Two Constructions of Multireceiver Authentication Codes from Singular Symplectic Geometry over Finite Fields

CHEN SHANGDI
Civil Aviation University of China
College of Science
Jinbei Road 2898, 300300, Tianjin
CHINA
11csd@163.com

AN LEI
Civil Aviation University of China
College of Science
Jinbei Road 2898, 300300, Tianjin
CHINA
anlei8712@yahoo.com.cn

Abstract

Multireceiver authentication codes allow one sender to construct an authenticated message for a group of receivers such that each receiver can verify authenticity of the received message. In this paper, two constructions of multireceiver authentication codes from singular symplectic geometry over finite fields are given. The parameters and the probabilities of success for different types of deceptions are computed.

Key-Words: Singular symplectic geometry, Multireceiver authentication codes, Finite fields, Construction, Probability

1 Introduction

As the flourish development of network communications and processing power of computer hardware, information security theory and technology have gradually been enriched and improved. Confidentiality and authentication are two important aspects of information security. Traditional two-user authentication codes are no longer suitable for network communication requirements, authentication codes with arbitration, multisender and multireceiver authentication systems come into being. This paper focuses on multireceiver authentication codes, two constructions of multireceiver authentication codes from singular symplectic geometry over finite fields are given. The parameters and the probabilities of success for different types of deceptions are computed.

Multireceiver authentication codes (MRA-codes) are introduced by Desmedt, Frankel, and Yung (DFY) [1] as an extension of Simmons' model of unconditionally secure authentication [2]. In an MRA-code, a sender wants to authenticate a message for a group of receivers such that each receiver can verify authenticity of the received message. There are three phases in an MRA-code:

1. Key distribution. The KDC (key distribution centre) privately transmits the key information to the sender and each receiver (the sender can also be the KDC).
2. Broadcast. For a source state, the sender generates an authenticated message using his/her key and broadcasts the authenticated message.
3. Verification. Each receiver can verify the au-
thenticity of the received message.
Denote by $X_{1} \times \cdots \times X_{n}$ the direct product of sets $X_{1}, X_{2}, \cdots, X_{n}$, and by p_{i} the projection mapping of $X_{1} \times \cdots \times X_{n}$ on X_{i}. That is, $p_{i}: X_{1} \times \cdots \times X_{n} \rightarrow X_{i}$ defined by $p_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{i}$. Let $g_{1}: X_{1} \rightarrow$ Y_{1} and $g_{2}: X_{2} \rightarrow Y_{2}$ be two mappings, we denote the direct product of g_{1} and g_{2} by $g_{1} \times g_{2}$, where $g_{1} \times g_{2}$: $X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is defined by $\left(g_{1} \times g_{2}\right)\left(x_{1}, x_{2}\right)=$ $\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right)$. The identity mapping on a set X is denoted by 1_{X}.

Let $C=(S, M, E, f)$ and $C_{i}=\left(S, M_{i}, E_{i}, f_{i}\right)$, $i=1,2, \ldots, n$, be authentication codes. We cal$1\left(C ; C_{1}, C_{2}, \cdots, C_{n}\right)$ a multireceiver authentication code (MRA-code) [3] if there exist two mappings $\tau: E \rightarrow E_{1} \times \cdots \times E_{n}$ and $\pi: M \rightarrow M_{1} \times \cdots \times M n$ such that for any $(s, e) \in S \times E$ and any $1 \leq i \leq n$, the following identity holds

$$
p_{i}(\pi f(s, e))=f_{i}\left(\left(1_{S} \times p_{i} \tau(s, e)\right)\right.
$$

Let $\tau_{i}=p_{i} \tau$ and $\pi_{i}=p_{i} \pi$. Then we have for each $(s, e) \in S \times E$

$$
\pi_{i} f(s, e)=f_{i}\left(1_{S} \times \tau_{i}\right)(s, e)
$$

We adopt Kerckhoff's principle that everything in the system is public except the actual keys of the sender and receivers. This includes the probability distribution of the source states and the sender's keys.

Attackers could be outsiders who do not have access to any key information, or insiders who have some key information. We only need to consider the
latter group since it is at least as powerful as the former. We consider systems that work against the coalition of groups of up to a maximal size of receivers, and we study impersonation and substitution attacks.

Assume that there are n receivers R_{1}, \cdots, R_{n}. Let $L=\left\{i_{1}, \cdots, i_{l}\right\} \subseteq\{1, \cdots, n\}, R_{L}=$ $\left\{R_{i_{1}}, \cdots, R_{i_{l}}\right\}$ and $E_{L}=E_{R_{i_{1}}} \times \cdots \times E_{R_{i_{l}}}$. We consider the attack from R_{L} on a receiver R_{i}, where $i \notin L$.

Impersonation attack: R_{L}, after receiving its secret keys, sends a message m to R_{i}. The attack is successful if m is accepted by R_{i} as authentic. We denote by $P_{I}[i, L]$ the success probability of R_{L} in performing an impersonation attack on R_{i}. This can be expressed as

$$
P_{I}[i, L]=\max _{e_{L} \in E_{L}} \max _{m \in M} P\left(m \text { is accepted by } R_{i} \mid e_{L}\right)
$$

where $i \notin L$.
Substitution attack: R_{L}, after observing a message m that is transmitted by the sender, replaces m with another message m^{\prime}. The attack is successful if m^{\prime} is accepted by R_{i} as authentic. We denote by $P_{S}[i, L]$ the success probability of R_{L} in performing a substitution attack on R_{i}. This can be expressed as

$$
\begin{aligned}
P_{S}[i, L]= & \max _{e_{L} \in E_{L}} \max _{m \in M} \\
& \max _{m^{\prime} \neq m \in M} P\left(R_{i} \text { accepts } m^{\prime} \mid m, e_{L}\right)
\end{aligned}
$$

where $i \notin L$.
In [1], Desmedt, Frankel and Yung gave two constructions of MRA-codes based on polynomials and finite geometries, respectively. In the case both of the sender and the receiver are not honest, Gao You [4], Chen Shangdi [5] constructed a series of authentication codes with arbitration. R. SafaviNaini, Wang Huaxiong gave some results on authentication codes with one sender and multiple receivers [3] [6].R. Safavi-Naini also described the dynamics of authentication codes with one sender and multiple receivers. Ma Wenping, Wang Xinmei made great contributions on multisender authentication codes [7]. In this paper we construct two multireceiver authentication codes from singular symplectic geometry over finite fields. The parameters and the probabilities of deceptions of the codes are also computed.

2 Singular Symplectic Geometry

Let F_{q} be a finite field with q elements and

$$
K_{l}=\left(\begin{array}{ccc}
0 & I^{(\nu)} & \\
-I^{(\nu)} & 0 & \\
& & 0^{(l)}
\end{array}\right)
$$

$$
M(m, s)=\left(\begin{array}{ccc}
0 & I^{(s)} & \\
-I^{(s)} & 0 & \\
& & 0^{(m-2 s)}
\end{array}\right)
$$

The singular symplectic group of degree $(2 \nu+l)$ over F_{q} is defined to be the set of matrices

$$
S p_{2 \nu+l, \nu}\left(F_{q}\right)=\left\{T \mid T K_{l}^{t} T=K_{l}\right\}
$$

denoted by $S p_{2 \nu+l, \nu}\left(F_{q}\right)$.
Let $F_{q}^{(2 \nu+l)}$ be the $(2 \nu+l)$-dimensional row vector space over $F_{q} . \quad S p_{2 \nu+l, \nu}\left(F_{q}\right)$ has an action on $F_{q}^{(2 \nu+l)}$ defined as follows

$$
\begin{gathered}
F_{q}^{(2 \nu+l)} \times S p_{2 \nu+l, \nu}\left(F_{q}\right) \rightarrow F_{q}^{(2 \nu+l)} \\
\left(\left(x_{1}, x_{2}, \ldots, x_{2 \nu+l}\right), T\right) \mapsto\left(x_{1}, x_{2}, \ldots, x_{2 \nu+l}\right) T
\end{gathered}
$$

The vector space $F_{q}^{(2 \nu+l)}$ together with this action of $S p_{2 \nu+l, \nu}\left(F_{q}\right)$ is called the singular symplectic space over F_{q}.

Let $e_{i}(1 \leq i \leq 2 \nu+l)$ be the row vector in $F_{q}^{(2 \nu+l)}$ whose i-th coordinate is 1 and al1 other coordinates are 0 . Denote by E the l-dimensional subspace of $F_{q}^{(2 \nu+l)}$ generated by $e_{2 \nu+1}, e_{2 \nu+2}, \cdots, e_{2 \nu+l}$. An m-dimensional subspace P of $F_{q}^{(2 \nu+l)}$ is called a subspace of type (m, s, k), if
(i) $P K_{l}{ }^{t} P$ is cogredient to $M(m, s)$;
(ii) $\operatorname{dim}(P \cap E)=k$.

Let $k \leq l$ and $2 s \leq m-k \leq \nu+s$. Denote the number of subspaces of type (m, s, k) in the $(2 \nu+$ l)-dimensional singular symplectic space over F_{q} by $N(m, s, k ; 2 \nu+l, \nu)$.

Denote by P^{\perp} the set of vectors which are orthogonal to every vector of P, i.e.,

$$
P^{\perp}=\left\{y \in F_{q}^{(2 \nu+l)} \mid y K_{l}{ }^{t} x=0 \text { for all } x \in P\right\} .
$$

Obviously, P^{\perp} is a $(2 \nu+l-m)$-dimensional subspace of $F_{q}^{(2 \nu+l)}$.

More properties and undefined symbols of singular symplectic geometry over finite fields can be found in [8].

3 Constructions

3.1 Construction 1

Let F_{q} be a finite field with q elements and $e_{i}(1 \leq$ $i \leq 2 \nu+l)$ be the row vector in $F_{q}^{(2 \nu+l)}$ whose i-th coordinate is 1 and all other coordinates are 0 . Assume that $\nu \geq 3,2 \leq n<t \leq \nu$.
$U=\left\langle e_{1}, e_{2}, \cdots, e_{n}, e_{2 \nu+1}, e_{2 \nu+2}\right\rangle$, i.e., U is a
$(n+2)$-dimensional subspace of $F_{q}^{(2 \nu+l)}$ generated by $e_{1}, e_{2}, \cdots, e_{n}, e_{2 \nu+1}, e_{2 \nu+2}$, then $U^{\perp}=\left\langle e_{1}\right.$, $\left.\cdots, e_{\nu}, e_{\nu+n+1}, \cdots, e_{2 \nu}, e_{2 \nu+1}, e_{2 \nu+2}, \cdots, e_{2 \nu+l}\right\rangle$.

The set of source states $S=\{s \mid s$ is a subspace of type $(2 t-n+k, t-n, k), 1 \leq k<l$ and $U \subset s \subset$ $\left.U^{\perp}\right\}$.

The set of the transmitter's encoding rules $E_{T}=\left\{e_{T} \mid e_{T}\right.$ is a subspace of type $(2 n+2, n, 2), U \subset$ $\left.e_{T}\right\}$.

The set of the i-th receiver's decoding rules $E_{R_{i}}=\left\{e_{R_{i}} \mid e_{R_{i}}\right.$ is a subspace of type $(n+3,1,2)$ which is orthogonal to $\left\langle e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{n}\right\rangle$, $\left.U \subset e_{R_{i}}\right\},(1 \leq i \leq n)$.

The set of messages $M=\{m \mid m$ is a subspace of type $(2 t+k, t, k), U \subset m\}$.

1. Key Distribution. The KDC randomly chooses a subspace $e_{T} \in E_{T}$, then privately sends e_{T} to the sender T. KDC randomly chooses a subspace $e_{R_{i}} \in$ $E_{R_{i}}$ and $e_{R_{i}} \subset e_{T}$, then privately sends $e_{R_{i}}$ to the i-th receiver, where $1 \leq i \leq n$.
2. Broadcast. For a source state $s \in S$, the sender calculates $m=s+e_{T}$ and broadcasts m.
3. Verification. Since the receiver R_{i} holds the decoding rule $e_{R_{i}}, R_{i}$ accepts m as authentic if $e_{R_{i}} \subset$ m. R_{i} can get s from $s=m \cap U^{\perp}$.

Lemma 1 The above construction of multireceiver authentication codes is reasonable, that is
(1) $s+e_{T}=m \in M$, for all $s \in S$ and $e_{T} \in E_{T}$;
(2) for any $m \in M, s=m \cap U^{\perp}$ is the unique source state contained in m and there is $e_{T} \in E_{T}$, such that $m=s+e_{T}$.

Proof: (1) For $s \in S, e_{T} \in E_{T}$, we can assume that

$$
\begin{aligned}
& s=\left(\begin{array}{cccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{2} & 0 & Q_{4} & 0 & 0 & 0 & Q_{8} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-2)} & 0
\end{array}\right) \begin{array}{c}
n \\
2(t-n) \\
1 \\
1 \\
k-2
\end{array}, \\
& \text { n } \nu-n n \nu-n 11 \quad k-2 l-k
\end{aligned}
$$

then

$$
\begin{gathered}
s K_{l}^{t} s=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4} & 0 \\
0 & 0 & 0
\end{array}\right) \begin{array}{c}
n \\
2(t-n) \\
n
\end{array} \quad 2(t-n) \\
k
\end{gathered}
$$

Since $\operatorname{rank}\left(s K_{l}{ }^{t} s\right)=2(t-n), \operatorname{rank}\left(-Q_{4}{ }^{t} Q_{2}+\right.$ $\left.Q_{2}{ }^{t} Q_{4}\right)=2(t-n)$. Then we can assume that

$$
\left.e_{T}=\left(\begin{array}{cccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_{2} & I^{(n)} & R_{4} & 0 & 0 & R_{7} & R_{8} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \begin{array}{l}
n \\
n \\
n \\
\nu-n \\
n
\end{array}, \nu-n=1 \begin{array}{c}
1 \\
k-2
\end{array}\right) l-k
$$

and

$$
\left.\begin{array}{rl}
e_{T} K_{l}{ }^{t} e_{T} & =\left(\begin{array}{ccc}
0 & I^{(n)} & 0 \\
-I^{(n)} & -R_{4}{ }^{t} R_{2}+R_{2}{ }^{t} R_{4} & 0 \\
0 & 0 & 0
\end{array}\right) \begin{array}{l}
n \\
n \\
2 \\
\\
\end{array} \\
\sim\left(\begin{array}{ccc}
0 & I^{(n)} & 0 \\
-I^{(n)} & 0 & 0 \\
0 & 0 & 0
\end{array}\right){ }_{n}{ }_{n} \\
n & n \\
2
\end{array}\right)
$$

We have

$$
\begin{aligned}
& m=s+e_{T}= \\
& \left(\begin{array}{cccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{2} & 0 & Q_{4} & 0 & 0 & 0 & Q_{8} \\
0 & R_{2} & I^{(n)} & R_{4} & 0 & 0 & 0 & R_{8} \\
0 & 0 & 0 & 0 & 10 & 0 & 0 & n \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-2)} & 0
\end{array}\right) \begin{array}{c}
n \\
2(t-n) \\
1 \\
k-2
\end{array} . \\
& \begin{array}{llllllll}
n & \nu-n & n & \nu-n & 1 & 1 & k-2 & l-k
\end{array}
\end{aligned}
$$

Thus m is a $2 t+k$ dimensional subspace, and $m K_{l}{ }^{t} m=$

$$
\begin{gathered}
\left(\begin{array}{cccc}
0 & 0 & I^{(n)} & 0 \\
0 & -Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4}-Q_{4}{ }^{t} R_{2}+Q_{2}{ }^{t} R_{4} 0 \\
-I^{(n)}-R_{4}{ }^{t} Q_{2}+R_{2}{ }^{t} Q_{4}-R_{4}{ }^{t} R_{2}+R_{2}{ }^{t} R_{4} 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim \\
\left(\begin{array}{cccc}
0 & 0 & I^{(n)} & 0 \\
0 & -Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4} & 0 & 0 \\
-I^{(n)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0^{(k)}
\end{array}\right) \quad \begin{array}{c}
n \\
2(t-n) \\
n
\end{array}
\end{gathered}
$$

where $\operatorname{rank}\left(-Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4}\right)=2(t-n)$. Therefore, $\operatorname{rank}\left(m K_{l}{ }^{t} m\right)=2 t, \operatorname{dim}(m \cap E)=k$. So m is a subspace of type $(2 t+k, t, k)$ containing U, i.e., $m \in M$.
(2) For $m \in M, m$ is a subspace of type $(2 t+$ $k, t, k)$ containing U. So there is a subspace $V \subset m$, satisfying

$$
\binom{U}{V} K_{l}^{t}\binom{U}{V} \sim\left(\begin{array}{ccc}
0 & I^{(n)} & 0 \\
-I^{(n)} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \begin{aligned}
& n \\
& n \\
& n \\
& 2 \\
& 2
\end{aligned} .
$$

Then we can assume that $m=\left(\begin{array}{c}U \\ V \\ P\end{array}\right)$, satisfying

$$
\left(\begin{array}{c}
U \\
V \\
P
\end{array}\right) K_{l}\left(\begin{array}{c}
U \\
V \\
P
\end{array}\right) \sim\left(\begin{array}{ccccc}
0 & I^{(n)} & 0 & 0 & 0 \\
-I^{(n)} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I^{(t-n)} & 0 \\
0 & 0 & -I^{(t-n)} & 0 & 0 \\
0 & 0 & 0 & 0 & 0^{(k)}
\end{array}\right) .
$$

Let $s=\binom{U}{P}$, since $U \perp U$ and $U \perp P$, we have $s \perp U$. Therefore, s is a subspace of type $(2 t-n+$ $k, t-n, k)$ and $U \subset s \subset U^{\perp}$, i.e., $s \in S$ is a source state. For any $v \in V$ and $v \neq 0, v \notin s$ is obvious, i.e., $V \cap U^{\perp}=\{0\}$. Therefore, $m \cap U^{\perp}=\binom{U}{P}=s$. Let $e_{T}=\binom{U}{V}$, then e_{T} is a transmitter's encoding rule and satisfying $m=s+e_{T}$.

If s^{\prime} is another source state contained in m, then $U \subset s^{\prime} \subset U^{\perp}$. Therefore, $s^{\prime} \subset m \cap U^{\perp}=s$, while $\operatorname{dim} s^{\prime}=\operatorname{dim} s$, so $s^{\prime}=s$, i.e., s is the unique source state contained in m.

From Lemma 1, we know that such construction of multireceiver authentication codes is well defined and there are n receivers in this system. Next we compute the parameters of the codes.

Lemma 2 The number of the source states is $|S|=$ $q^{2(t-n)(l-k)} N(2(t-n), t-n ; 2(\nu-n)) N(k-2, l-2)$.

Proof: Since $U \subset s \subset U^{\perp}, s$ has the form as follows

$$
\left.s=\left(\begin{array}{cccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{2} & 0 & Q_{4} & 0 & 0 & 0 & Q_{8} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-2)} & 0
\end{array}\right) \begin{array}{c}
n \\
2(t-n) \\
1 \\
n \\
\nu-n
\end{array} \quad n \quad \nu-n .1 \begin{array}{cc}
1 & k-2
\end{array}\right),
$$

where $\left(Q_{2}, Q_{4}\right)$ is a subspace of type $(2(t-n), t-$ $n)$ in the symplectic space $F_{q}^{2(\nu-n)}, Q_{8}$ arbitrary. Therefore, the number of the source states is $|S|=$ $q^{2(t-n)(l-k)} N(2(t-n), t-n ; 2(\nu-n)) N(k-2, l-2)$.

Lemma 3 The number of the encoding rules of the transmitter is $\left|E_{T}\right|=q^{n(2 \nu-2 n+l-2)}$.

Proof: Since e_{T} is a subspace of type $(2 n+2, n, 2)$ containing U, e_{T} has the form as follows

$$
e_{T}=\left(\begin{array}{cccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_{2} & I^{(n)} & R_{4} & 0 & 0 & R_{7} & R_{8} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \begin{gathered}
n \\
n \\
n \\
\nu-n \\
n
\end{gathered}, \nu-n=1 \begin{gathered}
1 \\
1 \\
1
\end{gathered},
$$

where $R_{2}, R_{4}, R_{7}, R_{8}$ are arbitrary. Therefore, $\left|E_{T}\right|=q^{2(\nu-n) n+(k-2) n+(l-k) n}=q^{n(2 \nu-2 n+l-2)}$.

Lemma 4 The number of the decoding rules of the i-th receiver is $\left|E_{R_{i}}\right|=q^{2 \nu+l-2 n-2}$.

Proof: Since the i-th receiver's decoding rule $e_{R_{i}}$ is a subspace of type $(n+3,1,2)$ containing U and $e_{R_{i}}$ is orthogonal to $\left\langle e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{n}\right\rangle$. So we can assume that $e_{R_{i}}={ }^{t}\left(e_{1} \cdots e_{n} e_{2 \nu+1} e_{2 \nu+2} u\right)$, where $u=\left(x_{1} x_{2} \cdots x_{2 \nu+1} x_{2 \nu+2} \cdots x_{2 \nu+l}\right)$. Obviously, $x_{1}=\cdots=x_{n}=x_{\nu+1}=\cdots=x_{\nu+i-1}=x_{\nu+i+1}=$ $\cdots=x_{\nu+n}=x_{2 \nu+1}=x_{2 \nu+2}=0, x_{\nu+i}=1$, and $x_{n+1}, \cdots, x_{\nu}, x_{\nu+n+1}, \cdots, x_{2 \nu}, x_{2 \nu+3}, \cdots, x_{2 \nu+l}$ are arbitrary. Therefore, $\left|E_{R_{i}}\right|=q^{2 \nu+l-2 n-2}$.

Lemma 5 (1)The number of encoding rules e_{T} contained in m is $q^{n(2 t-2 n+k-2)}$;
(2)The number of the messages is $|M|=$ $q^{2(t-n)(l-k)+n(2 \nu-2 t+l-k)} N(2(t-n), t-n ; 2(\nu-$ n)) $N(k-2, l-2)$.

Proof: (1)Let m be a message. From the definition of m, we may take m as follows $m=$

$$
\left(\begin{array}{cccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(t-n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I^{(n)} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I^{(t-n)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k)} & 0
\end{array}\right) \quad \begin{gathered}
n \\
n \\
n
\end{gathered} t-n=n
$$

If $e_{T} \subset m$, then we can assume that $e_{T}=$

$$
\begin{aligned}
& \left(\begin{array}{cccccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_{2} & 0 & I^{(n)} & R_{5} & 0 & 0 & 0 & R_{9} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
n \\
n \\
1 \\
1
\end{array} \\
& \begin{array}{lllllllllll}
n & t-n & \nu-t & n & t-n & \nu-t & 1 & 1 & k-2 & l-k
\end{array}
\end{aligned}
$$

where R_{2}, R_{5}, R_{9} are arbitrary. Therefore, the number of e_{T} contained in m is $q^{n(t-n+t-n+k-2)}=$ $q^{n(2 t-2 n+k-2)}$.
(2) We know that a message contains only one source state and the number of the transmitter's encoding rules contained in a message is $q^{n(2 t-2 n+k-1)}$. Therefore we have $|M|=|S|\left|E_{T}\right| / q^{n(2 t-2 n+k-2)}=$ $q^{2(t-n)(l-k)+n(2 \nu-2 t+l-k)} N(2(t-n), t-n ; 2(\nu-$ n)) $N(k-2, l-2)$.

Theorem 6 The parameters of constructed multireceiver authentication codes are
$|S|=q^{2(t-n)(l-k)} N(2(t-n), t-n ; 2(\nu-$ $n)) N(k-2, l-2)$;
$\left|E_{T}\right|=q^{n(2 \nu-2 n+l-2)}$;
$\left|E_{R_{i}}\right|=q^{2 \nu+l-2 n-2}$;
$|M|=q^{2(t-n)(l-k)+n(2 \nu-2 t+l-k)} N(2(t-n), t-$ $n ; 2(\nu-n)) N(k-2, l-2)$.

Assume there are n receivers R_{1}, \cdots, R_{n}. Let $L=\left\{i_{1}, \cdots, i_{l}\right\} \subseteq\{1, \cdots, n\}, R_{L}=$
$\left\{R_{i_{1}}, \cdots, R_{i_{l}}\right\}$ and $E_{L}=E_{R_{i_{1}}} \times \cdots \times E_{R_{i}}$. We consider the impersonation attack and substitution attack from R_{L} on a receiver R_{i}, where $i \notin L$.

Without loss of generality, we can assume that $R_{L}=\left\{R_{1}, \cdots, R_{l}\right\}, E_{L}=E_{R_{1}} \times \cdots \times E_{R_{l}}$, where $1 \leq l \leq n-1$. First, we will prove the following results:

Lemma 7 For any $e_{L}=\left(e_{R_{1}}, \cdots, e_{R_{l}}\right) \quad \in$ E_{L}, the number of e_{T} containing e_{L} is $q^{2(n-l)(\nu-n)+(l-2)(n-l)}$.

Proof: For any $e_{L}=\left(e_{R_{1}}, \cdots, e_{R_{l}}\right) \in E_{L}$, since the transitivity property of singular symplectic group, we can assume that

$$
e_{L}=\left(\begin{array}{ccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} & I^{(l)} & 0 & R_{6} & 0 & 0 & R_{9} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right){ }^{l}{ }^{l}{ }^{n-l}{ }^{l} .
$$

Therefore, e_{T} containing e_{L} has the form as follows

$$
e_{T}=\left(\begin{array}{ccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} & I^{(l)} & 0 & R_{6} & 0 & 0 & R_{9} \\
0 & 0 & R_{3}^{\prime} & 0 & I^{(n-l)} & R_{6}^{\prime} & 0 & 0 & R_{9}^{\prime}
\end{array}{ }_{n}{ }^{n-l}{ }_{n-l}, \quad,\right.
$$

where $R_{3}^{\prime}, R_{6}^{\prime}, R_{9}^{\prime}$, are arbitrary. Therefore, the number of e_{T} containing e_{L} is $q^{2(n-l)(\nu-n)+(l-2)(n-l)}$.

Lemma 8 For any $m \in M$ and $e_{L}, e_{R_{i}} \subset m$,
(1) the number of e_{T} contained in m and containing e_{L} is $q^{2(t-n)(n-l)+(l-2)(n-l)}$;
(2) the number of e_{T} contained in m and containing $e_{L}, e_{R_{i}}$ is $q^{2(t-n)(n-l-1)+(l-2)(n-l-1)}$.

Proof: (1) The matrix of m is the same as that in lemma 5 , then for any $e_{L} \subset m$, assume that

$$
\begin{aligned}
& e_{L}= \\
& \left(\begin{array}{ccccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} & 0 & I^{(l)} & 0 & R_{7} & 0 & 0 & 0 & R_{11} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right){ }^{n-l}{ }^{l}{ }^{l}{ }^{l} . \\
& l \text { n-l } t-n \nu-t \quad l n-l t-n \nu-t 111-2
\end{aligned}
$$

If $e_{T} \subset m$ and $e_{T} \supset e_{L}$, then
$e_{T}=$

$$
\left(\begin{array}{ccccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} & 0 & I^{(l)} & 0 & R_{7} & 0 & 0 & 0 & R_{11} \\
0 & 0 & R_{3}^{\prime} & 0 & 0 & I^{(n-l)} & R_{7}^{\prime} & 0 & 0 & 0 & R_{11}^{\prime} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right){ }^{n-l}{ }^{l}{ }^{l}
$$

where $R_{3}^{\prime}, R_{7}^{\prime}, R_{11}^{\prime}$ are arbitrary. Therefore, the number of e_{T} contained in m and containing e_{L} is $q^{2(t-n)(n-l)+(l-2)(n-l)}$.
(2) Similarly, we can show that the number of e_{T} contained in m and containing $e_{L}, e_{R_{i}}$ is $q^{2(t-n)(n-l-1)+(l-2)(n-l-1)}$.

Lemma 9 Assume that m_{1} and m_{2} are two distinct messages which commonly contain a transmitter's encoding rule e_{T}. s_{1} and s_{2} contained in m_{1} and m_{2} are two source states, respectively. Assume that $s_{0}=s_{1} \cap s_{2}$, dim $s_{0}=k_{1}$, then $n+2 \leq k_{1} \leq$ $2 t-n+k-1$. For any $e_{L}, e_{R_{i}} \subset m_{1} \cap m_{2}$, the number of e_{T} contained in $m_{1} \cap m_{2}$ and containing $e_{L}, e_{R_{i}}$ is $q^{(n-l-1)\left(k_{1}-n-2\right)}$.

Proof: Since $m_{1}=s_{1}+e_{T}, m_{2}=s_{2}+e_{T}$ and $m_{1} \neq$ $m_{2}, s_{1} \neq s_{2}$. And for any $s \in S, s \supset U, n+2 \leq k_{1} \leq$ $2 t-n+k-1$. Assume that s_{i}^{\prime} is the complementary subspace of s_{0} in the s_{i}, then $s_{i}=s_{0}+s_{i}^{\prime}(i=1,2)$. From $m_{i}=s_{i}+e_{T}=s_{0}+s_{i}^{\prime}+e_{T}$ and $s_{i}=m_{i} \cap U^{\perp}$, we have $s_{0}=\left(m_{1} \cap U^{\perp}\right) \bigcap\left(m_{2} \cap U^{\perp}\right)=m_{1} \cap$ $m_{2} \cap U^{\perp}=s_{1} \cap m_{2}=s_{2} \cap m_{1}$ and $m_{1} \cap m_{2}=$ $\left(s_{1}+e_{T}\right) \cap m_{2}=\left(s_{0}+s_{1}^{\prime}+e_{T}\right) \cap m_{2}=\left(\left(s_{0}+\right.\right.$ $\left.\left.e_{T}\right)+s_{1}^{\prime}\right) \cap m_{2}$. Because $s_{0}+e_{T} \subset m_{2}, m_{1} \cap m_{2}=$ $\left(s_{0}+e_{T}\right)+\left(s_{1}^{\prime} \cap m_{2}\right)$. While $s_{1}^{\prime} \cap m_{2} \subseteq s_{1} \cap m_{2}=s_{0}$, $m_{1} \cap m_{2}=s_{0}+e_{T}$.

From the definition of the message, we may take $m_{i}(i=1,2)$ as follows
$m_{i}=$

$$
\left(\begin{array}{ccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & p_{i_{1}} & 0 & p_{i_{2}} & 0 & 0 & 0 \\
0 & 0 & I^{(n)} & 0 & 0 & 0 & 0 \\
0 & p_{i_{3}} & 0 & p_{i_{4}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p_{i_{5}}
\end{array}\right)
$$

Let

$$
\begin{aligned}
& m_{1} \cap m_{2}=\left(\begin{array}{ccccccc}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & p_{1} & 0 & p_{2} & 0 & 0 & 0 \\
0 & 0 & I^{(n)} & 0 & 0 & 0 & 0 \\
0 & p_{3} & 0 & p_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p_{5}
\end{array}\right) \begin{array}{c}
n \\
t-n \\
n \\
t-n \\
1 \\
1 \\
k-2
\end{array}, \\
& \begin{array}{lllllll}
n & \nu-n & n & \nu-n & 1 & 1 & l-2
\end{array}
\end{aligned}
$$

from above we know that $m_{1} \cap m_{2}=s_{0}+e_{T}$, then $\operatorname{dim}\left(m_{1} \cap m_{2}\right)=k_{1}+n$, therefore,

$$
\begin{aligned}
& \operatorname{dim}\left(\begin{array}{ccccccc}
0 & P_{1} & 0 & P_{2} & 0 & 0 & 0 \\
0 & P_{3} & 0 & P_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & P_{5}
\end{array}\right) \\
& =k_{1}+n-(2 n+2) \\
& =k_{1}-n-2
\end{aligned}
$$

For any $e_{L}, e_{R_{i}} \subset m_{1} \cap m_{2}$, we can assume that

$$
\begin{aligned}
& e_{L}=\left(\begin{array}{ccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} & I^{(l)} & 0 & R_{6} & 0 & 0 & R_{9} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right){ }_{n-l}^{l}{ }^{l}{ }^{l}{ }^{l}{ }^{2},
\end{aligned}
$$

$$
\begin{aligned}
& e_{R_{i}}=\left(\begin{array}{cccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3}^{\prime} & 0 & 1 & 0 & R_{6}^{\prime} & 0 & 0 & R_{9}^{\prime} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right){ }^{n-l}{ }^{l}{ }^{l}{ }^{l}{ }^{1} .
\end{aligned}
$$

If $e_{T} \subset m_{1} \cap m_{2}$ and $e_{L}, e_{R_{i}} \subset e_{T}$, then e_{T} has the form as follows
$e_{T}=$

$$
\left(\begin{array}{cccccccccc}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{3} I^{(l)} & 0 & 0 & 0 & R_{6} 00 & R_{9} & l \\
0 & 0 & C_{3} & 0 & I^{(i-l-1)} 0 & 0 & C_{6} 00 & C_{9} & { }^{(i-l-l} \\
0 & 0 & R_{3}^{\prime} & 0 & 0 & 1 & 0 & R_{6}^{\prime} 00 & R_{9}^{\prime} & 1 \\
0 & 0 & C_{3}^{\prime} & 0 & 0 & 0 I^{(n-i))} & C_{6}^{\prime} 00 & 0 & C_{9}^{\prime} & n-i \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 & 0
\end{array}\right) \quad 1
$$

So it is easy to know that the number of e_{T} contained in $m_{1} \cap m_{2}$ and containing $e_{L}, e_{R_{i}}$ is $q^{(n-l-1)\left(k_{1}-n-2\right)}$.

Theorem 10 In the constructed multireceiver authentication codes, the largest probabilities of success for impersonation attack and substitution attack from R_{L} on a receiver R_{i} are

$$
\begin{aligned}
P_{I}[i, L] & =\frac{1}{q^{(n-l-1)(2 \nu-2 t)+2(\nu-n)+(l-2)}}, \\
P_{S}[i, L] & =\frac{1}{q^{(n-l)(l-k+2)+2 t-2 n+k-4}}
\end{aligned}
$$

respectively, where $i \notin L$.
Proof: Impersonation attack: R_{L}, after receiving its secret keys, sends a message m to R_{i}. The attack is successful if m is accepted by R_{i} as authentic. Therefore

$$
\begin{aligned}
& P_{I}[i, L]=\max _{e_{L} \in E_{L}} \\
& \left\{\begin{array}{c}
\max _{m \in M} \mid\left\{e_{T} \in E_{T} \mid e_{T} \subset m \text { and } e_{T} \supset e_{L}, e_{R_{i}}\right\} \mid \\
\left|\left\{e_{T} \in E_{T} \mid e_{T} \supset e_{L}\right\}\right|
\end{array}\right\} \\
& =\frac{q^{2(t-n)(n-l-1)+(l-2)(n-l-1)}}{q^{2(n-l)(\nu-n)+2(\nu-n)(n-l)}} \\
& =\frac{1}{q^{(n-l-1)(2 \nu-2 t)+2(\nu-n)+(l-2)}} .
\end{aligned}
$$

Substitution attack: R_{L}, after observing a message m that is transmitted by the sender, replaces m with another message m^{\prime}. The attack is successful if m^{\prime} is accepted by R_{i} as authentic. Therefore,

$$
\begin{aligned}
& P_{S}[i, L]=\max _{e_{L} \in E_{L}} \max _{m \in M} \max _{m^{\prime} \in M} \\
& \quad \frac{\mid\left\{e_{T} \in E_{T} \mid e_{T} \subset m, m^{\prime} \text { and } e_{T} \supset e_{L}, e_{R_{i}}\right\} \mid}{\left|\left\{e_{T} \in E_{T} \mid e_{T} \subset \operatorname{mand}_{T} \supset e_{L}\right\}\right|} \\
& =\max _{n+2 \leq k_{1} \leq 2 t-n+k-2} \frac{q^{(n-l-1)\left(k_{1}-n-2\right)}}{q^{2(t-n)(n-l)+(l-2)(n-l)}} \\
& =\frac{1}{q^{(n-l)(l-k+2)+2 t-2 n+k-4}} .
\end{aligned}
$$

3.2 Construction 2

Suppose that F_{q} is a finite field with q elements and $v_{i}(1 \leq 2 i \leq 2 \nu+l, l \geq 2)$ are the row vectors in $F_{q}^{(2 \nu+l)}$. Let $2 \leq 2 n<\nu, 1<k \leq l$,

$$
U=\left\langle v_{1}, v_{2}, \cdots, v_{2 n}, e_{2 \nu+1}, e_{2 \nu+2}\right\rangle
$$

i.e. U is a $(2 n+2)$-dimensional subspace of $F_{q}^{(2 \nu+l)}$ generated by $\nu_{1}, \nu_{2}, \cdots, \nu_{2 n}, e_{2 \nu+1}, e_{2 \nu+2}$, i.e. U is a subspace of type $(2 n+2,0,2)$, then U^{\perp} is a subspace of type $(2 \nu-n+l, \nu-n, l)$.

The set of source states

$$
S=\left\{\begin{array}{l|l}
s \text { is a subspace of type } \\
s & (2 \nu-2 n+k, \nu-2 n, k) \\
\text { and } U \subset s \subset U^{\perp}
\end{array}\right\}
$$

The set of the transmitter's encoding rules $E_{T}=\left\{e_{T} \mid e_{T}\right.$ is a 2 n dimensional subspace and $U+e_{T}$ is a subspace of type $(4 n+2,2 n, 2)\}$.

The set of the i-th receiver's decoding rules $E_{R_{i}}=\left\{e_{R_{i}} \mid e_{R_{i}}\right.$ is a 2 dimensional subspace and $U+$ $e_{R_{i}}$ is a subspace of type $(2 n+4,2,2)$ which is orthogonal to $\left.\left\langle v_{1}, \cdots, v_{2 i-3}, v_{2 i+1}, \cdots, v_{2 n}\right\rangle\right\}$.

The set of messages $M=\{m \mid m$ is a subspace of type $(2 \nu+k, \nu, k), U \subset m$ and $\left.m \cap U^{\perp}=\mathrm{s}\right\}$.

1. Key Distribution. The KDC randomly chooses a subspace $e_{T} \in E_{T}$, then privately sends e_{T} to the sender T. Then KDC randomly chooses a subspace $e_{R_{i}} \in E_{R_{i}}$ and $e_{R_{i}} \subset e_{T}$, then privately sends $e_{R_{i}}$ to the i th receiver, where $1 \leq i \leq n$.
2. Broadcast. For a source state $s \in S$, the sender calculates $m=s+e_{T}$ and broadcasts m.
3. Verification. Since the receiver R_{i} holds the decoding rule $e_{R_{i}}, R_{i}$ accepts m as authentic if $e_{R_{i}} \subset$ m. R_{i} can get s from $s=m \cap U^{\perp}$.

Lemma 11 The above construction of Multireceiver authentication codes is reasonable, that is
(1) $s+e_{T}=m \in M$, for all $s \in S$ and $e_{T} \in E_{T}$;
(2) for any $m \in M, s=m \cap U^{\perp}$ is the unique source state contained in m and there is $e_{T} \in E_{T}$, such that $m=s+e_{T}$.

Proof: (1) For $s \in S, e_{T} \in E_{T}$, from the definition of s and e_{T}, we can assume that
then

$$
s K_{l}^{t} s=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4} & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{gathered}
2 n \\
2(\nu-2 n) \\
k
\end{gathered} .
$$

Since $\operatorname{rank}\left(s K_{l}{ }^{t} s\right)=2(\nu-2 n), \operatorname{rank}\left(-Q_{4}{ }^{t} Q_{2}+\right.$ $\left.Q_{2}{ }^{t} Q_{4}\right)=2(\nu-2 n)$. Then we can assume that

$$
\begin{aligned}
& e_{T}=\left(\begin{array}{llllll}
X_{1} & X_{2} & I^{(2 n)} & X_{4} & X_{5} & X_{6}
\end{array} X_{7} X_{8}\right), \\
& 2 n \quad \nu-2 n 2 n \quad \nu-2 n 111 k-2 l-k
\end{aligned}
$$

and

$$
\binom{U}{e_{T}} K_{l}^{t}\binom{U}{e_{T}} \sim\left(\begin{array}{ccc}
0 & I^{(2 n)} & 0 \\
-I^{(2 n)} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \begin{gathered}
2 n \\
2 n \\
2 n \\
2 n
\end{gathered}
$$

We have

$$
\begin{aligned}
& m=s+e_{T}=
\end{aligned}
$$

Thus m is a $2 \nu+k$ dimensional subspace, and $m K_{l}{ }^{t} m=$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & 0 & I^{(2 n)} & 0 \\
0 & -Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4}-Q_{4}{ }^{t} R_{2}+Q_{2}{ }^{t} R_{4} 0 \\
-I^{(2 n)}-R_{4}{ }^{t} Q_{2}+R_{2}{ }^{t} Q_{4}-R_{4}{ }^{t} R_{2}+R_{2}{ }^{t} R_{4} 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim \\
& \left(\begin{array}{cccc}
0 & 0 & I^{(2 n)} & 0 \\
0 & -Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4} & 0 & 0 \\
-I^{(2 n)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0^{(k)}
\end{array}\right) \quad 2(\nu-2 n) \\
& 2 n \\
& k
\end{aligned}
$$

where $\operatorname{rank}\left(-Q_{4}{ }^{t} Q_{2}+Q_{2}{ }^{t} Q_{4}\right)=2(\nu-2 n)$. Therefore, $\operatorname{rank}\left(m K_{l}{ }^{t} m\right)=2 \nu, \operatorname{dim}(m \cap E)=k$. From above, m is a subspace of type $(2 \nu+k, \nu, k)$ containing U, i.e., $m \in M$.
(2) For $m \in M, m$ is a subspace of type $(2 \nu+$ $k, \nu, k)$ containing U. So there is subspace $V \subset m$, satisfying

$$
\binom{U}{V} K_{l}^{t}\binom{U}{V} \sim\left(\begin{array}{ccc}
0 & 0 & I^{(2 n)} \\
0 & 0 & 0 \\
-I^{(2 n)} & 0 & 0
\end{array}\right) \begin{gathered}
2 n \\
2 \\
2 n
\end{gathered}
$$

then we can assume that $m=\left(\begin{array}{c}U \\ V \\ P\end{array}\right)$, satisfying

$$
\left(\begin{array}{l}
U \\
V \\
P
\end{array}\right) K_{l}\left(\begin{array}{l}
U \\
V \\
P
\end{array}\right) \sim\left(\begin{array}{cccccc}
0 & 0 & I^{(2 n)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-I^{(2 n)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I^{(\nu-2 n)} & 0 \\
0 & 0 & 0 & -I^{(\nu-2 n)} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0^{(k-2)}
\end{array}\right) .
$$

Let $s=\binom{U}{P}$, since $U \perp U$ and $U \perp P$, we have $s \perp U$. Therefore, s is a subspace of type $(2 \nu-2 n+$ $k, t-n, k)$ and $U \subset s \subset U^{\perp}$, i.e., $s \in S$ is a source state. For any $v \in V$ and $v \neq 0, v \notin s$ is obvious, i.e.,
$V \cap U^{\perp}=\emptyset$. Therefore, $m \cap U^{\perp}=\binom{U}{P}=s$. Let $e_{T}=\binom{U}{V}$, then e_{T} is a transmitter's encoding rule and satisfying $m=s+e_{T}$.

If s^{\prime} is another source state contained in m, then $U \subset s^{\prime} \subset U^{\perp}$. Therefore, $s^{\prime} \subset m \cap U^{\perp}=s$, while $\operatorname{dim} s^{\prime}=\operatorname{dim} s$, so $s^{\prime}=s$, i.e., s is the unique source state contained in m.

From Lemma11, we know that such construction of multireceiver authentication codes is well defined and there are n receivers in this system. Next we compute the parameters of this codes.

Lemma 12 The number of the source states is $|S|=$ $q^{2(\nu-2 n)(l-k)} N(2(\nu-2 n), \nu-2 n ; 2(\nu-2 n)) N(k-$ $2, l-2)$.

Proof: Since $U \subset s \subset U^{\perp}, s$ has the form as follows

$$
s=\left(\begin{array}{cccccccc}
I^{(2 n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{2} & 0 & Q_{4} & 0 & 0 & 0 & Q_{8} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-2)} & 0
\end{array}\right) \begin{gathered}
2 n \\
2 \nu-4 n \\
1 \\
2 n \\
\nu-2 n \\
\hline
\end{gathered},
$$

where $\left(Q_{2}, Q_{4}\right)$ is a subspace of type $(2(\nu-2 n), \nu-$ $2 n)$ in the symplectic space $F_{q}^{(2(\nu-2 n))}, Q_{8}$ arbitrary. Therefore, the number of the source states is $S \mid=$ $q^{2(\nu-2 n)(l-k)} N(2(\nu-2 n), \nu-2 n ; 2(\nu-2 n)) N(k-$ $2, l-2)$.

Lemma 13 The number of the encoding rules of the transmitter is $\left|E_{T}\right|=q^{2 n(2 \nu-2 n+l)}$.

Proof: Since $U+e_{T}$ is a subspace of type ($4 n+$ $2,2 n, 2)$, then we can suppose that

$$
\left.\begin{array}{rl}
e_{T}= & \left(\begin{array}{lllllll}
X_{1} & X_{2} & I^{(2 n)} & X_{4} & X_{5} & X_{6} & X_{7}
\end{array} X_{8}\right.
\end{array}\right),
$$

where $\quad X_{1}, X_{2}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8} \quad$ is arbitrary. Therefore the number of e_{T} is $q^{2 n(2 \nu-2 n+l)}$.

Lemma 14 The number of the decoding rules of the i-th receiver is $\left|E_{R_{i}}\right|=q^{2(2 \nu-2 n+l)}$.

Proof: Since the i-th receiver's decoding rule $U+e_{R_{i}}$ is a subspace of type $(2 n+4,2,2)$ which is orthogonal to $\left\langle v_{1}, \cdots, v_{2 i-2}, v_{2 i+1}, \cdots, v_{2 n}\right\rangle$ and by the transitivity property of singular symplectic group, we can assume that $e_{R_{i}}=$

$$
\begin{aligned}
& \left(\begin{array}{llllllllll}
X_{1} & X_{2} & 0 & I^{(2)} & 0 & X_{6} & X_{7} & X_{8} & X_{9} & X_{10}
\end{array}\right), \\
& 2 n \nu-2 n 2(i-1) 2(n-i) \quad \nu-2 n \quad 1 \quad 1 \quad k-2 l-k
\end{aligned}
$$

where $X_{1}, X_{2}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}$ are arbitrary. Therefore the number of $\left|E_{R_{i}}\right|$ is $q^{2(2 \nu-2 n+l)}$.

Lemma 15 (1)The number of encoding rules e_{T} contained in m is $q^{2 n(2 \nu-2 n+k)}$;
(2)The number of the messages is $|M|=$ $q^{2(\nu-n)(l-k)} N(2(\nu-2 n), \nu-2 n ; 2(\nu-2 n)) N(k-$ $2, l-2)$.

Proof: (1) Let m be a message, since $U \subset m$ and from the definition of m, we may take m as follows

$$
m=\left(\begin{array}{cccccccc}
I^{(2 n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(\nu-2 n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(2 n)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I^{(\nu-2 n)} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-2)} & 0 \\
2 n & \nu-2 n & 2 n & \nu-2 n & 1 & 1 & k-2 & l-k
\end{array},\right.
$$

if $e_{T} \subset m$, then we can assume that

$$
e_{T}=\left(\begin{array}{cccccccc}
R_{1} & R_{2} & I^{(2 n)} & R_{4} & R_{5} & R_{6} & R_{7} & 0
\end{array}\right)
$$

where $R_{1}, R_{2}, R_{4}, R_{5}, R_{6}, R_{7}$ are arbitrary. Therefore, the number of e_{T} contained in m is $q^{2 n(2 \nu-2 n+k)}$.
(2) We know that a message contains only one source state and the number of the transmitter's encoding rules contained in a message is $q^{2 n(2 \nu-2 n+k)}$. Therefore we have $|M|=|S|\left|E_{T}\right| / q^{2 n(2 \nu-2 n+k)}=$ $q^{2(\nu-n)(l-k)} N(2(\nu-2 n), \nu-2 n ; 2(\nu-2 n)) N(k-$ $2, l-2)$.

Theorem 16 The parameters of constructed multireceiver authentication codes are
$|S|=q^{2(\nu-2 n)(l-k)} N(2(\nu-2 n), \nu-2 n ; 2(\nu-$ 2n)) $N(k-2, l-2)$.
$\left|E_{T}\right|=q^{2 n(2 \nu-2 n+l)} ;$
$\left|E_{R_{i}}\right|=q^{2(2 \nu-2 n+l)}$;
$|M|=q^{2(\nu-n)(l-k)} N(2(\nu-2 n), \nu-2 n ; 2(\nu-$ $2 n)) N(k-2, l-2)$.

Assume that there are n receivers R_{1}, \cdots, R_{n}. Let $L=\left\{i_{1}, \cdots, i_{l}\right\} \subseteq\{1, \cdots, n\}, R_{L}=$ $\left\{R_{i_{1}}, \cdots, R_{i_{l}}\right\}$ and $E_{L}=E_{R_{i_{1}}} \times \cdots \times E_{R_{i_{l}}}$. We consider the impersonation attack and substitution attack from R_{L} on a receiver R_{i}, where $i \notin L$.

Without loss of generality, we can assume that $R_{L}=\left\{R_{1}, \cdots, R_{l}\right\}, E_{L}=E_{R_{1}} \times \cdots \times E_{R_{l}}$, where $1 \leq l \leq n-1$. First, we will prove the following results:

Lemma 17 For any $e_{L}=\left(e_{R_{1}}, \cdots, e_{R_{l}}\right) \in E_{L}$, the number of e_{T} containing e_{L} is $q^{(2 n-2 l)(2 \nu-2 n+l)}$.

Proof: For any $e_{L}=\left(e_{R_{1}}, \cdots, e_{R_{l}}\right) \in E_{L}$, we can assume that

$$
e_{L}=\left(\begin{array}{lllllllll}
R_{1} & R_{2} & I^{(2 l)} & 0 & R_{5} & R_{6} & R_{7} & R_{8} & R_{9}
\end{array}\right) .
$$

Therefore, e_{T} containing e_{L} has the form as follows

$$
e_{T}=\left(\begin{array}{ccccccccc}
R_{1} & R_{2} & I^{(2 l)} & 0 & R_{5} & R_{6} & R_{7} & R_{8} & R_{9} \\
R_{1}^{\prime} & R_{2}^{\prime} & 0 & I^{(2 n-2 l)} & R_{5}^{\prime} & R_{6}^{\prime} & R_{7}^{\prime} & R_{8}^{\prime} & R_{9}^{\prime}
\end{array}\right),
$$

where $\quad R_{1}^{\prime}, R_{2}^{\prime}, R_{5}^{\prime}, R_{6}^{\prime}, R_{7}^{\prime}, R_{8}^{\prime}, R_{9}^{\prime} \quad$ are arbitrary. Therefore, the number of e_{T} containing e_{L} is $q^{(2 n-2 l)(2 \nu-2 n+l)}$.

Lemma 18 For any $m \in M$ and $e_{L}, e_{R_{i}} \subset m$,
(1) the number of e_{T} contained in m and containing e_{L} is $q^{(2 n-2 l)(2 \nu-2 n+k)}$;
(2) the number of e_{T} contained in m and containing $e_{L}, e_{R_{i}}$ is $q^{(2 n-2 l-2)(2 \nu-2 n+k)}$.

Proof: (1) The matrix of m is the same as that in lemma 15 , then for any $e_{L} \subset m$, assume that

$$
e_{L}=\left(\begin{array}{ccccccccc}
R_{1} & R_{2} & I^{(2 l)} & 0 & R_{5} & R_{6} & R_{7} & R_{8} & 0
\end{array}\right) .
$$

If $e_{T} \subset m$ and $e_{T} \supset e_{L}$, then

$$
\begin{aligned}
& e_{T}=\left(\begin{array}{ccccccccc}
R_{1} & R_{2} & I^{(2 l)} & 0 & R_{5} & R_{6} & R_{7} & R_{8} & 0 \\
R_{1}^{\prime} & R_{2}^{\prime} & 0 & I^{(2 n-2 l)} & R_{5}^{\prime} & R_{6}^{\prime} & R_{7}^{\prime} & R_{8}^{\prime} & 0
\end{array}\right), \\
& 2 n \quad \nu-2 n 2 l \begin{array}{ll}
2 n-2 l & \nu-2 n \\
1 & 1
\end{array} k-2 l-k
\end{aligned}
$$

where $R_{1}^{\prime}, R_{2}^{\prime}, R_{5}^{\prime}, R_{6}^{\prime}, R_{7}^{\prime}, R_{8}^{\prime}$ are arbitrary. Therefore, the number of e_{T} contained in m and containing e_{L} is $q^{(2 n-2 l)(2 \nu-2 n+k)}$.
(2) Similarly, we can prove that the number of e_{T} contained in m and containing $e_{L}, e_{R_{i}}$ is $q^{(2 n-2 l-2)(2 \nu-2 n+k)}$.

Lemma 19 Assume that m_{1} and m_{2} are two distinct messages which commonly contain a transmitter's encoding rule e_{T}. s_{1} and s_{2} contained in m_{1} and m_{2} are two source states, respectively. Assume that $s_{0}=s_{1} \cap s_{2}$, dim $s_{0}=k_{1}$, then $2 n+2 \leq k_{1} \leq$ $2 \nu-2 n+k-1$. For any $e_{L}, e_{R_{i}} \subset m_{1} \cap m_{2}$, the number of e_{T} contained in $m_{1} \cap m_{2}$ and containing $e_{L}, e_{R_{i}}$ is $q^{2(n-l-1)\left(k_{1}-2 n-2\right)}$.

Proof: Since $m_{1}=s_{1}+e_{T}, m_{2}=s_{2}+e_{T}$ and $m_{1} \neq$ $m_{2}, s_{1} \neq s_{2}$, for any $s \in S, s \supset U, 2 n+2 \leq k_{1} \leq$ $2 \nu-2 n+k-1$. Assume that s_{i}^{\prime} is the complementary subspace of s_{0} in the s_{i}, then $s_{i}=s_{0}+s_{i}^{\prime}(i=1,2)$. From $m_{i}=s_{i}+e_{T}=s_{0}+s_{i}^{\prime}+e_{T}$ and $s_{i}=m_{i} \cap U^{\perp}$,
we have $s_{0}=\left(m_{1} \cap U^{\perp}\right) \bigcap\left(m_{2} \cap U^{\perp}\right)=m_{1} \cap$ $m_{2} \cap U^{\perp}=s_{1} \cap m_{2}=s_{2} \cap m_{1}$ and $m_{1} \cap m_{2}=$ $\left(s_{1}+e_{T}\right) \cap m_{2}=\left(s_{0}+s_{1}^{\prime}+e_{T}\right) \cap m_{2}=\left(\left(s_{0}+\right.\right.$ $\left.\left.e_{T}\right)+s_{1}^{\prime}\right) \cap m_{2}$. Because $s_{0}+e_{T} \subset m_{2}, m_{1} \cap m_{2}=$ $\left(s_{0}+e_{T}\right)+\left(s_{1}^{\prime} \cap m_{2}\right)$. While $s_{1}^{\prime} \cap m_{2} \subseteq s_{1} \cap m_{2}=s_{0}$, $m_{1} \cap m_{2}=s_{0}+e_{T}$.

From the definition of the message, we may take $m_{i}(i=1,2)$ as follows $m_{i}=$

Let $m_{1} \cap m_{2}=$

$$
\left(\begin{array}{cccccccc}
I^{(2 n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{2} & 0 & Q_{4} & 0 & 0 & Q_{7} & 0 \\
X_{1} & X_{2} & I^{(2 n)} & X_{4} & X_{5} & X_{6} & X_{7} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & Q_{7}^{\prime} & 0
\end{array}\right)
$$

from above we know that $m_{1} \cap m_{2}=s_{0}+e_{T}$, then $\operatorname{dim}\left(m_{1} \cap m_{2}\right)=k_{1}+2 n$, therefore,

$$
\begin{aligned}
& \operatorname{dim}=\left(\begin{array}{cccccccc}
0 & Q_{2} & 0 & Q_{4} & 0 & 0 & Q_{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & Q_{7}^{\prime} & 0
\end{array}\right) \\
& =k_{1}-2 n-2 \text {. } \\
& \text { For any } e_{L}, e_{R_{i}} \subset m_{1} \cap m_{2} \text {, we can assume that } \\
& e_{L}= \\
& \left(\begin{array}{lllllllllll}
R_{1} & R_{2} & I^{(2 l)} & 0 & 0 & 0 & R_{7} & R_{8} & R_{9} & R_{10} & 0
\end{array}\right), \\
& 2 n \nu-2 n 2 l 2(i-1-l) 22(n-i) \nu-2 n 111 k-2 l-k
\end{aligned}
$$

and
$e_{R_{i}}=$
$\left(\begin{array}{lllllllllll}X_{1} & X_{2} & 0 & 0 & I^{(2)} & 0 & X_{7} & X_{8} & X_{9} & X_{10} & 0\end{array}\right)$. $2 n \nu-2 n \quad 2 l 2(i-1-l) 22(n-i) \nu-2 n 11 \quad k-2 l-k$

If $e_{T} \subset m_{1} \cap m_{2}$ and $e_{L}, e_{R_{i}} \subset e_{T}$, then e_{T} has the form as follows $e_{T}=$

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
R_{1} R_{2} I^{(2 l)} & 0 & 0 & 0 & R_{7} R_{8} R_{9} R_{10} 0 \\
H_{1} H_{2} & 0 & I^{(2(i-l-1))} & 0 & 0 & H_{7} H_{8} H_{9} H_{10} 0 \\
X_{1} X_{2} & 0 & 0 & I^{(2)} & 0 & X_{7} X_{8} X_{9} X_{10} 0 \\
N_{1} N_{2} & 0 & 0 & 0 & I^{(2(n-i))} N_{7} N_{8} N_{9} N_{10} 0
\end{array}\right) \\
& 2 n \quad \nu-2 n 2 l
\end{aligned} 2(i-1-l) \quad 2 \begin{array}{cc}
2(n-i) & \nu-2 n 1 \quad 1 \\
k-2 l-k
\end{array}
$$

So it is easy to know that the number of e_{T} contained in $m_{1} \cap m_{2}$ and containing $e_{L}, e_{R_{i}}$ is $q^{2(n-l-1)\left(k_{1}-2 n-2\right)}$.

Theorem 20 In the constructed multireceiver authentication codes, the largest probabilities of success for impersonation attack and substitution attack from R_{L} on a receiver R_{i} are, respectively,

$$
\begin{aligned}
P_{I}[i, L] & =\frac{1}{q^{2(n-l)(l-k)+2(2 \nu-2 n+k)}} \\
P_{S}[i, L] & =\frac{1}{q^{2(n-l)(2 n+3)+2(2 \nu-4 n+k-3)}}
\end{aligned}
$$

where $i \notin L$.
Proof: Impersonation attack: R_{L}, after receiving its secret keys, send a message m to R_{i}. The attack is successful if m is accepted by R_{i} as authentic. Therefore,

$$
\begin{aligned}
& P_{I}[i, L]=\max _{e_{L} \in E_{L}} \\
& \left\{\begin{array}{l}
\max _{m \in M} \mid\left\{e_{T} \in E_{T} \mid e_{T} \subset m \text { and } e_{T} \supset e_{L}, e_{R_{i}}\right\} \mid \\
\left|\left\{e_{T} \in E_{T} \mid e_{T} \supset e_{L}\right\}\right|
\end{array}\right\} \\
& =\frac{q^{(2 n-2 l-2)(2 \nu-2 n+k)}}{q^{(2 n-2 l)(2 \nu-2 n+l)}} \\
& =\frac{1}{q^{2(n-l)(l-k)+2(2 \nu-2 n+k)}} .
\end{aligned}
$$

Substitution attack: R_{L}, after observing a message m that is transmitted by the sender, replace m with another message m^{\prime}. The attack is successful if m^{\prime} is accepted by R_{i} as authentic. Therefore,

$$
\begin{aligned}
& P_{S}[i, L]=\max _{e_{L} \in E_{L}} \max _{m \in M} \max _{m^{\prime} \in M} \\
& \frac{\mid\left\{e_{T} \in E_{T} \mid e_{T} \subset m, m^{\prime} \text { and } e_{T} \supset e_{L}, e_{R_{i}}\right\} \mid}{\mid\left\{e_{T} \in E_{T} \mid e_{T} \subset m \text { and } e_{T} \supset e_{L}\right\} \mid} \\
& \begin{array}{l}
=\max _{2 n+2 \leq k_{1} \leq 2 \nu-2 n+k-1} \frac{q^{2(n-l-1)\left(k_{1}-2 n-2\right)}}{q^{(2 n-2 l)(2 \nu-2 n+k)}} \\
=\frac{2^{2(n-l)(2 n+3)+2(2 \nu-4 n+k-3)} .}{} .
\end{array}
\end{aligned}
$$

Acknowledgements: The research was supported by the NNSF of China(61179026) and The Research Funds For The Central University (ZXH2010C008).

References:

[1] Y. Desmedt, Y. Frankel and M. Yung, Multer-receiver/Multi-sender network security: efficient authenticated multicast/feedback, IEEE infocom'92, 1992, pp. 2045-2054.
[2] G. J. Simmons, Authentication thery/coding theory, Lecture Notes in Comput.Vol. 196, pp. 411431.
[3] R. Safavi-Naini, H. Wang, Multi-receiver Authentication Codes: Models, Bounds, Constructions and Extensions, Information and Computation, 1999, pp. 148-172.
[4] Y. Gao, Z. J. Zou, Some Constructions of Cartesian Authentication Codes from Pseudo-Sympletic Geometry, Nortneast. Math. J, Vol.11, 1995, No.1, pp. 47-55.
[5] S. D. Chen, D. W. Zhao, New Construction of Authentication Codes with Arbitration from Pseudo-Sympletic Geometry over Finite Fields, Ars Combinatoria, 2010, 97A, pp. 453-465.
[6] R. Safavi-Naini, H. Wang, New Results on Multirecerver Authentication Codes, Theoretical Computer Science, 2001,269(1/2), pp. 1-21.
[7] W. P. Ma, X. M. Wang, A Few New Structure Methods of Multi-sender Authentication Codes, Electronics College Journal, Vol.28, 2000, No.4, pp. 117-119
[8] Z. X. Wan, Geometry of Classical Groups over Finite Fields, (Second Edition), Beijing/New York: Science Press, 2002.

