1}, V_{2}, V_{3}, V_{4}\right)\right) \leq \frac{1}{15} \alpha\left(V_{3}\right) \\
& \forall V_{j} \subset B_{r}(j=1,2,3,4) \tag{90}\\
& \alpha\left(I_{21}\left(V_{4}\right)\right) \leq \frac{1}{4} \alpha\left(V_{4}\right), \forall V_{4} \subset B_{r} \tag{91}
\end{align*}
$$

Hence, $\left(H_{3}\right)$ holds, where
$d_{r}=0, d_{r}^{*}=\frac{1}{9}, b_{r}^{(1)}=\frac{1}{15}, a_{r}^{(1)}=\frac{1}{4}$.
Finally, it is easy to prove (76) holds. Then, we have the conclusion by Theorem 4.3.This ends the proof.

References:

[1] V. Lakshmikantham, D.D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[2] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc, Boston, 1988.
[3] D. Guo,V. Lakshmikantham, X.Z. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996.
[4] D. J. Guo, Initial value problems for nonlinear second-order impulsive integro-differential equations in Banach spaces, J. Math. Anal. Appl. 200 (1996) 1 13.
[5] D. J. Guo, Second-order impulsive integro -differential equations on unbounded domains in Banach spaces, Nonlinear Anal. 35 (1999)413-423.
[6] L. S. Liu, C. X. Wu, F. Guo, A unique solution of initial value problems for first-order impulsive integro-differential equations of mixed type in Banach Spaces, J. Math. Anal. Appl. 275 (2002) 369 - 385.
[7] J. L. Sun,Y. H. Ma, Initial value problems for the second-order mixed monotone type of impulsive differential equations in Banach Spaces, J. Math. Anal. Appl. 247 (2000) 506-516.
[8] Y. X. Li, Z. Liu, Monotone iterative technique for addressing impulsive integro-differential equations in

Banach spaces, Nonlinear Anal. 66 (2007) 83-92.
[9] X. G. Zhang, L. S. Liu, Initial value problems for nonlinear second-order impulsive integro-differential equations of mixed type in Banach spaces, Nonlinear Anal. 64 (2006) 2562-2574.
[10] L. S. Liu, Y. H. Wu, X. G. Zhang, On wellposedness of an initial value problem for nonlinear second-order impulsive integro-differential equations of Volterra type in Banach spaces, J. Math. Anal. Appl. 317 (2006) 634-649.
[11] W. X. Wang, L. L. Zhang, Z.D. Liang, Initial value problems for nonlinear impulsive integro--differential equations in Banach space, J. Math. Anal. Appl. 320 (2006) 510-527.
[12] M. Q. Feng, H. H Pang, A class of three-point boundary-value problems for second-order impulsive integro-differential equations in Banach spaces. Nonlinear Analysis 70 (2009) 64-82.
[13] X. M Zhang, M. Q Feng, W. G. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces. Journal of Computational and Applied Mathematics. 233 (2010) 1915 - 1926.
[14] J.T. Sun, H.B. Chen, T.J. Zhou, Multiplicity of solutions for a fourth-order impulsive differential equation via variational methods. Bulletin of the Australian Mathematical Socity. 82 (2010) 446 458.
[15] J. T. Sun, H. B. Chen, L. Yang. Variational methods to fourth-order impulsive differential equations. Journal of Applied Mathematics and Computing. 35 (2011) 323-340.

