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1 Introduction
Based on Simmons’ model of unconditionally secure
authentication, Desmedt, Frankel and Yung (DFY)[1]
introduced an extended authentication model, here re-
ferred to as Multi-receiver authentication model, or
simply the MRA-model. In the model, protection is
provided against deceptions from both an opponen-
t and an insider (transmitter and receiver). In the
MRA-model, multi-receiver authentication codes al-
low a sender to construct an authenticated message for
a group of receivers such that each receiver can verify
authenticity of the received message. There are three
phases in an MRA-model:

1. Key distribution. The KDC (key distribution
center) privately transmits the key information to the
sender and each receiver (the sender can also be the
KDC).

2. Broadcast. For a source state, the sender gen-
erates the authenticated message using his/her key and
broadcasts the authenticated message.

3. V erification. Each user can verify the au-
thenticity of the broadcast message.

Denote by X1 × · · · × Xn the direct product of
sets X1, · · · , Xn and by pi the projection mapping of
X1×· · ·×Xn onXi. That is, pi : X1×· · ·×Xn → Xi

defined by pi(x1, x2, · · · , xn) = xi. Let g1 : X1 →
Y1 and g2 : X2 → Y2 be two mappings, we denote the
direct product of g1 and g2 by g1×g2, where g1×g2 :
X1×X2 → Y1×Y2 is defined by (g1×g2)(x1, x2) =
(g1(x1), g2(x2)). The identity mapping on a set X is
denoted by 1X .

Let C = (S, M, E, f) and Ci =

(S, Mi, Ei, fi), i = 1, 2, ..., n, be authentication
codes. We call (C; C1, C2, · · · , Cn) a multi-receiver
authentication code (MRA-code) if there exist two
mappings τ : E → E1 × · · · × En and π : M →
M1 × · · · ×Mn such that for any (s, e) ∈ S ×E and
any 1 ≤ i ≤ n, the following identity holds

pi(πf(s, e)) = fi((1S × piτ(s, e)).

Let τi = piτ and πi = piπ. Then we have for each
(s, e) ∈ S × E

πif(s, e) = fi(1S × τi)(s, e).

We adopt Kerckhoff’s principle that everything in
the system except the actual keys of the sender and
receivers is public. This includes the probability dis-
tribution of the source states and the sender’s keys.

Attackers could be outsiders who do not have
access to any key information, or insiders who have
some key information. We only need to consider the
latter group as it is at least as powerful as the former.
We consider the systems that protect against the coali-
tion of groups of up to a maximum size of receivers,
and we study impersonation and substitution attacks.

Assume there are n receivers R1, · · · , Rn. Let
L = {i1, · · · , il} ⊆ {1, · · · , n}, RL = {Ri1 , · · · , Ril}
and EL = ERi1

× · · · ×ERil
. We consider the attack

from RL on a receiver Ri, where i /∈ L.
Impersonation attack: RL, after receiving

their secret keys, send a message m to Ri. RL is
successful if m is accepted by Ri as authentic. We
denote by PI [i, L] the success probability of RL in
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performing an impersonation attack on Ri. This can
be expressed as

PI [i, L] = max
eL∈EL

max
m∈M

P (m is accepted by Ri|eL)

where i /∈ L.
Substitution attack: RL, after observing a mes-

sage m that is transmitted by the sender, replace m
with another message m′. RL is successful if m′ is
accepted by Ri as authentic. We denote by PS [i, L]
the success probability of RL in performing a substi-
tution attack on Ri. We have

PS [i, L] = max
eL∈EL

max
m∈M

max
m′ ̸=m∈M

P (Ri acceptsm
′|m, eL),

where i /∈ L.

2 Preliminaries
Assume that Fq is a finite field of characteristic 2.
Now let us introduce the singular pseudo-symplectic
group. Let

Sδ,l =

(
Sδ

0(l)

)
where Sδ(δ = 1 or 2) is the (2ν + δ) × (2ν + δ)
non-alternate symmetric matrix:

S1 =

 0 I(ν)

I(ν) 0
1


or

S2 =


0 I(ν)

I(ν) 0
0 1
1 1


The set of all (2ν + δ+ l)× (2ν + δ+ l) nonsingular
matrices T satisfying

TSσ,l
tT = Sσ,l

forms a group with respect to matrix multiplication,
called the singular pseudo-symplectic group of degree
2ν + δ + l and rank 2ν + σ over Fq and denoted by
PS2ν+δ+l,2ν+δ

(Fq).

Let F(2ν+δ+l)
q be the (2ν+δ+l)-dimensional row

vector space over Fq, the singular pseudo-symplectic
group PS2ν+δ+l,2ν+δ

(Fq) has an action on the vector

space F(2ν+δ+l)
q defined as follows:

F(2ν+δ+l)
q × PS2ν+δ+l,2ν+δ

(Fq) −→ F(2ν+δ+l)
q

((x1, x2 · · · , x2ν+δ+l), T ) 7−→ (x1, x2 · · · , x2ν+δ+l)T

The vector space F(2ν+δ+l)
q together with this action

of the group PS2ν+δ+l,2ν+δ
(Fq) is called the singular

pseudo-symplectic space of dimension (2ν + δ + l)

over Fq. An m -dimensional subspace P of F(2ν+δ+l)
q

is said to be of type (m, 2s + τ, s, ε), where τ = 0, 1
or 2 and ε = 0 or 1, if PSδ,lP T is cogredient to
M(m, 2s + τ, s) and P does not or does contain a
vector of the form

(0, 0 · · · 0︸ ︷︷ ︸
2ν

, 1, x2ν+2 · · · , x2ν+1+l), where δ = 1

(0, 0 · · · 0︸ ︷︷ ︸
2ν

, 1, 0, x2ν+3 · · · , x2ν+2+l), where δ = 2

corresponding to the cases ε = 0 or 1, respectively.
Denote the set of subspaces of type (m, 2s + τ, s, ε)

in F(2ν+δ+l)
q by M(m, 2s+τ, s, ε; 2ν+δ+l, 2ν+δ)

and let

N(m, 2s+ τ, s, ε; 2ν + δ + l, 2ν + δ)

= M(m, 2s+ τ, s, ε; 2ν + δ + l, 2ν + δ).

Let E be the subspace of F(2ν+δ+l)
q generated

by e2ν+δ+1, · · · , e2ν+δ+l. Then dimE = l. An m-
dimensional subspace P of F(2ν+δ+l)

q is called a sub-
space of type (m, 2s+ τ, s, ε, k), if

(i) P is a subspace of type (m, 2s+ τ, s, ε), and
(ii) dim(P ∩ E) = k.
Denote by M(m, 2s+τ, s, ε, k; 2ν+δ+l, 2ν+

δ) the set of subspaces of type (m, 2s + τ, s, ε, k)

in F(2ν+δ+l)
q and let

N(m, 2s+ τ, s, ε, k; 2ν + δ + l, 2ν + δ)

= |M(m, 2s+ τ, s, ε, k; 2ν + δ + l, 2ν + δ)|.

From [2] we know that the set of all subspaces of type
(m, 2s + τ, s, ε, k) in F(2ν+δ+l)

q forms an orbit under
PS2υ+δ+l,2ν+δ

(Fq). Let P is a subspace of F (2ν+δ+l)
q ,

we define the dual subspace of P is

P⊥ = {x|x ∈ F(2ν+δ+l)
q , xSδ,ly

⊤ = 0,∀y ∈ P}.

In [3], Gao You, Shi Xinhua and Wang Hongli
described one Construction of Authentication codes
with Arbitration from singular Symplectic Geometry
over Finite Fields. In [4], Desmedt, Frankel and Yung
gave two constructions for MRA-codes: one is based
on polynomials and the other based on finite geome-
tries. There are other constructions of multireceiver
authentication codes are given in [5]–[8]. It is well
known that the construction of authentication codes is
combinational design in its nature and the geometry
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of classical groups over finite fields, including sym-
plectic geometry, pseudo-symplectic geometry, uni-
tary geometry and orthogonal geometry can provide
a better combination of structure and easy to count.
In [9], Chen and Zhao constructed two multi-receiver
authentication codes from Symplectic geometry over
finite fields. In this paper we construct two new multi-
receiver authentication codes from Singular Pseudo-
Symplectic geometry over finite fields. The parame-
ters and the probabilities of deceptions of the codes
are also computed.

3 Construction
3.1 Construction I
Suppose that 1 < n < r < ν, 1 < k ≤ l. Let Fq be a
finite field with q elements and vi(1 ≤ i ≤
2ν) be a row vector in F(2ν+2+l)

q . Let U =
⟨v1, v2, · · · , vn, e2ν+3⟩, i.e., U is a fixed subspace
of type (n + 1, 0, 0, 0, 1) in the (2ν + 2 + l)-
dimensional singular pseudo-symplectic F(2ν+2+l)

q ,
then U⊥ is a subspace of type (2ν − n +
2 + l, 2(ν − n) + 2, ν − n, 1, l). The set of
source states S={s|s is a subspace of type (r +
k, 0, 0, 0, k) and U ⊂ s ⊂ U⊥}; the set of the trans-
mitter’s encoding rules ET ={eT |eT is a subspace of
type (2n + 1, 2n, n, 0, 1), U ⊂ eT }; the set of the
ith receiver’s decoding rules ERi={eRi |eRi is a sub-
space of type (n+2, 2, 1, 0, 1) which is orthogonal to
⟨v1, · · · , vi−1, vi+1, · · · , vn⟩, U ⊂ vRi}, 1 ≤ i ≤ n;
the set of messages M={m|m is a subspace of type
(r + n + k, 2n, n, 0, k), U ⊂ m and m ∩ U⊥ is a
subspace of type (r + k, 0, 0, 0, k)}.

1. Key Distribution. The KDC randomly
chooses a subspace eT ∈ ET , then privately sends eT
to the sender T . Then KDC randomly chooses a sub-
space eRi ∈ ERi and eRi ⊂ eT , then privately sends
eRi to the ith receiver, where 1 ≤ i ≤ n.

2. Broadcast. For a source state s ∈ S, the
sender calculates m = s+ eT and broadcasts m.

3. V erification. Since the receiver Ri holds the
decoding rule eRi , Ri accepts m as authentic if eRi ⊂
m. Ri can get s from s = m ∩ U⊥.

Lemma 1 The above construction of multi-receiver
authentication codes is reasonable, that is

(1) s+eT = m ∈M , for all s ∈ S and eT ∈ ET ;
(2) for any m ∈ M , s = m ∩ U⊥ is the unique

source state contained in m and there is eT ∈ ET ,
such that m = s+ eT .

Proof: (1) For any s ∈ S, eT ∈ ET , from the defini-

tion of s and eT , we can assume that

s =

(
U
Q

)
n+1

r+k−n−1
and eT =

(
U
V

)
n+1

n
,

then(
U
Q

)
S2,l

t(
U
Q

)
=

 0(n) 0 0
0 0 0

0 0 0(r−n+k−1)


and(

U
V

)
S2,l

t(
U
V

)
=

 0 0 I(n)

0 0 0

I(n) 0 0

 .

Obviously

m = s+ eT =

 U
V
Q

 ,

and U
V
Q

S2,l

t U
V
Q

 =

 0 I(n) 0

I(n) 0 0

0 0 0(r−n+k)

 .

From above, m is a subspace of type (r + n +
k, 2n, n, 0, k) and U ⊂ m, i.e., m ∈M .

(2) If ∀m ∈ M , let s = m ∩ U⊥, then s is a
subspace of type (r + k, 0, 0, 0, k) , U ⊂ m and U ⊂
U⊥, i.e., s ∈ S is a source state. Now let

s =

(
U
Q

)
n+1

r+k−n−1

then

sS2,l
ts =

 0(n) 0 0
0 0 0

0 0 0(r−n+k−1)


Since m ̸= U⊥, therefore, there exist V ∈ m \ U⊥

such that m = s⊕ V and U
V
Q

S2,l

 U
V
Q

T

∼

 0 I(n) 0

I(n) 0 0

0 0 0(r−n+k)

 .

Let eT = U ⊕ V . Form above we deduce that eT is a
subspace of type (2n+1, 2n, n, 0, 1) and eT ∩U⊥ =
U . Therefore eT is an encoding rule of the transmitter
and satisfying s+ eT = m.

If s′ is another source state contained in m, then
U ⊂ s′ ⊂ U⊥. Therefore, s′ ⊂ m ∩ U⊥ = s, while
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dims′=dims, so s′=s, i.e., s is the uniquely source s-
tate contained in m.

From Lemma 1, we find this construction of
multi-receiver authentication codes is reasonable.
Next the parameters of this codes are computed. ⊓⊔

Lemma 2 The number of the source states is |S| =
N(r−n, 0, 0, 0; 2ν−2n+2)N(k−1, l−1)q(r−n)(l−k).

Proof: Since U ⊂ s ⊂ U⊥, from the definition of s,
s has the form as follows

s =


I(n) 0 0 0 0 0 0 0 0
0 Q2 0 Q4 Q5 Q6 0 0 Q9

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 I(k−1) 0


n

r−n

1

k−1

n ν−n n ν−n 1 1 1 k−1 l−k

,

where (Q2, Q4, Q5, Q6) is a subspace of type (r −
n, 0, 0, 0; 2ν−2n+2) in the pseudo-symplectic space
F

(2(ν−n)+2)
q . Therefore, the number of the source s-

tates is |S| = N(r − n, 0, 0, 0; 2ν − 2n + 2)N(k −
1, l − 1)q(r−n)(l−k). ⊓⊔

Lemma 3 The number of the encoding rules of the
transmitter is qn(2ν−2n+l).

Proof: Since eT is a subspace of type (2n +
1, n, 0, 0, 1) containing U , then we can suppose that

eT =

 I(n) 0 0 0 0 0 0 0

0 R2 I(n) R4 R5 0 0 R8

0 0 0 0 0 0 1 0

 n

n

1

n ν−n n ν−n 1 1 1 l−1

,

whereR2, R4, R5, R8 is arbitrary. Therefore the num-
ber of |eT | containing U is qn(2ν−2n+l). ⊓⊔

Lemma 4 The number of the decoding rules of the ith
receiver is |ERi | = q2(ν−n)+l.

Proof: Since the ith receiver’s decoding rules eRi

is a subspace of type (n + 2, 2, 1, 0, 1) containing U
and eRi is orthogonal to ⟨v1, · · · , vi−1, vi+1, · · · , vn⟩
and the transitivity properties of singular pseudo-
symplectic group. So we can let U = ⟨e1, e2, · · · , en,
e2ν+3⟩, then eRi = t(e1, · · · , en, e2ν+3, u), where
u = (x1 x2 · · · x2ν · · · x2ν+2+l). Obviously,
x1 = · · · = xn = xν+1 = · · · = xν+i−1 = xν+i+1 =
· · · = xν+n = x2ν+2 = x2ν+3 = 0, xν+i = 1, and
xn+1, · · · , xν , xν+n+1, · · · , x2ν ,x2ν+1, · · · , x2ν+2+l

arbitrarily. Therefore, |ERi | = q2(ν−n)+l. ⊓⊔

Lemma 5 (1)The number of the encoding rules eT
contained in m is qn(r−n+k−1);

(2)The number of the messages is |M | =

|S||ET |/qn(r−n+k−1).

Proof: (1) Let m be a message, since U ⊂ m and
from the definition of m, we may take m as follows

m =


I(n) 0 0 0 0 0 0 0 0 0 0

0 I(r−n) 0 0 0 0 0 0 0 0 0

0 0 0 I(n) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 I(k−1) 0


n r−n ν−r n r−n ν−r 1 1 1 k−1 l−k

,

if U ⊂ eT ⊂ m, then we can assume that

eT =

 I(n) 0 0 0 0 0 0 0 0 0 0

0 R2 0 I(n) 0 0 0 0 0 R10 0
0 0 0 0 0 0 0 0 1 0 0

 n

n

1

n r−n ν−r n r−n ν−r 1 1 1 k−1 l−k

,

where R2, R10 arbitrarily. Therefore, the number of
eT contained in m is qn(r−n+k−1).

(2) We know that a message contains only one
source state and the number of the transmitter’s en-
coding rules contained in a message is qn(r−n+k−1).
Therefore we have |M | = |S||ET |/qn(r−n+k−1). ⊓⊔

Theorem 6 The parameters of constructed multi-
receiver authentication codes are

|S| = N(r−n, 0, 0, 0; 2ν− 2n+2)N(k− 1, l−
1)q(r−n)(l−k);

|ET | = qn(2ν−2n+l);

|ERi | = q2(ν−n)+l;

|M | = |S||ET |/qn(r−n+k−1).

Suppose there are n receivers R1, · · · , Rn. Let L =
{i1, · · · , il} ⊆ {1, · · · , n}, RL = {Ri1 , · · · , Ril} and
EL = ERi1

× · · · × ERil
. We consider the imper-

sonation attack and substitution attack from RL on a
receiver Ri, where i /∈ L.

Without loss of generality, we can assume that
RL = {R1, · · · , Rl}, EL = ER1 × · · · × ERl

, where
1 ≤ l ≤ n − 1. First, we will derive the following
results:

Lemma 7 For any eL = (eR1 , · · · , eRl
) ∈ EL, the

number of eT containing eL is q(n−l)(2(ν−n)+l).

Proof: For any eL = (eR1 , · · · , eRl
) ∈ EL, since the

transitivity properties of singular pseudo-symplectic
group,we can assume that

eL =


I(l) 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0

0 0 R3 I
(l) 0 R6 R7 0 0 R10

0 0 0 0 0 0 0 0 1 0


l n−l ν−n l n−l ν−n 1 1 1 l−1

.
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Therefore, eT containing eL has the form as follows

eT =


I(l) 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0

0 0 R3 I
(l) 0 R6 R7 0 0 R10

0 0 R′
3 0 I(n−l) R′

6 R
′
7 0 0 R′

10

0 0 0 0 0 0 0 0 1 0


l n−l ν−n l n−l ν−n 1 1 1 l−1

where R′
3, R

′
6, R

′
7, R

′
10 arbitrarily. Therefore, the

number of eT containing eL is q(n−l)(2(ν−n)+l). ⊓⊔

Lemma 8 For any m ∈M and eL, eRi ⊂ m,
(1) the number of eT contained inm and contain-

ing eL is q(n−l)(r−n+k−1);
(2) the number of eT contained inm and contain-

ing eL, eRi is q(n−l−1)(r−n+k−1).

Proof: (1) The matrix of m is like lemma 5, then for
any eL ⊂ m, assume that

eL =


I(l) 0 0 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0 0 0

0 0 R3 0 I(l) 0 0 0 0 0 0 R12 0
0 0 0 0 0 0 0 0 0 0 1 0 0


l n−l r−n ν−r l n−l r−n ν−r1 1 1 k−1 l−k

If eT ⊂ m and eT ⊃ eL, then

eT =


I(l) 0 0 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0 0 0

0 0 R3 0 I
(l) 0 0 0 0 0 0 R12 0

0 0 R′
3 0 0 I(n−l) 0 0 0 0 0 R′

12 0
0 0 0 0 0 0 0 0 0 0 1 0 0


l n−l r−n ν−r l n−l r−n ν−r 1 1 1 k−1 l−k

where R′
3, R

′
12 arbitrarily. Therefore, the num-

ber of eT contained in m and containing eL is
q(n−l)(r−n+k−1).

(2) Similarly, we can derive that the number
of eT contained in m and containing eL, eRi is
q(n−l−1)(r−n+k−1). ⊓⊔

Lemma 9 Assume that m1 and m2 are two distinct
messages which commonly contain a transmitter’s en-
coding rule eT . s1 and s2 contained in m1 and m2

are two different source states, respectively. Assume
that s0 = s1 ∩ s2, dim s0 = k1, then n + 1 ≤ k1 ≤
r + k − 1. For any eL, eRi ⊂ m1 ∩m2, the number
of eT contained in m1 ∩m2 and containing eL, eRi is
q(n−l−1)(k1−n−1).

Proof: Since m1 = s1 + eT ,m2 = s2 + eT and
m1 ̸= m2, then s1 ̸= s2. And for any s ∈ S, s ⊃

U , therefore, n ≤ k1 ≤ r + k − 1. Assume that s′i
is the complementary subspace of s0 in the si, then
si = s0 + s′i (i = 1, 2). From mi = si + eT =
s0 + s′i + eT and si = mi ∩ U⊥, we have s0 =(
m1 ∩ U⊥)∩ (m2 ∩ U⊥) = m1 ∩m2 ∩ U⊥ = s1 ∩
m2 = s2 ∩ m1 and m1 ∩ m2 = (s1 + eT ) ∩ m2 =
(s0+s

′
1+eT )∩m2 = ((s0+eT )+s

′
1)∩m2 . Because

s0 + eT ⊂ m2 ,m1 ∩m2 = (s0 + eT ) + (s′1 ∩m2) .
While s′1∩m2 ⊆ s1∩m2 = s0 , m1∩m2 = s0+eT .

From the definition of the message, we may take
mi(i = 1, 2) as follows

mi =


I(n) 0 0 0 0 0 0 0 0 0 0
0 hi2 0 0 0 0 0 0 0 hi10 0

0 0 0 I(n) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 h′i10 0

0 0 0 0 0 0 0 0 1 0 0


n

r−n

n

k−1

1

n r−n ν−r n r−nν−r1 1 1 k−1 l−k

,

Let
m1 ∩m2

=


I(n) 0 0 0 0 0 0 0 0 0 0
0 Q2 0 0 0 0 0 0 0 Q10 0

0 0 0 I(n) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q′

10 0
0 0 0 0 0 0 0 0 1 0 0


n

r−n

n

k−1

1

n r−n ν−r n r−n ν−r1 1 1 k−1 l−k

,

from above we know that m1 ∩m2 = s0 + eT , then
dim (m1 ∩m2) = k1 + n, therefore,

dim

(
0 Q2 0 0 0 0 0 0 0 Q10 0
0 0 0 0 0 0 0 0 0 Q′

10 0

)
,

n r−n ν−r n r−n ν−r 1 1 1 k−1 l−k

= k1 − n− 1
For any eL, eRi ⊂ m1 ∩m2, we can assume that

eL =


I(l) 0 0 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0 0 0

0 0 R3 0 I(l) 0 0 0 0 0 0 R10 0
0 0 0 0 0 0 0 0 0 0 1 0 0


l n−l r−n ν−r l n−lr−nν−r1 1 1 k−1 l−k

eRi =


I(l) 0 0 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0 0 0
0 0 R′

3 0 0 1 0 0 0 0 0 R′
10 0

0 0 0 0 0 0 0 0 0 0 1 0 0


l n−l r−n ν−r i+l 1 n−iν−n1 1 1 k−1 l−k

If eT ⊂ m1 ∩m2 and eL, eRi ⊂ eT , then eT has the
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form as follows

I(l) 0 0 0 0 0 0 0 0 0 0 0 0 0

0 I(n−l) 0 0 0 0 0 0 0 0 0 0 0 0

0 0 R3 0 I
(l) 0 0 0 0 0 0 0 R10 0

0 0 h3 0 0 I(i) 0 0 0 0 0 0 h10 0
0 0 R′

3 0 0 0 1 0 0 0 0 0 R′
10 0

0 0 h′3 0 0 0 0 I(n−i−l−1)) 0 0 0 0 h′10 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0


l n−l r−n ν−r l i 1 n−l−i−1 ν−n 1 1 1 k−1 l−k

So it is easy to know that the number of eT
contained in m1 ∩ m2 and containing eL, eRi is
q(n−l−1)(k1−n−1). ⊓⊔

Theorem 10 In this multi-receiver authentication
codes, under the assumption that the encoding rules
of the transmitter and the receiver are chosen accord-
ing to a uniform probability distribution , the largest
probabilities of success for impersonation attack
and substitution attack from RL on a receiver Ri

are

PI [i, L] =
1

q(n−l−1)(2ν−n+l−r−k+1)+(2(ν−n)+l)
,

PS [i, L] =
1

qr−l+k−2
.

respectively, where i /∈ L.

Proof: Impersonation attack: RL, commonly send
a message m to Ri. RL is successful if m is accepted
by Ri as authentic. Therefore

PI [i, L] = max
eL∈EL

{
max
m∈M

|{eT∈ET |eT⊂m and eT⊃eL,eRi
}|

|{eT∈ET |eT⊃eL}|

}

=
q(n−l−1)(r−n+k−1)

q(n−l)(2(ν−n)+l)

=
1

q(n−l−1)(2ν−n+l−r−k+1)+(2(ν−n)+l)
.

Substitution attack: RL, after observing a
message m that is transmitted by the sender, replace
m with another message m′. RL is successful if m′ is
accepted by Ri as authentic. Therefore PS [i, L]

= max
eL∈EL

max
m∈M

{
max

m′∈M
|{eT∈ET |eT⊂m,m′ and eT⊃eL,eRi

}|

|{eT∈ET |eT⊂m and eT⊃eL}|

}

= max
n+1≤k1≤r+k−1

q(n−l−1)(k1−n−1)

q(n−l)(r−n+k−1)

=
1

qr−l+k−2
.

The desired result follows. ⊓⊔

3.2 Construction II
Suppose that Fq be a finite field with q ele-

ments and vi(1 ≤ 3i ≤ 2ν) be the row vector
in F(2ν+2+l)

q . Let 3 ≤ 3n < ν, 1 < k ≤
l, U = ⟨v1, v2, · · · , v3n, e2ν+3⟩, i.e., U is a fixed
subspace of type (3n + 1, 0, 0, 0, 1) in the (2ν +
2 + l)-dimensional singular pseudo-symplectic space
F(2ν+2+l)
q , then U⊥ is a subspace of type (2ν −

3n + 2 + l, 2(ν − 3n) + 2, ν − 3n, 1, l). The set
of source states S={s|s is a subspace of type (2ν −
3n+ k, 2(ν − 3n), ν − 3n, 0, k) and U ⊂ s ⊂ U⊥};
the set of the transmitter’s encoding rules ET={eT |eT
is a 3n dimensional subspace and U + eT is a sub-
space of type (6n + 1, 6n, 3n, 0, 1)}; the set of the
ith receiver’s decoding rules ERi={eRi |eRi is a 3
dimensional subspace and U + eRi is a subspace
of type (3n + 4, 6, 3, 0, 1) which is orthogonal to
⟨v1, · · · , v3i−3, v3i+1, · · · , v3n⟩}; the set of messages
M={m|m is a subspace of type (2ν + k, 2ν, ν, 0, k),
U ⊂ m and m∩U⊥ is a subspace of type (2ν− 3n+
k, 2(ν − 3n), ν − 3n, 0, k)}.

1. Key Distribution. The KDC randomly
chooses a subspace eT ∈ ET , then privately sends eT
to the sender T . Then KDC randomly chooses a sub-
space eRi ∈ ERi and eRi ⊂ eT , then privately sends
eRi to the ith receiver, where 1 ≤ i ≤ n.

2. Broadcast. For a source state s ∈ S, the
sender calculates m = s+ eT and broadcasts m.

3. V erification. Since the receiver Ri holds the
decoding rule eRi , Ri accepts m as authentic if eRi ⊂
m. Ri can get s from s = m ∩ U⊥.

Lemma 11 The above construction of multi-receiver
authentication codes is reasonable, that is

(1) s+eT = m ∈M , for all s ∈ S and eT ∈ ET ;
(2) for any m ∈M , s = m ∩ U⊥ is the uniquely

source state contained in m and there is eT ∈ ET ,
such that m = s+ eT .

Proof: (1) For any s ∈ S, eT ∈ ET , from the defini-
tion of s and eT , we can assume that

s =


I(3n) 0 0 0 0 0 0 0 0
0 Q2 0 Q4 Q5 0 0 0 Q9

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 I(k−1) 0


3n

2ν−6n

1

k−1

3n ν−3n 3nν−3n 1 1 1 k−1 l−k

,

and

eT =
(
X1 X2 I(3n) X4 X5 0 X7 X8 X9

)
3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

,
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then

sSσ,ls
T =


0 0 0 0
0 Q4Q

T
2 +Q2Q

T
4 0 0

0 0 0 0
0 0 0 0


3n

2ν−6n

1

k−1

3n 2ν−6n 1 k−1

.

Since rank(sSσ,lsT ) = 2(ν − 3n), rank(Q4Q
T
2 +

Q2Q
T
4 ) = 2(ν − 3n). Then we can derive that

(
U
eT

)
S2,l

(
U
eT

)T

=

 0 0 I(3n)

0 0 0

I(3n) 0 0

 .

We have
m = s+ eT

=


I(3n) 0 0 0 0 0 0 0 0
0 Q2 0 Q4Q5 0 0 0 Q9

X1 X2 I
(3n)X4X5 0X7 X8 X9

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 I(k−1) 0


3n

2(ν−3n)

3n

1

k−1

3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

Thus m is a 2ν + k dimensional subspace and
mS2,lm

T

=


0 0 I(3n) 0 0
0 Q4Q

T
2 +Q2Q

T
4 Q4X

T
2 +Q2X

T
4 0 0

I(3n)X4Q
T
2 +X2Q

T
4 0 0 0

0 0 0 0 0
0 0 0 0 0

 ,

∼


0 0 I(3n) 0 0
0 Q4Q

T
2 +Q2Q

T
4 0 0 0

I(3n) 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

where rank (Q4Q
T
2 +Q2Q

T
4 ) = 2(ν−3n). Therefore,

rank(mS2,lmT ) = 2ν, dim(m∩E) = k. From above,
m is a subspace of type (2ν + k, 2ν, ν, 0, k) and U ⊂
m, i.e., m ∈M .

2) For ∀m ∈ M , m is a subspace of type
(2ν + k, 2ν, ν, 0, k) containing U . So there is a 3n-
dimensional subspace V ⊂ m, satisfying

(
U
V

)
S2,l

(
U
V

)T

=

 0 0 I(3n)

0 0 0

I(3n) 0 0

 .

Then we can assume that m =

 U
V
P

 satisfying

 U
V
P

S2,l

 U
V
P

T

=



0 0 I(3n) 0 0 0
0 0 0 0 0 0

I(3n) 0 0 0 0 0

0 0 0 0 I(ν−3n) 0

0 0 0 I(ν−3n) 0 0
0 0 0 0 0 0

 .

Let s =

(
U
P

)
, then s is a subspace of type (2ν −

3n + k, 2(ν − 3n), ν − 3n, 0, k) and U ⊂ s ⊂ U⊥,
i.e., s ∈ S is a source state. For any ν ∈ V and v ̸= 0,
v /∈ s is obvious, i.e., V ∩ U⊥ = {0}. Therefore,

m ∩ U⊥ =

(
U
P

)
= s. Let eT = V , then eT is a

transmitter’s encoding rule and satisfyingm = s+eT .
If s′ is another source state contained in m, then

U ⊂ s′ ⊂ U⊥. Therefore, s′ ⊂ m ∩ U⊥ = s, while
dims′=dims, so s′=s, i.e., s is the uniquely source s-
tate contained in m.

From Lemma 11, we know that this construction
of multi-receiver authentication codes is reasonable
and there are n receivers in this system. Next the pa-
rameters of this codes was computed. ⊓⊔

Lemma 12 The number of the source states is |S| =
N(2(ν−3n), 2(ν−3n), ν−3n, 0; 2ν−6n+2)N(k−
1, l − 1)q(2ν−6n)(l−k).

Proof: SinceU ⊂ s ⊂ U⊥ , s has the form as follows

s =


I(3n) 0 0 0 0 0 0 0 0
0 Q2 0 Q4 Q5 Q6 0 0 Q9

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 I(k−1) 0


3n

2ν−6n

1

k−1

3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

where (Q2, Q4, Q5, Q6) is a subspace of type (2(ν −
3n), 2(ν − 3n), ν − 3n, 0; 2ν − 6n + 2) in the
pseudo-symplectic space F(2(ν−n)+2)

q . Therefore, the
number of the source states is |S| = N(2(ν −
3n), 2(ν − 3n), ν − 3n, 0; 2ν − 6n+ 2)N(k − 1, l−
1)q(2ν−6n)(l−k). ⊓⊔

Lemma 13 The number of the encoding rules of
transmitter is |ET | = q3n(2ν−3n+1+l).

Proof: Since U + eT is a subspace of type (6n +
1, 6n, 3n, 0, 1), then we can suppose that

eT =
(
X1 X2 I(3n) X4 X5 0 X7 X8 X9

)
3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

,
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where X1, X2, X4, X5, X7, X8 and X9 is arbitrary.
Therefore the number of eT is q3n(2ν−3n+1+l). ⊓⊔

Lemma 14 The number of the decoding rules of the
ith receiver is |ERi | = q3(2ν−3n+1+l).

Proof: Since the ith receiver’s decoding rules satis-
fying U + eRi is a subspace of type (3n+4, 6, 3, 0, 1)
which is orthogonal to ⟨v1, · · · , v3i−3, v3i+1, · · · , v3n⟩
and the transitivity properties of singular pseudo-
symplectic group. So we can assume that

eRi =
(
X1 X2 0 I(3) 0 X6 X7 0 X9 X10 X11

)
3n ν−3n 3(i−1) 3 3(n−i) ν−3n 1 1 1 k−1 l−k

where X1, X2, X6, X7, X9, X10, X11 is arbitrary.
Therefore the number of |ERi | is q3(2ν−3n+1+l). ⊓⊔

Lemma 15 (1)The number of encoding rules eT con-
tained in m is q3n(2ν−3n+k);

(2)The number of the messages is |M | =

|S||ET |/q3n(2ν−3n+k).

Proof: (1) Let m be a message, from the definition
of m, we may take m as follows

m =



I(3n) 0 0 0 0 0 0 0 0

0 I(ν−3n) 0 0 0 0 0 0 0

0 0 I(3n) 0 0 0 0 0 0

0 0 0 I(ν−3n) 0 0 0 0 0
0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 I(k−1) 0


3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

if eT ⊂ m, then we can assume that

eT =
(
R1 R2 I(3n) R4 0 0 R7 R8 0

)
3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

,

where R1, R2, R4, R7, R8 arbitrarily. Therefore, the
number of eT contained in m is q3n(2ν−3n+k).

(2) We know that a message contains only one
source state and the number of the transmitter’s en-
coding rules contained in a message is q3n(2ν−3n+k).
Therefore we have |M | = |S||ET |/q3n(2ν−3n+k). ⊓⊔

Theorem 16 The parameters of constructed multi-
receiver authentication codes are

|S| = N(2(ν − 3n), 2(ν − 3n), ν − 3n, 0; 2ν −
6n+ 2)N(k − 1, l − 1)q(2ν−6n)(l−k);

|ET | = q3n(2ν−3n+1+l);
|ERi | = q3(2ν−3n+1+l);
|M | = |S||ET |/q3n(2ν−3n+k).

Assume there are n receivers R1, · · · , Rn. Let L =
{i1, · · · , il} ⊆ {1, · · · , n}, RL = {Ri1 , · · · , Ril} and
EL = ERi1

× · · · × ERil
. We consider the imper-

sonation attack and substitution attack from RL on a
receiver Ri, where i /∈ L.

Without loss of generality, we can assume that
RL = {R1, · · · , Rl}, EL = ER1 × · · · × ERl

, where
1 ≤ l ≤ n − 1. First, we will proof the following
results:

Lemma 17 For any eL = (eR1 , · · · , eRl
) ∈ EL, the

number of eT containing eL is q(3n−3l)(2ν−3n+1+l).

Proof: ∀eL = (eR1 , · · · , eRl
) ∈ EL, we can assume

that

eL =
(
R1 R2 I(3l) 0 R5 R6 0 R8 R9 R10

)
3n ν−3n 3l 3n−3l ν−3n 1 1 1 k−1 l−k

.

Therefore, eT containing eL has the form as follows

eT =

(
R1 R2 I

(3l) 0 R5 R6 0 R8 R9 R10

R′
1 R

′
2 0 I(3n−3l) R′

5 R
′
6 0 R′

8 R
′
9 R

′
10

)
3n ν−3n 3l 3n−3l ν−3n 1 1 1 k−1 l−k

where R′
1, R

′
2, R

′
5, R

′
6, R

′
8, R

′
9, R

′
10 arbitrar-

ily. Therefore, the number of eT containing eL is
q(3n−3l)(2ν−3n+1+l). ⊓⊔

Lemma 18 For any m ∈M and eL, eRi ⊂ m,
(1) the number of eT contained inm and contain-

ing eL is q(3n−3l)(2ν−3n+k);
(2) the number of eT contained inm and contain-

ing eL, eRi is q(3n−3l−3)(2ν−3n+k).

Proof: (1) The matrix of m is like lemma 15, then
∀eL ⊂ m, we can assume that

eL =
(
R1 R2 I(3l) 0 R5 0 0 R8 R9 0

)
.

3n ν−3n 3l 3n−3l ν−3n1 1 1 k−1 l−k

If eT ⊂ m and eT ⊃ eL, then

eT =

(
R1 R2 I

(3l) 0 R5 0 0 R8 R9 0

R′
1 R

′
2 0 I(3n−3l) R′

5 0 0 R′
8 R

′
9 0

.

)
3n ν−3n 3l 3n−3l ν−3n1 1 1 k−1 l−k

where R′
1, R

′
2, R

′
5, R

′
8, R

′
9 arbitrarily. Therefore, the

number of eT contained in m and containing eL is
q(3n−3l)(2ν−3n+k).

(2) Similarly, we can derive that the number
of eT contained in m and containing eL, eRi is
q(3n−3l−3)(2ν−3n+k). ⊓⊔
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Lemma 19 Assume that m1 and m2 are two distinct
messages which commonly contain a transmitter’s en-
coding rule eT . s1 and s2 contained in m1 and m2

are two different source states, respectively. Assume
that s0 = s1 ∩ s2, dim s0 = k1, then 3n + 1 ≤ k1 ≤
2ν − 3n + k − 1. For any eL, eRi ⊂ m1 ∩ m2, the
number of eT contained in m1 ∩ m2 and containing
eL, eRi is q3(n−l−1)(k1−3n−1).

Proof: Since m1 = s1 + eT ,m2 = s2 + eT , and
m1 ̸= m2, then s1 ̸= s2. And for any s ∈ S, s ⊃ U ,
therefore, 3n+ 1 ≤ k1 ≤ 2ν − 3n+ k − 1. Assume
that s′i is the complementary subspace of s0 in the si,
then si = s0 + s′i (i = 1, 2). From mi = si + eT =
s0 + s′i + eT and si = mi ∩ U⊥, we have s0 =(
m1 ∩ U⊥)∩ (m2 ∩ U⊥) = m1 ∩m2 ∩ U⊥ = s1 ∩
m2 = s2 ∩ m1 and m1 ∩ m2 = (s1 + eT ) ∩ m2 =
(s0+s

′
1+eT )∩m2 = ((s0+eT )+s

′
1)∩m2. Because

s0 + eT ⊂ m2, m1 ∩m2 = (s0 + eT ) + (s′1 ∩m2).
While s′1 ∩m2 ⊆ s1 ∩m2 = s0, m1 ∩m2 = s0+ eT .

From the definition of the message, we may take
mi(i = 1, 2) as follows

mi =


I(3n) 0 0 0 0 0 0 0 0
0 hi2 0 hi4 0 0 0 hi8 0

X1 X2 I
(3n) X4 0 0 X7 X8 0

0 0 0 0 0 0 0 h′i8 0

0 0 0 0 0 0 1 0 0


3n

2(ν−3n)

3n

k−1

1

3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

Let
m1 ∩m2

=


I(3n) 0 0 0 0 0 0 0 0
0 Q2 0 Q4 0 0 0 Q8 0

X1 X2 I
(3n) X4 0 0 X7 X8 0

0 0 0 0 0 0 0 Q′
8 0

0 0 0 0 0 0 1 0 0


3n

2(ν−3n)

3n

k−1

1

3n ν−3n 3n ν−3n 1 1 1 k−1 l−k

from above we know that m1 ∩m2 = s0 + eT , then
dim (m1 ∩m2) = k1 + 3n, therefore,

dim

(
0 Q2 0 Q4 0 0 0 Q8 0
0 0 0 0 0 0 0 Q′

8 0

)
= k1 − 3n− 1.

For any eL, eRi ⊂ m1 ∩m2, we can assume that

eL =
(
R1 R2 I

(3l) 0 0 0 R7 0 0 R10 R11 0
)
,

3nν−3n3l 3(i−1−l) 3 3(n−i)ν−3n 1 1 1 k−1 l−k

eRi =
(
X1 X2 0 0 I(3) 0 X7 0 0 X10 X11 0

)
,

3nν−3n3l 3(i−1−l)3 3(n−i) ν−3n 1 1 1 k−1 l−k

If eT ⊂ m1 ∩m2 and eL, eRi ⊂ eT , then eT has the
form as follows
R1R2 I

(3l) 0 0 0 R800R11R120

H1H2 0 I(3(i−l−1)) 0 0 H800H11H120

X1X2 0 0 I(3) 0 X700X10X110

N1N2 0 0 0 I(3(n−i))N700N10N110


3nν−3n 3l 3(i−1−l) 3 3(n−i) ν−3n 11 1 k−1 l−k

So it is easy to know that the number of eT
contained in m1 ∩ m2 and containing eL, eRi is
q3(n−l−1)(k1−3n−1). ⊓⊔

Theorem 20 In this multireceiver authentication
codes, under the assumption that the encoding rules
of the transmitter and the receiver are chosen accord-
ing to a uniform probability distribution, the largest
probabilities of success for impersonation attack
and substitution attack from RL to a receiver Ri

are

PI [i, L] =
1

q(3n−3l−3)(l−k+1)+3(2ν−3n++l+1)
,

PS [i, L] =
1

q3(n−l−1)(3n+2)+3(2ν−3n+k)
.

respectively, where i /∈ L.

Proof: Impersonation attack: RL, after receiving
their secret keys, send a message m to Ri. RL

is successful if m is accepted by Ri as authentic.
Therefore

PI [i, L] = max
eL∈EL

{
max
m∈M

|{eT∈ET |eT⊂m and eT⊃eL,eRi
}|

|{eT∈ET |eT⊃eL}|

}
=
q(3n−3l−3)(2ν−3n+k)

q(3n−3l)(2ν−3n+1+l)

=
1

q(3n−3l−3)(l−k+1)+3(2ν−3n++l+1)
.

Substitution attack: RL, after observing a mes-
sage m that is transmitted by the sender, replace m
with another message m′. RL is successful if m′ is
accepted by Ri as authentic. Therefore

PS [i, L]

= max
eL∈EL

max
m∈M

{
max

m′∈M
|{eT∈ET |eT⊂m,m′ and eT⊃eL,eRi

}|

|{eT∈ET |eT⊂m and eT⊃eL}|

}

= max
3n+1≤k1≤2ν−3n+k−1

q3(n−l−1)(k1−3n−1)

q(3n−3l)(2ν−3n+k)

=
1

q3(n−l−1)(3n+2)+3(2ν−3n+k)
.

This completes the proof. ⊓⊔
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