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Abstract  In most models of population dynamics, changes in population due to birth or harvesting are assumed 
to be time-independent, but many species reproduce or are caught only during a single period of the year. In 
this paper a single species stage-structured model with density-dependent maturation rate, birth pulse and 
harvesting pulse is formulated. Using the discrete dynamical system determined by its Poincare map, the 
existence and stability of nonnegative equilibrium is studied. Furthermore by simulation， a detailed study of 
the various dynamics are made including period doubling, period halfing, intermittency, crisis, nonunique 
dynamics and chaotic attractors. The occurrence of these complex dynamic behaviors is related to the fact that 
minor changes in parameter or initial values can strikingly change the dynamic behaviors of the system. Finally, 
the dynamic behavior of the system is compared when  μ  is used as a bifurcation parameter with that when 
b is used. 
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1 Introduction 
The description of the age structure of the 
population in the life history is an interesting 
problem in population dynamics, since in the natural 
world; there are many species whose individual 
members exhibit enormous diversity. 
Metamorphosis may carry the same individual 
through several totally different niches during a 
lifetime. Specialized stages may exist for dispersal 
or dormancy. And the vital rates (rates of survival, 
development, and reproduction) almost always 
depend on age, size, or development stage. 

Stage structure models have received much 
attention in recent years. There has been a fair 
amount of previous work on modeling with various 
stages of life history using continuous and discrete 
models. For example, TOMAD [1] gave two models 
to account for the dynamics of a consumer-resource 
system in which the consumers are divided into 
juveniles and adults; Zhang and Chen [2] 
established a stage-structured predator-prey model 
and investigated optimal harvesting policy; Wang [3] 
established a predator-prey model with stage struc- 
ture for the predator which improves the assumption 
that each individual predator has the same ability to 
capture prey. It is assumed that immature 
individuals and mature individuals of the predator 
are divided by a fixed age and that immature 

predators do not have the ability to attack prey; Lu 
and Chi [4] established a nonautonomous stage-
structured single-species dispersal model with 
harvesting of mature individuals in an N-patch 
environment, in which the individual members of 
the population have a life history that takes them 
through two stages：immature and mature; Ou and 
Luo [5] considered an autonomous predator-prey 
system in which individuals in the population may 
belong to one of two classes: the immature and the 
matures,  and the age to maturity is represented by a 
time delay; Derik and Jorge[6] studied the 
coexistence in a competitive parasite-host system 
with a stage-structured host; Bo and Yasuhiro[7] 
have proposed and studied a stage-structured 
population with two life stages, immature and 
mature, exposed to environmental hormone which is 
stored in the bodies for an interval τ  and gives 
damage to the reproductive ability of the population; 
Xiao and Chen [8] considered the dynamical 
behavior of a stage-structured SIR infectious disease 
model. This is not only because they are much 
simpler than the models governed by partial 
differential equations but also they can exhibit 
phenomena similar to those of partial differential 
models, and many important physiological 
parameters can be incorporated. 
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In above models it is invariably assumed that the 
mature reproduce or are harvested throughout the 
year, whereas it is often the case that births are 
seasonal or occur in regular pulses. The continuous 
reproduction (or harvest) of mature population is 
then removed from the model, and replaced by an 
annual birth pulse (or impulsive harvest). These 
models are subject to short-term perturbations which 
are often assumed to be in the form of impulses in 
the modeling process. Consequently, impulsive 
differential equations provide a natural description 
of such systems [9-11]. Equations of this kind are 
found in almost every domain of applied sciences. 
Numerous examples are given in Bainov’s and his 
collaborator's book [10]. Some impulsive equations 
have been recently introduced in population 
dynamics in relation to: vaccination [12-14], 
chemotherapeutic treatment of disease [15, 16], 
impulsive birth [17, 18] and biological impulsive 
control [19-22]. 
 
   In this paper, a stage-structured population model 
with pulse birth and pulse harvest of adult species is 
studied. It is supposed that the life history of the 
species is divided into two stages (immature and 
mature) and the maturity rate of juveniles is density 
dependent. The purpose of this paper is to study the 
effects of pulse harvesting rate and birth rate on 
dynamics of this model. In terms of the 
mathematical treatment, the presence of impulses 
gives the system a mixed nature, both continuous 
and discrete. The qualitative properties of the 
system are embodied in those of the discrete system 
which determines the state after a pulse in terms of 
the state after the previous pulse. Thus, in section 3, 
we deduce the stroboscopic map, where the map 
determines the number of immature population and 
mature population, immediately after each pulse 
birth at the discrete time m ( m is a positive integer). 
When the birth rates of mature population are 
influenced by the population density, the discrete 
dynamical system determined by the stroboscopic 
map becomes nonlinear. The population in the 
pulsed birth and harvest time is characterized not by 
an exponential growth rate, but by the existence and 
stability of equilibria, by the bifurcations that occur 
when stability is lost, and by the patterns of 
dynamics (cycles, chaos) that follow the 
bifurcations. 
 
2 Model formulation 

 
 Suppose that a population is divided into the 

class of juveniles denoted by )(tx , and that of 

adults denoted by )(ty . Juveniles are incapable of 
reproducing. To understand the effects of the 
competition between juveniles and adults, it is 
assumed that the dependence of vital rates on the 
population density is through a dependence upon a 
weighted total population size 

)()()( tytxtW += α  ,                       (1) 
where the competition coefficient 0>α measures 
the competition effects. Then, the dynamics of the 
population is governed by the following system of 
equations 
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The biological implications of all functions in 
equation (2) are illustrated by [23]. The dependence 
of vital rate on population density (rates of survival, 
death, and reproduction) found in biological 
literature is known as the Ricker function: 

.0,0,)( >>= − babeWG aW  
The dynamic behavior of model (2) is characterized 
by the equilibria, periodic solutions [23-25]. 

One of the main purposes of this paper is to 
study how the density-dependent maturity rate of 
juveniles affects dynamical behaviors of system (2) 
with birth pulses and harvesting pulse. For 
simplicity, one takes 
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with 1=α . 
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where )()()( tytxtW += , and m  is a positive 
integer. The parameter μ ( ]1,0[∈ ) represents the 
fraction of adults which is harvested at m . Positive 
d  is the death rate constant. The maturity rate 
is )(tWae− , and b  is the birth rate of mature 
population. 

 
3 Dynamic behaviors 

In the following, the stability of equilibria of 
system (3) and bifurcation are investigated. 
 
3.1 Poincare map of system (3). 

Adding the first two equations of (3), one gets 
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1,)()()( )( +<≤+=+ −− mtmeyxtytx mtd
mm   (4) 

where mx  and my  are the initial population of 
juveniles and adults at time m respectively. 
Substituting (4) into the first equation of system (3) 
gives the expression of the juvenile population 
between pulses (i.e. 1+<≤ mtm ). 
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The exponential integral ),( xnEi , where n  is a 
nonnegative integer, are defined  

dt
t

exnE n

tx

i ∫
∞ −

=
1

),(  

and is extended by analytic continuation to the 
entire complex plane with the exception of the point 
0 in the case of ),1( xEi . For more details on 
exponential integral function ),1( xEi , one can see 
the reference [26]. 

From (4) and (5) one has 
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Equations (6) hold between pulses and at each 
successive pulse, more of the juvenile population is 
added and the adult population is caught. Then we 
have 
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where ,1, μ−== − qep d  and 
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System (7) is a discrete system. It describes the 
numbers of juvenile population and adult 
population at a pulse in terms of values at the 
previous pulse. The dynamic behaviours of 
system (7) coupled with (6) determines the 
dynamical behaviours of system (3). Thus, in 
the following sections, we will pay our attention 

on system (7) and investigate the various 
dynamical behaviours. The dynamics of the 
nonlinear system (7) can be studied as a 
function of any of parameters. We will focus 
here on μ (or b ) and document the changes in 
the qualitative dynamics of the model (7) as 
μ (orb ) varies. In order to study the stability of 
equilibria of system (7) the following lemma [26] 
is necessary. 
 
Lemma 3.1 The functions ),1( xEi  and )(xH   
have the following properties: 
 
(i)The 1-argument exponential integral is a Cauchy 
Principal Value integral, defined only for real 
arguments x , as follows 

dttexEi
x t∫ ∞−

= /)(  

and for 0<x , 
),1()( xEixEi −−= ; 

 
(ii) The Maclaurin expansion of )(xEi  is given by 
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where γ  is Euler's constant [26]. This shows that 
)(xEi  can be approximated with a logarithm in the 

vicinity of zero; 
 
(iii) dxHx −=→ )(lim 0  and 0)(lim =∞→ xHx for 
any fixed ]1,0(∈p ; 
 

(iv) 0)(' >
−

=
−−

x
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 and 0)( ≤≤− xHd  

for .0>x  
 
3.2 Stability of equilibria of system (7). 

From Lemma 3.1, in the neighborhood of 
)0,0(),( =yx , the dynamics of equations (7) is 

governed by the linearization equation 
mm AXX =+1  ,                     (8) 

where 
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and TyxX ),(= . For the stability of )0,0(),( =yx  
of system (7), one has the following result. 
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 Theorem 3.1. If ,0μμ > then the equilibria 
)0,0(),( =yx is stable. 

 Proof:  0=X  is stable when the eigenvalues of 
A  are less than one in magnitude. This is true only 

when A  satisfies the three Jury conditions. 
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It can be shown that inequalities (9b) and (9c) are 
always satisfied, and that as μ  decreases, inequality 
(9a) is violated at a critical point 0μ ： 
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Remark 1. From a biological point of view, it is 
reasonable that 10 0 ≤≤ μ . Hence we constrain 
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In order to prevent population from extinction, μ  
must be less than 0μ  . That is, if 0μμ > , the 
population goes to extinction. 

In the rest of this section, we assume  0μμ <  
and look for positive equilibrium *)*,( yxE of 
system (7), which satisfies 
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For the existence and stability of *)*,( yxE  of 
system (7), one obtained result as follows. 
 
Theorem 3.2. If  0μμ <  and 1/1 2 −+> pb μ , 
there is a unique interior fixed point *)*,( yxE  for 
system (7). There exists a surface ),,( adpcμ in the 
parameter space so that if 0),,( μμμ <<adpc  , 
then *)*,( yxE  is locally stable, and if 

),,( adpcμμ > , then *)*,( yxE  is a flip 
bifurcation when μ  is used as a bifurcation 
parameter. 
Proof:   It follows from the second equation of (10) 
we have 

xe
pq
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Adding x  to both sides of (11) , one has 
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where yxW += . 
Again from the second equation of (10) we 

have 
)/)(exp( dWaHpqxypqW += .      (12) 

Substituting (12) into the first equation of (10) and 
using (11), one has 
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By Lemma 3.1, it follows that 0)( >Wf  for 
0>W  and  
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According to the properties of )(WH , we have 
0)(' >Wf  for 0>W  and  
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On the other hand, by the expressions of )(Wf     
and )(Wg  one has 
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By the property (iii) of function H one has 
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This shows that the curve f(W) lies above the curve 
g(W) as w is sufficiently large. Since both functions 
are continuous, the graphs of the functions f  and 
g  intersect once. This implies that system (7) has a 
unique fixed point *)*,( yxE  in the interior of +

2R  

if  0μμ <  and μμ ≥−+> 11
2p

b . 

For the stability of the fixed point *)*,( yxE of 
system (7), we equivalently consider the following 
system 
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The Jacobian matrix of system (17) at *)*,( yxE  is 
given by 
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It follows from (9) that we have 
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By the properties of function H and 
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it can be shown inequalities 01>P and 03 >P are 
always satisfied. If inequality P2>0 is violated, i.e., 
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then A  has an eigenvalue less than -1. We note that 
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which  implies  
01 222 >++− qpqbpb . 

Now if we choose μ  as the bifurcation parameter, 
then we can use the following equation to determine 
the bifurcation value ),,( abpcμ : 

.
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This shows that the bifurcation at ),,( abpcμ  is a 
flip bifurcation if μ  is used as a bifurcation 
parameter. 
 
Remark 2. From a biological point of view and 
Remark 1, there is a unique interior fixed point 

*)*,( yxE for the system (7)  if 
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and 0μμ < . 
If we choose b  as the bifurcation parameter, 

then the following corollary holds. 
 

Corollary. If 0bb > , where  

WSEAS TRANSACTIONS on MATHEMATICS Li Changguo

E-ISSN: 2224-2880 78 Issue 1, Volume 11, January 2012



 

 

)1(
)1)(1(

0 a

a

ep
pepqb −

−

−
−−

=  

there is a unique interior fixed point *)*,( yxE for 
the system (7) . There exists a surface ),,( aqpbc  in 
the parameter space so that if ),,(0 aqpbbb c<< , 
then *)*,( yxE  is locally stable, where ),,( aqpbc  
is determined by (21). If ),,( aqpbb c> , then 

*)*,( yxE  is unstable. The bifurcation at 
),,( aqpbb c=  is a flip bifurcation if b is used as 

the bifurcation parameter.  

 
(a) 

 
(b) 

Figure 1: (a) The existence of equilibria (0,0) and 
*)*,( yx  for system (7). When 8812.0>μ , 

equilibrium (0,0) is stable; when 8812.0<μ , there 
exists a positive equilibrium *)*,( yx , where 
d=0.99, a=0.9, b=3.68, x(0)=1 and y(0)=1. (b) 

Bifurcation diagrams of equation (7) for total 
population which shows the effect of parameter b  
on the dynamical behavior of system (7) with 
d=0.99, a=0.9, μ =0.6, x(0)=1, y(0)=1. 
 
4. Complexity analysis 
 

The focus so far has been on the equilibria of 
the system (7), and in particular, on the existence 
and stability of those equilibria (see Fig. 1(a)). But 
if the conditions of theorems 3.1 and 3.2 are invalid, 
equation (7) exhibits a wide variety of dynamical 
behaviors. 
 
4.1 Period doubling and period halfing 

In Fig.1 (b), the bifurcation diagrams for model 
are displayed (7). After the first flip bifurcation, the 
model undergoes a series of period-doubling bifurc- 
ations wherein a k2 -cycle loses stability and a stab- 
le 12 +k -cycle is born as b increases. Successively 
higher periods are stable for smaller ranges of b . 
Eventually, chaotic dynamics set in. This period do- 
ubling route to chaos is the hallmark of logistic and 
Ricker maps[27,28] and has been studied extensive- 
ely by mathematicians [29,30]. Fig.3(a) and (b) dis- 
play period-doubling sequences. 

Fig.2 (a) is followed by a cascade of periodic 
halfing bifurcations from chaos to 3-periodic solu- 
tion when 4.0>μ . Fig.2 (b) is followed by a cas- 
cade of periodic halfing bifurcations from chaos to 
chaos solution between 4.0=μ and 8.0=μ . The 
phase portrait of a chaos is shown in Fig.4(a). 

 
(a) 
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(b) 

Figure 2: Bifurcation diagrams of equation (7) for 
total population with respect to parameter μ , where 
d=0.99, a=0.9, x(0)=9 and y(0)=3. (a) b=1500. (b) 
b=6000. 
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(b) 

Figure 3: The period-doubling sequences, where 
d=0.99,a=0.9, x(0)=9, y(0)=3. (a) A six-cycle with 
μ =0.42. (b) A twelve-cycle with μ =0.7. 
 

4.2. Intermittency and crisis. 
we remark on intermittency and crises. The 

intermittency route to chaos is characterized by 
dynamics with irregularly occurring bursts of 
chaotic behavior interspersed with intervals of 
apparently periodic behavior. A crisis is a 
bifurcation event in which a chaotic attractor and its 
basin of attraction suddenly disappear or suddenly 
change in size as some control parameter is adjusted, 
a phenomenon which was first extensively analyzed 
by Grebogy et al.[31]. Such an occurrence is an 
example of a crisis. When the parameter μ  is 
slightly increased in Fig. 2(b), the chaotic attractor 
abruptly disappears or changes its size, thus 
constitutes a type of attractor crises. 
 
4.3. Nonunique attractors. 

Reviewing the bifurcation diagram for the total 
population in Fig. 2, we see that sudden changes 
from one type of an attractor to another do occur 
quite often. One obvious change occurs in the 
vicinity of 5.0=μ , the solution from period-6 
turns to chaos in Fig.2 (a). Here a period-2 attractor 
changes to an attractor which shows period-3 type 
dynamics in the vicinity of μ = 0.19. A more 
detailed numerical analysis reveals that the question 
is not only about windows of frequency-locking or 
periodic windows in the middle of chaos. Instead, it 
appears that the attractor is nonunique: in this case 
the alternative attractors are, for example, a chaos 
attractor changes to four chaos attractors when μ = 
0 in Fig.2 (b). The phase portrait of a four chaos 
attractors is shown in Fig.4 (b). Multiple attractors 
are known to be possible, and probably common, in 
nonlinear discrete-time matrix population models 
[32]. 
 
5. Discussion 

In this paper, a stage-structured single species 
model with birth pulse and harvesting pulse and 
density dependent maturation rate is proposed and 
investigated. It is shown that the system exhibits 
stable nonnegative equilibria if some conditions are 
satisfied. Furthermore if those conditions are invalid, 
equation (7) exhibits a wide variety of dynamical 
behaviors. If the bifurcation parameters μ  and b  
have different choice for system (3), then the 
conditions of the existence and stability of 
nonnegative equilibria are different. 

(1) From Remarks 1, 2 and biological point of 
view, we know that if we choose μ  as the 
bifurcation parameter, the conditions of the 
existence and stability of nonnegative equilibria are 
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dependent on parameter b. In order to keep the 
biological meaning of )10( 00 ≤≤ μμ , we constrain  
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existence of positive equilibria. However, by 
Corollary we know that if we choose b as the 
bifurcation parameter, the conditions of the 
existence and stability of nonnegative equilibria are 
only dependent on parameter 0b . 

(2) The results of Theorems 3.1, 3.2 and 
Corollary are in line with reality from a biological 
point of view. That is μ  (or b) must be less (or 
larger) than  )( 00 borμ  in order to prevent 
population from extinction. 

Another hand, it is interesting to compare the 
stage-structured model analyzed here, which has a 
harvesting pulse, with the analogous stage 
structured model which has no harvesting [32]. The 
threshold value 

)1(
)1)(1(

0 a

a

ep
pepb −

−

−
−−

=  

and the bifurcation point bc(p; q; a) in model (3)  
has relation with )1( μμ −=q . However, the 
threshold value and the bifurcation point are 

)1(
)1)(1(

0 a

a

ep
pepb −

−

−
−−

=  

and bc(p; a), respectively. Obviously, 0b is larger 

than 0b , which is in line with reality from a 
biological point of view . That is, if population is 
exploited, the rate of pulse birth should be larger in 
order to prevent population from extinction. 
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