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Abstract: For the heat conduction on a bounded domain with boundary degeneracy, though its diffusion coefficient
vanishes on the boundary, it is still possible that the heat flux may transfer across the boundary. A known result
shows that the key role is the ratio of the diffusion coefficient near the boundary. If this ratio is large enough,
the heat flux transference has not any relation to the boundary condition but is completely controlled by the initial
value. This phenomena shows there are some essential differences between the heat flux with boundary degeneracy
and that without boundary degeneracy. However, under the assumption on the uniqueness of the weak solutions,
the paper obtains that the weak solution of the singular diffusion equation with boundary degeneracy, has the same
regular properties as the solution of a singular diffusion equation without boundary degeneracy.
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1 Introduction
In this paper, we study the singular diffusion equation
with boundary degeneracy

∂u

∂t
= div(dα · |∇u|p−2∇u), (1)

where (x, t) ∈ QT = Ω × (0, T ), Ω ⊂ RN is a
bounded domain with appropriately smooth boundary,
p > 1, α > 0, and d = d(x) = dist(x, ∂Ω). If α = 0,
then the equation (1) becomes the following classical
evolutionary p− Laplacian equation

∂u

∂t
= div(|∇u|p−2∇u). (2)

This equation reflects the more practical process of
heat conduction than the classical heat conduction
equation ut = ∆u does. For example, when p > 2,
the solution of the equation (2) may possess the prop-
erties of finite speed of propagation, while ut = ∆u
always has the properties of infinite speed of propa-
gation and it seems clearly contrary to the practice.
There are a tremendous amount of related works for
equation (2), one refers to the reference [8]-[13] and
the books [1], [6], [7] etc and the reference therein.
The authors also had done some research for this
equation in [14]-[16]. However, unlike the equation
(2), there is few reference related to the equation (1)
except [2]-[3]. The works [2]-[3] only studied the
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well-posedness of the equation (1), while the proper-
ties of the corresponding weak solutions, such as the
Harnack inequality, the large time behavior etc., are
still undone.

For the equation (1), the diffusion coefficient de-
pends on the distance function to the boundary. Since
the diffusion coefficient vanishes on the boundary, it
seems that there is no heat flux across the boundary.
However the reference [2] shows that the fact might
not coincide with what we image. In fact, the ex-
ponent α, which characterizes the vanishing ratio of
the diffusion coefficient near the boundary, does deter-
mine the behavior of the heat transfer near the bound-
ary. Let us give the definition of weak solution for
equation (1) as follows:

Definition 1 If the function u(x, t) satisfies

u ∈ C(0, T ;L2(Ω)) ∩ L∞(QT ),
∂u
∂t ∈ L2(QT ),

dα|∇u|p ∈ L1(QT ),

and for any test function ϕ ∈ C∞
0 (QT ), the following

integral equality holds∫
QT

(
∂u

∂t
ϕ + dα · |∇u|p−2∇u · ∇ϕ)dxdt = 0. (3)

then the function u(x, t) is said to be a weak solution
of the equation (1).
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According to reference [2], if 0 < α < p− 1, we
can impose the Dirichlet boundary condition as usual

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ). (4)

Here and in what follows, we always assume
that g(x, t) is a function which can be extended
to QT and the extended function is appropriately
smooth. If α ≥ p − 1, then the heat conduction of
equation (1) is entirely free from the limitations of
the boundary condition. In other words, the problem
of heat conduction is entirely controlled by the initial
condition

u(x, 0) = u0(x), x ∈ Ω. (5)

In details, the reference [2] had got the following im-
portant propositions.

Proposition 2 If 0 < α < p− 1, then for any u0 sat-
isfying

u0(x) ∈ L∞(Ω), dα|∇u0|p ∈ L1(Ω) (6)

there exists at least one weak solution of the initial
boundary problem (1)-(4)-(5). Moreover, the solution
of the problem is unique.

Proposition 3 If α ≥ p − 1, then the equation (1)
admits at most one weak solution with initial value u0,
no matter what the boundary value is. Moreover, for
any u0 as in proposition 2, there exists at least one
weak solution of the equation (1) with initial value (5).

These two propositions show that there are some
essential differences between the equation (1) and the
equation (2).

In this paper, we will discuss the regularity of the
solution for the equation (1). If the equation (1) exists
unique a solution, we will show that its weak solution
has the same regular properties as that of the solution
for the equation (2). In turn, it shows that, although
the diffusion coefficient degenerating on boundary has
directly impact on the heat flow cross-border situation,
in terms of smoothness of solutions, whether the dif-
fusion coefficient degenerating on the boundary or not
does not play an essential role.

According to [4], the distance function is always
almost everywhere derivable and |∇d| = 1 is true
in the distribution sense. In what follows, for sim-
plicity, we assume that the distance function d(x) =
dist(x, ∂Ω) is a derivable function for x ∈ Ω.

2 The gradient bounded properties
of the solution

Before to prove the theorem, we will introduce the
following lemmas from reference [1].

Lemma 4 There exists a constant γ only depending
on p, q,N such that for any v ∈ V q,p

0 (ΩT ) and h =
p(q+N)

N ,∫ ∫
ΩT

|v(x, t)|hdxdt ≤ γ

(∫ ∫
ΩT

|∇v(x, t)|pdxdt

)
·(

ess sup
∫
Ω
|v(x, t)|qdx

) p
N

,

where V q,p
0 (ΩT ) is the closure of C∞

0 (ΩT ) in space
of V q,p(ΩT ), and

V q,p(ΩT ) = L∞(0, T ;Lq(Ω))
⋂

Lp(0, T ;W 1,p(Ω)).

Lemma 5 Let Qn(n = 1, 2, · · ·) be a sequence of
bounded open sets in ΩT , Qn+1 ⊂ Qn. If for
any q ≥ 1, v ∈ Lq(ΩT ) and there exist some con-
stants α0 ≥ 0, λ, C0, C1 > 0,K > 1, such that the
following inequality holds,∫ ∫

Qn+1

|v|α0+λKn+1
dxdt

≤
(

C0C
n
1

∫ ∫
Qn

|v|α0+λKn
dxdt

)K

.

Then

ess sup
Qn

|v|

≤
(

C
K

K−1

0 C̄1

∫ ∫
Qn0

|v|α0+λKn0
dxdt

) 1
λKn0

holds, where
C̄1 = CK1

1 ,

K1 =
∞∑

n=n0

nK−(n−n0),

for a n0 ∈ N+.

By the above two lemmas, we are able to get the
following theorem.

Theorem 6 Let Ω be a uniformly C1 domain. If u is
the unique solution of the equation (1) in QT , and p >
max{1, 2N

N+1} , then

∂u

∂xi
∈ L∞loc(QT ), i = 1, 2, · · · , N. (7)
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Proof: Since u is the unique solution of equation (1)
in QT , then we can assume that u is the limitation of
following regulation equation’s solutions.

∂u

∂t
= div[(d +

1
n

)α(|∇u|2 +
1
n

)
p−2
2 ∇u] (8)

(x, t) ∈ QT = Ω× (0, T ),

u(x, 0) = u0,n(x), x ∈ Ω, (9)

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ), (10)

where u0,n(x) is the smoothly mollified functions
of u0(x). Let K ⊂ QT be an any compact set. Similar
to the proof Lemmas 2.3 in the Chapter 2 of reference
[1], which discusses the equation (2), we are able to
get ∫

K
|∇un|qdxdt ≤ C(q, K, p,N). (11)

Denote Bρ(x0) = {x : |x − x0| < ρ}, and for
simplicity, denote un as u.

Now, we differentiate (8) about xj , and obtain

∂uxj

∂t
= αdiv[(d +

1
n

)α−1dxj (|∇u|2 +
1
n

)
p−2
2 ∇u]

+[(d +
1
n

)α(|∇u|2 +
1
n

)
p−2
2 uxi ]xixj . (12)

Let
Tn =

t0
2
− t0

2n+2
,

ρn = ρ +
ρ

2n
,

ρn =
1
2
(ρn + ρn+1) = ρ +

3ρ

2n+2
,

Bn = Bρn(x0),

B′
n = Bρn(x0),

Qn = Bn × (Tn, T ),

Q′
n = B′

n × (Tn+1, T ).

Assume that ξn is the cut off functions smoothly
in Qn, ξn(·, t) ∈ C1

0 (Bn), then

ξn = 0,∀t ≤ Tn,

ξn = 1,∀(x, t) ∈ Q
′
n.

|∇ξn| ≤
2n+2

ρ
,

0 ≤ ξnt ≤
2n+3

t0
.

Let x0 ∈ Ω, B4ρ(x0) = B4ρ ⊂ Ω. We
choose v = |∇u|2 + 1

n , multiply the two sides of (12)

with ξ2
nvβuxj , and integrate on B2ρ × ( t0

4 , t), then we
can obtain the following equalities∫ t

t0
4

∫
B2ρ

ξ2
nvβuxj

∂u2
xj

∂t
dtdx

=
1

2(β + 1)

∫ t

t0
4

∫
B2ρ

ξ2
n

∂vβ+1

∂t
dtdx

=
1

2(β + 1)

∫
B2ρ

ξ2
nvβ+1dtdx

− 1
β + 1

∫ t

t0
4

∫
B2ρ

ξntξnvβ+1dtdx, (13)

∫ t

t0
4

∫
B2ρ

ξ2
nvβuxj

[(d +
1
n

)αv
p−2
2 uxi

]xixj
dxdt

= −
∫ t

t0
4

∫
B2ρ

ξ2
n[(d+

1
n

)αv
p−2
2 uxi ]xj [v

βuxj ]xidxdt

−
∫ t

t0
4

∫
B2ρ

ξ2
n(d +

1
n

)α(v
p−2
2 uxi)xj (v

βuxj )xidxdt

− 2
∫ t

t0
4

∫
B2ρ

ξnxi
ξnvβuxj

[(d +
1
n

)αv
p−2
2 uxi

]xj
dxdt.

− α

∫ t

t0
4

∫
B2ρ

ξ2
ndxj

(d +
1
n

)α−1v
p−2
2 uxi

(vβuxj
)xi

dxdt

− 2
∫ t

t0
4

∫
B2ρ

ξnξnxi
(d+

1
n

)α(v
p−2
2 uxi

)xj
vβuxj

dxdt

− 2α

∫ t

t0
4

∫
B2ρ

ξnξnxi
dxj

(d+
1
n

)α−1v
p−2
2 uxi

vβuxj
dxdt (14)

1
2(β + 1)

∫
B2ρ

ξ2
nvβ+1dxdt

+
∫ t

t0
4

∫
B2ρ

ξ2
n(d +

1
n

)α(v
p−2
2 uxi

)xj
(vβuxj

)xi
dxdt

= −α

∫ t

t0
4

∫
B2ρ

ξ2
ndxj

(d +
1
n

)α−1v
p−2
2 uxi

(vβuxj
)xi

dxdt

− 2
∫ t

t0
4

∫
B2ρ

ξnξnxi
(d +

1
n

)α(v
p−2
2 uxi

)xj
vβuxj

dxdt

− 2α

∫ t

t0
4

∫
B2ρ

ξnξnxi
dxj

(d +
1
n

)α−1v
p−2
2 uxi

vβuxj
dxdt

+ α

∫ t

t0
4

∫
B2ρ

ξ2
nvβuxj [(d +

1
n

)α−1dxj v
p−2
2 uxi ]xidxdt

+
1

β + 1

∫ t

t0
4

ξnξntv
β+1dxdt. (15)

Using the fact that

|dxj | ≤ |∇d| = 1,∀x ∈ Ω. (16)

and by Young inequality, we have

v
p−2
2 uxiv

β−1uxj

≤ εv
p+2β−4

2 |∇u|2 + c(ε)v
p+2β

2 ,
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v
p−2
2 uxiv

βuxixj

≤ εv
p+2β−2

2 uxixjuxixj + c(ε)v
p+2β

2 ,

ξnxiv
βuxj (v

p−2
2 uxi)xj ≤ ε|∇ξn|2v

p+2β
2

+εv
p+2β−4

2 |∇v|2 + εv
p+2β−2

2 uxixjuxixj .

and

(v
p−2
2 uxi)xj (v

βuxj )xi = v
p+2β−2

2 uxixjuxixj

+
p + 2β − 2

4
v

p+2β−4
2 |∇v|2

+
β(p− 2)

2
v

p+2β−6
2 (∇u · ∇v)2.

From these formulas and (15), we can obtain

1
2(β + 1)

∫
B2ρ

ξ2
nvβ+1dx

+(1− c(ε))
∫ t

t0
4

∫
B2ρ

ξ2
nv

p+2β−2
2 uxixjuxixjdxdt

+(
p+2β−2

4
−c(ε))

∫ t

t0
4

∫
B2ρ

ξ2
nv

p+2β−4
2 |∇v|2dxdt

+
β(p− 2)

2

∫ t

t0
4

∫
B2ρ

ξ2
nv

p+2β−6
2 (∇u · ∇v)2dxdt

≤ c(ε)
∫ t

t0
4

∫
B2ρ

v
p+2β

2 (1 + |∇ξn|2)dxdt

+
c

β + 1

∫ t

t0
4

∫
B2ρ

ξnvβ+1dxdt. (17)

where ε is a appropriately small positive constant.
Case 1). When p ≥ 2, denote

w = v
p+2β

2 , λ =
4(β + 1)
p + 2β

.

From (17), we can obtain

sup
Tn<t<T

∫
Bn

(ξ
2
λ
n w)λdx +

∫ ∫
Qn

(ξ
2
λ
n |∇w|)2dxdt

≤ C

[
(1+

22n

ρ2
)
∫ ∫

Qn

w2dxdt+
2n

t0

∫ ∫
Qn

wλdxdt

]
,(18)

by Lemma 4 and (18),∫ ∫
Qn+1

w2+ 2λ
N dxdτ

≤ C

[
(1+

22n

ρ2
)
∫ ∫

Qn

w2dxdt+
2n

t0

∫ ∫
Qn

wλdxdt

]k

,

which implies that∫ ∫
Qn+1

v
p+2β

2
+ 2β+2

N dxdτ

≤ C

[
(1 +

22n

ρ2
)
∫ ∫

Qn

v
p+2β

2 dxdτ

+
2n

t0

∫ ∫
Qn

vβ+1dxdτ

]1+ 2
N

,

where k = 1 + 2
N . By choosing 2β = kn − 2, the

above formula can be changed into∫ ∫
Qn+1

v
p−2
2

+ kn+1

2 dxdτ

≤ C

[
(1 +

22n

ρ2
)
∫ ∫

Qn

v
p−2
2

+ kn

2 dxdτ

+
2n

t0

∫ ∫
Qn

v
kn

2 dxdτ

]k
. (19)

If

2n

t0

∫ ∫
Qn

v
kn

2 dxdτ

≥ (1 +
22n

ρ2
)
∫ ∫

Qn

v
p−2
2

+ kn

2 dxdτ, (20)

then by Hölder inequality, we see that∫ ∫
Qn

v
p−2
2

+ kn

2 dxdτ ≤ (
ρ2

t0
)

p−2+kn

p−2 mesQn,

which implies that

sup
Bρ×(

t0
2

,T )

v ≤ (
ρ2

t0
)

2
p−2 . (21)

Then we can obtain Theorem 6.
If (20) isn’t true, we have∫ ∫

Qn+1

v
p−2
2

+ kn+1

2 dxdτ

≤ C

[
(1 +

22n

ρ2
)
∫ ∫

Qn

v
p−2
2

+ kn

2 dxdτ

]k

.

By Lemma 5,

sup
Qn

v ≤ Cρ−(N+2)
∫ ∫

Qn0

v
p−2
2

+ kn0
2 dxdτ, (22)

where n0 is a positive integer which makes kn0 >
2 hold. Then we can obtain Theorem 6 according to
(11). Therefore, when p > 2,

∂u

∂ui
∈ L∞loc(QT ).
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Case 2). When p < 2, we can get

v
p+2β−2

2

N∑
j=1

|∇uxj |2 ≥
1
4
v

p+2β−4
2 |∇v|2

and

β(p− 2)
2

∫ t0

0

∫
B2ρ

ξ2
nv

p+2β−6
2 (∇u · ∇v)2dxdτ

≥ β(p− 2)
2

∫ t0

0

∫
B2ρ

ξ2
nv

p+2β−4
2 |∇u|2dxdτ

Then according to (17),

sup
t0
4

<t<T

∫
B2ρ

ξ2
nvβ+1(x, τ)dx

+
∫ ∫

Q(2ρ,
t0
4

)
ξ2
nvαp |∇v|2dxdτ

≤ C

∫ ∫
Q(2ρ,

t0
4

)
vαp+2|∇ξn|2dxdτ

+C

∫ ∫
Q(2ρ,

t0
4

)
ξnξntv

β+1dxdτ,

where αp = p+2α−4
2 . Then using Lemma 4, similar

to the discussion of the case (1), we can obtain

[∫ ∫
Qn+1

v
N(2−p)

4
+ kn+1

2 dxdτ

] 1
k

≤ C
22n

t0

∫ ∫
Qn

v
N(2−p)

4
+ kn

2 dxdτ

+ C(1+
22n

ρ2
)
∫ ∫

Qn

v
(N−2)(2−p)

4
+ kn

2 dxdτ. (23)

If

(1 +
22n

ρ2
)
∫ ∫

Qn

v
(N−2)(2−p)

4
+ kn

2 dxdτ

≥ 22n

t0

∫ ∫
Qn

v
N(2−p)

4
+ kn

2 dxdτ, (24)

then by Hölder inequality, we have∫ ∫
Qn

v
N(2−p)

4
+ kn

2 dxdτ

≤ (
t0 + ρ2

ρ2
)

N(2−p)+kn

(2−p) mesQn,

which implies that

sup
Bρ×(

t0
2

,T )

v ≤ (
t0
ρ2

)
2

2−p .

If (24) isn’t true, then from (23), we have[∫ ∫
Qn+1

v
N(2−p)

4
+ kn+1

2 dxdτ

] 1
k

≤ γ(1 +
22n

ρ2
)
∫ ∫

Qn

vN(2−p)+ kn

2 dxdτ.

Then using Lemma 5, we obtain

sup
Bρ×(

t0
2

,T )

v

≤ C

[
ρ−(N+2)

∫ ∫
Qn0

v
N(2−p)

4
+ kn0

2 dxdτ

] 2
kn0

.

Also we can obtain Theorem 6 according to (11).
Therefore, when p < 2, also

∂u

∂ui
∈ L∞loc(QT ).

The proof of Theorem 6 is complete.

3 The continuity of the solution
Theorem 7 Supposed that u is a weak solution of
equation (1) in QT , then for any compact set K ⊂
QT , (x1, t1), (x2, t2) ∈ K ,

|u(x1, t1)− u(x2, t2)|
≤ c(|x1 − x2|+ |t1 − t2|

1
2 ), (25)

where c is a constant only dependent on N , p,
d(K, ∂Ω) and ‖u‖L∞(K) .

Proof: Obviously we only need to prove that u sat-
isfies (25) in BR × (t0, T ), for any R > 0 such that
BR ⊂ Ω, t0 ∈ (0, T ). Let uε be the usual mollified
function of u,

uε(x, t) = Jε ∗ u(x, t)

=
∫ T

0

∫
RN

jε(x− y, t− τ)u(y, τ)dydτ,

where 0 < ε < t0 < t < T−ε. Then for any x1, x2 ∈
BR, we obtain

1). uε(x1, t)− uε(x2, t)

=
∫ T

0

∫
RN

jε(x1 − y, t− τ)u(y, τ)dydτ

−
∫ T

0

∫
RN

jε(x2 − y, t− τ)u(y, τ)dydτ

=
∫ T

0

∫
RN

[jε(x1−y, t−τ)−jε(x2−y, t−τ)]

· u(y, τ)dydτ
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=
∫ T

0

∫
RN

∫ 1

0

d[jε(sx1 + (1−s)x2−y, t−τ)]
ds
· u(y, τ)dsdydτ

=
∫ T

0

∫
RN

∫ 1

0
∇x[jε(sx1 + (1−s)x2−y, t−τ)]

· u(y, τ)dsdydτ(x1 − x2)

= −
∫ T

0

∫
RN

∫ 1

0
∇y[jε(sx1 + (1−s)x2−y, t−τ)]

· u(y, τ)dsdydτ(x1 − x2)

=
∫ T

0

∫
RN

∫ 1

0
jε(sx1 + (1− s)x2 − y, t− τ)

∇yu(y, τ)dsdydτ(x1 − x2). (26)

According to Theorem 6, we have

|uε(x1, t)− uε(x2, t)|

≤
∫ T

0

∫
RN

∫ 1

0
|jε(sx1 + (1− s)x2 − y, t− τ)|

|∇yu(y, τ)|dsdydτ |x1 − x2|
≤ c|x1 − x2|, (27)

where and in what follows, c is a constant independent
of ε.

2). Let 0 < ε < t0 < t1 < t2 < T , B(4t) =
B

(4t)
1
2
(x0), ϕ ∈ C1

0 (B(4t)), x0 ∈ BR, 4t = t2 −
t1. Then∫

B(4t)
ϕ(x)[uε(x, t2)− uε(x, t1)]dx

=
∫

B(4t)
ϕ(x)

∫ 1

0

duε(x, st2 + (1− s)t1)
ds

dsdx

= 4t

∫
B(4t)

ϕ(x)
∫ 1

0

∫ T

0

∫
RN

jεt(x− y, st2 + (1− s)t1 − τ)u(y, τ)dydτdsdx

= −4t

∫
B(4t)

ϕ(x)
∫ 1

0

∫ T

0

∫
RN

jετ (x− y, st2 + (1− s)t1 − τ)u(y, τ)dydτdsdx.

For fixed (x, t) ∈ Qt , 0 < ε < t0 < t < T − ε,
Jε(x − y, t − τ) ∈ C1

0 (QT ). Let us choose the test
function in the definition of generalized solution (6)
as ϕ(x) = Jε(x− y, t− τ)∫

QT

(
∂u

∂t
ϕ + dα · |∇u|p−2∇u · ∇ϕ)dxdt = 0.

Then, we have∫ T

0

∫
RN

jετ (x−y, st2 + (1−s)t1−τ)u(y, τ)dydτ

=
∫ T

0

∫
RN

dα · |∇yu|p−2∇yu

∇yjε(x− y, st2 + (1− s)t1 − τ)dydτ.

Thus, we obtain∫
B(4t)

ϕ(x)[uε(x, t2)− uε(x, t1)]dx

=−4t

∫
B(4t)

ϕ(x)
∫ 1

0

∫ T

0

∫
RN

dα · |∇yu|p−2∇yu

∇yjε(x− y, st2 + (1− s)t1 − τ)dydτdsdx

= −4t

∫ 1

0

∫ T

0

∫
RN

dα · |∇yu|p−2∇yu

∫
B(4t)

∇xϕjε(x− y, st2 + (1− s)t1 − τ)dydτdsdx

= −4t

∫ 1

0

∫
B(4t)

∇xϕ

∫ T

0

∫
RN

jε(x− y,

st2 + (1− s)t1 − τ)dα · |∇yu|p−2∇yudydτdxds

= −4t

∫ 1

0

∫
B(4t)

∇xϕJε(dα · |∇yu|p−2∇yu)

·(x, st2 + (1− s)t1)dxds. (28)

Let δ(s) ∈ C1
0 (R) satisfy

δ(s) ≥ 0,

∫
R

δ(s)ds = 1

and δ(s) = 0 when s ≥ 1. For any h > 0, we define

δh(s) =
δ( s

h)
h

.

By a approaching process, we know that (28) is also
true for any ϕ ∈ W 1,1

0 (B(4t)). Choosing

ϕ = ϕh(x) =
∫ (4t)

1
2−|x−x0|−2h

−h
δh(s)ds

in (28), then∫
B(4t)

ϕh(x)(uε(x, t2)− uε(x, t1))dx

= −4t

∫
B(4t)

δh((4t)
1
2 − |x− x0| − 2h) · x0i − xi

|x− x0|

· Jε(dα · |∇yu|p−2∇yu)(x, st2 + (1− s)t1)dxds.

(29)

We notice that, when x ∈ B(4t),

lim
h→0

ϕh(x) = 0.

But
δh((4t)

1
2 − |x− x0| − 2h) = 0

holds when |x− x0| < (4t)
1
2 − h, then δh ≤ c

h and

mes(B(4t)\B
(4t)

1
2−h

(x0)) ≤ ch(4t)
N−1

2 .
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Therefore using Theorem 6 and (29), we can obtain∣∣∣∣∣
∫

B(4t)
ϕh(x)[uε(x, t2)− uε(x, t1)]dx

∣∣∣∣∣ ≤ c(4t)
N+1

2 .

Letting h → 0, we obtain∣∣∣∣∣
∫

B(4t)
[uε(x, t2)− uε(x, t1)]dx

∣∣∣∣∣ ≤ c(4t)
N+1

2 .

Then by the mean value theorem, there exist x∗ ∈
B(4t) such that

|uε(x∗, t2)− uε(x∗, t1)| ≤ c(4t)
1
2 .

Noticing that

|uε(x0, t2)− uε(x0, t1)|
≤ |uε(x0, t2)− uε(x∗, t2)|+ |uε(x∗, t2)

− uε(x∗, t1)|+ |uε(x∗, t1)− uε(x0, t1)|
≤ c(4t)

1
2 ,

combining this formula with (26), letting ε → 0, we
obtain the following formula

|u(x1, t1)− u(x2, t2)|
≤ |u(x1, t1)− u(x2, t1)|+ |u(x2, t1)− u(x2, t2)|
≤ c(|x1 − x2|+ |t1 − t2|

1
2 ).

The proof is complete.

4 Continuity of the gradient of the
solution

In what follows, let u be the solution of (1) and let
P0 = (x0, t0) ∈ QT , 0 < R ≤ 1, µ > 1. If we denote

Qµ(P0, R)

=

{
(x, t) : |x− x0| < R, t0 −

R2

µp−2
< t < t0

}
,

M±
iµ(R) = ess sup

Qµ(P0,R)
(±uxi), i = 1, 2, . . . , N.

Mµ(R) = max
1≤i≤N

ess sup
Qµ(P0,R)

|uxi |,

then we can get the following propositions similarly
as Chapter 2 in [1], we omit the details here.

Proposition 8 Assume that

2M+
1µ(R) ≥ Mµ(R)

and µ satisfies

2M+
1µ(R) ≥ µ ≥ Mµ(R).

Then there exists ε0 = ε0(p, N) such that, when

1
mesQu(P0, R)

∫ ∫
Qµ(P0, R)(M+

1µ(R)− ux1)
2dxdt

≤ ε0(M+
1µ(R)2,

it holds that

ess sup
Qµ(P0, R

2
)

ux1 ≥
M+

1µ(R2)
2

.

Proposition 9 Assume that

2M+
1µ(R) ≥ Mµ(R)

and µ satisfies

2M+
1µ(R) ≥ µ ≥ Mµ(R).

Then for any ε0 > 0, there always exist some con-
stants λ, β ∈ (0, 1) which depend on p, N, ε0 such
that, if

1
mesQu(P0, R)

∫ ∫
Qµ(P0, R)(M+

1µ(R)− ux1)
2dxdt

> ε0(M+
1µ)2,

then

mes
{
(x, t) ∈ Qµ(P0, R) : ux1(x, t) ≤ (1− β)M+

1µ(R)
}

> λmesQµ(P0, R).

Proposition 10 Assume that

2M+
1µ(R) ≥ Mµ(R)

and µ satisfies

2M+
1µ(R) ≥ µ ≥ Mµ(R).

Further assume that there exist some constants λ, β ∈
(0, 1) such that, if

mes
{
(x, t) ∈ Qµ(P0, R) : ux1(x, t) ≤ (1− β)M+

1µ(R)
}

≥ λmesQµ(P0, R),

then there exist constants δ, γ ∈ (0, 1) which depend
on p, N, λ, β such that

M+
1µ(δR) ≤ γM+

1µ(R).
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Theorem 11 Let p > max{1, 2N
N+2}, u is the gener-

alized solution of equation (1) in QT , then uxj (j =
1, 2, · · · , N) is locally Hölder continuous in QT .

Proof: The proof of the theorem includes three steps.
Firstly, choose the ε0 on Proposition 8. Secondly, de-
termine λ, β on Proposition 9 according to ε0. Lastly,
determine δ, γ on Proposition 10 according to λ, β. In
particular, δ, γ is just dependent on N, p.

Choosing s ∈ (1, 2), which is close to 2, such that

δ
2(2−s)
s(p−2) > max{1

2
, γ}. (30)

Letting 0 < η0 < T , and Ωη0T = Ω ×
(η0, T ),Ωη0T ⊂⊂ QT be a bounded open set. Then
we obtain that ∇u is bounded in Ωη0T according to
Theorem 6. We may assume

‖∇u‖∞ Ωη0T
≤ M0. (31)

Denote M = M0δ
−2(2−s)
s(p−2) , then M0 = Mδ

2(2−s)
s(p−2) .

Choose R0 ∈ (0, 1] such that

Q2M0(P0, R0) ⊂ Ωη0T .

For any 0 < R ≤ R0, denote

tR = RsR2−s
0 (2M0)2−p,

Q̂(P0, R) = {(x, t); |x−x0| < R, t0− tR < t < t0},

M±
i (R) = ess sup

Q̂(P0,R)

(±uxi), i = 1, 2, · · · , N ;

M(R) = max
1≤i≤N

ess sup
Q̂(P0,R)

|uxi |,

oscQ̂(P0,R)uxi = ess sup
Q̂(P0,R)

uxi − ess inf
Q̂(P0,R)

uxi

= M+
i (R) + M−

i (R).

In what follows, we will prove that there exist con-
stants ρ ∈ (0, 1) and C > 0 which only depend
on N, p, such that

oscQ̂(P0,R)uxi ≤ CM0(
R

R0
)ρ, ∀0 < R < R0.

(32)
By (32), we immediately know that uxi(i =
1, 2 . . . , N) is Hölder continue in Ωη0T , and know that
the theorem is true.

Now we prove (32). Define

R1 = sup{R ∈ [0, R0]; exist 1 ≤ j ≤ N, θ ∈ {+,−},
such that|Mθ

j (R)| ≥ 2M0( R
R0

)
2−s
p−2 }. (33)

Assume R1 > 0 without loss of the generality. Other-
wise,

|M θ
j (R)| < 2M0(

R

R0
)

2−s
p−2 , 1 ≤ j ≤ N, θ ∈ {+,−},

then we obtain

oscQ̂(P0,R)uxi = M+
i (R) + M−

i (R) < 4M0(
R

R0
)ρ,

where ρ = 2−s
p−2 . Therefore formula (32) holds natu-

rally. Now according to the definition of M0,M0, we
can obtain 0 < R1 ≤ δ

2
s R0 < R0 by (33). Therefore

there exists R2 and δ
2
s R2 < R1 < R2 < R0, such

that

|M±
j (R2)| ≤ 2M0(

R2

R0
)

2−s
p−2 j = 1, 2 . . . , N. (34)

At the same time, there exist i0, θ, without loss of the
generality, we can choose i0 = 1, θ = +, such that

M+
1 (δ

2
s R2) > 2M0(

δ
2
s R2

R0
)

2−s
p−2 . (35)

Denote
µ = 2M0(

R2

R0
)

2−s
p−2 . (36)

We will prove the following formula,∫ ∫
Qµ(P0, R2)(M+

1 (R2)−ux1)
2dxdt

≤ ε0(M+
1 (R2)2mesQµ(P0, R). (37)

According to the definition of µ, we clearly have

Qµ(P0, R2) = Q̂(P0, R2), M+
1µ(R2) = M+

1 (R2),

therefore we can obtain following formula from (35),
(36) and (30)

M+
1µ(R2) ≥ M+

1 (δ
2
s R2) > max{γ,

1
2
}µ. (38)

Then according to (34) and (36), we obtain

2M+
1µ(R2) > µ ≥ Mµ(R2). (39)

Let us prove (37) now. If (37) isn’t true, then ac-
cording to Proposition 9 and Proposition 10, we obtain

M+
1µ(δR2) ≤ γM+

1µ(R2).

Noticing that Qµ(P0, δR2) = Q̂(P0, δ
2
s R2), then we

can obtain

M+
1 (δ

2
s R2) = M+

1µ(δR2) ≤ γM+
1µ(R2) ≤ γµ.
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But this conflicts (38), therefore formula (37) holds.
Now, according to (38) and Proposition 8, we

have

ess sup
Qµ(P0,

R2
2

)

ux1 ≥
M+

1µ(R2)
2

≥ µ

4
. (40)

As follows, according to (40), we will prove
that uxm satisfies (32).

Differentiate (1) about xm, obtain

∂uxm

∂t
= αdiv(dα−1dxm |∇u|p−2∇u)

+dα · (|∇u|p−2uxi)xixm .

The above formula can be changed into

d−α∂uxm

∂t
− (aij |∇u|p−2uxmxj )xi

= αd−αdiv(dα−1dxm |∇u|p−2∇u), (41)

where

aij = δij +
(p− 2)uxiuxj

|∇u|2
,

and δij is the Kronecker sign as usual. Let ξ =
x − x0, τ = dαµp−2(t − t0), v(ξ, τ) = uxm(x, t) ,
Q
′
(R) = {(ξ, τ); |ξ| < R,−R2 < τ ≤ 0}.

Then v satisfies

∂v

∂τ
− [aij

|∇u|p−2

µp−2
vξj

]ξi

= αd−αdiv(dα−1dxm |∇u|p−2∇u). (42)

Therefore according to (31) and (40), we obtain

1
C
|η|2 ≤ aij(

|∇u|
µ

)p−2ηiηj ≤ C|η|2,

∀η ∈ RN , (ξ, τ) ∈ Q
′
(
R2

2
).

Since Ω is bounded domain with appropriately
smooth boundary, d(x) = dist(x, ∂Ω) is bounded.
Then according to (11) (16) and Theorem 6, we ob-
tain |αd−αdiv(dα−1dxm |∇u|p−2∇u)| is bounded.
This can explain that the formula (42) is uniformly
parabolic in Q

′
(R2

2 ) , then according to reference [5]
we obtain

oscQ′ (R)v ≤ C(
R

R2
)osc

Q
′
(

R2
4

)
v, ∀ 0 < R < R2

4 ,

where C > 0, β̄ ∈ (0, 1) is just dependent on N, p.

Backing to the variables (x, t), we obtain

oscQu(p0,R)uxm ≤ C(
R

R2
)β̄osc

Qu(p0,
R2
4

)
uxmuxm ,

∀0 < R <
R2

4
, m = 1, 2 . . . N. (43)

1). If R ≥ R2, according to the definition of R2,
we obtain

oscQu(p0,R)uxm ≤ |M+
m(R)|+ |M−

m(R)|

≤ 4M0(
R

R0
)

2−s
p−2 . (44)

2). If R2
4 ≤ R ≤ R2, then

oscQ̂u(p0,R)uxm ≤ oscQ̂u(p0,4R)uxm ≤ 4M0(
4R

R0
)

2−s
p−2 .

(45)
3). If 0 < R < R2

4 , then according to (43) and
(45), we obtain

oscQu(p0,R)uxm ≤ C(
R

R2
)β̄4M0(

4R2

R0
)

2−s
p−2 .

Letting ρ = min{β̄, 2−s
p−2}, we obtain

oscQu(p0,R)uxm ≤ CM0(
R

R2
)ρ(

R2

R0
)ρ = CM0(

R

R0
)ρ.

Since Q̂(P0, R) ⊂ Qu(p0, R), the formula (32) holds.
According to 1), 2), 3), we obtain Theorem 11

immediately. The proof is complete.
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