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Abstract: New hybrid steepest descent algorithms which are different from Yamada’s hybrid steepest descent
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nonexpansive mappings. As the extensions of our main results , algorithms are also given for solving variational
inequalities defined on the common fixed points set of infinite x-strict pseudo-contractions.
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1 Introduction (741) F is said to be n-strongly monotone on C, if

. or there exists a positive constant n such that
Let H be a real Hilbert space with inner product (-, -) P "

and norm ||-||, let C' be a nonempty closed convex sub-
set of H, and let F' : C' — H be a nonlinear operator.

We consider the problem of finding a point z* € C , . . .
such that P g4p (1v) T is said to be a k-strict pseudo-contraction

if there exists a constant x € [0, 1) such that

(Fz*,x —2*) >0, VazeC. (1)

Tz —Ty|* < |z —y|? I-T)x — (I-T)y|
This is known as the variational inequality problem 1T yII” < llz = ylP+wliC Jo—( ol

(i.e., VI(C, F)), which is introduced initially and s- v,y el
tudied by Stampacchia [1] in 1964. In recent years, ) o ) )
variational inequality problems have been extended Specially, T is said to be nonexpansive on C'if & = 0.
to study a large variety of problems arising in struc- Obviously, the class Qf NONEXpansive mappings 18 the
tural analysis, economics, optimization, operations re- proper subclass of strict pseudo-contractions.

search and engineering sciences, see [2-7] and the ref- The following lemma is known to us.

erences therein.

Generally, F' is assumed to be strongly monotone Lemma 1 Assume that C' is a nonempty closed con-
and Lipschitzian. Relative definitions are stated as be- vex subset of a real Hilbert space H, F : C' — H is
low. Lipschitzian and strongly monotone, then variational

Let C be a nonempty closed and convex subset of inequality (1) has a unique solution.
areal Hilbert space H, F : C —- Hand T : C — C,
then Let T : H — H be a nonexpansive mapping with the

(i) Fis called Lipschitzian on C, if there exists a set of fixed points Fiiz(T) = {z € C': Tw = x} and
positive constant L such that F : H — H is L- Lipschitzian and 7- strong mono-

tone. Yamada [8] studied the variational inequality
|Fz — Fy| < Lllz —yll, Vae,yel; (2 problem VI(Fiz(T),F) and proposed a hybrid s-

(73) F is called boundedly Lipschitzian on C, if teepest descent algorithm:

for each nonempty bounded subset B of C, there ex-
ists a positive constant xp depending only on the set
B such that

Tnt1 = (I — pA\y F)Txy, %)

and proved the strong convergence, where the se-
|Fx — Fy|| < spller —yll, Vz,yeB; @) quence {\,} C (0,1) and p € (0,2n/L?).
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Theorem 2 (see [8]) Assume that H is a real Hilbert
space, T H — H is nonexpansive such that
Fix(T) # 0 and F : H — H is n-strongly monotone
and L-Lipschitzian. Fix a constant i € (0,2n/L?).
Assume also that the sequence {\,} C (0, 1) satisfies
the conditions:

(i) A\, = 0 (n — 00);

(ii) ZZO:() )\n = o0y

(iii) D020 [ Ant1 — An| < 00, or

limp o0 22 = 1.
Take xo € H arbitrarily and define {x,} by (5),
then {x,} converges strongly to the unique solution

of VI(Fiz(T), F).

Yamada also studied the variational inequali-
ty problem defined on the common fixed points
set of finite nonexpansive mappings. Let H be
a Hilbert space, T, (n = 1,---,N) are non-
expansive mappings from H into itself. F
H — H be n-strongly monotone and Lipschitzian.
Assume N_, Fiz(T,) = Fiz(T\/Ty---Tn) =
sz(TQTNTl) == FZ.I‘(TN—lTlTN) =
Fix(TNTN—1---TyTy) # 0. For solving variational
inequality problem VI(NY_, Fiz(T,), F) , Yamada
proposed the following cyclic algorithm:

x1 = Tizg — NopF (Thzop)

o = Tgl‘l — /\1,LLF(T2$1)

ey =Tnen_1 — An_1puF (Tyzn-1),

rnt1 =Ty — AnpF (Tizy)

Indeed, the algorithm above can be rewritten as:
Tn+1 = T[n—&-l]xn - NAnF(T[n—i—an) (6)

where 1 € (0,2n/L*) , {\,} C (0,1) and T},; =
TmodnN» namely, T[n} is one of 1,15, ..., Ty circu-
larly. Yamada got the following result:

Theorem 3 (see [8]) If {\,} C (0,1) satisfies the
conditions:

(i) \p, = 0 (n — 00);

(ii) Y0 i Ap = 00;

(iii) Y0° 1 [AneN — An| < 00, or

lim,, o0 )\:ﬁ =
then the sequence {x,} generated by (6) con-
verges strongly to the unique solution x* of

VINY_, Fix(T,), F).
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Let F' be a boundedly Lipschitzian and strongly
monotone operator and C' be a closed convex subset
of H. Songnian He and Hong-Kun Xu [9] obtained
the following results:

Theorem 4 (see [9]) Assume that F : C — H is
boundedly Lipschitzian on C (i.e., for each bounded
subset B of C, F is Lipschizian on B). Assume also
that F' is n-strongly monotone on C'. Then variational
inequality (1) has a unique solution x* € C' such that

1
l2" = ul] < EHFUH, M

where u € C'is an arbitrary fixed point.

Songnian He and Hong-Kun Xu [9] also proved
that iterative algorithms can be devised to approxi-
mate this solution if F' is a boundedly Lipschitzian
and strongly monotone operator and C' is the set of
fixed points of a nonexpansive mapping. They invent-
ed a hybrid iterative algorithm:

Tpy1 = Txy — AguF (Txy), n>0. 8

Theorem 5 (see [9]) Assume that FF : H — H
is n—strongly monotone and boundedly Lipschitzian.
Fix an xg € C = Fiz(T) arbitrarily and let C be the
closed ball centered at xo and with radius 2||Fxo||/n
(i.e., C = S(x0,2|Fxol|/n)). Denote by i the Lips-
chitz constant of F on C, and take a constant W satis-
fring 0 < p < n/k2. Assume a sequence {)\,} in the
unit interval (0, 1) satisfies the conditions:

(i) \n, = 0 (n — 00);

(ii) D02 g An = 005

(iii) Y02 o [ Ant1 — An| < o0, or

limy o0 32027 = 1.
Suppose that the sequence {x,} is generated by (8),

then {x,} converges strongly to the unique solution
x* of VI(Fix(T), F) .

Songnian He and Xiao-lan Liang [10] consid-
ered VI(C, F) when F is a boundedly Lipschitzian
and strongly monotone operator and C' is the set of
fixed points of a strict pseudo-contraction T' : H —
H. Fix a point 29 € Fiz(T) arbitrarily, set C' =
S(x0, 2| Fxo|/n). Denote by L the Lipschitz con-
stant of F on C'. Fix the constant wsatisfying 0 < p <
n/L2. Assume also that the sequences {c, } and {\, }
satisfy k < a,, < a < 1 for a constant « € (0, 1
and 0 < A, < 1 (n > 0) respectively. Let Ty,
anl + (1 — )T and T = (I — pA,F)T,,,
define {x,,} by the scheme:

~—

Tn+l = Tan)\nxn = — pAF)To, 0 (n>0).
©)
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Theorem 6 (see [10]) If the sequences {\,} and
{an} satisfy the conditions:

(i) \p = 0 (n— 00);

(ii) Y ploAn = 00;

(iii) Z;.ZO:O |)\n+1 - An‘ < 00,

Z?LOIO ’an+1 - O‘n| < o0, or hmn—)oo )\37;1

: QU —Qp—
hmn—>oo| n)\n 1 = 0;

then {x,} generatZd by (9) converges strongly to the
unique solution x* of VI(Fix(T), F).

:1’

Songnian He and Xiao-lan Liang [10] also con-
sidered VI(C,F) when F is a boundedly Lips-
chitzian and strongly monotone operator, C is the
set of common fixed points of finite x;-strict pseudo-
contractions T; : H — H (i = 1,---, N). For such a
C, they designed the following hybrid iterative algo-
rithm:

Foreachi=1,---, N, let

Tai =o;l + (1 — Ozi)TZ',

where the constant «; such that k; < «a; < 1. They
defined the cyclic algorithm as follows:

r1 = Talxo — MAOF(Tale)y

To = Tazl'l — MAlF(TDle),

N =ToytN-1 — pPAN-1F(TopyrN-1),

eN+1 = To,xN — PANE (To,2N),

Indeed, the algorithm above can be rewritten as:

Tn+l1l = Ta[,L+1]xn - ,U)\nF(Ta[nJrl]l'n)v (10)
where Ta[n] = Oz[n]f—i— (1 - O‘[n])T[n}’ T[n] = ThmodN
namely, T, is one of T, T3, ..., T'x circularly.

Theorem 7 (see [10]) If {\,} C (0, 1) satisfies the
conditions:

(i) Ay = 0 (n — 00);

(i) YopegAn = 00;

(iii) Z;’LO:OL)\HJFN — An| < 00, 0r
i 1
then the sequence {x,} generated by (10) con-
verges strongly to the unique solution z=* of
VIO, Fiz(T,), F).

limy, o0

In this paper, motivated by the research above, we
introduce general iterative algorithms for solving vari-
ational inequality problems VI(C, F') where C'is the
set of common fixed points of infinite non-expansive
mappings of 7,, : H — H (n = 1,2,---) with
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Mooy Fix(T,) # 0 and F : H — H is a n-strongly
monotone and Lipschitzian operator or is a n-strongly
monotone and boundedly Lipschitzian operator, re-
spectively. For the two cases of F', we will prove their
strong convergence respectively. These algorithms are
different from Yamada’s hybrid steepest descent algo-
rithms.

In order to deal with some problems involving the
common fixed point set of infinite nonexpensive map-
pings , W-mapping is often used, see [11-16]. The
W -mapping is defined by
Un,n+1 = I,

Un,n = 'YnTnUn,nJrl + (1 - 'Yn)Ia
Un,nfl = ’YnflTnflUn,n + (1 - 'Ynfl)la

Uni = TeUngr1 + (1 — )1,
Unji—1=Y-1Tk-1Un e + (1 — 1)1,

Un2 =7ThU,3+ (1 — )1,
Wy =Un1 = T1Up2 + (1 —m1)1,
where {v;}(i = 1,2...) is a sequence of real number
such that 0 < 7; < 1 and > ;2; v; = 1. Such a map-
ping W, is called a W-mapping generated by 171, 15,
oo, Thand 1, v, -, Yne

Since W-mapping contains many composite op-
erations of {7, } , it is complicated and it needs large
computational work. In this paper, we will adopt new
method for solving fixed point problem defined on
the common fixed points set of infinite nonexpansive
mappings. If {zx} (k = 1,2,...) is a bounded se-
quence of H and {wy} C (0,1) such thatd 32, wi =
1. It is easy to verify that > 7° ; wpxy is convergen-
t. Let L, = 35 &Tp (n = 1,2,...), where
Sp = > p—; wk. We will replace W-mapping by L,
to solve fixed point problems defined on the common
fixed points set of infinite non-expansive mappings.
Because L,, doesn’t contain many composite opera-
tions of {7},} , it needs less computational work and
it is simplistic and easy to realize.

In this paper, we define {x,,} by the scheme:

Tnt1 = (I — pF)xp + (1 — \p) Lpxy,  (11)
where {\,} C (0,1) and u is a constant. We will
prove {z,} generated by (11) converges strongly to
the unique solution z* of VI(No2; Fix(T,), F') un-
der some conditions.

We will use the notations:

e — for weak convergence and — for strong con-
vergence.

® wy(ry) = {z : 3 »,, — x} denotes the weak
w-limit set of {z,, }.
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2 Preliminaries

In this section, some lemmas are given which are im-
portant to prove our main results. Lemma 8 and Lem-
ma 10 are clearly to us.

Lemma8 Letr H be a real Hilbert space. The
following expressions hold.

(i) |tz + (1 =t)yl* = tl|? + (1 - ) ]lylI*-

t1 =)o -yl Va,y € B,V [0,1].

(ii) |z +yl* < [|z]* +2(y,x +y), V a,y€ H.

Lemma 9 (see[17,18])Assume {ay} is a sequence of
non-negative real numbers satisfying

ant1 < (1 —yn)an + yn +on, n=0,1,2....
(12)

where {7y, }°2 o C (0,1),{0n}52 and {0, }52 satis-
[y the conditions:

(i)3 01 Y = 00,

(i) limsupn—000n < 0,

(i)Y on=y |on| < oo,
then lim,,_,c an, = 0.

Lemma 10 Let H be a real Hilbert space, F' : H —
H be n-strongly monotone and L-Lipschitzian. Fix a
constant y satisfying 0 < p < 2n/L? then I — uF
is a contraction with the contraction coefficient 1 — T,
where T = %M(Qn — puL?).

Lemma 11 (see [19]) Let C be a nonempty closed
convex subset of a real Hilbert space H andT : C —
C' a nonexpansive mapping. If a sequence {x,,} in C
such that x,, — z and (I — T)x,, — vy, then (I —
T)z =y.

Lemma 12 (see [16]) Assume thatT : H — H isa
k-strict pseudo-contraction, and the constant o satis-
fiesk < a < 1. Let

To=al +(1—a)T, (13)

then T, is nonexpansive and Fix(T,) = Fiz(T).

Lemma 13 Let H be a real Hilbert space, {x} C H
is bounded, then

o0 o0
1> wezl? = willzel™= D
k=1 k=1

1<k<I<oc0

(14)
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Proof: For any positive integer m, let S,, =
> peq wk. From Lemma 8 (i) we can get that

o0
1> wiagl®
k=1

m
= | Z WgTk +
k=1

o0
Z wkl'kHQ

k=m+1
m m o0
= 1> wrakl? +200 werk, Y wrak)
k=1 k=1 k=m-+1
o0
Y wpal?
k=m+1
m
= |1Sn Y wkmk/Sml* + R
P
m
= ShD willzkl?/Sm —1/S0 Y wrwillzk
k=1 1<k<l<m
—z1%] + R
m
= Sy welmll® = . wrwillek — @)
=1 1<k<i<m
+Rn
where R, = 20071 WkTk, Y peme1 WkTE) +

| 30 gt wexk|[®. As S22 wgay, is convergent,
then lim,,, .o, R, = 0. Thus (14) follows from tak-
ingm — 00.

Lemma 14 Let H be a real Hilbert space and Ty, :
H — H(k = 1,2,---) be all non-expansive map-
pings with 72y Fix(Ty) # 0. Let T = > 32, wiTk
(k = 1,2,--+), where {wp} C (0,1) such that
Yheiwk = 1. Then T is a non-expansive mapping
and Fiz (Y 52 wiply) = N2 Fix(Ty).

Proof: Firstly, we have

1Tz — Ty

o (e.0]
= > wiThr =Y wiThyl?
k=1 k=1

o
= | D w(The — Tyy)|?
k=1

oo
< Y wllThr — Tryl?
k=1

= o —yl* Vo,yeH.

T is a nonexpansive mapping.

Secondly, it is obvious that N2, Fix(T}) C
Fizx (352 wiTk). Now we prove the inverse in-
clusion Fiz(} 5o wpTy) C Ny Fix(Ty). Tak-
ing a fixed point v € N, Fiz(T}), for any =z €
Fiz (372, wiTk), we have form Lemma 13 that
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o
le = wl® = || Y wi T — wl?
k=1

o
= 1Y wr(Thr — Trw)||?
k=1

o
= > wilTha — Tyul®
=1

- Y wpw||Ter — Tiz|?
1<k<il<o0

oo
< > wrllr—ulP = Y wwl| T — Tzl
k=1 1<k<l<oo
= H:J;—UHQ— Z wkleTkx—TZtz.
1<k<l<00
Hence

wrw|| Tz — TZJUH2 =

>

1<k<I<o0

This implies that Ty = T;x hold for all k,I =
1,2,---. Tz = Y2 wTirx = x for every
[ = 1,2,---. Then we get Fizx(} ;o wplr) C
N2 Fix(Ty).

Lemma 15 Let H be a real Hilbert space and Ty, :
H — H(k = 1,2,--+) be all non-expansive map-
pings with pe; Fix(Ty,) # 0. Let T = Y72 | wi Tk
where {wi} C (0,1) such that "3~ wi, = 1. Assume
L, = >} wkTy/Sn , where Sy, = Y 1_wg. Ly
uniformly converges to T in each bounded subset S in
H.

Proof: Notice S is bounded and {7}} are non-
expansive mappings, so M = sup,cg;>1 [|Th| <
oo. For all x € S, we have

| Lpz — Tx||

n 00
= H Z wkax/Sn — Z wkamH
k=1 k=1

= HZ(wk_wkSn)Tkx/Sn— Z wkaxH
k=1 k=n-+1

< HZ 1— Su)wrTiz/Sall + 11 Y wiThzl]
k= n+1

< (1-5n)/Sn Zwk||Tk$H+ Z wi || Thx]|-
k=n-+1

k=n+1

Observe that (1 — S,)/S, — 0and > 72wy — 0
as n — oo, we obtain || L,z — T'z|| = 0 (n — 00).
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Lemma 16 (see[20]) Let C be a nonempty closed
convex subset of a real Hilbert space H. Givenx € H
and z € C, then z = Pgx (i.e., z is metric projection
of x on C and z satisfies ||x — z|| = inf{||z—y||;Vy €
C'}). if and only if there holds the relation:

(x—z,y—2) <0 VYyeC. (15)

3 Main results

In this section , we always assume that {7),}

(n = 1,2,--+) is a sequence of nonexpensive map-
pings frorn H to itself with o2, Fiz(T,) # 0,
Tr = Y 02wy Tpx with {wr} C (0,1) such that

220:1 Wg = 1 and Ln = ZZ:I wka/Sn(n = 1,2...)
with S, = >} ; wg. By Lemma 15, L,
uniformly converges to 7' on every bound-
ed subset S in H. By Lemma 14, we ob-
tain that Fim(zzozlwka) = ﬂioleix(Tk),
thus VI(N,>, Fiz(T,),F) is equivalent to
VI(Fixz(T), F).

Now we consider VI(N,2; Fiz(T,), F), where
F : H — H is n-strongly monotone and
L-Lipschitzian. It follows from Lemma 1 that
VIO, Fiz(T,), F) has a unique solution z* sat-
isfying

(Fx*,x —x%) >0, VmEﬂFm: n)-

n=1

(16)

Our first result is as follow.

Theorem 17 Assume that F' : H — H is n-strongly
monotone and L-Lipschitzian. Fix a constant p €
(0,2n/L?), {\n} C (0,1) satisfies the conditions:
(i) \p, — 0 (n — 00);
(”) Z?:O An -
(i)Yo | Ant1 —
lim,,— 00 ﬁ =1.
Take xy € H arbitrarily and define {x,} by (11),
then {x,} converges strongly to the unique solution

of VI(Nory Fix(T),), F).

An| < 00, or

Proof: We will prove the result by three steps.

Step 1.Show that {z,} is bounded. By Lemma 10,
I — pF' is a contraction with the coefficient 1 — T,
where 7 = (21 — pL?). Notice z* € Fiz(T) and
T : H — H is nonexpansive, we have

[Zn 41 — 27|

= Al = pF)zn + (1 = Ap)Lnzp — 27|

= [An[( = pF)zn — 2] + (1 = Ap) (Lpzn — 7))
— Lypa®)||

= Pl —pF)zn =]+ (1= An) (L
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< Aall(I=pF)zn =2+ (1= An)|| Ln®n — Lna” |

< All(F = pF)zn — 2 4 (1= An)l|lzn — 27|

— AT = pP)en — (I — pF)e* — pFa|
(L= An)|zn — 27

< (I = pF)zn = (I = pF)2"|| + A pFa”|
(1= Aa)lzn — 2

< Al =7z = 2" + AnllpF 27 + (1= An)

Hxn - $*”

(1= Xar)lle = & + Apl P

= (U= 2an)lzn — 2" + Appr || Fa™|| /7
< max{fle, " £[IFa]}.

By induction we get
[znr — 2™ < max{[lzo — 27|, L[| Fz*[}.

Thus {z,} is bounded. Since L,(n = 1,2...) is non-
expansive and F' is L-Lipschitzian, we can get

[Lnwn — Lna™|| < max{|lzo — 2*[|, £ | Fz*||}

and
[Fan — Fa*|| < Lmax{|zo — ™[], 2l F*[|},
then {L,x,} and { F'z,, } are also bounded.

Step 2. Show that lim,,_,~ ||z, — Tz, || = 0.
Firstly, we have from scheme (11) that

Hanrl - Lnan
= Ml = pF)zy + (1= Ap) Lnzy
= H)‘N(I - IU’F)xn - )\nLnan
< )‘TLH(I - MF)xn” + AnHLnl‘nH

= Lyal|

By the condition (i) and {L,z,} and {Fx,} are
bounded , we obtain ||z,+1 — Lyxy,|| = 0 (n — 00).

Secondly, we prove lim,, oo ||Znt1 — Znl| = 0.
Let M = sup,,[[|(I = pF)an|| + || Lnzn—1[|] < oo, it
concludes that

[#n+1 = n||

= [\ — pF)xy + (1 — A\y) Lpzpy, —
pF)zn—1 — (1 = Ap—1) Ln—12n-1|

= || AT = pF)zp — A(I — pF)xpn—1+ (1 — \p)
(Lpxp — Lpzp—1) + (A — A1) (L — pF)xp—q
—(1 = A1) Lp—1mp—1 + (1 = \p) Lpzp—1]||

< Al = pF)zn = An(I = pF)an-a| + (1 = An)
[zn = @n—1ll + [An = Ana|[|[(1 = pF)zp |
+H[(1 = Ap)Lpwp—1 — (1 — A1) Lp— 101 ||

< Al =7)l[zn — zpall + (1 = An)l[2n — Tl

A1 (I —
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A = An—a|([[(1 = pF)zn 1)) + (1 = An)
Lyxn—1— (1= Xp—1)Lpzp—1+ (1 — A1)
Lypzn—1— (1= Ap—1)Ln—12Zn-1||
(1 =T [2n — Zo—1ll + [An — An—1]
(I(I = pF)zp 1|l + [ Lpnzn-1])
+(1 — M) || Lnxpn—1 — Lyp—12n—1]|
< (= n)llen = zn-all + [ An — Apa|M
+(1 = M) Lnxpn—1 — Lp—12n—1]|.

IN

Notice that {z,, }is bounded again, there exists a con-
stant My > 0 such that supy, ;> [|Tx2|| < M1, we
have -

||ann71 — Lp_1xn—1 H

n n—1
= I wiThan—1/Sn — > wiThan—1/Sn—1]|
k=1 k=1

n—1

HwnTn'xn—l/Sn + Z(_wn)wkawn—l/SnSn—l ”
k=1

n—1

HwnTn-rn—l/SnH + Z wnwk/SnSn—l ||Tk:37n—1 ||
k=1

< wan/Sn + wan/Sn

= 2wnM1/Sn7

IN

consequently,

00 0o
Z ||Lnxn—1 - Ln—lxn—lH < 2M, Z Wn/Sn
n=1

n=1

Since Y 72, wy /Sy is convergent, it is easy to see that
Yoo [ Ln®n—1— Ln—12n—1]| is also convergent. Us-
ing Lemma 9, it follows ||z, +1 — 2, || = 0 (n — 00).
It is easy to have

lzn — Ty
= ||xn — Tptl + Tpy1 — Lyxp + Ly, — Tan
|Zn+1 — Tull |1 Tnt1 — Lan ||+ || Ln@n —TTa|.

A

By Lemma 15, we obtain ||z,,—T'z,|| — 0 (n — 00).
It follows from Lemma 11 that wy, (z,,) C Fiz(T).

Step 3. Show that lim,,_,, ||z, — 2*|| = 0. By Lem-
ma 8 (ii), we obtain

lnsr — 2|
[An(I = wF)xy + (1 = \y) Ly, — 2*||?
= AT —pF)zy—Apz* +H1-N\,) (Lpwy — Lpx™) ||
= |AI = pF)zy — A(I — pFz*) — ApuFx™
—(1 = M) (Lpzy — Lpx™)|?
< AT = pF)x, — Ay(I — pFx™) — (1 — Ap)
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(Lpxzy, — Ln:):*)H2 + 2(= A puFz* 2y — %)
< A =7llen =2+ (1= Ap)llzn — 27|
F2(= A puF 2™ 2001 — 77)

< (=7 @n =22 42N (— Fa*, 2y — ).

In fact, there exists a subsequence {z,,, } C {x,} such
that

lim sup(—Fz*, x, —z").

—2%) = lim (- Fa", 2y,
n— oo

j—00

Without loss of generality, we may further assume that
Tp; — & € Fiz(T). Since x* is the unique solution
of VI(Fix(T), F), we obtain

limsup(—Fz*, z, — %) = lim (=F2", z,, — 2%)
n—o0 J—00
—(Fx*,z —z%) <0.
Finally , We conclude that lim,, o ||z, — 2| = 0

from the conditions (i)-(iii) and Lemma 9 .

By Theorem 17 , we get one algorithm for find-
ing the common fixed point with minimum norm of
infinite nonexpansive mappings.

Corollary 18  Ler {x,+1} be determined by the

scheme:

Tnt1 = A YT + (1 = Ap) Lpzyp a7n
where v € (—1,1) and {\,} C (0,1) satisfies the
conditions:

(i) \p = 0(n — 00);

(ii) > ploAn = 00,

(iii) Y02 o [ Ant1 — An| < o0, or

liInn—>c>o ﬂ =
Then x,, — Pﬂ Fix(Tn)O'

Proof: Taking F' = I in (11), we obtain L = 1 and
n = 1. Fix a constant p € (0,2n/L?) = (0,2), it
concludes that -1 < 1 —p < 1. Lety =1 —p,
then (11) was rewritten into (17). Using Theorem 17,
{z,,} converges strongly to the unique solution zl of
VIS, Fix(T,), F), that is

(zl,z—al) >0, Vae ) Fiz(T,). U8

n=1

Hence

(0—zl,z—2") <0, VYze ﬂ Fix(T,

n=1

n)- (19)

Using Lemma 16 and (19), we have that 2f =
P N Fix(Tn)O‘
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Now we turn to discussing
VI, Fiz(T,),F) where F is a bounded-
ly Lipschitzian and strongly monotone operator.
Fix a point zy € (i, Fix(Ty,) arbitrarily, set
C = S(xo,2|Fzo||/n). Denote by L the Lipschitz
constant of F' on C. Fix the constant w satisfying
0 < p < n/L% 1t follows from Theorem 4 that
VI(NeZ, Fiz(T),), F) has a unique solution z*.

Our second main result is as follow.

Theorem 19 Assume that ' : H — H is a bounded-
ly Lipschitzian and strongly monotone operator. Fix
a point xy € (N Fix(Ty,) arbitrarily, set C =
S(zo, 2||Fwol|/n). Denote by L the Lipschitz constant

of F on C. Fix a constant W satisfying 0 < p < 77/L2
Suppose {\,} C (0, 1) satisfies the conditions:

(i) A = 0(n — 00);

(”) 21010:0 )‘n -

(iii) St A1 —

limy, 00 11 .
Take xo € oo, Fix(T,) arbitrarily and define {x,,}
by (11), then {x,} converges strongly to the unique
solution of VI(Np=; Fiz(Ty,), F).

Proof: We will also divide the proof into three steps.
Step 1. We prove that z,, € C foralln > 0 by
induction. It is trivial that z¢ € C. Suppose we have
proved x,, € C, that is

[2n = wol| < 2[Fzol| /7.

An| < 00, or

(20)

By Lemma 10, I — pF is a contraction on C' with the
contraction coefficient 1 — 7, where 7 = %M(Q"? —

uﬁz). Notice L,, : H — H is nonexpansive, we have

[zn+1 — @0
= [[An{ = pF)an + (L = An)Lpzn — 0|
= Al = pF) 2 —x0]+ (1= An) (Lnn —20) |
[An[(L = pF)zn —x0]+ (1= An) (Ln@n — Lno) |
< all(I=pF)zn—xo||+ (1= An)|| Ln®n — Lnzo |
< Ml = pF)zn — w0l + (1 = An) [z — w0l
= Ml - MF)xn*(I*uF)xO*MFon
+(1 = An)llzn — 2ol
< Ml = pF)an — (I — pF)xo|| + An || pFxol|
(1 = An)llzn — 2ol|
< Al =7)|zn = ol + Anl[pF ol + (1= An)
[[n — 2o
= (1= D)llwn — zoll + Anpl| Fo|
= (1= Auf)|lzn — @oll + Anpf || Faol /7
< max{z, — aoll, I| Faof )
2 p
< max{;, ;}HF%H-
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On the other hand, since 0 < p < n/ L2 and 7+ =
$1(2n — pnL?), we get

B " _ 2 <2

T fu@n—pl?)  n+(m-pl?) "0
this implies that

[€nt1 = woll < 2[Fzol|/n.

It implies that z,, 41 € C. Therefore, x,, € C for all
n > 0and {z, } is bounded.
Since L, (n = 1,2...) is nonexpansive and F' is

L-Lipschitzian on C, we get

[Lnwn = Lnxol| < [lzn — 2ol < 2[[Fxoll/n

and
|Fan — Fol| < Lijan —aoll < 2L| Faol /n,
then {L,x,} and { F'z,,} are also bounded.

Step 2. Show that lim,,_, ||z, — Tz, || = 0. Firstly,
we have from scheme (11) that

Hanrl - Lnan
= Al —pF)zn + (1= Ap) Loy,
= A = pF)zn — A Lnza||

By the condition (i) and {L,z,} and {Fz,} are
bounded , we obtain ||z,4+1 — Lyxy,|| = 0 (n — 00).

Secondly, we prove lim,, oo ||Zn 1 — Zn|| = 0.
Let M = sup,[||(I — pF)xy|| + || Lnxs||] < oo, we
can get

— Lypan||

| Tnt1 — zal|

= ||\ — uF)xy + (1 — \p) Ly, —
pl )y 1 — (1= A1) L1201

= [|A({ — pF)xn—An(I — pF)zp_1+(1 — A\p)
(Lnzn—Lnzn-1)+An—An—1)({ = pF) 21
—(1 — )\n_l)Ln_la:n_l + (1 — /\n)LnCEn_lH

< AT = pF)xn — M(I — pF)zp1]|+(1=\,)
[2n = @n_1ll + [An = Anca[[|(1 = pF )z |
+[(1 =N Lpxp—1 — (1 — A1) Lp—12p—1|

< (1= F)|an = zn-1l| + (1 = Ap)|[n — 2n—1]
FAn = An—1|([(1 = pF)zn—1])) + (1 = An)
Lpxp—1— (1= Xp—1)Lpzp—1 + (1 — A1)
Lyxp—1 — (1= A1) Lpn—12pn—1]|

An1(I —

< (= D)en — 2p-1ll + [An = An-a]
(H(I - :U’F)xn—lu + ||Ln'rn—1H)
+(1 - )\n)HLnxnfl - Ln,1$n,1”
< (1 - )\n%)H'xn - J777,—1“ + |)\n - )\n—l‘M
+(1 - )\n)HLnxn—l - Ln—lfvn—lH-
E-ISSN: 2224-2880 90

He Songnian, Sun Wenwen

By the same proof in Theorem 17 , we conclude that
|Znt1 — zn|| — 0 (n — o0). By triangle inequality
, we obtain ||z, — Tx,|| — 0 (n — o0). It follows
from Lemma 11 that wy,(z,,) C Fiz(T).

Step 3. Show that lim,,_, ||z, — 2*|| = 0. By Lem-
ma 8(ii), we obtain

lnss — o[
[An(I = wF)xpy + (1 = \y) Ly, — z*||?
A (I — puF)zp — Apz™ + (1 — M) (Lpxy, —
L")
= ||A(I = pF)zy — A(I — pFz*) — AyuFax*
—(1 = X)) (Lnay — Lna®)||?
Al — pF)zp — Ap(I — pFz*) — (1 = \yp)
(Lpxzy, — Lnx*)H2 + 2(= A puFz*, xpy1 — %)
< A= ) am — 27 + (1 A)l2m — )]
+2(=ApuFz*, xpp1 — *)
< (=) |en—2 | 420 (— Fa*, 2y — ).

IN

By the same proof in Theorem 17, we conclude that
limy, o0 ||2n — 2*|| = 0.

Remark 20 In the practical computation, we can get
a common fixed point in (\;2; Fix(T;) as the initial
iterative point by using any kind of algorithms, for ex-
ample, the algorithm 17 in Corollary 18 .

Now we apply the two results above to solve
variational inequalities defined on the common fixed
points set of infinite strict pseudo-contractions.

Let {T;} (i = 1,2,---) is a sequence of
Ki-strict pseudo-contractions from H to itself with
Moy Fixz(T,) # 0. For any T; , fix a constant «;
such that k; < oy < 1. Let Ty, = oI + (1 — o) T5.
From Lemma 12, T}, is a nonexpansive mapping and
Fix(Ty,) = Fix(T;).

Let T = Y%, wiTyx , where w; satis-
fy wi > 0 and > ;°;w; = 1. By Lemma
14, we get Fix(> 52, wiTly,) 2, Fix(Ty,;)
and T is a nonexpansive mapping. It is easy
to get N2, Fiz(T;) = (2 Fiz(T,,) and
NZ, Fiz(T;) = Fia(T). Let L, = Y, $iT,,,
where S, = Y 1" yw; (n=1,2,...). By Lemma 15,
Ly uniformly converges to T on every bounded subset
Sin H. Thus VI(N2, Fiz(T;), F) is equivalent to
VI(Fixz(T), F) .

We define {x,,} by the scheme:

Tyl = AL — pF)xy + (1 = A\y)Lpzy,.  (21)

By Theorem 17 and Theorem 19, we obtain the
following two results respectively.
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Theorem 21 Assume that F' : H — H is n-strongly
monotone and L-Lipschitzian. Fix a constant |, €
(0,2n/L?), {\,} C (0,1) satisfies the conditions:
(i) A\ = 0 (n — 00);
(”) ZZO:O )‘n = 00y
(iii) S5 o A1 — An| < 00, 0r
limy, 00 32027 = 1.
Take xo € H arbitrarily and define {x,} by (21),

then {x,} converges strongly to the unique solution
of VIV Fia(T,), F).

Theorem 22 Assume that F' : H — H is a bounded-
ly Lipschitzian and strongly monotone operator. Fix
a point xg € N, Fiz(T,) arbitrarily, set C' =
S(x0, 2| Fxo||/n). Denote by L the Lipschitz constan-
tof F on C. Fix the constant w satisfying 0 < p <
n/L?.Suppose {\,} C (0,1) satisfies the conditions:

(i) A\p = 0 (n— 00);

(ii) D029 An = 005

(iii) > 020 An+1 — An| < 00, or

n —

lim,,— 00 " .
Take xo € oo, Fix(T,) arbitrarily and define {x,,}
by (21), then {x,} converges strongly to the unique
solution of VI(Np~; Fiz(Ty,), F).
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