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1 Introduction
Let H be a real Hilbert space with inner product ⟨·, ·⟩
and norm ∥·∥, let C be a nonempty closed convex sub-
set of H, and let F : C → H be a nonlinear operator.
We consider the problem of finding a point x∗ ∈ C
such that

⟨Fx∗, x− x∗⟩ ≥ 0, ∀ x ∈ C. (1)

This is known as the variational inequality problem
(i.e., V I(C,F )), which is introduced initially and s-
tudied by Stampacchia [1] in 1964. In recent years,
variational inequality problems have been extended
to study a large variety of problems arising in struc-
tural analysis, economics, optimization, operations re-
search and engineering sciences, see [2-7] and the ref-
erences therein.

Generally, F is assumed to be strongly monotone
and Lipschitzian. Relative definitions are stated as be-
low.

Let C be a nonempty closed and convex subset of
a real Hilbert space H , F : C → H and T : C → C,
then

(i) F is called Lipschitzian on C, if there exists a
positive constant L such that

∥Fx− Fy∥ ≤ L∥x− y∥, ∀x, y ∈ C; (2)

(ii) F is called boundedly Lipschitzian on C, if
for each nonempty bounded subset B of C, there ex-
ists a positive constant κB depending only on the set
B such that

∥Fx− Fy∥ ≤ κB∥x− y∥, ∀x, y ∈ B; (3)

(iii) F is said to be η-strongly monotone on C, if
there exists a positive constant η such that

⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2, ∀ x, y ∈ C; (4)

(iv) T is said to be a κ-strict pseudo-contraction
if there exists a constant κ ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2+κ∥(I−T )x− (I−T )y∥2,
∀ x, y ∈ C.

Specially, T is said to be nonexpansive on C if κ = 0.
Obviously, the class of nonexpansive mappings is the
proper subclass of strict pseudo-contractions.

The following lemma is known to us.

Lemma 1 Assume that C is a nonempty closed con-
vex subset of a real Hilbert space H , F : C → H is
Lipschitzian and strongly monotone, then variational
inequality (1) has a unique solution.

Let T : H → H be a nonexpansive mapping with the
set of fixed points Fix(T ) = {x ∈ C : Tx = x} and
F : H → H is L- Lipschitzian and η- strong mono-
tone. Yamada [8] studied the variational inequality
problem V I(Fix(T ), F ) and proposed a hybrid s-
teepest descent algorithm:

xn+1 = (I − µλnF )Txn (5)

and proved the strong convergence, where the se-
quence {λn} ⊂ (0, 1) and µ ∈ (0, 2η/L2).
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Theorem 2 (see [8]) Assume that H is a real Hilbert
space, T : H → H is nonexpansive such that
Fix(T ) ̸= ∅ and F : H → H is η-strongly monotone
and L-Lipschitzian. Fix a constant µ ∈ (0, 2η/L2).
Assume also that the sequence {λn} ⊂ (0, 1) satisfies
the conditions:

(i) λn → 0 ( n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Take x0 ∈ H arbitrarily and define {xn} by (5),
then {xn} converges strongly to the unique solution
of V I(Fix(T ), F ).

Yamada also studied the variational inequali-
ty problem defined on the common fixed points
set of finite nonexpansive mappings. Let H be
a Hilbert space, Tn (n = 1, · · · , N) are non-
expansive mappings from H into itself. F :
H → H be η-strongly monotone and Lipschitzian.
Assume

∩N
n=1 Fix(Tn) = Fix(T1T2 · · ·TN ) =

Fix(T2 · · ·TNT1) = · · · = Fix(TN − 1 · · ·T1TN ) =
Fix(TNTN−1 · · ·T2T1) ̸= ∅. For solving variational
inequality problem V I(

∩N
n=1 Fix(Tn), F ) , Yamada

proposed the following cyclic algorithm:

x1 = T1x0 − λ0µF (T1x0)

x2 = T2x1 − λ1µF (T2x1)

. . .

xN = TNxN−1 − λN−1µF (TNxN−1),

xN+1 = T1xN − λNµF (T1xN )

· · · .

Indeed, the algorithm above can be rewritten as:

xn+1 = T[n+1]xn − µλnF (T[n+1]xn) (6)

where µ ∈ (0, 2η/L2) , {λn} ⊂ (0, 1) and T[n] =
TnmodN , namely, T[n] is one of T1, T2, . . . , TN circu-
larly. Yamada got the following result:

Theorem 3 (see [8]) If {λn} ⊂ (0, 1) satisfies the
conditions:

(i) λn → 0 (n → ∞);
(ii)

∑∞
n=1 λn = ∞;

(iii)
∑∞

n=1 |λn+N − λn| < ∞ , or
limn→∞

λn
λn+N

= 1.
then the sequence {xn} generated by (6) con-
verges strongly to the unique solution x∗ of
V I(

∩N
n=1 Fix(Tn), F ).

Let F be a boundedly Lipschitzian and strongly
monotone operator and C be a closed convex subset
of H . Songnian He and Hong-Kun Xu [9] obtained
the following results:

Theorem 4 (see [9]) Assume that F : C → H is
boundedly Lipschitzian on C (i.e., for each bounded
subset B of C, F is Lipschizian on B). Assume also
that F is η-strongly monotone on C. Then variational
inequality (1) has a unique solution x∗ ∈ C such that

∥x∗ − u∥ ≤ 1

η
∥Fu∥, (7)

where u ∈ C is an arbitrary fixed point.

Songnian He and Hong-Kun Xu [9] also proved
that iterative algorithms can be devised to approxi-
mate this solution if F is a boundedly Lipschitzian
and strongly monotone operator and C is the set of
fixed points of a nonexpansive mapping. They invent-
ed a hybrid iterative algorithm:

xn+1 = Txn − λnµF (Txn), n ≥ 0. (8)

Theorem 5 (see [9]) Assume that F : H → H
is η−strongly monotone and boundedly Lipschitzian.
Fix an x0 ∈ C = Fix(T ) arbitrarily and let Ĉ be the
closed ball centered at x0 and with radius 2∥Fx0∥/η
(i.e., Ĉ = S(x0, 2∥Fx0∥/η)). Denote by κ̂ the Lips-
chitz constant of F on Ĉ, and take a constant µ satis-
fying 0 < µ < η/κ̂2. Assume a sequence {λn} in the
unit interval (0, 1) satisfies the conditions:

(i) λn → 0 ( n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Suppose that the sequence {xn} is generated by (8),
then {xn} converges strongly to the unique solution
x∗ of V I(Fix(T ), F ) .

Songnian He and Xiao-lan Liang [10] consid-
ered V I(C,F ) when F is a boundedly Lipschitzian
and strongly monotone operator and C is the set of
fixed points of a strict pseudo-contraction T : H →
H . Fix a point x0 ∈ Fix(T ) arbitrarily, set Ĉ =

S(x0, 2∥Fx0∥/η). Denote by L̂ the Lipschitz con-
stant of F on Ĉ. Fix the constant µ satisfying 0 < µ <

η/L̂2. Assume also that the sequences {αn} and {λn}
satisfy κ ≤ αn ≤ α < 1 for a constant α ∈ (0, 1)
and 0 < λn < 1 (n ≥ 0) respectively. Let Tαn =
αnI + (1 − αn)T and Tαn,λn = (I − µλnF )Tαn ,
define {xn} by the scheme:

xn+1 = Tαn,λnxn = (I − µλnF )Tαnxn (n ≥ 0).
(9)
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Theorem 6 (see [10]) If the sequences {λn} and
{αn} satisfy the conditions:

(i) λn → 0 (n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞ ,∑∞
n=0 |αn+1 − αn| < ∞, or limn→∞

λn−1

λn
= 1,

limn→∞
|αn−αn−1|

λn
= 0;

then {xn} generated by (9) converges strongly to the
unique solution x∗ of V I(Fix(T ), F ).

Songnian He and Xiao-lan Liang [10] also con-
sidered V I(C,F ) when F is a boundedly Lips-
chitzian and strongly monotone operator, C is the
set of common fixed points of finite κi-strict pseudo-
contractions Ti : H → H (i = 1, · · · , N). For such a
C, they designed the following hybrid iterative algo-
rithm:

For each i = 1, · · · , N, let

Tαi = αiI + (1− αi)Ti,

where the constant αi such that κi < αi < 1. They
defined the cyclic algorithm as follows:

x1 = Tα1x0 − µλ0F (Tα1x0),

x2 = Tα2x1 − µλ1F (Tα2x1),

. . .

xN = TαNxN−1 − µλN−1F (TαNxN−1),

xN+1 = Tα1xN − µλNF (Tα1xN ),

· · · .
Indeed, the algorithm above can be rewritten as:

xn+1 = Tα[n+1]
xn − µλnF (Tα[n+1]

xn), (10)

where Tα[n]
= α[n]I+(1−α[n])T[n], T[n] = TnmodN ,

namely, T[n] is one of T1, T2, . . . , TN circularly.

Theorem 7 (see [10]) If {λn} ⊂ (0, 1) satisfies the
conditions:

(i) λn → 0 (n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+N − λn| < ∞, or
limn→∞

λn
λn+N

= 1;

then the sequence {xn} generated by (10) con-
verges strongly to the unique solution x∗ of
V I(

∩N
n=1 Fix(Tn), F ).

In this paper, motivated by the research above, we
introduce general iterative algorithms for solving vari-
ational inequality problems V I(C,F ) where C is the
set of common fixed points of infinite non-expansive
mappings of Tn : H → H (n = 1, 2, · · ·) with

∩∞
n=1 Fix(Tn) ̸= ∅ and F : H → H is a η-strongly

monotone and Lipschitzian operator or is a η-strongly
monotone and boundedly Lipschitzian operator, re-
spectively. For the two cases of F , we will prove their
strong convergence respectively. These algorithms are
different from Yamada’s hybrid steepest descent algo-
rithms.

In order to deal with some problems involving the
common fixed point set of infinite nonexpensive map-
pings , W -mapping is often used, see [11-16]. The
W -mapping is defined by
Un,n+1 = I,
Un,n = γnTnUn,n+1 + (1− γn)I,
Un,n−1 = γn−1Tn−1Un,n + (1− γn−1)I,
...
Un,k = γkTkUn,k+1 + (1− γk)I,
Un,k−1 = γk−1Tk−1Un,k + (1− γk−1)I,
...
Un,2 = γ2T2Un,3 + (1− γ2)I,
Wn = Un,1 = γ1T1Un,2 + (1− γ1)I,
where {γi}(i = 1, 2 . . .) is a sequence of real number
such that 0 < γi < 1 and

∑∞
i=1 γi = 1. Such a map-

ping Wn is called a W -mapping generated by T1, T2,
. . . , Tn and γ1, γ2, . . ., γn.

Since W -mapping contains many composite op-
erations of {Tn} , it is complicated and it needs large
computational work. In this paper, we will adopt new
method for solving fixed point problem defined on
the common fixed points set of infinite nonexpansive
mappings. If {xk} (k = 1, 2, . . .) is a bounded se-
quence of H and {ωk} ⊂ (0, 1) such that

∑∞
k=1 ωk =

1. It is easy to verify that
∑∞

k=1 ωkxk is convergen-
t. Let Ln =

∑n
k=1

ωk
Sn

Tk (n = 1, 2, . . .), where
Sn =

∑n
k=1 ωk. We will replace W -mapping by Ln

to solve fixed point problems defined on the common
fixed points set of infinite non-expansive mappings.
Because Ln doesn’t contain many composite opera-
tions of {Tn} , it needs less computational work and
it is simplistic and easy to realize.

In this paper, we define {xn} by the scheme:

xn+1 = λn(I − µF )xn + (1− λn)Lnxn, (11)

where {λn} ⊂ (0, 1) and µ is a constant. We will
prove {xn} generated by (11) converges strongly to
the unique solution x∗ of V I(

∩∞
n=1 Fix(Tn), F ) un-

der some conditions.
We will use the notations:

• ⇀ for weak convergence and → for strong con-
vergence.

• ωw(xn) = {x : ∃ xnj ⇀ x} denotes the weak
ω-limit set of {xn}.
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2 Preliminaries
In this section, some lemmas are given which are im-
portant to prove our main results. Lemma 8 and Lem-
ma 10 are clearly to us.

Lemma 8 Let H be a real Hilbert space. The
following expressions hold.
(i) ∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2−

t(1− t)∥x− y∥2, ∀x, y ∈ H, ∀t ∈ [0, 1].

(ii) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀ x, y ∈ H.

Lemma 9 (see[17,18])Assume {an} is a sequence of
non-negative real numbers satisfying

an+1 ≤ (1− γn)an + γnδn + σn, n = 0, 1, 2 . . . .
(12)

where {γn}∞n=0 ⊂ (0, 1),{δn}∞n=0 and {σn}∞n=0 satis-
fy the conditions:

(i)
∑∞

n=1 γn = ∞,
(ii) limsupn→∞δn ≤ 0,
(iii)

∑∞
n=1 |σn| < ∞,

then limn→∞ an = 0.

Lemma 10 Let H be a real Hilbert space, F : H →
H be η-strongly monotone and L-Lipschitzian. Fix a
constant µ satisfying 0 < µ < 2η/L2, then I − µF
is a contraction with the contraction coefficient 1− τ ,
where τ = 1

2µ(2η − µL2).

Lemma 11 (see [19]) Let C be a nonempty closed
convex subset of a real Hilbert space H and T : C →
C a nonexpansive mapping. If a sequence {xn} in C
such that xn ⇀ z and (I − T )xn → y, then (I −
T )z = y.

Lemma 12 (see [16]) Assume that T : H → H is a
κ-strict pseudo-contraction, and the constant α satis-
fies κ ≤ α < 1. Let

Tα = αI + (1− α)T, (13)

then Tα is nonexpansive and Fix(Tα) = Fix(T ).

Lemma 13 Let H be a real Hilbert space, {xk} ⊂ H
is bounded, then

∥
∞∑
k=1

ωkxk∥2 =
∞∑
k=1

ωk∥xk∥2−
∑

1≤k<l<∞
ωkωl∥xk−xl∥2.

(14)

Proof: For any positive integer m, let Sm =∑m
k=1 ωk. From Lemma 8 (i) we can get that

∥
∞∑
k=1

ωkxk∥2

= ∥
m∑
k=1

ωkxk +
∞∑

k=m+1

ωkxk∥2

= ∥
m∑
k=1

ωkxk∥2 + 2⟨
m∑
k=1

ωkxk,
∞∑

k=m+1

ωkxk⟩

+∥
∞∑

k=m+1

ωkxk∥2

= ∥Sm

m∑
k=1

ωkxk/Sm∥2 +Rm

= S2
m[

m∑
k=1

ωk∥xk∥2/Sm − 1/S2
m

∑
1≤k<l≤m

ωkωl∥xk

−xl∥2] +Rm

= Sm

m∑
k=1

ωk∥xk∥2 −
∑

1≤k<l≤m

ωkωl∥xk − xl∥2

+Rm

where Rm = 2⟨
∑m

k=1 ωkxk,
∑∞

k=m+1 ωkxk⟩ +

∥
∑∞

k=m+1 ωkxk∥2. As
∑∞

k=1 ωkxk is convergent,
then limm→∞Rm = 0 . Thus (14) follows from tak-
ing m → ∞ .

Lemma 14 Let H be a real Hilbert space and Tk :
H → H(k = 1, 2, · · ·) be all non-expansive map-
pings with

∩∞
k=1 Fix(Tk) ̸= ∅. Let T =

∑∞
k=1 ωkTk

(k = 1, 2, · · ·), where {ωk} ⊂ (0, 1) such that∑∞
k=1 ωk = 1 . Then T is a non-expansive mapping

and Fix(
∑∞

k=1 ωkTk) = ∩∞
k=1Fix(Tk).

Proof: Firstly, we have

∥Tx− Ty∥2

= ∥
∞∑
k=1

ωkTkx−
∞∑
k=1

ωkTky∥2

= ∥
∞∑
k=1

ωk(Tkx− Tky)∥2

≤
∞∑
k=1

ωk∥Tkx− Tky∥2

= ∥x− y∥2 ∀x, y ∈ H.

T is a nonexpansive mapping.
Secondly, it is obvious that ∩∞

k=1Fix(Tk) ⊂
Fix(

∑∞
k=1 ωkTk). Now we prove the inverse in-

clusion Fix(
∑∞

k=1 ωkTk) ⊂ ∩∞
k=1Fix(Tk). Tak-

ing a fixed point u ∈ ∩∞
k=1Fix(Tk), for any x ∈

Fix(
∑∞

k=1 ωkTk), we have form Lemma 13 that
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∥x− u∥2 = ∥
∞∑
k=1

ωkTkx− u∥2

= ∥
∞∑
k=1

ωk(Tkx− Tku)∥2

=
∞∑
k=1

ωk∥Tkx− Tku∥2

−
∑

1≤k<l<∞
ωkωl∥Tkx− Tlx∥2

≤
∞∑
k=1

ωk∥x− u∥2 −
∑

1≤k<l<∞
ωkωl∥Tkx− Tlx∥2

= ∥x− u∥2 −
∑

1≤k<l<∞
ωkωl∥Tkx− Tlx∥2.

Hence ∑
1≤k<l<∞

ωkωl∥Tkx− Tlx∥2 = 0.

This implies that Tkx = Tlx hold for all k, l =
1, 2, · · ·. Tlx =

∑∞
k=1 ωkTkx = x for every

l = 1, 2, · · ·. Then we get Fix(
∑∞

k=1 ωkTk) ⊂
∩∞
k=1Fix(Tk).

Lemma 15 Let H be a real Hilbert space and Tk :
H → H(k = 1, 2, · · ·) be all non-expansive map-
pings with

∩∞
k=1 Fix(Tk) ̸= ∅. Let T =

∑∞
k=1 ωkTk

where {ωk} ⊂ (0, 1) such that
∑∞

k=1 ωk = 1. Assume
Ln =

∑n
k=1 ωkTk/Sn , where Sn =

∑n
k=1 ωk. Ln

uniformly converges to T in each bounded subset S in
H .

Proof: Notice S is bounded and {Tk} are non-
expansive mappings, so M = supx∈S,k≥1 ∥Tkx∥ <
∞. For all x ∈ S, we have

∥Lnx− Tx∥

= ∥
n∑

k=1

ωkTkx/Sn −
∞∑
k=1

ωkTkx∥

= ∥
n∑

k=1

(ωk − ωkSn)Tkx/Sn −
∞∑

k=n+1

ωkTkx∥

≤ ∥
n∑

k=1

(1− Sn)ωkTkx/Sn∥+ ∥
∞∑

k=n+1

ωkTkx∥

≤ (1− Sn)/Sn

n∑
k=1

ωk∥Tkx∥+
∞∑

k=n+1

ωk∥Tkx∥.

≤ M(1− Sn)/Sn +M
∞∑

k=n+1

ωk.

Observe that (1− Sn)/Sn → 0 and
∑∞

k=n+1 ωk → 0
as n → ∞, we obtain ∥Lnx− Tx∥ → 0 (n → ∞).

Lemma 16 (see[20]) Let C be a nonempty closed
convex subset of a real Hilbert space H . Given x ∈ H
and z ∈ C , then z = PCx (i.e., z is metric projection
of x on C and z satisfies ∥x−z∥ = inf{∥x−y∥; ∀y ∈
C}). if and only if there holds the relation:

⟨x− z, y − z⟩ ≤ 0 ∀y ∈ C. (15)

3 Main results
In this section , we always assume that {Tn}
(n = 1, 2, · · ·) is a sequence of nonexpensive map-
pings from H to itself with

∩∞
n=1 Fix(Tn) ̸= ∅,

Tx =
∑∞

n=1 ωnTnx with {ωk} ⊂ (0, 1) such that∑∞
k=1 ωk = 1 and Ln =

∑n
k=1 ωkTk/Sn(n = 1, 2...)

with Sn =
∑n

k=1 ωk. By Lemma 15, Ln

uniformly converges to T on every bound-
ed subset S in H . By Lemma 14, we ob-
tain that Fix(

∑∞
k=1 ωkTk) = ∩∞

k=1Fix(Tk),
thus V I(

∩∞
n=1 Fix(Tn), F ) is equivalent to

VI(Fix(T ), F ).

Now we consider V I(
∩∞

n=1 Fix(Tn), F ), where
F : H → H is η-strongly monotone and
L-Lipschitzian. It follows from Lemma 1 that
V I(

∩∞
n=1 Fix(Tn), F ) has a unique solution x∗ sat-

isfying

⟨Fx∗, x− x∗⟩ ≥ 0, ∀ x ∈
∞∩
n=1

Fix(Tn). (16)

Our first result is as follow.

Theorem 17 Assume that F : H → H is η-strongly
monotone and L-Lipschitzian. Fix a constant µ ∈
(0, 2η/L2) , {λn} ⊂ (0, 1) satisfies the conditions:

(i) λn → 0 ( n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Take x0 ∈ H arbitrarily and define {xn} by (11),
then {xn} converges strongly to the unique solution
of V I(

∩∞
n=1 Fix(Tn), F ).

Proof: We will prove the result by three steps.
Step 1.Show that {xn} is bounded. By Lemma 10,
I − µF is a contraction with the coefficient 1 − τ ,
where τ = 1

2µ(2η − µL2). Notice x∗ ∈ Fix(T ) and
T : H → H is nonexpansive, we have

∥xn+1 − x∗∥
= ∥λn(I − µF )xn + (1− λn)Lnxn − x∗∥
= ∥λn[(I − µF )xn − x∗] + (1− λn)(Lnxn − x∗)∥
= ∥λn[(I−µF )xn−x∗]+(1−λn)(Lnxn − Lnx

∗)∥
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≤ λn∥(I−µF )xn−x∗∥+(1−λn)∥Lnxn−Lnx
∗∥

≤ λn∥(I − µF )xn − x∗∥+ (1− λn)∥xn − x∗∥
= λn∥(I − µF )xn − (I − µF )x∗ − µFx∗∥

+(1− λn)∥xn − x∗∥
≤ λn∥(I − µF )xn − (I − µF )x∗∥+ λn∥µFx∗∥

+(1− λn)∥xn − x∗∥
≤ λn(1− τ)∥xn − x∗∥+ λn∥µFx∗∥+ (1− λn)

∥xn − x∗∥
= (1− λnτ)∥xn − x∗∥+ λnµ∥Fx∗∥
= (1− λnτ)∥xn − x∗∥+ λnµτ∥Fx∗∥/τ

≤ max{∥xn − x∗∥, µ
τ
∥Fx∗∥}.

By induction we get

∥xn+1 − x∗∥ ≤ max{∥x0 − x∗∥, µτ ∥Fx∗∥}.

Thus {xn} is bounded. Since Ln(n = 1, 2...) is non-
expansive and F is L-Lipschitzian, we can get

∥Lnxn − Lnx
∗∥ ≤ max{∥x0 − x∗∥, µτ ∥Fx∗∥}

and

∥Fxn − Fx∗∥ ≤ Lmax{∥x0 − x∗∥, µτ ∥Fx∗∥},

then {Lnxn} and {Fxn} are also bounded.

Step 2. Show that limn→∞ ∥xn − Txn∥ = 0.
Firstly, we have from scheme (11) that

∥xn+1 − Lnxn∥
= ∥λn(I − µF )xn + (1− λn)Lnxn − Lnxn∥
= ∥λn(I − µF )xn − λnLnxn∥
≤ λn∥(I − µF )xn∥+ λn∥Lnxn∥.

By the condition (i) and {Lnxn} and {Fxn} are
bounded , we obtain ∥xn+1 − Lnxn∥ → 0 (n → ∞).

Secondly, we prove limn→∞ ∥xn+1 − xn∥ = 0.
Let M = supn[∥(I − µF )xn∥+ ∥Lnxn−1∥] < ∞, it
concludes that

∥xn+1 − xn∥
= ∥λn(I − µF )xn + (1− λn)Lnxn − λn−1(I −

µF )xn−1 − (1− λn−1)Ln−1xn−1∥
= ∥λn(I − µF )xn − λn(I − µF )xn−1 + (1− λn)

(Lnxn − Lnxn−1) + (λn − λn−1)(I − µF )xn−1

−(1− λn−1)Ln−1xn−1 + (1− λn)Lnxn−1∥
≤ ∥λn(I − µF )xn − λn(I − µF )xn−1∥+ (1− λn)

∥xn − xn−1∥+ |λn − λn−1|∥(I − µF )xn−1∥
+∥(1− λn)Lnxn−1 − (1− λn−1)Ln−1xn−1∥

≤ λn(1− τ)∥xn − xn−1∥+ (1− λn)∥xn − xn−1∥

+|λn − λn−1|(∥(I − µF )xn−1∥) + ∥(1− λn)

Lnxn−1 − (1− λn−1)Lnxn−1 + (1− λn−1)

Lnxn−1 − (1− λn−1)Ln−1xn−1∥
≤ (1− λnτ)∥xn − xn−1∥+ |λn − λn−1|

(∥(I − µF )xn−1∥+ ∥Lnxn−1∥)
+(1− λn)∥Lnxn−1 − Ln−1xn−1∥

≤ (1− λnτ)∥xn − xn−1∥+ |λn − λn−1|M
+(1− λn)∥Lnxn−1 − Ln−1xn−1∥.

Notice that {xn}is bounded again, there exists a con-
stant M1 ≥ 0 such that supk,l≥1 ∥Tkxl∥ ≤ M1, we
have

∥Lnxn−1 − Ln−1xn−1∥

= ∥
n∑

k=1

ωkTkxn−1/Sn −
n−1∑
k=1

ωkTkxn−1/Sn−1∥

= ∥ωnTnxn−1/Sn +
n−1∑
k=1

(−ωn)ωkTkxn−1/SnSn−1∥

≤ ∥ωnTnxn−1/Sn∥+
n−1∑
k=1

ωnωk/SnSn−1∥Tkxn−1∥

≤ ωnM1/Sn + ωnM1/Sn

= 2ωnM1/Sn,

consequently,

∞∑
n=1

∥Lnxn−1 − Ln−1xn−1∥ ≤ 2M1

∞∑
n=1

ωn/Sn.

Since
∑∞

n=1 ωn/Sn is convergent, it is easy to see that∑∞
n=1 ∥Lnxn−1−Ln−1xn−1∥ is also convergent. Us-

ing Lemma 9, it follows ∥xn+1−xn∥ → 0 (n → ∞).
It is easy to have

∥xn − Txn∥
= ∥xn − xn+1 + xn+1 − Lnxn + Lnxn − Txn∥
≤ ∥xn+1 − xn∥+∥xn+1−Lnxn∥+∥Lnxn−Txn∥.

By Lemma 15 , we obtain ∥xn−Txn∥ → 0 (n → ∞).
It follows from Lemma 11 that ωw(xn) ⊂ Fix(T ).

Step 3. Show that limn→∞ ∥xn − x∗∥ = 0. By Lem-
ma 8 (ii), we obtain

∥xn+1 − x∗∥2

= ∥λn(I − µF )xn + (1− λn)Lnxn − x∗∥2

= ∥λn(I−µF )xn−λnx
∗+(1−λn)(Lnxn−Lnx

∗)∥2

= ∥λn(I − µF )xn − λn(I − µFx∗)− λnµFx∗

−(1− λn)(Lnxn − Lnx
∗)∥2

≤ ∥λn(I − µF )xn − λn(I − µFx∗)− (1− λn)
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(Lnxn − Lnx
∗)∥2 + 2⟨−λnµFx∗, xn+1 − x∗⟩

≤ λn(1− τ)∥xn − x∗∥+ (1− λn)∥xn − x∗)∥
+2⟨−λnµFx∗, xn+1 − x∗⟩

≤ (1−τλn)∥xn−x∗∥2+2µλn⟨−Fx∗, xn+1−x∗⟩.

In fact, there exists a subsequence {xnj} ⊂ {xn} such
that

lim sup
n→∞

⟨−Fx∗, xn − x∗⟩ = lim
j→∞

⟨−Fx∗, xnj − x∗⟩.

Without loss of generality, we may further assume that
xnj ⇀ x̃ ∈ Fix(T ). Since x∗ is the unique solution
of V I(Fix(T ), F ), we obtain

lim sup
n→∞

⟨−Fx∗, xn − x∗⟩ = lim
j→∞

⟨−Fx∗, xnj − x∗⟩

= −⟨Fx∗, x̃− x∗⟩ ≤ 0.

Finally , We conclude that limn→∞ ∥xn − x∗∥ = 0
from the conditions (i)-(iii) and Lemma 9 .

By Theorem 17 , we get one algorithm for find-
ing the common fixed point with minimum norm of
infinite nonexpansive mappings.

Corollary 18 Let {xn+1} be determined by the
scheme:

xn+1 = λnγxn + (1− λn)Lnxn (17)

where γ ∈ (−1, 1) and {λn} ⊂ (0, 1) satisfies the
conditions:

(i) λn → 0( n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Then xn → P∩Fix(Tn)

0.

Proof: Taking F = I in (11) , we obtain L = 1 and
η = 1 . Fix a constant µ ∈ (0, 2η/L2) = (0, 2), it
concludes that −1 < 1 − µ < 1. Let γ = 1 − µ ,
then (11) was rewritten into (17). Using Theorem 17,
{xn} converges strongly to the unique solution x† of
V I(

∩∞
n=1 Fix(Tn), F ), that is

⟨x†, x− x†⟩ ≥ 0, ∀ x ∈
∞∩
n=1

Fix(Tn). (18)

Hence

⟨0−x†, x−x†⟩ ≤ 0, ∀ x ∈
∞∩
n=1

Fix(Tn). (19)

Using Lemma 16 and (19), we have that x† =
P∩Fix(Tn)

0.

Now we turn to discussing
V I(

∩∞
n=1 Fix(Tn), F ) where F is a bounded-

ly Lipschitzian and strongly monotone operator.
Fix a point x0 ∈

∩∞
n=1 Fix(Tn) arbitrarily, set

Ĉ = S(x0, 2∥Fx0∥/η). Denote by L̂ the Lipschitz
constant of F on Ĉ. Fix the constant µ satisfying
0 < µ < η/L̂2. It follows from Theorem 4 that
V I(

∩∞
n=1 Fix(Tn), F ) has a unique solution x∗.

Our second main result is as follow.

Theorem 19 Assume that F : H → H is a bounded-
ly Lipschitzian and strongly monotone operator. Fix
a point x0 ∈

∩∞
n=1 Fix(Tn) arbitrarily, set Ĉ =

S(x0, 2∥Fx0∥/η). Denote by L̂ the Lipschitz constant
of F on Ĉ. Fix a constant µ satisfying 0 < µ < η/L̂2.
Suppose {λn} ⊂ (0, 1) satisfies the conditions:

(i) λn → 0( n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Take x0 ∈

∩∞
n=1 Fix(Tn) arbitrarily and define {xn}

by (11), then {xn} converges strongly to the unique
solution of V I(

∩∞
n=1 Fix(Tn), F ).

Proof: We will also divide the proof into three steps.
Step 1. We prove that xn ∈ Ĉ for all n ≥ 0 by
induction. It is trivial that x0 ∈ Ĉ. Suppose we have
proved xn ∈ Ĉ, that is

∥xn − x0∥ ≤ 2∥Fx0∥/η. (20)

By Lemma 10, I − µF is a contraction on Ĉ with the
contraction coefficient 1 − τ̂ , where τ̂ = 1

2µ(2η −
µL̂2). Notice Ln : H → H is nonexpansive, we have

∥xn+1 − x0∥
= ∥λn(I − µF )xn + (1− λn)Lnxn − x0∥
= ∥λn[(I−µF )xn−x0]+(1−λn)(Lnxn−x0)∥
= ∥λn[(I−µF )xn−x0]+(1−λn)(Lnxn−Lnx0)∥
≤ λn∥(I−µF )xn−x0∥+(1−λn)∥Lnxn−Lnx0∥
≤ λn∥(I − µF )xn − x0∥+ (1− λn)∥xn − x0∥
= λn∥(I − µF )xn − (I − µF )x0 − µFx0∥

+(1− λn)∥xn − x0∥
≤ λn∥(I − µF )xn − (I − µF )x0∥+ λn∥µFx0∥

+(1− λn)∥xn − x0∥
≤ λn(1− τ̂)∥xn − x0∥+ λn∥µFx0∥+ (1− λn)

∥xn − x0∥
= (1− λnτ̂)∥xn − x0∥+ λnµ∥Fx0∥
= (1− λnτ̂)∥xn − x0∥+ λnµτ̂∥Fx0∥/τ̂

≤ max{∥xn − x0∥,
µ

τ̂
∥Fx0∥}.

≤ max{2
η
,
µ

τ̂
}∥Fx0∥.
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On the other hand, since 0 < µ < η/L̂2 and τ̂ =
1
2µ(2η − µL̂2), we get

µ

τ
=

µ
1
2µ(2η − µL̂2)

=
2

η + (η − µL̂2)
≤ 2

η

this implies that

∥xn+1 − x0∥ ≤ 2∥Fx0∥/η.

It implies that xn+1 ∈ Ĉ. Therefore, xn ∈ Ĉ for all
n ≥ 0 and {xn} is bounded.

Since Ln (n = 1, 2...) is nonexpansive and F is
L-Lipschitzian on Ĉ, we get

∥Lnxn − Lnx0∥ ≤ ∥xn − x0∥ ≤ 2∥Fx0∥/η

and

∥Fxn − Fx0∥ ≤ L̂∥xn − x0∥ ≤ 2L̂∥Fx0∥/η,

then {Lnxn} and {Fxn} are also bounded.

Step 2. Show that limn→∞ ∥xn − Txn∥ = 0. Firstly,
we have from scheme (11) that

∥xn+1 − Lnxn∥
= ∥λn(I − µF )xn + (1− λn)Lnxn − Lnxn∥
= ∥λn(I − µF )xn − λnLnxn∥
≤ λn∥(I − µF )xn∥+ λn∥Lnxn∥.

By the condition (i) and {Lnxn} and {Fxn} are
bounded , we obtain ∥xn+1 − Lnxn∥ → 0 (n → ∞).

Secondly, we prove limn→∞ ∥xn+1 − xn∥ = 0.
Let M = supn[∥(I − µF )xn∥ + ∥Lnxn∥] < ∞, we
can get

∥xn+1 − xn∥
= ∥λn(I − µF )xn + (1− λn)Lnxn − λn−1(I −

µF )xn−1 − (1− λn−1)Ln−1xn−1∥
= ∥λn(I − µF )xn−λn(I − µF )xn−1+(1− λn)

(Lnxn−Lnxn−1)+(λn−λn−1)(I−µF )xn−1

−(1− λn−1)Ln−1xn−1 + (1− λn)Lnxn−1∥
≤ ∥λn(I − µF )xn − λn(I − µF )xn−1∥+(1−λn)

∥xn − xn−1∥+ |λn − λn−1|∥(I − µF )xn−1∥
+∥(1− λn)Lnxn−1 − (1− λn−1)Ln−1xn−1∥

≤ λn(1− τ̂)∥xn − xn−1∥+ (1− λn)∥xn − xn−1∥
+|λn − λn−1|(∥(I − µF )xn−1∥) + ∥(1− λn)

Lnxn−1 − (1− λn−1)Lnxn−1 + (1− λn−1)

Lnxn−1 − (1− λn−1)Ln−1xn−1∥
≤ (1− λnτ̂)∥xn − xn−1∥+ |λn − λn−1|

(∥(I − µF )xn−1∥+ ∥Lnxn−1∥)
+(1− λn)∥Lnxn−1 − Ln−1xn−1∥

≤ (1− λnτ̂)∥xn − xn−1∥+ |λn − λn−1|M
+(1− λn)∥Lnxn−1 − Ln−1xn−1∥.

By the same proof in Theorem 17 , we conclude that
∥xn+1 − xn∥ → 0 (n → ∞). By triangle inequality
, we obtain ∥xn − Txn∥ → 0 (n → ∞). It follows
from Lemma 11 that ωw(xn) ⊂ Fix(T ).

Step 3. Show that limn→∞ ∥xn − x∗∥ = 0. By Lem-
ma 8(ii), we obtain

∥xn+1 − x∗∥2

= ∥λn(I − µF )xn + (1− λn)Lnxn − x∗∥2

= ∥λn(I − µF )xn − λnx
∗ + (1− λn)(Lnxn −

Lnx
∗)∥2

= ∥λn(I − µF )xn − λn(I − µFx∗)− λnµFx∗

−(1− λn)(Lnxn − Lnx
∗)∥2

≤ ∥λn(I − µF )xn − λn(I − µFx∗)− (1− λn)

(Lnxn − Lnx
∗)∥2 + 2⟨−λnµFx∗, xn+1 − x∗⟩

≤ λn(1− τ̂)∥xn − x∗∥+ (1− λn)∥xn − x∗)∥
+2⟨−λnµFx∗, xn+1 − x∗⟩

≤ (1−τ̂λn)∥xn−x∗∥2+2µλn⟨−Fx∗, xn+1−x∗⟩.

By the same proof in Theorem 17, we conclude that
limn→∞ ∥xn − x∗∥ = 0.

Remark 20 In the practical computation, we can get
a common fixed point in

∩∞
i=1 Fix(Ti) as the initial

iterative point by using any kind of algorithms, for ex-
ample, the algorithm 17 in Corollary 18 .

Now we apply the two results above to solve
variational inequalities defined on the common fixed
points set of infinite strict pseudo-contractions.

Let {Ti} (i = 1, 2, · · ·) is a sequence of
κi-strict pseudo-contractions from H to itself with∩∞

n=1 Fix(Tn) ̸= ∅. For any Ti , fix a constant αi

such that κi < αi < 1. Let Tαi = αiI + (1 − αi)Ti.
From Lemma 12, Tαi is a nonexpansive mapping and
Fix(Tαi) = Fix(Ti).

Let T̂ x =
∑∞

i=1 ωiTαix , where ωi satis-
fy ωi > 0 and

∑∞
i=1 ωi = 1. By Lemma

14, we get Fix(
∑∞

k=1 ωkTαi) =
∩∞

i=1 Fix(Tαi)

and T̂ is a nonexpansive mapping. It is easy
to get

∩∞
i=1 Fix(Ti) =

∩∞
i=1 Fix(Tαi) and∩∞

i=1 Fix(Ti) = Fix(T̂ ). Let L̂n =
∑n

i=1
ωi
Sn

Tαi ,
where Sn =

∑n
i=1 ωi (n = 1, 2, . . .). By Lemma 15,

L̂n uniformly converges to T̂ on every bounded subset
S in H . Thus V I(

∩∞
i=1 Fix(Ti), F ) is equivalent to

VI(Fix(T̂ ), F ) .
We define {xn} by the scheme:

xn+1 = λn(I − µF )xn + (1− λn)L̂nxn. (21)

By Theorem 17 and Theorem 19, we obtain the
following two results respectively.
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Theorem 21 Assume that F : H → H is η-strongly
monotone and L-Lipschitzian. Fix a constant µ ∈
(0, 2η/L2) , {λn} ⊂ (0, 1) satisfies the conditions:

(i) λn → 0 (n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Take x0 ∈ H arbitrarily and define {xn} by (21),
then {xn} converges strongly to the unique solution
of V I(

∩∞
n=1 Fix(Tn), F ).

Theorem 22 Assume that F : H → H is a bounded-
ly Lipschitzian and strongly monotone operator. Fix
a point x0 ∈

∩∞
n=1 Fix(Tn) arbitrarily, set Ĉ =

S(x0, 2∥Fx0∥/η). Denote by L̂ the Lipschitz constan-
t of F on Ĉ. Fix the constant µ satisfying 0 < µ <
η/L̂2.Suppose {λn} ⊂ (0, 1) satisfies the conditions:

(i) λn → 0 ( n → ∞);
(ii)

∑∞
n=0 λn = ∞;

(iii)
∑∞

n=0 |λn+1 − λn| < ∞, or
limn→∞

λn
λn+1

= 1.
Take x0 ∈

∩∞
n=1 Fix(Tn) arbitrarily and define {xn}

by (21), then {xn} converges strongly to the unique
solution of V I(

∩∞
n=1 Fix(Tn), F ).
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