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Abstract: This paper regards initial value problem for second order impulsive integro-differential equations as
some nonlinear vector system. By means of the Mönch′s fixed point theorem, some existence theorems of solu-
tions of the initial value problem are established. The results are newer than all of the previous ones because of the
more general form compactness-type condition and the weaker restriction of its coefficients. An example is given
to demonstrate our results. Annotation shows that our method can be used to solve the impulsive boundary value
problems.
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1 Introduction
Around the last fifteen years, a lot of works [1-
10,13,14] have been done for the following initial
value problem for nonlinear second order impulsive
integro-differential equations of mixed type in a real
Banach space E
u′′ = f(t, u, u′, Tu, Su),∀t ∈ J = [0, a], t ̸= tk

△u|t=tk = I(u(tk), u
′(tk)),

△u′|t=tk = Īk(u(tk), u
′(tk)), k = 1, 2, · · · ,m

u(0) = x0, u
′(0) = x1

(1)
where Tu =

∫ t
0 q(t, s)u(s)ds, Su =∫ a

0 h(t, s)u(s)ds, h(t, s) ∈ C(J × J,R),
q(t, s) ∈ C(D,R), D = {(t, s) ∈ J × J : t ≥ s}.
△u|t=tk = u(t+k )− u(t−k ), (k = 1, 2, · · · ,m) denote
the jump of u(t) at t = tk, u(t−k ) and u(t+k ) represent
the left and right limits of u(t) at t = tk respectively,
and △u′|t=tk has a similar meaning for u′(t).

In many investigations, for examples [1-4,9,
10, 15], non-compactness type conditions, combined
with fixed point theorem, play an important role in
the proof of those results. In 1996, Guo[4] studied
the unique solution of system IVP(1) employing Ba-
nach’s fixed point theorem. Zhang [15] studied IVP(1)
for the case in which f does not include derivative
x′ and obtained a global solution by Schauder’s fixed
point theorem. Zhang et al.[10] improved the result-
s of Zhang[15] by Mönch’s fixed point theorem with

a new established comparison result. Recently, Liu
et al.[9] and Zhang et al.[2] generalized the results of
Guo[4] by using Banach’s fixed point theorem. Al-
most at the same time, Guo et al.[3] established the
existence of global solutions of IVP(1) by Schauder’s
fixed point theorem. And then Zhang et al.[1], based
on the generalization of Darbo’s fixed point theorem,
extended the the results of Guo et al.[3] step by step
through extending integro-differential equation with-
out impulses on subinterval J̄k to one with impulses
on global interval J . Zhang et al. used the following
compactness-type condition:

(H0). For any r > 0, f is bounded and uniformly
continuous on J ×Br ×Br ×Br ×Br, and there ex-
ist non-negative Lebesgue integrable functions Lk ∈
L(J,R+)(k = 1, 2, 3) such that for any bounded sets
Bi ∈ E(i = 1, 2, 3, 4) and t ∈ J ,

α(f(t, B1, B2, B3, B4))
≤ L1(t)α(B1) + L2(t)α(B2) + L3(t)α(B3).

(2)
Apparently, the effect of operator Su in f of IVP (1)
is overlooked.

Compactness type condition with both u′ and Su
is very difficult to deal with in proof. By introduc-
ing an operator and transforming IVP(1) into first or-
der IVP without u′, Wang et al.[8] obtained some re-
sults by using the monotone iterative technique. In
this paper, the novelty of our approach is to intro-
duce a vector with components being u(t) defined on
each subinterval [tk, tk+1] (where t0 = 0, tm+1 =
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a, u(tk) = u(t+k ) at the left point of subinterval
and k = 0, 1, · · · ,m), then a corresponding integro-
differential equation is derived for such an unknown
vector system. Further, by means of the Mönch fixed
point theorem, we establish the existence of solution-
s of IVP(1). Under more general form with the item
L4(t)α(B4) than the condition (2), we obtain some
new results.

2 Some Lemmas
Let PC[J,E] = {u|u : J → E is continuous at t ̸=
ti, left continuous at t = ti, and its right limit u(t+i )
at ti exists, i = 1, 2, · · · ,m}. Evidently, PC[J,E] is
a Banach space with the norm ∥u∥PC = sup

t∈J
∥u(t)∥.

Let PC1[J,E] = {u ∈ PC[J,E]|u′(t) is continuous
at t ̸= ti, and u′(t−i ), u

′(t+i ) exist, i = 1, 2, · · · ,m}.
We can obtain that u′(t) is continuous at the left of ti
by the mean value theorem, and then PC1[J,E] is a
Banach space with the norm

∥u∥PC1 = max{∥u∥PC , ∥u′∥PC}

Let J ′ = J\{t1, t2, · · · , tm} , J0 = [0, t1],J1 =
(t1, t2], · · · , Jm−1 = (tm−1, tm], Jm = (tm, a], t0 =
0, tm+1 = a, di = ti+1 − ti, J̄i is the closure of Ji
and Br = {x ∈ E : ∥x∥ ≤ r} for any r > 0. For
H ⊂ PC1[J,E], let H ′ = {x′ : x ∈ H} ⊂ PC[J,E]
and

Hi = {x|J̄i : x ∈ H} ⊂ C1[J̄i, E],
H ′

i = {x′|J̄i : x ∈ H} ⊂ C[J̄i, E],
AiH = {(Ax)|J̄i : x ∈ H} ⊂ C1[J̄i, E],
(AiH)′ = {(Ax)′|J̄i : x ∈ H} ⊂ C[J̄i, E],

where x(ti) = x(t+i ), x′(ti) = x′(t+i ),
(Aix)(ti) = (Ax)(t+i ), (Ax)

′(ti) = (Ax)′(t+i ), (i =
1, 2, · · · ,m). For any t ∈ J , set

H(t) = {x(t) : x ∈ H} ⊂ E,
H ′(t) = {x′(t) : x ∈ H} ⊂ E,

(TH)(t) = {(Tx)(t) : x ∈ H} ⊂ E,
(SH)(t) = {(Sx)(t) : x ∈ H} ⊂ E.

For any t ∈ Ji (i = 0, 1, · · · ,m), set

Hi(t) = {x(t) : x ∈ H, t ∈ Ji} ⊂ E,
H ′

i(t) = {x′(t) : x ∈ H, t ∈ Ji} ⊂ E,
(AiH)(t) = {(Ax)(t) : x ∈ H, t ∈ Ji} ⊂ E,
(AiH)′(t) = {(Ax)′(t) : x ∈ H, t ∈ Ji} ⊂ E.

Let α(.), α1(.) and α2(.) denote the Kuratowski
measure of non-compactness in E, C1(I, E) and
PC1(J,E) respectively. For the details please to refer
the references [11][12].

Lemma 1 [3]. If H ⊂ PC1(J,E) is bounded and
the elements of H are equicontinuous on each Jk(k =
0, 1, . . . ,m), then c̄o(H) ⊂ PC1(J,E) is bounded
and equicontinuous an each Jk(k = 0, 1, . . . ,m).
(Here c̄o(H) denotes the closed convex hull of H .

Lemma 2 [3]. If for any r > 0, f is bounded and
uniformly continuous on J ×Br ×Br ×Br ×Br and
H ⊂ PC1(J,E) is bounded and equicontinuous on
each Jk(k = 0, 1, . . . ,m), then

{f(t, x(t), x′(t), (Tx)(t), (Sx)(t)) : x ∈ H}
⊂ PC(J,E)

is bounded and equicontinuous on each Jk(k =
0, 1, . . . ,m).

Lemma 3 [11] If H ⊂ PC1[J,E] is bounded
and the elements of H ′ are equicontinuous on each
Jk(k = 0, 1, . . . ,m), then

α2(H) = max{sup
t∈J

α(H(t)), sup
t∈J

α(H ′(t))}.

Lemma 4 [15] If H ⊂ PC1[J,E] is bounded and e-
quicontinuous on each Jk (k = 0, 1, 2, . . . ,m), then
α({u(t)|u ∈ H}) is continuous on t ∈ Jk (k =
0, 1, 2, . . . ,m) and

α({
∫ a

0
u(t)dt|u ∈ H}) ≤

∫ a

0
α({u(t)|u ∈ H})dt.

Lemma 5 [12] Let E be a Banach space, Ω ⊂ E
be a bounded open set, and θ ∈ Ω, A : E → E be
continuous such that, (i) x ̸= λAx for ∀λ ∈ [0, 1]
and x ∈ ∂Ω; (ii) that H ⊂ Ω is countable and
H ⊂ co({θ} ∪ (AH)) imply that H is relative com-
pact. Then A has at least one fixed point in Ω.

Lemma 6 [15] The problem IVP(1) is equivalent to
the first-order nonlinear impulsive integro-differential
equation

u(t) = (Au)(t) (3)

where

(Au)(t) = x0 + tx1+∫ t
0 (t− s)f(s, u(s), u′(s), Tu(s), (Su)(s))ds
+

∑
0<tk<t

Ik(u(tk), u
′(tk))

+
∑

0<tk<t
(t− tk)Īk(u(tk), u

′(tk)).

(4)

Lemma 7 Let V1, V2 ⊂ PC1[J,E] be two countable
subset satisfying V1 ⊂ co(u0 ∪ V2) for some u0 ∈
PC1[J,E]. Then

V1i ⊂ co({u0i} ∪ V2i), i = 0, 1, 2, · · · ,m
V ′
1i ⊂ co({u′0i} ∪ V ′

2i), i = 0, 1, 2, · · · ,m
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and for any t ∈ Ji (i = 0, 1, 2, · · · ,m),

V1i(t) ⊂ co({u0i(t)} ∪ V2i(t)),
V ′
1i(t) ⊂ co({u′0i(t)} ∪ V ′

2i(t)).

Proof: V1, V2 ⊂ PC1[J,E] are countable imply
that V ′

1 , V
′
2 ⊂ PC[J,E] are countable and u0 ∈

PC1[J,E] imply that u′0 ∈ PC[J,E].
For any x ∈ V ′

1i, there exists u ∈ V1 such that
u′|Ji = x. From u ∈ V1 ⊂ co(u0 ∪ V2), there exist

un = λ
(n)
0 u0 +

mn∑
k=1

λ
(n)
k v

(n)
k ∈ co({u0} ∪ V2),

n = 1, 2, · · · ,

such that ∥un − u∥PC1 → 0(n → ∞), where

v
(n)
k ∈ V2, k = 1, 2, · · · ,mn,

λ
(n)
k ≥ 0, k = 0, 1, · · · ,mn,

mn∑
k=0

λ
(n)
k = 1.

Hence ∥u′n|J̄k − u′|J̄k∥C → 0(n → ∞) and

u′n|J̄k = λ
(n)
0 u′0|J̄k +

mn∑
k=1

λ
(n)
k (v

(n)
k )′|J̄k

∈ co({u′0i} ∪ V ′
2i), n = 1, 2, · · · ,

so x = u′|Jk ∈ co({u′0i} ∪ V ′
2i, which imply V ′

1i ⊂
co({u′0i} ∪ V ′

2i) and V ′
1i(t) ⊂ co({u′0i(t)} ∪ V ′

2i(t))
for any t ∈ Ji(i = 0, 1, 2, · · · ,m).

For the same reasons, we have V1i ⊂ co({u0i} ∪
V2i) and V1i(t) ⊂ co({u0i(t)} ∪ V2i(t)) for any t ∈
Ji(i = 0, 1, 2, · · · ,m).

Lemma 8 Let X ∈ Rn×n be a matrix with following
form

X =


t11 0 . . . 0
t12 t22 . . . 0
. . . . . . . . . . . .
t1n t2n . . . tnn

 .

Then for any ε > 0 there exists a norm || · ||mon on
Rn×n, which is reduced by monotone vector norm,
such that

∥X∥mon ≤ ρ(X) + ε.

Proof: It is from the proof of theorem 3.7 of [16].
For any δ > 0, let

Dδ = diag(1, δ, δ2, · · · , δn−1),

then

D−1
δ XDδ =

t11 0 . . . 0 0
δt12 t22 . . . 0 0
· · · · · · · · · · · · · · ·

δn−1t1n δn−2t2n . . . δtn−1n tnn

 .

For any ε > 0, let δ > 0 such that

j−1∑
i=1

|δj−itij | < ε, j = 2, 3, · · · , n,

and define

∥G∥mon = ∥D−1
δ GDδ∥∞, ∀G ∈ Cn×n

then we can prove the function ∥ · ∥mon is an operator
norm reduced by following vector norm

∥x∥Dδ
= ∥D−1

δ x∥∞, x ∈ Cn (5)

and

∥X∥mon = ∥D−1
δ XDδ∥∞ ≤ ρ(X) + ε.

It is easily to see that ∥ · ∥Dδ
is a monotone vector

norm. Lemma 8 holds.
In what follows, set uk(t) = u(t) as t ∈ J̄k

for u ∈ PC[J,E], i.e. uk = u|J̄k (where uk(tk) =

u(t+k ) at the left point of interval J̄k and u|J̄k denote
the section of u restricted on J̄k), then (3) can be recast
into the following form

uk(t) = (Aku)(t), t ∈ J̄k, k = 1, 2, . . . ,m (6)

where

(Aku)(t) , x0 + tx1+
k−1∑
i=0

∫ ti+1

ti
(t− s)Γ(i, s, u(s))ds

+
∫ t
tk
(t− s)Γ(k, s, u(s))ds

+
k∑

i=1
Ii(ui−1(ti), u

′
i−1(ti))

+
k∑

i=1
(t− ti)Īi(ui−1(ti), u

′
i−1(ti))

and

Γ(i, s, u(s)) =
f(s, ui(s), u

′
i(s), (Tiu)(s), (Su)(s)),

(Tku)(t) =
k−1∑
i=0

∫ ti+1

ti
K(t, r)ui(r)dr+∫ t

tk
q(t, r)uk(r)dr, t ∈ J̄k,

(Su)(s) =
m∑
i=0

∫ ti+1

ti
h(s, r)ui(r)dr.
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3 Main Results
For convenience, we give the assumptions as follows.

(H1) For any r > 0, f is bounded and uniformly
continuous on J ×Br ×Br ×Br ×Br, Ik and Īk are
bounded on Br ×Br.

(H2) For any r > 0, there exist non-negative
Lebesgue integrable functions Lk ∈ L(J,R+)(k =
1, 2, 3) such that for any bounded sets Bi ⊂ E(i =
1, 2, 3, 4) and t ∈ J ,

α(f(t, B1, B2, B3, B4)) ≤
4∑

i=1
Li(t)α(Bi),

α(Ik(B1, B2)) ≤ ak(t)α(B1) + bkα(B2),
α(Īk(B1, B2)) ≤ āk(t)α(B1) + b̄kα(B2),

k = 1, 2, · · · ,m.

(7)

(H3) β = lim sup
∥x∥+∥y∥→+∞

(sup
t∈J

f(t,x,y,Tx,Sx)
∥x∥+∥y∥ ) is fi-

nite.
Let q0 = max{|q(t, s)| : (t, s) ∈ D}, h0 =

max{|h(t, s)| : (t, s) ∈ J × J}.

Theorem 9 If the assumptions (H1)-(H3) are sat-
isfied and the spectral radius ρ(MT

0 M0) of matrix
MT

0 M0 satisfies

ρ(MT
0 M0) < 1, (8)

where

M0 =


∆0 d1µ0 . . . dmµ0

∆012 ∆1 . . . dmµ1

. . . . . . . . . . . .
∆01m ∆02m . . . ∆m

 (9)

and

∆ijk = δi + diσik + λjk,
∆k = δk + dkσkk
δi = max{ti+1, 1}

∫ ti+1

ti
[L1(s) + L2(s)]ds,

µk = h0max{tk+1, 1}
∫ tk+1

0 L4(s)ds,

σik = µk + q0max{tk+1, 1}
∫ tk+1

ti
L3(s)ds,

λik = max{(ai+bi)+(tk−ti)(āi+̄bi), āi+̄bi},
di = ti+1 − ti, i = 0, 1, . . . , k,
j= i+1, i+2, · · · ,m, k= i+1, i+2, · · · ,m.

(10)
Then IVP(1) has at least one solution u ∈
PC1(J,E) ∩ C2(J ′, E).

Proof: We divide the proof into two steps.
(i) Firstly, let

Ω0 =

{
x ∈ PC1(J,E) :

∃0 ≤ λ ≤ 1 such that
x = λAx

}
(11)

We will prove that Ω0 is bounded set in PC1(J,E).
From the hypothesis (H3), there exists the con-

stant β′ > β and d > 0 such that

∥f(t, u, v, Tu, (Su))∥ ≤ β′(∥u∥+ ∥v∥),
t ∈ J, ∥u∥+ ∥v∥ > d.

Since f is bounded and continuous, we get

∥f(t, u, v, Tu, (Su))∥ ≤ β′(∥u∥+ ∥v∥) +G,
t ∈ J, u, v ∈ E,

(12)
where G = sup{∥f(t, u, v, Tu, Su)∥ : t ∈ J, ∥u∥ +
∥v∥ ≤ d} < ∞.

On the other hand, ∀u ∈ Ω0, from (11) there
exists 0 ≤ λ ≤ 1 such that

u(t) = λAu(t), t ∈ J. (13)

If t ∈ J0, from (4), (12) and (13), we have

∥u(t)∥ ≤ ∥x0∥+ t1∥x1∥+
β′t1

∫ t
0 (∥u(s)∥+ ∥u′(s)∥+G)ds

∥u′(t)∥ ≤ ∥x1∥+ β′
∫ t

0
(∥u(s)∥+ ∥u′(s)∥+G)ds.

Let m0(t) = max
t∈J̄0

{∥u(t)∥, ∥u′(t)∥}, then we have

m0(t) ≤ C0 + γ0

∫ t

0
m0(s)ds

where C0 = max{∥x0∥+ t1∥x1∥+ β′t21G, ∥x1∥+
β′t1G} and γ0 = 2β′max{t1, 1}. From the Gronwall
lemma, we get

max
t∈J̄0

{∥u(t)∥, ∥u′(t)∥} = m0(t) ≤ C0e
γ0t1 = K0,

t ∈ J0.

And then ∥u∥C1 ≤ K0 for any t ∈ J0. From the
hypothesis (H1) there exists the constant β0 > 0

∥f(t, u, u′, Tu, (Su))∥ ≤ β0,
∥I1(u, u′)∥ ≤ β0, ∥Ī1(u, u′)∥ ≤ β0.

(14)

If t ∈ J1 = (t1, t2], then (13) change into

u(t) = λ(x0 + tx1)+

λ
∫ t
0 (t− s)f(s, u(s), u′(s), Tu(s), (Su)(s))ds+

λ[I1(u(t1), u
′(t1)) + (t− t1)Ī1(u(t1), u

′(t1))].
(15)

(12)(14)(15) imply that

∥u(t)∥ ≤ ∥x0∥+ t2∥x1∥+ t21β0 +
(t2 − t1)

2

2
β′G+
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β0 + (t2 − t1)β0 + β′t

∫ t

t1

(∥u(s)∥+ ∥u′(s)∥)ds

∥u′(t)∥ ≤ ∥x1∥+ t1β0 + (t2 − t1)β
′G+ β0+

β′ ∫ t
t1
(∥u(s)∥+ ∥u′(s)∥)ds.

Let C1 = max{∥x0∥+t2∥x1∥+(t2−t1+t21+1)β0+
(t2−t1)2

2 β′G, ∥x1∥+ t1β0+(t2− t1)β
′G+β0}, γ1 =

2β′max{t2, 1}, and therefore

m1(t) ≤ C1 + γ1

∫ t

t1

m1(s)ds

where m1(t) = max
t∈J̄1

{∥u(t)∥, ∥u′(t)∥}. And then

m1(t) ≤ C1e
γ1(t2−t1) = K1, t ∈ J1.

Analogously, there exist Ki > 0 such that

mi(t) ≤ Ki, t ∈ Ji, (i = 2, 3, · · · ,m)

where mi(t) = max
t∈J̄i

{∥u(t)∥, ∥u′(t)∥}. Let m(t) =

max
t∈J

{∥u(t)∥, ∥u′(t)∥} and K = max
0≤i≤m

Ki, then

m(t) ≤ max
0≤i≤m

mi(t)) ≤ K, t ∈ J, i.e. ∥u∥PC1 ≤ K

So Ω0 is a bounded set on PC1[J,E] .
ii) Let R0 > K and Ω = {u ∈ PC1(J,E) :

∥u∥ < R0}, then Ω is open bounded set which satisfy
that x ̸= λAx for ∀λ ∈ [0, 1] and x ∈ ∂Ω . As
follows, we prove that H ⊂ Ω̄ is relative compact for
any countable set H ⊂ co({θ}

∪
(AH)).

From (4) and (H1), we have that the operator
A : PC1[J,E] → PC1[J,E] is bounded and con-
tinuous. And then (AH) ⊂ PC1[J,E] is bound-
ed and (AH), (AH)′ are equicontinuous on Jk (k =
0, 1, ·,m).

Since H ⊂ Ω̄ is countable, H ⊂ co({θ}∪ (AH))
and (AH), (AH)′ are bounded and equicontinuous
on Jk, then H,H ′ are bounded and equicontinu-
ous. Thus all of Hi, H ′

i, AiH and (AiH)′ (i =
0, 1, · · · ,m) are countable, bounded and equicontin-
uous on J̄i and Hi ⊂ co({θi}

∪
(AiH)) from lem-

ma 7. From lemma 1, lemma 2 and (H1), we have
f(t,H,H ′, (TH), (SH)) ⊂ PC[J,E] is bounded
and equicontinuous on each Jk(k = 0, 1, · · · ,m).
Hence from Lemma 7, Lemma 4 and (H2), we have

α(H0(t)) ≤ α((A0H)(t))

≤ t
∫ t
0 [L1(s)α(H0(s)) + L2(s)α(H

′
0(s))]ds+

t
∫ t
0 [L3(s)α(T0H(s)) + L4(s)α(SH(s))]ds

≤ t
∫ t
0 ([L1(s) + L2(s) + t1L3(s)q0]α1(H0)]ds+

t
∫ t
0 [L4(s)h0

∫ a
0 α(H(r))dr]ds

≤ t
∫ t
0{[L1(s) + L2(s) + t1L3(s)q0]α1(H0)]ds+

t
∫ t
0 [h0L4(s)

m∑
i=0

(ti+1 − ti)α1(Hi)}ds,

and

α(H ′
0(t)) ≤ α((A0H)′(t))

≤
∫ t
0 [L1(s)α(H0(s)) + L2(s)α(H

′
0(s))]ds+∫ t

0 [L3(s)α(T0H(s)) + L4(s)α(SH(s))]ds

≤
∫ t
0{[L1(s) + L2(s) + t1L3(s)q0]α1(H0)]ds+∫ t

0 [h0L4(s)
m∑
i=0

(ti+1 − ti)α1(Hi)}ds.

So from lemma 3 and (10),

α1(H0) = max{sup
t∈J0

α(H(t)), sup
t∈J0

α(H ′(t))}

≤ (δ0 + d0σ00)α1(H0) +
m∑
i=1

diµ0α1(Hi).

(16)
For t ∈ J̄1, we have

α(H1(t)) ≤ α((A1H)(t))

≤ t
∫ t
0 [L1(s)α(H(s)) + L2(s)α(H

′(s))]ds+

t
∫ t
0 [L3(s)α(T1H(s)) + L4(s)α(SH(s))]ds

+a1α(H0(t1)) + b1α(H
′
0(t1))+

(a− t1)[ā1α(H0(t1)) + b̄1α(H
′
0(t1))]

≤ t
∫ t1
0 [L1(s) + L2(s) + t1L3(s)q0]α1(H0)ds+

t
∫ t1
0 [h0L4(s)

m∑
i=0

(ti+1 − ti)α1(Hi)]ds

+t
∫ t
t1
[L1(s) + L2(s)]α1(H1)ds+

t
∫ t
t1
(t2 − t1)L3(s)q0α1(H1)ds+

t
∫ t
t1
[t1q0L3(s)α1(H0)]ds+

t
∫ t
t1
h0L4(s)

m∑
i=0

(ti+1 − ti)α1(Hi)ds+

((a1 + b1) + (t− t1)(ā1 + b̄1))α1(H0)

and

α(H ′
1(t)) ≤ α((A1H)′(t))

≤
∫ t1
0 [L1(s) + L2(s) + t1L3(s)q0]α1(H0)ds+∫ t1

0 [h0L4(s)
m∑
i=0

(ti+1 − ti)α1(Hi)]ds+∫ t
t1
[(L1(s) + L2(s) + (t2 − t1)L3(s)q0)α1(H1)]ds+∫ t

t1
[t1q0L3(s)α1(H0)]ds+∫ t

t1
h0L4(s)

m∑
i=0

(ti+1 − ti)α1(Hi)ds+

(ā1 + b̄1)α1(H0).

then from lemma 3 and (10), we get

α1(H1) = max{sup
t∈J1

α(H(t)), sup
t∈J1

α(H ′(t))}

≤
1∑

i=0
(δi + diσi1)α1(Hi)+

λ12α1(H0) +
m∑
i=2

diµ1α1(Hi).

(17)
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In general, for t ∈ J̄k(k = 2, 3, . . . ,m), we have

α(Hk(t)) ≤ α((AkH)(t))

≤ t
∫ t
0 [L1(s)α(H(s)) + L2(s)α(H

′(s))]ds+

t
∫ t
0 [L3(s)α(TkH(s)) + L4(s)α(SH(s))]ds+
k∑

i=1
[(ai + bi) + (t− ti)(āi + b̄i)]α1(Hi)

≤ t
k∑

i=0

∫ ti+1

ti
[(L1(s) + L2(s))α1(Hi)]ds+

t
k∑

i=0

∫ ti+1

ti
[k0

i∑
j=0

(tj+1 − tj)L3(s)α1(Hj)]ds

+ h0t
∫ tk+1

0 L4(s)
m∑
j=0

(tj+1 − tj)α1(Hj)ds

+
k∑

i=1
[(ai + bi) + (tk − ti)(āi + b̄i)]α1(Hi−1),

and

α(H ′
k(t)) ≤ α((AkH)′(t))

≤
k∑

i=0

∫ ti+1

ti
[L1(s) + L2(s)]dsα1(Hi)+

k∑
i=0

∫ ti+1

ti
[k0

k∑
i=0

∫ tk+1

ti
(ti+1 − ti)L3(s)α1(Hi)ds+

h0
∫ tk+1

0 L4(s)
m∑
j=0

(tj+1 − tj)α1(Hj)ds+

k∑
i=1

(āi + b̄i)α1(Hi−1).

Thus for k = 2, 3, · · · ,m,

α1(Hk) = max{sup
t∈Jk

α(H(t)), sup
t∈Jk

α(H ′(t))}

≤
k∑

i=0
(δi + diσik)α1(Hi)+

m∑
i=k+1

diµkα1(Hi) +
k∑

i=1
λiα1(Hi−1),

(18)
where δi, σik, µi, λi and di are defined by (10). Hence
from (16) (17) (18), we obtain

α1(H0)
α1(H1)
· · ·
α1(Hm)

 ≤ M0


α1(H0)
α1(H1)
· · ·
α1(Hm)

 (19)

where M0 is defined by (9). Let
y0
y1
· · ·
ym

 = M0


α1(H0)
α1(H1)
· · ·
α1(Hm)

 . (20)

From (19) and (20), we have

[α1(H0)]
2 + [α1(H1)]

2 + · · ·+ [α1(Hm)]2

≤ y20 + y21 + · · ·+ y2m.
(21)

From the definition and the properties of the 2-norm
∥ · ∥2, we have∥∥∥∥∥∥∥∥

α1(H0)
α1(H1)
. . .

α1(Hm)

∥∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥
y0
y1
. . .
ym

∥∥∥∥∥∥∥∥
2

≤ ∥M0∥2

∥∥∥∥∥∥∥∥
α1(H0)
α1(H1)
. . .

α1(Hm)

∥∥∥∥∥∥∥∥
2

=
√

ρ(MT
0 M0)

∥∥∥∥∥∥∥∥
α1(H0)
α1(H1)
. . .

α1(Hm)

∥∥∥∥∥∥∥∥
2

(22)
where ∥M0∥2 denote 2-norm of the matrix M0. (8)
and (22) imply α1(Hk) = 0 (k = 0, 1, 2, . . . ,m), and
then from lemma 3,

α2(H) = max{sup
t∈J

α(H(t)), sup
t∈J

α(H ′(t))}

≤ max{ max
0≤k≤m

sup
t∈Jk

α(Hi(t)), max
0≤k≤m

sup
t∈Jk

α(H ′
i(t))}

= 0,

i.e. H is relative compact. So the operator A defined
by (3) has at least one fixed point in Ω from lem-
ma 5. Thus IVP(1) has at least one solution u(t) ∈
PC1(J,E) ∩ C2(J ′, E) from lemma 6.

If we replace the norm in (22) into anyone of the
others, which is reduced by monotone vector norm,
we obtain the following conclusions.

Theorem 10 Let the matrix M0 be defined by (9) and
the matrix norm ∥·∥mon be an operator norm reduced
by some monotone vector norm. If the assumptions
(H1)-(H3) hold and

∥M0∥mon < 1, (23)

then IVP(1) has at least one solution u ∈
PC1(J,E) ∩ C2(J ′, E).

Proof: For the proof of theorem 9, we replace the
(21) into that

0 ≤


α(H0)
α(H1)
. . .

α(Hm)

 ≤


y0
y1
. . .
ym


imply

∥(α(H0), α(H1), . . . , α(Hm))T ∥mon

≤ ∥(y0, y1, . . . , ym)T ∥mon,
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then we get the conclusion of theorem 10.
Remark 1. Since δk, µk, σik, λik, dk (i =
0, 1, . . . , k, k = 0, 1, . . . ,m) are nonnegative and
tk ≤ a, σik ≤ σim, λik ≤ λim (i < k, k =
1, 2, . . . ,m), then

δ0+δ1+· · ·+δm ≤ max{a, 1}
∫ a

0
(L1(s)+L2(s))ds,

d0σ0m + d1σ1m + · · ·+ d1σmm

≤ amax{a, 1}
∫ a
0 [q0L3(s) + h0L4(s)]ds.

Thus

∥A∥∞ ≤ max{a, 1}
∫ a

0
L(s)ds+

m∑
i=0

λim,

where L(s) = L1(s)+L2(s)+aq0L3(s)+ah0L4(s).
We can see that our conclusions imply those of [4]
since the vector norm ∥ ·∥∞ reducing the matrix norm
∥ · ∥∞ is monotone.
Remark 2. Most of those conclusions in theorem 10
are new, since the compactness-type conditions (H2)
involve both the derivative x′ and the linear integral
operator Su. Usually, it will be convenient that we
verify (23) by using the operator norms ∥ · ∥1, ∥ · ∥2
and ∥·∥∞. Only if one of the three norms satisfy (23),
we can obtain the conclusion of theorem 10.

Specially, let L4(t) = 0, then we get the follow-
ing conclusion.

Theorem 11 Let L4(t) = 0. If the assumptions (H1)-
(H3) are satisfied and

max
0≤k≤m

{δk + dkσkk} < 1. (24)

Then IVP(1) has at least one solution u ∈
PC1(J,E) ∩ C2(J ′, E).

Proof: L4(t) = 0, then we get µk = 0(k =
0, 1, 2, . . . ,m). then the matrix M0 defined by (9)
changes into

M0 =


∆0 0 . . . 0
∆012 ∆1 . . . 0
. . . . . . . . . . . .

∆01m ∆12m . . . ∆m

 (25)

where ∆ijk and ∆k are defined by (10) and σik (i =
0, 1, 2, · · · ,m, k > i)change into

σik = q0max{tk+1, 1}
∫ tk+1

ti
L3(s)ds. (26)

Apparently, the eigenvalues of M0 are δk+dkσkk(k =
0, 1, 2, . . . ,m), and then

ρ(M0) = max
0≤k≤m

{δk + dkσkk} < 1. (27)

Let ε < 1 − ρ(M0), then from Lemma 8, there exist
a operator norm ∥ · ∥, which is reduced by monotone
vector norm, such that

∥M0∥ ≤ ρ(M0) + ε < 1. (28)

Thus theorem 11 is valid from the theorem 10.
Remark 3. In some sense, theorem 11 indicate that
the result with impulses ti is equivalent to one with-
out impulse defined in every subinterval [ti, ti+1](i =
0, 1, . . . ,m) only if we ignore the influence of the op-
erator S. This is fair and reasonable. Thus our results
improve and generalize ones of the paper [1].

4 An Example
Consider the IVP of infinity systems for nonlinear im-
pulsive integro-differential equation

u′′n = t
2(t+ un) +

3t
5 u

′
n + t2

∫ t
0 e

−tsun(s)ds+
t3

18 sin
3
∫ 1
0

un(s)
1+t+sds, t ∈ [0, 1], t ̸= 1

2

△un|t= 1
2
= 1

10 cos
2 un(

1
2) +

1
5u

′
n(

1
2),

△u′n|t= 1
2
= 1

4un(
1
2) +

1
4u

′
n(

1
2)

un(0) = 0, u′n(0) =
1
n , n = 1, 2, 3, · · · .

(29)
Then IVP(29) has at least one solution u∗(t) =
(u∗1(t), u

∗
2(t), · · · , u∗n(t), · · · ) which is continuously

differentiable twice on [0, 12 ] ∪ (12 , 1] and u∗n(t) →
0(n → ∞) for any t ∈ [0, 1].
Proof. By all appearances, un(t) ≡ 0 is not a
solution of IVP(29). Let ∥u∥ = sup

n
|un| is a norm

of E = {u = (u1, u2, · · · , un, · · · )|un → 0} ,
then we know that IVP(29) can be regard as a form
of IVP(1) in E. In this situation, k(t, s) = e−ts,
h(t, s) = (1 + t + s)−1, x = (x1, x2, · · · , xn, · · · ),
y = (y1, y2, · · · , yn, · · · ), z = (z1, z2, · · · , zn, · · · ),
w = (w1, w2, · · · , wn, · · · ), f =
(f1, f2, · · · , fn, · · · ) , I1 = (I11, I12, · · · , I1n, · · · ),
Ī1 = (Ī11, Ī12, · · · , Ī1n, · · · ) and

fn(t, x, y, z, w) =
t

2
(t+xn)+

3t

5
yn+t2zn+

t3

18
sin3wn

I1n(x, y) =
1

10
cos2 xn+

1

5
yn, Ī1n(x, y) =

1

4
xn+

1

4
yn

where m = 1, t1 =
1
2 , the assumption (H1) holds and

∥fn(t, x, y, Tx, Sx)∥ ≤ 1
2∥x∥+

3
5∥y∥+ ∥Tx∥+ 5

9
≤ 3

2∥x∥+
3
5∥y∥+

5
9 .

i.e. the assumption (H3) holds too. On the other hand,
for any bounded set Bi (i = 1, 2, 3, 4), since

α(f(t, B1, B2, B3, B4)

≤ t
2α(B1) +

3t
5 α(B2) + t2α(B3) +

t3

6 α(B4)
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α(I1(B1, B2)) =
1
5α(B1) +

1
5α(B2),

α(Ī1(B1, B2)) =
1
4α(B1) +

1
4α(B2)

the assumption (H2) hold and L1(t) = t
2 , L2(t) =

3t
5 , L3(t) = t2, L4(t) =

t3

6 , a1 = b1 = 1
5 , ā1 = b̄1 =

1
4 . So δ0 = 11

80 , δ1 = 33
80 , µ0 = 1

384 , µ1 = 1
24 , σ00 =

17
384 , σ01 = 1

12 , σ11 =
1
3 , λ1 =

13
20 . Thus

M0 =
1

3840

(
613 5
3184 2224

)
=

(
613
3840

1
768

199
240

139
240

)
.

Calculating the row norm of the matrix M , we have

∥M0∥1 = max{3797
3840

,
743

1280
} < 1.

So the formula (23) holds. Thus the conclusions of
our example hold from theorem 10.
Remark 4. Farther calculating two rest common
norms in the example, we have

ρ(MT
0 M0) > 1.04 > 1 and ∥M0∥∞ =

169

120
> 1.

In addition, set

fn(t, x, y, z, w) =
t

2
(t+xn+yn)+

t2

8
zn+

t3

24
sin3wn

I1n(x, y) =
1

8
cos2 xn+

1

4
yn, Ī1n(x, y) =

1

4
xn+

1

4
yn,

we have

ρ(MT
0 M0) < 0.98 < 1, ∥M0∥1 =

3139

3072
> 1

and
∥M0∥∞ =

125

96
> 1.

As well as we set

fn(t, x, y, z, w) =
t

8
(t+xn)+

t

4
yn+

4t2

3
zn+

t3

3
sin3wn

I1n(x, y) =
1

16
cos2 xn+

1

8
yn, Ī1n(x, y) =

1

8
xn+

1

8
yn

and t1 =
7
8 , then

ρ(MT
0 M0) > 1.1 > 1, ∥M0∥1 =

1694431

1179648
> 1

and
∥M0∥∞ =

4597

4608
< 1.

So each norm of the matrix M0 in theorem 10 is cor-
responding to one of the conclusions. Thus theorem
10 include many different results.

5 An Annotation
This idea, that differential equations with impulses are
transferred into differential system and are studied,
can be used to the following boundary value problem
(BVP) for second order impulsive integro-differential
equations of mixed type in a real Banach space E
u′′ = f(t, u, u′, Tu, Su) ∀t ∈ J = [0, 1], t ̸= tk

△u|t=tk = Ik(u(tk), u
′(tk))

△u′|t=tk = Īk(u(tk), u
′(tk))

u(0) = x̃0, u(1) = x̃1 (k = 1, 2, · · · ,m),
(30)

where the symbols is identical with that of IVP(1). In
this section, we use the following assumption:

(H4). There exist non-negative Lebesgue inte-
grable functions Li ∈ L[J,R+](i = 1, 2, 3, 4) such
that

∥f(t, x, y, u, v)− f(t, x̄, ȳ, ū, v̄)∥E
≤ L1(t)∥x− x̄∥E + L2(t)∥y − ȳ∥E+
L3(t)∥u− ū∥E + L4(t)∥v − v̄∥E ,

t ∈ J, x, x̄, y, ȳ, u, ū, v, v̄ ∈ E,
∥Ik(x, y)− Ik(x̄, ȳ)∥E ≤ ak∥x− x̄∥E + bk∥y − ȳ∥E ,

x, x̄, y, ȳ ∈ E (k = 1, 2, . . . ,m)

and

∥Īk(x, y)− Īk(x̄, ȳ)∥E ≤ āk∥x− x̄∥E + b̄k∥y − ȳ∥E ,
x, x̄, y, ȳ ∈ E (k = 1, 2, . . . ,m).

Theorem 12 If the assumption (H4) holds and the
spectral radius of matrix MT

1 M1 satisfy

ρ(MT
1 M1) < 1, (31)

where

M1 =
δ0 + µ1 δ1 + µ2 · · · δm

δ0 + µ1 + λ1 δ1 + µ2 · · · δm
· · · · · · · · · · · · · · · · · ·

δ0 + µ1 + λ1 δ1 + µ2 + λ2 · · · δm


(32)

and

µk = (ak + bk) + (1− tk)(āk + b̄k),
λk = max{µk, (āk + b̄k)},

k = 1, 2, . . . ,m,

δi = (ti+1 − ti)
∫ 1
ti
(L3(s)Ki + L4(s)Hi)ds+

(ti+1 − ti)
∫ ti
0 L4(s)Hids+∫ ti+1

ti
[L1(s) + L2(s)]ds,

i = 0, 1, 2, . . . ,m,
(33)
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then BVP(30) has an unique solution u ∈
PC1[J,E] ∩ C2[J ′, E]. Moreover, for any z0 ∈
PC1[J,E], the iterative sequence defined by

zn(t) = φ(t) +
∫ 1
0 G(t, s)F (s, zn−1(s))ds+

t
m∑
k=1

[Qk(zn−1(tk)) + (1− tk)Q̄k(zn−1(tk))]+∑
0<tk<t

[Qk(zn−1(tk)) + (t− tk)Q̄k(zn−1(tk))],

n = 1, 2, 3, . . .
(34)

converges to u(t) uniformly on t ∈ J , and the se-
quence

z′n(t) = φ′(t) +
∫ 1
0 G′

t(t, s)F (s, zn−1(s))ds+
m∑
k=1

[Qk(zn−1(tk)) + (1− tk)Q̄k(zn−1(tk))]+∑
0<tk<t

Q̄k(zn−1(tk)), n = 1, 2, 3, . . .

(35)
converges to u′(t) uniformly on t ∈ J . Here

F (s, u(s)) = f(s, u(s), u′(s), Tu(s), Su(s)),
Qk(u(tk)) = Ik(u(tk), u

′(tk)),
Q̄k(u(tk)) = Īk(u(tk), u

′(tk)).

Proof: At first, (30) is equivalent to the following
first-order nonlinear impulsive integro-differential e-
quation

u(t) = φ(t) +
∫ 1
0 G(t, s)F (s, u(s))ds−

t
m∑
k=1

[Qk(u(tk)) + (1− tk)Q̄k(u(tk))]+∑
0<tk<t

[Qk(u(tk)) + (t− tk)Q̄k(u(tk))]

(36)

where

G(t, s) =

{
s(t− 1) 0 ≤ s < t

(s− 1)t t ≤ s < 1
,

and

φ(t) = x̃0 + t(x̃1 − x̃0).

For any x, y ∈ PC1[J,E], let xk(t) = x(t), yk(t) =
y(t) as t ∈ J̄k (k = 0, 1, . . . ,m), where
xk(tk) = x(t+k ), yk(tk) = y(t+k ) at the left point
of each subinterval J̄k (k = 1, 2, . . . ,m). Since
max
t,s∈J

{|G(t, s)|, |G′(t, s)|} ≤ 1, from (H1) and (36),

we have

∥(A0x)(t)− (A0y)(t)∥E

≤
m∑
i=0

∫ ti+1

ti

|G0(t, s)|[L1(s)∥xi(s)− yi(s)∥E

+L2(s)∥x′i(s)− y′i(s)∥E

+L3(s)

i∑
j=0

∫ tj+1

tj

Kj(s, r)∥xj(r)−yj(r)∥Edr

+L4(s)
m∑
j=0

∫ tj+1

tj

Hj(s, r)∥xj(r)−yj(r)∥Edr]ds

+ t
m∑
i=1

[ai∥xi−1(ti)− yi−1(ti)∥E

+bi∥x′i−1(ti)− y′i−1(ti)∥E
+(1− ti)(āi∥xi−1(ti)− yi−1(ti)∥E
+b̄i∥x′i−1(ti)− y′i−1(ti)∥E)]

≤
m∑
i=0

∫ ti+1

ti

{[L1(s) + L2(s)]∥xi − yi∥C1
Ji

+
i∑

j=0

(tj+1 − tj)L3(s)Kj∥xj − yj∥C1
Jj

+

m∑
j=0

(tj+1 − tj)L4(s)Hj∥xj − yj∥C1
Jj

}ds

+

m∑
i=1

[ai+bi+(1− ti)(āi+b̄i)]∥xi−1−yi−1∥C1
Ji−1

and

∥(A0x)
′(t)− (A0y)

′(t)∥E
≤

m∑
i=0

∫ ti+1

ti
{[L1(s) + L2(s)]∥xi − yi∥C1

Ji

+

i∑
j=0

(tj+1 − tj)L3(s)Kj∥xj − yj∥C1
Jj

+

m∑
j=0

(tj+1 − tj)L4(s)Hj∥xj − yj∥C1
Jj

}ds+
m∑
i=1

[ai + bi + (1− ti)(āi + b̄i)]∥xi−1 − yi−1∥C1
Ji−1

.

So we have

∥(A0x)− (A0y)∥C1
J0

≤
m∑
i=0

δi∥xi − yi∥C1
Ji

+

m∑
i=1

µi∥xi−1 − yi−1∥C1
Ji−1

.

(37)

Let Q(x, y) =
m∑
i=0

[
∫ ti+1

ti
(L1(s) + L2(s))∥xi −

yi∥C1
Ji

+
i∑

j=0
(tj+1 − tj)L3(s)Kj∥xj − yj∥C1

Jj

+
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m∑
j=0

(tj+1 − tj)L4(s)Hj∥xj − yj∥C1
Jj

]ds +
m∑
i=1

[ai +

bi + (1− ti)(āi + b̄i)]∥xi−1 − yi−1∥C1
Ji−1

. We obtain

∥(A1x)(t)− (A1y)(t)∥E ≤ Q(x, y)+
[(a1 + b1) + (1− t1)(ā1 + b̄1)]∥x0 − y0∥C1

J0
,

∥(A1x)
′(t)− (A1y)

′(t)∥ ≤ Q(x, y)+
(ā1 + b̄1)∥x0 − y0∥C1

J0
.

and then

∥(A1x)− (A1y)∥C1
J1

≤ Q(x, y) + λ1∥x0 − y0∥C1
J0
.

(38)
In general, we obtain that

∥(Akxk)− (Akyk)∥C1
Jk

≤ Q(x, y)+

k∑
i=1

λi∥xi−1 − yi−1∥C1
Ji−1

,

k = 2, 3, . . . ,m.

(39)

So from (37),(38) and (39), we get
∥A0x0 −A0y0∥C1

J0

∥A1x1 −A1y1∥C1
J1

. . .
∥Amxm −Amym∥C1

Jm



≤ M1


∥x0 − y0∥C1

J0

∥x1 − y1∥C1
J1

. . .
∥xm − ym∥C1

Jm

 ,

(40)

where M1 is defined by (32)(Here and in what fol-
lows the vector inequality x ≤ y denotes that al-
l of the corresponding components of vectors satisfy
xi ≤ yi (i = 0, 1, . . . ,m)). Then we have∥∥∥∥∥∥∥∥∥

∥A0x0 −A0y0∥C1
J0

∥A1x1 −A1y1∥C1
J1

. . .
∥Amxm −Amym∥C1

Jm

∥∥∥∥∥∥∥∥∥
2

≤
√

ρ(MT
1 M1)

∥∥∥∥∥∥∥∥∥
∥x0 − y0∥C1

J0

∥x1 − y1∥C1
J1

. . .
∥xm − ym∥C1

Jm

∥∥∥∥∥∥∥∥∥
2

.

(41)

From (31),(41) and the Banach fixed point theorem,
the operator A = (A0, A1, . . . , Am) has an unique
fixed point. Thus BVP(30) has an unique solution
u(t) ∈ PC1[J,E] ∩ C2[J ′, E].

Moreover, if u(t) is the unique solution of
BVP(30) and zn(t) is defined by (34), let uk(t) =
u(t), t ∈ Jk and zn,k(t) = zn(t), t ∈ Jk (k =
0, 1, . . . ,m). Similar to the reduction process of (40),
we can get

∥A0z0,0 −A0u0∥C1
J0

∥A1z0,1 −A1u1∥C1
J1

. . .
∥Amz0,m −Amum∥C1

Jm



≤ M1


∥z0,0 − u0∥C1

J0

∥z0,1 − u1∥C1
J1

. . .
∥z0,m − um∥C1

Jm

 .

Considering that the components of A are nonnega-
tive, from mathematical induction, it is easy to obtain
that 

∥A0zn,0 −A0u0∥C1
J0

∥A1zn,1 −A1u1∥C1
J1

. . .
∥Amzn,m −Amum∥C1

Jm



≤ Mn+1
1


∥z0,0 − u0∥C1

J0

∥z0,1 − u1∥C1
J1

. . .
∥z0,m − um∥C1

Jm

 .

So zn(t), z
′
n(t) uniformly converge to u(t), u′(t) re-

spectively for any t ∈ J . In other words, the conclu-
sion of Theorem 12 holds.

If we replace the norm in (40) by p-norm of ma-
trix, we can obtain following conclusion easily.

Theorem 13 If the assumption (H4) holds and the
matrix M1 defined by (32) satisfies

∥M1∥p < 1, (42)

where 1 ≤ p ≤ +∞, then we have the conclusions of
theorem 12.

Remark 5. Let M = max
(t,s)∈J×J

|K(t, s)| and N =

max
(t,s)∈J×J

|H(t, s)|. Since

m∑
i=0

δi ≤
∫ 1
0 [L1(s) + L2(s)]ds+N

∫ 1
0 L4(s)ds+

M
m∑
i=0

(ti+1 − ti)
∫ 1
ti+1

L3(s)ds

≤
∫ 1
0 [L1(s) + L2(s) +ML3(s) +NL4(s)]ds,
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then we have

∥M∥∞ =
m∑
i=0

δi +
m∑
i=1

(µi + λi)

≤
∫ 1
0 L0(s)ds+

m∑
i=1

(µi + λi),

where L0(s) = L1(s)+L2(s)+ML3(s) +NL4(s).
The condition (42) is more general than one obtained
directly by (36). So the conclusion of Theorem 13 is
an extension of those in [4] for initial value problems.
Remark 6. Most of those conclusions of theorem 12
and 13 are new, since the conditions (H4) involve both
the derivative x′ and the linear integral operator Su.
Usually, for convenience, we can use ∥ · ∥1, ∥ · ∥2 or
∥ · ∥∞ as the operator norm in (42).
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