Two New Constructions of Multi-receiver Authentication Codes from Singular Pseudo-Symplectic Geometry over Finite Fields

Gao You, Chang Liwei

Civil Aviation University of China
College of Science
Jinbei Road 2898, 300300, Tianjin
CHINA
gao_you@263.net

Abstract: In this paper, two new constructions of multi-receiver authentication codes using singular pseudo-symplectic geometry on finite fields are described. Under the assumption that the encoding rules of the transmitter and the receiver are chosen according to a uniform probability distribution, the parameters and the probabilities of success for different types of deceptions are computed by the method of matrix and combinatorial enumeration.

Key–Words: Multi-receiver authentication codes, Singular pseudo-symplectic geometry, Finite fields, Construction, Combinatorial enumeration.

1 Introduction

Based on Simmons’ model of unconditionally secure authentication, Desmedt, Frankel and Yung (DFY)[1] introduced an extended authentication model, here referred to as Multi-receiver authentication model, or simply the MRA-model. In the model, protection is provided against deceptions from both an opponent and an insider (transmitter and receiver). In the MRA-model, multi-receiver authentication codes allow a sender to construct an authenticated message for a group of receivers such that each receiver can verify authenticity of the received message. There are three phases in an MRA-model:

1. Key distribution. The KDC (key distribution center) privately transmits the key information to the sender and each receiver (the sender can also be the KDC).

2. Broadcast. For a source state, the sender generates the authenticated message using his/her key and broadcasts the authenticated message.

3. Verification. Each user can verify the authenticity of the broadcast message.

Denote by \(X_1 \times \cdots \times X_n \) the direct product of sets \(X_1, \ldots, X_n \) and by \(p_i \) the projection mapping of \(X_1 \times \cdots \times X_n \) on \(X_i \). That is, \(p_i : X_1 \times \cdots \times X_n \rightarrow X_i \) defined by \(p_i(x_1, x_2, \ldots, x_n) = x_i \). Let \(g_1 : X_1 \rightarrow Y_1 \) and \(g_2 : X_2 \rightarrow Y_2 \) be two mappings, we denote the direct product of \(g_1 \) and \(g_2 \) by \(g_1 \times g_2 \), where \(g_1 \times g_2 : X_1 \times X_2 \rightarrow Y_1 \times Y_2 \) is defined by \((g_1 \times g_2)(x_1, x_2) = (g_1(x_1), g_2(x_2)) \). The identity mapping on a set \(X \) is denoted by \(1_X \).

Let \(C = (S, M, E, f) \) and \(C_i = (S, M_i, E_i, f_i), i = 1, 2, \ldots, n, \) be authentication codes. We call \((C; C_1, C_2, \ldots, C_n)\) a multi-receiver authentication code (MRA-code) if there exist two mappings \(\tau : E \rightarrow E_1 \times \cdots \times E_n \) and \(\pi : M \rightarrow M_1 \times \cdots \times M_n \) such that for any \((s, e) \in S \times E\) and any \(1 \leq i \leq n\), the following identity holds

\[p_i(\tau f(s, e)) = f_i((1_S \times p_i \tau(s, e))). \]

Let \(\tau_i = p_i \tau \) and \(\pi_i = p_i \pi \). Then we have for each \((s, e) \in S \times E\)

\[\pi_i f(s, e) = f_i(1_S \times \pi_i(s, e)). \]

We adopt Kerckhoff’s principle that everything in the system except the actual keys of the sender and receivers is public. This includes the probability distribution of the source states and the sender’s keys.

Attackers could be outsiders who do not have access to any key information, or insiders who have some key information. We only need to consider the latter group as it is at least as powerful as the former. We consider the systems that protect against the coalition of groups of up to a maximum size of receivers, and we study impersonation and substitution attacks.

Assume there are \(n \) receivers \(R_1, \ldots, R_n \). Let \(L = \{i_1, \ldots, i_l\} \subseteq \{1, \ldots, n\}, R_L = \{R_{i_1}, \ldots, R_{i_l}\} \) and \(E_L = E_{R_{i_1}} \times \cdots \times E_{R_{i_l}} \). We consider the attack from \(R_L \) on a receiver \(R_i \), where \(i \notin L \).

Impersonation attack: \(R_L \), after receiving their secret keys, send a message \(m \) to \(R_i \). \(R_L \) is successful if \(m \) is accepted by \(R_i \) as authentic. We denote by \(P_I[i, L] \) the success probability of \(R_L \) in
performing an impersonation attack on R_i. This can be expressed as

$$P_I[i, L] = \max_{e_L \in E_L} \max_{m, e_M} P(m \text{ is accepted by } R_i|e_L)$$

where $i \notin L$.

Substitution attack: R_L, after observing a message m that is transmitted by the sender, replace m with another message m'. R_L is successful if m' is accepted by R_i as authentic. We denote by $P_S[i, L]$ the success probability of R_L in performing a substitution attack on R_i. We have

$$P_S[i, L] = \max_{e_L \in E_L} \max_{m, e_M} P(R_i \text{ accepts } m'|m, e_L),$$

where $i \notin L$.

2 Preliminaries

Assume that F_q is a finite field of characteristic 2. Now let us introduce the singular pseudo-symplectic group. Let

$$S_{\delta,l} = \begin{pmatrix} S_{\delta} & 0^{(l)} \\ 0 & (l) \end{pmatrix}$$

where $S_\delta(\delta = 1 \text{ or } 2)$ is the $(2\nu + \delta) \times (2\nu + \delta)$ non-alternate symmetric matrix:

$$S_1 = \begin{pmatrix} 0 & I^{(\nu)} \\ I^{(\nu)} & 0 \end{pmatrix}$$

or

$$S_2 = \begin{pmatrix} 0 & I^{(\nu)} \\ I^{(\nu)} & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

The set of all $(2\nu + \delta + l) \times (2\nu + \delta + l)$ nonsingular matrices T satisfying

$$TS_{\sigma,l}T^T = S_{\sigma,l}$$

forms a group with respect to matrix multiplication, called the singular pseudo-symplectic group of degree $2\nu + \delta + l$ and rank $2\nu + \sigma$ over F_q and denoted by $P_{S_{2\nu+\delta+l,2\nu+\delta}}(F_q)$. Let $F_q^{(2\nu+\delta+l)}$ be the $(2\nu + \delta + l)$-dimensional row vector space over F_q, the singular pseudo-symplectic group $P_{S_{2\nu+\delta+l,2\nu+\delta}}(F_q)$ has an action on the vector space $F_q^{(2\nu+\delta+l)}$ defined as follows:

$$F_q^{(2\nu+\delta+l)} \times P_{S_{2\nu+\delta+l,2\nu+\delta}}(F_q) \rightarrow F_q^{(2\nu+\delta+l)}$$

$$((x_1, x_2, \cdots, x_{2\nu+\delta+l}), T) \rightarrow (x_1, x_2, \cdots, x_{2\nu+\delta+l})T$$

The vector space $F_q^{(2\nu+\delta+l)}$ together with this action of the group $P_{S_{2\nu+\delta+l,2\nu+\delta}}(F_q)$ is called the singular pseudo-symplectic space of dimension $(2\nu + \delta + l)$ over F_q. An m-dimensional subspace P of $F_q^{(2\nu+\delta+l)}$ is said to be of type $(m, 2s + \tau, s, \varepsilon)$, where $\tau = 0, 1$ or 2 and $\varepsilon = 0$ or 1, if $P_{S_{\delta,l}} P^T$ is coredient to $M(m, 2s + \tau, s)$ and P does not or does contain a vector of the form

$$\begin{align*}
(0, 0 \cdots 0, 1, x_{2\nu+2}, \cdots, x_{2\nu+1+l}), & \quad \text{where } \delta = 1 \\
(0, 0 \cdots 0, 1, 0, x_{2\nu+3}, \cdots, x_{2\nu+2+l}), & \quad \text{where } \delta = 2
\end{align*}$$

for some l. Denote the set of subspaces of type $(m, 2s + \tau, s, \varepsilon)$ in $F_q^{(2\nu+\delta+l)}$ by $M(m, 2s + \tau, s, \varepsilon; 2\nu+\delta+l, 2\nu+\delta)$ and let

$$N(m, 2s + \tau, s, \varepsilon; 2\nu + \delta + l, 2\nu + \delta)$$

Let E be the subspace of $F_q^{(2\nu+\delta+l)}$ generated by $e_{2\nu+\delta+1}, \cdots, e_{2\nu+\delta+l}$. Then $\dim E = l$. An m-dimensional subspace P of $F_q^{(2\nu+\delta+l)}$ is called a subspace of type $(m, 2s + \tau, s, \varepsilon, k)$ if

(i) P is a subspace of type $(m, 2s + \tau, s, \varepsilon, k)$, and

(ii) $\dim (P \cap E) = k$.

Denote by $M(m, 2s + \tau, s, \varepsilon, k; 2\nu + \delta + l, 2\nu + \delta)$ the set of subspaces of type $(m, 2s + \tau, s, \varepsilon, k)$ in $F_q^{(2\nu+\delta+l)}$ and let

$$N(m, 2s + \tau, s, \varepsilon, k; 2\nu + \delta + l, 2\nu + \delta) = \lvert M(m, 2s + \tau, s, \varepsilon, k; 2\nu + \delta + l, 2\nu + \delta) \rvert.$$

From [2] we know that the set of all subspaces of type $(m, 2s + \tau, s, \varepsilon, k)$ in $F_q^{(2\nu+\delta+l)}$ forms an orbit under $P_{S_{2\nu+\delta+l,2\nu+\delta}}(F_q)$. Let P be a subspace of $F_q^{(2\nu+\delta+l)}$, we define the dual subspace of P is

$$P^\perp = \{x| x \in F_q^{(2\nu+\delta+l)}, xS_{\delta,l}y^T = 0, \forall y \in P \}.$$
of classical groups over finite fields, including symplectic geometry, pseudo-symplectic geometry, unitary geometry and orthogonal geometry can provide a better combination of structure and easy to count. In [9], Chen and Zhao constructed two multi-receiver authentication codes from Symplectic geometry over finite fields. In this paper we construct two new multi-receiver authentication codes from Singular Pseudo-Symplectic geometry over finite fields. The parameters and the probabilities of deceptions of the codes are also computed.

3 Construction

3.1 Construction I

Suppose that $1 < n < r < \nu, 1 < k \leq l$. Let \mathbb{F}_q be a finite field with q elements and $v_i(1 \leq i \leq 2\nu)$ be a row vector in $\mathbb{F}_q^{(2\nu+2+l)}$. Let $U = \langle v_1, v_2, \cdots, v_n, e_{2\nu+3} \rangle$, i.e., U is a fixed subspace of type $(n+1, 0, 0, 0, 1)$ in the $(2\nu+2+l)$-dimensional singular pseudo-symplectic $\mathbb{F}_q^{(2\nu+2+l)}$, then U^\perp is a subspace of type $(2\nu-n+2+l, 2(\nu-n) + 2, \nu-n, 1, l)$. The set of source states $S = \{ s | s \}$ is a subspace of type $(r+k, 0, 0, 0, k)$ and $U \subset s \subset U^\perp$; the set of the transmitter’s encoding rules $E_T = \{ e_T | e_T \}$ is a subspace of type $(2n+1, 2n, n, 0, 1)$, $U \subset e_T$; the set of the ith receiver’s decoding rules $E_R_i = \{ e_{R_i} | e_{R_i} \}$ is a subspace of type $(n+2, 2, 1, 0, 1)$ which is orthogonal to $\langle v_1, \cdots, v_{i-1}, v_{i+1}, \cdots, v_n \rangle$, $U \subset v_i$, $1 \leq i \leq n$; the set of messages $M = \{ m | m \}$ is a subspace of type $(r+k, 2n, n, 0, k)$, $U \subset m$ and $m \cap U^\perp$ is a subspace of type $(r+k, 0, 0, 0, k)$.

1. Key Distribution. The KDC randomly chooses a subspace $e_T \in E_T$, then privately sends e_T to the sender T. Then KDC randomly chooses a subspace $e_{R_i} \in E_{R_i}$ and $e_{R_i} \subset e_T$, then privately sends e_{R_i} to the ith receiver, where $1 \leq i \leq n$.

2. Broadcast. For a source state $s \in S$, the sender calculates $m = s + e_T$ and broadcasts m.

3. Verification. Since the receiver R_i holds the decoding rule e_{R_i}, R_i accepts m as authentic if $e_{R_i} \subset m$. R_i can get s from $s = m \cap U^\perp$.

Lemma 1 The above construction of multi-receiver authentication codes is reasonable, that is

(1) $s + e_T = m \in M$, for all $s \in S$ and $e_T \in E_T$;

(2) for any $m \in M$, $s = m \cap U^\perp$ is the unique source state contained in m and there is $e_T \in E_T$, such that $m = s + e_T$.

Proof: (1) For any $s \in S$, $e_T \in E_T$, from the definition of s and e_T, we can assume that

$$s = \begin{pmatrix} U \\ Q \end{pmatrix}^{n+1}_{r+k-n-1}$$

and

$$e_T = \begin{pmatrix} U \\ V \end{pmatrix}^{n+1}_n$$

then

$$\begin{pmatrix} U \\ Q \end{pmatrix}^{t}_{S_2,l} \begin{pmatrix} U \\ Q \end{pmatrix} = \begin{pmatrix} 0(n) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$\begin{pmatrix} U \\ V \end{pmatrix}^{t}_{S_2,l} \begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} 0 & 0 & I(n) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$$$n$$

Obviously

$$m = s + e_T = \begin{pmatrix} U \\ V \end{pmatrix}^{t}_{S_2,l} \begin{pmatrix} U \\ Q \end{pmatrix} = \begin{pmatrix} 0(n) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$$$n$$

From above, m is a subspace of type $(r+n+k, 2n, n, 0, k)$ and $m \subset U^\perp$, i.e., $m \in M$.

(2) If $\forall m \in M$, let $s = m \cap U^\perp$, then s is a subspace of type $(r+k, 0, 0, 0, k)$, $U \subset m$ and $U \subset U^\perp$, i.e., $s \in S$ is a source state. Now let

$$s = \begin{pmatrix} U \\ Q \end{pmatrix}^{n+1}_{r+k-n-1}$$

then

$$s_{S_2,l} = \begin{pmatrix} 0(n) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$$$n$$

Since $m \neq U^\perp$, therefore, there exist $V \in m \setminus U^\perp$ such that $m = s \oplus V$ and

$$\begin{pmatrix} U \\ V \end{pmatrix}^{T}_{S_2,l} \begin{pmatrix} U \\ Q \end{pmatrix} = \begin{pmatrix} 0(n) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$$$n$$

Let $e_T = U \oplus V$. Form above we deduce that e_T is a subspace of type $(2n+1, 2n, n, 0, 1)$ and $e_T \cap U^\perp = U$. Therefore e_T is an encoding rule of the transmitter and satisfying $s + e_T = m$.

If s' is another source state contained in m, then $U \subset s' \subset U^\perp$. Therefore, $s' \subset m \cap U^\perp = s$, while
dms′=dms, so s′=s, i.e., s is the uniquely source state contained in m.

From Lemma 1, we find this construction of multi-receiver authentication codes is reasonable. Next the parameters of these codes are computed.

Lemma 2 The number of the source states is |S| = N(r−n, 0, 0, 0; 2L−2n+2)N(k−1, l−1)q(n−n)(l−k).

Proof: Since U ⊂ s ⊂ U⊥, from the definition of s, s has the form as follows

\[
s = \begin{pmatrix}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_2 & 0 & Q_4 & Q_5 & Q_6 & 0 & 0 & Q_9 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & f(k−1) & 0 \\
\end{pmatrix}
\]

where \((Q_2, Q_4, Q_5, Q_6)\) is a subspace of type \((r−n, 0, 0, 0; 2L−2n+2)\) in the pseudo-symplectic space \(E_{q}(2(\nu−n)+2)\). Therefore, the number of the source states is |S| = N(r−n, 0, 0, 0; 2L−2n+2)N(k−1, l−1)q(n−n)(l−k).

Lemma 3 The number of the encoding rules of the transmitter is \(q^{(2(\nu−2n)+l)}\).

Proof: Since \(e_T\) is a subspace of type \((2n + 1, n, 0, 0, 1)\) containing \(U\), then we can suppose that

\[
e_T = \begin{pmatrix}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_2 & I^{(n)} & R_4 & R_5 & 0 & 0 & R_8 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

\[\text{where } R_2, R_4, R_5, R_8 \text{ is arbitrary. Therefore the number of } |e_T| \text{ containing } U \text{ is } q^{(2(\nu−2n)+l)}.\]

Lemma 4 The number of the decoding rules of the i-th receiver is \(|E_{R_i}| = q^{(2(\nu−n)+l)}\).

Proof: Since the i-th receiver’s decoding rules \(e_{R_i}\) is a subspace of type \((n + 2, 2, 1, 0, 1)\) containing \(U\) and \(e_{R_i}\) is orthogonal to \(\langle v_1, \cdots, v_{i−1}, v_{i+1}, \cdots, v_n \rangle\) and the transitivity properties of singular pseudo-symplectic group. So we can let \(U = \langle e_1, e_2, \cdots, e_n, e_{2\nu+3}\rangle\), then \(e_{R_i} = \{e_1, e_2, \cdots, e_n, e_{2\nu+3}, u\}\), where \(u = (x_1 x_2 \cdots x_{2\nu+2}).\) Obviously, \(x_1 = \cdots = x_{\nu−1} = x_{\nu+1} = \cdots = x_{\nu+n−1} = x_{\nu+n+1} = \cdots = x_{\nu+2n−1} = x_{\nu+2n+1} = 0, x_{\nu+1} = 1, \) and \(x_{n+1}, x_{\nu+2n+1}, \cdots, x_{2\nu−2\nu+1}, \cdots, x_{2\nu+2+1} \) arbitrarily. Therefore, \(|E_{R_i}| = q^{(2(\nu−n)+l)}\).

Lemma 5 (1) The number of the encoding rules \(e_T\) contained in \(m\) is \(q^{(n−r−n+k−1)}\).

(2) The number of the messages is \(|M| = |S||E_T|/q^{(n−r−n+k−1)}\).

Proof: (1) Let \(m\) be a message, since \(U \subset m\) and from the definition of \(m\), we may take \(m\) as follows

\[
m = \begin{pmatrix}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n−r−n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(n−r−n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

\[\text{if } U \subset e_T \subset m, \text{ then we can assume that}\]

\[
e_T = \begin{pmatrix}
I^{(n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_2 & I^{(n)} & 0 & 0 & 0 & 0 & R_10 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

\[\text{where } R_2, R_{10} \text{ arbitrarily. Therefore, the number of } e_T \text{ contained in } m \text{ is } q^{(n−r−n+k−1)}.

(2) We know that a message contains only one source state and the number of the transmitter’s encoding rules contained in a message is \(q^{(n−r−n+k−1)}\). Therefore we have \(|M| = |S||E_T|/q^{(n−r−n+k−1)}\).

Theorem 6 The parameters of constructed multi-receiver authentication codes are \(|S| = N(r−n, 0, 0, 0; 2L−2n+2)N(1, l−1)q^{(n−r−n)(l−k)}\),

\(|E_T| = q^{(2(\nu−2n)+l)}\),

\(|E_{R_i}| = q^{(2(\nu−n)+l)}\),

\(|M| = |S||E_T|/q^{(n−r−n+k−1)}\).

Suppose there are \(n\) receivers \(R_1, \cdots, R_n\). Let \(L = \{i_1, \cdots, i_t\} \subseteq \{1, \cdots, n\}\), \(R_{L} = \{R_{i_1}, \cdots, R_{i_t}\}\) and \(E_{L} = E_{R_{i_1}} \times \cdots \times E_{R_{i_t}}\). We consider the impersonation attack and substitution attack from \(R_L\) on a receiver \(R_{i_j}\), where \(i \notin L\).

Without loss of generality, we can assume that \(R_L = \{R_1, \cdots, R_l\}\), \(E_{L} = E_{R_1} \times \cdots \times E_{R_L}\), where \(1 \leq l \leq n − 1\). First, we will derive the following results:

Lemma 7 For any \(e_L = (e_{R_1}, \cdots, e_{R_n}) \in E_L\), the number of \(e_T\) containing \(e_L\) is \(q^{(n−l)(2(\nu−n)+l)}\).

Proof: For any \(e_L = (e_{R_1}, \cdots, e_{R_n}) \in E_L\), since the transitivity properties of singular pseudo-symplectic group, we can assume that

\[
e_L = \begin{pmatrix}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n−l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & I^{(l)} & R_0 & R_7 & 0 & R_10 & 0 \\
\end{pmatrix}
\]

\[\text{where } l \leq n \leq l \nu−n \text{ and } l−l \nu−n \text{ arbitrarily. Therefore, } \]

\[\text{we have } |M| = |S||E_T|/q^{(n−r−n+k−1)}\].
Therefore, e_T containing e_L has the form as follows

$$
e_T = \begin{pmatrix}
I(l) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & I(l) & 0 & 0 & R_6 & R_7 & 0 & 0 & R_{10} \\
0 & 0 & R_3' & 0 & I^{(n-l)} & R_6' & R_7' & 0 & 0 & R_{10}' \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
l & n-l & \nu-n & l & n-l & \nu-n & 1 & 1 & l-1 & l-1
\end{pmatrix}
$$

where $R_3', R_6', R_7', R_{10}'$ arbitrarily. Therefore, the number of e_T containing e_L is $q^{(n-l)(2(\nu-n)+1)}$. \qed

Lemma 8 For any $m \in M$ and $e_L, e_{R_i} \subset m$,

1. the number of e_T contained in m and containing e_L is $q^{(n-l)(r-n+k-1)}$;
2. the number of e_T contained in m and containing e_L, e_{R_i} is $q^{(n-l-1)(r-n+k-1)}$.

Proof: (1) The matrix of m is like lemma 5, then for any $e_L \subset m$, assume that

$$
e_L = \begin{pmatrix}
I(l) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & I(l) & 0 & 0 & R_6 & R_7 & 0 & 0 & R_{10} \\
0 & 0 & R_3' & 0 & I^{(n-l)} & R_6' & R_7' & 0 & 0 & R_{10}' \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
l & n-l & \nu-n & l & n-l & \nu-n & 1 & 1 & k-1 & l-k
\end{pmatrix}
$$

If $e_T \subset m$ and $e_T \supset e_L$, then

$$
e_T = \begin{pmatrix}
I(l) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & I(l) & 0 & 0 & R_6 & R_7 & 0 & 0 & R_{10} \\
0 & 0 & R_3' & 0 & I^{(n-l)} & R_6' & R_7' & 0 & 0 & R_{10}' \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
l & n-l & \nu-n & l & n-l & \nu-n & 1 & 1 & k-1 & l-k
\end{pmatrix}
$$

where $R_3', R_6', R_7', R_{10}'$ arbitrarily. Therefore, the number of e_T contained in m and containing e_L is $q^{(n-l)(r-n+k-1)}$.

(2) Similarly, we can derive that the number of e_T contained in m and containing e_L, e_{R_i} is $q^{(n-l-1)(r-n+k-1)}$. \qed

Lemma 9 Assume that m_1 and m_2 are two distinct messages which commonly contain a transmitter’s encoding rule e_T. s_1 and s_2 contained in m_1 and m_2 are two different source states, respectively. Assume that $s_0 = s_1 \cap s_2$, dim $s_0 = k_1$, then $n + 1 \leq k_1 \leq r + k - 1$. For any $e_L, e_{R_i} \subset m_1 \cap m_2$, the number of e_T contained in $m_1 \cap m_2$ and containing e_L, e_{R_i} is $q^{(n-l-1)(k_1-n-1)}$.

Proof: Since $m_1 = s_1 + e_T, m_2 = s_2 + e_T$ and $m_1 \neq m_2$, then $s_1 \neq s_2$. And for any $s \in S, s \supset U$, therefore, $n \leq k_1 \leq r + k - 1$. Assume that s_i' is the complementary subspace of s_0 in the s_i, then $s_i = s_0 + s_i' (i = 1, 2)$. From $m_i = s_i + e_T = s_0 + s_i' + e_T$ and $s_i \cap U^\perp$, we have $s_0 = (m_1 \cap U^\perp) \cap (m_2 \cap U^\perp) = m_1 \cap m_2 \cap U^\perp = s_1 \cap m_2 = s_2 \cap m_1$ and $m_1 \cap m_2 = (s_1 + e_T) \cap m_2 = (s_0 + s_1' + e_T) \cap m_2 = ((s_0 + e_T) + s_1') \cap m_2$. Because $s_0 + e_T \subset m_2, m_1 \cap m_2 = (s_0 + e_T) + (s_1' \cap m_2)$. While $s_1' \cap m_2 \subseteq s_1 \cap m_2 = s_0, m_1 \cap m_2 = s_0 + e_T$.

From the definition of the message, we may take $m_i(i = 1, 2)$ as follows

$$
m_i = \begin{pmatrix}
I(n) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & h_{i2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I(n) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
n & r-n & \nu-r & n & r-n & \nu-r & 1 & 1 & k-1 & l-k
\end{pmatrix}
$$

Let

$$
m_1 \cap m_2 = \begin{pmatrix}
I(n) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I(n) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
n & r-n & \nu-r & n & r-n & \nu-r & 1 & 1 & k-1 & l-k
\end{pmatrix}
$$

from above we know that $m_1 \cap m_2 = s_0 + e_T$, then $\dim (m_1 \cap m_2) = k_1 + n$, therefore,

$$\dim \begin{pmatrix}
0 & Q_2 & 0 & 0 & 0 & 0 & 0 & 0 & Q_{10} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
n & r-n & \nu-r & n & r-n & \nu-r & 1 & 1 & k-1 & l-k
\end{pmatrix}
$$

$$= k_1 - n - 1
$$

For any $e_L, e_{R_i} \subset m_1 \cap m_2$, we can assume that

$$
e_L = \begin{pmatrix}
I(l) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & I(l) & 0 & 0 & R_6 & R_7 & 0 & 0 \\
0 & 0 & R_3' & 0 & I^{(n-l)} & R_6' & R_7' & 0 & 0 & R_{10}' \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
l & n-l & \nu-n & l & n-l & \nu-n & r-1 & 1 & k & l-k
\end{pmatrix}
$$

$$
e_{R_i} = \begin{pmatrix}
I(l) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & I(l) & 0 & 0 & R_6 & R_7 & 0 & 0 \\
0 & 0 & R_3' & 0 & I^{(n-l)} & R_6' & R_7' & 0 & 0 & R_{10}' \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
l & n-l & \nu-n & l & n-l & \nu-n & r+1 & 1 & k & l-k
\end{pmatrix}
$$

If $e_T \subset m_1 \cap m_2$ and $e_L, e_{R_i} \subset e_T$, then e_T has the
form as follows

\[
\begin{pmatrix}
I^{(l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(n-l)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & 0 & I^{(l)} & 0 & 0 & 0 & 0 & R_{10} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & h_3 & 0 & 0 & I^{(i)} & 0 & 0 & 0 & h_{10} & 0 & 0 & 0 & 0 \\
0 & 0 & R_3 & 0 & 0 & 0 & 0 & 0 & 0 & R_{10} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_3 & 0 & 0 & 0 & 0 & I^{(n-i-l-1)} & 0 & 0 & 0 & h_{10} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

So it is easy to know that the number of \(e_T\) contained in \(m_1 \cap m_2\) and containing \(e_L, e_{R_i}\) is \(q^{(n-i-l)+(k_1-n-1)}\).

Theorem 10 In this multi-receiver authentication codes, under the assumption that the encoding rules of the transmitter and the receiver are chosen according to a uniform probability distribution, the largest probabilities of success for impersonation attack and substitution attack from \(R_L\) on a receiver \(R_i\) are

\[
P_l[i, L] = \frac{1}{q^{(n-i-l)-(2(\nu-n)+l(k-1)+(2(\nu-n)+l))}},
\]

\[
P_S[i, L] = \frac{1}{q^{n-i+l-2}},
\]

respectively, where \(i \notin L\).

Proof: Impersonation attack: \(R_L\), commonly send a message \(m\) to \(R_i\). \(R_L\) is successful if \(m\) is accepted by \(R_i\) as authentic. Therefore

\[
P_l[i, L] = \max_{e_L \in E_L} \left\{ \frac{\max_{m \in M} \{|e_T \in E_T[e_T \cap m \subseteq e_L, e_{R_i}]\}}{|e_T \in E_T[e_T \subseteq e_L]|} \right\}
\]

\[
= \frac{q^{(n-i-l)-(r+n+k-1)}}{q^{(n-i-l)-(2(\nu-n)+l)}}
\]

\[
= \frac{1}{q^{(n-i-l)-(2(\nu-n)+l(k-1)+(2(\nu-n)+l))}}.
\]

Substitution attack: \(R_L\), after observing a message \(m\) that is transmitted by the sender, replace \(m\) with another message \(m'\). \(R_L\) is successful if \(m'\) is accepted by \(R_i\) as authentic. Therefore

\[
P_S[i, L] = \max_{e_L \in E_L} \left\{ \frac{\max_{m' \in M} \{|e_T \in E_T[e_T \cap m' \subseteq e_L, e_{R_i}]\}}{|e_T \in E_T[e_T \subseteq e_L]|} \right\}
\]

\[
= \frac{q^{(n-i-l)-(k_1-n-1)}}{q^{(n-i-l)-(r+n+k-1)}}
\]

\[
= \frac{1}{q^{n-i+l-2}}.
\]

The desired result follows. \(\square\)

3.2 Construction II

Suppose that \(\mathbb{F}_q\) be a finite field with \(q\) elements and \(v_i(1 \leq 3t \leq 2\nu)\) be the row vector in \(\mathbb{F}_q^{(2\nu+2+l)}\). Let \(3 \leq 3n < \nu, \ 1 < k < l, \ U = \langle v_1, v_2, \cdots, v_{3n}, e_{2\nu+3} \rangle\), i.e., \(U\) is a fixed subspace of type \((3n+1,0,0,0,1)\) in the \((2\nu+2+l)\)-dimensional singular pseudo-symmetric space \(\mathbb{F}_q^{(2\nu+2+l)}\), then \(U^\perp\) is a subspace of type \((2\nu-3n+2+l,2(\nu-3n)+2,\nu-3n,1,1)\). The set of source states \(S\{s|s\) is a subspace of type \((2\nu-3n+2,2(\nu-3n),\nu-3n,0,0)\) and \(U \subset s \in U^\perp\); the set of the transmitter’s encoding rules \(E_T=\{e_T|e_T\) is a 3n dimensional subspace and \(U + e_T\) is a subspace of type \((6n+1,6n,3n,0,1)\); the set of the i-th receiver’s decoding rules \(E_{R_i}=\{e_{R_i}|e_{R_i}\) is a 3-dimensional subspace and \(U + e_{R_i}\) is a subspace of type \((3n+4,6,3,0,1)\) which is orthogonal to \(\langle v_1, \cdots, v_{3n-3}, v_{3n+1}, \cdots, v_{3n} \rangle\); the set of messages \(M=\{m|m\)s a subspace of type \((2\nu+2,2\nu,0,0,0,0,0)\), \(U \subset m\) and \(m \cap U^\perp\) is a subspace of type \((2\nu-3n+k,2(\nu-3n),\nu-3n,0,0,0)\).

1. **Key Distribution.** The KDC randomly chooses a subspace \(e_T \in E_T\), then privately sends \(e_T\) to the sender \(T\). Then KDC randomly chooses a subspace \(e_{R_i} \in E_{R_i}\) and \(e_{R_i} \subset e_T\), then privately sends \(e_{R_i}\) to the i-th receiver, where \(1 \leq i \leq n\).

2. **Broadcast.** For a source state \(s \in S\), the sender calculates \(m = s + e_T\) and broadcasts \(m\).

3. **Verification.** Since the receiver \(R_i\) holds the decoding rule \(e_{R_i}\), \(R_i\) accepts \(m\) as authentic if \(e_{R_i} \subset m\). \(R_i\) can get \(s\) from \(m = m \cap U^\perp\).

Lemma 11 The above construction of multi-receiver authentication codes is reasonable, that is

1. \(s + e_T = m \in M\) for all \(s \in S\) and \(e_T \in E_T\);
2. for any \(m \in M\), \(s = m \cap U^\perp\) is the uniquely source state contained in \(m\) and there is \(e_T \in E_T\) such that \(m = s + e_T\).

Proof: (1) For any \(s \in S\), \(e_T \in E_T\), from the definition of \(s\) and \(e_T\), we can assume that

\[
s = \begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_2 & 0 & Q_4 & Q_5 & 0 & 0 & Q_9 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-l)} & 0 & 0 \\
\end{pmatrix}
\]

and

\[
e_T = \begin{pmatrix}
X_1 & X_2 & I^{(3n)} & X_4 & X_5 & 0 & X_7 & X_8 & X_9 \\
3n & \nu-3n & 3n-\nu-3n & 1 & 1 & k-1 & l-k \\
\end{pmatrix}
\]
then
\[
\pi_{1:s}^{\pi T} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & Q_4 Q_2^T + Q_3 Q_1^T & 0 & 0 \\
0 & 0 & 0 & 0 \\
3n & 2n - 6n & 1 & k-1
\end{pmatrix}^{3n, 2n - 6n, 1, k-1}.
\]

Since \(\text{rank}(\pi_{1:s}^{\pi T}) = 2(n - 3n), \text{rank}(Q_4 Q_2^T + Q_3 Q_1^T) = 2(n - 3n)\). Then we can derive that

\[
\begin{pmatrix}
U \\
e_T
\end{pmatrix}
S_{2, l}
\begin{pmatrix}
U \\
e_T
\end{pmatrix}^T = \begin{pmatrix}
0 & 0 & I^{(3n)} \\
0 & 0 & 0 \\
I^{(3n)} & 0 & 0
\end{pmatrix}.
\]

We have

\[
m = s + e_T
\]

\[
= \begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_2 & Q_4 Q_2^T & 0 & 0 & Q_9 & 0 & 0 \\
X_1 & X_2 & I^{(3n)} & X_4 X_5 X_7 & X_8 & X_9 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} \\
3n & n - 3n & 3n & n - 3n & 1 & 1 & k-1 & l-k
\end{pmatrix}^{3n, 2(n - 3n), 3n, n - 3n, 1, 1, k-1, l-k}.
\]

Thus \(m\) is a \(2n + k\) dimensional subspace and

\[
m = \begin{pmatrix}
0 & 0 & I^{(3n)} & 0 & 0 & 0 & 0 & 0 \\
0 & Q_4 Q_2^T + Q_3 Q_1^T & 0 & 0 & I^{(3n)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}^{3n, 2(n - 3n), 3n, n - 3n, 1, 1, k-1, l-k}.
\]

where \(\text{rank}(Q_4 Q_2^T + Q_3 Q_1^T) = 2(n - 3n)\). Therefore, \(\text{rank}(m S_{2, l} m^T) = 2n\), \(\dim(m \cap E) = k\). From above, \(m\) is a subspace of type \((2n + k, 2n, \nu, 0, k)\) and \(U \subset m\), i.e., \(m \in M\).

2) For \(\forall m \in M\), \(m\) is a subspace of type \((2n + k, 2n, \nu, 0, k)\) containing \(U\). So there is a \(3n\)-dimensional subspace \(V \subset m\), satisfying

\[
\begin{pmatrix}
U \\
V
\end{pmatrix}
S_{2, l}
\begin{pmatrix}
U \\
V
\end{pmatrix}^T = \begin{pmatrix}
0 & 0 & I^{(3n)} \\
0 & 0 & 0 \\
I^{(3n)} & 0 & 0
\end{pmatrix}.
\]

Then we can assume that \(m = \begin{pmatrix}
U \\
V \\
P
\end{pmatrix}\) satisfying

\[
\begin{pmatrix}
U \\
V
\end{pmatrix}
S_{2, l}
\begin{pmatrix}
U \\
V
\end{pmatrix}^T = \begin{pmatrix}
0 & 0 & I^{(3n)} \\
0 & 0 & 0 \\
I^{(3n)} & 0 & 0
\end{pmatrix}.
\]

Let \(s = \begin{pmatrix}
U \\
P
\end{pmatrix}\), then \(s\) is a subspace of type \((2n - \nu + k, 2(n - 3n), \nu - 3n, 0, k)\) and \(U \subset s \subset U^\perp\), i.e., \(s \in S\) is a source state. For any \(v \in V\) and \(v \neq 0\), \(v \not\in s\) is obvious, i.e., \(V \cap U^\perp = \{0\}\). Therefore, \(m \cap U^\perp = \begin{pmatrix}
U \\
P
\end{pmatrix} = s\). Let \(e_T = V\), then \(e_T\) is a transmitter’s encoding rule and satisfying \(m = s + e_T\).

If \(s'\) is another source state contained in \(m\), then \(U \subset s' \subset U^\perp\). Therefore, \(s' \subset m \cap U^\perp = s\), while \(\dim(s') = \dim(s)\), so \(s' \equiv s\), i.e., \(s\) is the uniquely source state contained in \(m\).

From Lemma 11, we know that this construction of multi-receiver authentication codes is reasonable and there are \(n\) receivers in this system. Next the parameters of this codes was computed.

\textbf{Lemma 12} The number of the source states is \(|S| = N(2n - 3n, 2(n - 3n), \nu - 3n, 0, 2n - 6n + 2)N(k - 1, l - 1)q^{(2n - 6n)(l-k)}\).

\textbf{Proof}: Since \(U \subset s \subset U^\perp\), \(s\) has the form as follows

\[
s = \begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_2 & Q_4 & Q_5 & Q_6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} \\
3n & n - 3n & n - 3n & 1 & 1 & k-1 & l-k
\end{pmatrix}^{3n, 2(n - 3n), 3n, n - 3n, 1, 1, k-1, l-k}.
\]

where \((Q_2, Q_4, Q_5, Q_6)\) is a subspace of type \((2(n - 3n), 2(n - 3n), \nu - 3n, 0, 2n - 6n + 2)\) in the pseudo-symplectic space \(F_q^{2(n - 3n)}\). Therefore, the number of the source states is \(|S| = N(2n - 3n, 2(n - 3n), \nu - 3n, 0, 2n - 6n + 2)N(k - 1, l - 1)q^{(2n - 6n)(l-k)}\).

\textbf{Lemma 13} The number of the encoding rules of transmitter is \(|E_T| = q^{3n(2n - 3n + 1 + l)}\).

\textbf{Proof}: Since \(U + e_T\) is a subspace of type \((6n + 1, 6n, 3n, 0, 1)\), then we can suppose that

\[
e_T = \begin{pmatrix}
X_1 & X_2 & I^{(3n)} & X_4 & X_5 & 0 & X_7 & X_8 & X_9
\end{pmatrix}^{3n, n - 3n, 3n - n, 1, 1, k-1, l-k}.
\]

\textbf{Gao You, Chang Liwei}
where $X_1, X_2, X_4, X_5, X_7, X_8$ and X_6 is arbitrary. Therefore the number of e_T is $q^{3(n-3)+1+l}$.

Lemma 14 The number of the decoding rules of the ith receiver is $|E_{R_i}| = q^{3(2n-3n+1+l)}$.

Proof: Since the ith receiver’s decoding rules satisifying $U + e_{R_i}$ is a subspace of type $(3n + 4, 6, 3, 0, 1)$ which is orthogonal to $\langle \{1, \cdots, v_{3n-3}, v_{3n+1}, \cdots, v_{3n} \rangle$ and the transitivity properties of singular pseudo-symplectic group. So we can assume that

$$e_{R_i} = \left(X_1 X_2 0 I(3) \right) X_6 X_7 0 X_9 X_{10} X_{11}$$

where $X_1, X_2, X_6, X_7, X_9, X_{10}, X_{11}$ is arbitrary. Therefore the number of $|E_{R_i}|$ is $q^{3(2n-3n+1+l)}$.

Lemma 15 (1) The number of encoding rules e_T contained in m is $q^{3(n-3)3l}$. (2) The number of the messages is $|M| = |S||E_T|/q^{3n(2n-3n+k)}$.

Proof: (1) Let m be a message, from the definition of m, we may take m as follows

$$m = \begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I^{(3n-3)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I^{(3n)} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I^{(3n-3)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & I^{(k-1)} \end{pmatrix}$$

if $e_T \subset m$, then we can assume that

$$e_T = \left(R_1 R_2 I^{(3)} \right) R_3 0 0 R_7 R_8 0 ,$$

where R_1, R_2, R_3, R_7, R_8 arbitrarily. Therefore, the number of e_T contained in m is $q^{3(n-3)3l}$.

(2) We know that a message contains only one source state and the number of the transmitter’s encoding rules contained in a message is $q^{3(2n-3n+k)}$. Therefore we have $|M| = |S||E_T|/q^{3n(2n-3n+k)}$.

Theorem 16 The parameters of constructed multi-receiver authentication codes are

$$|S| = N(2(\nu - 3n), 2(\nu - 3n), \nu - 3n, 0; 2\nu - 6n + 2)N(k - 1, l - 1)q^{3(n-3)3l};$$

$$|E_T| = q^{3n(2n-3n+1+l)};$$

$$|E_{R_i}| = q^{3(2n-3n+1+l)};$$

$$|M| = |S||E_T|/q^{3n(2n-3n+k)}.$$

Assume there are n receivers R_1, \cdots, R_n. Let $L = \{ i_1, \cdots, i_l \} \subseteq \{ 1, \cdots, n \}$, $R_L = \{ R_{i_1}, \cdots, R_{i_l} \}$ and $E_L = E_{R_{i_1}} \times \cdots \times E_{R_{i_l}}$. We consider the impersonation attack and substitution attack from R_L on a receiver R_{i_l} where $i \notin L$.

Without loss of generality, we can assume that $R_L = \{ R_1, \cdots, R_l \}$, $E_L = E_{R_1} \times \cdots \times E_{R_l}$, where $1 \leq l \leq n - 1$. First, we will prove the following results:

Lemma 17 For any $e_L = (e_{R_1}, \cdots, e_{R_l}) \in E_L$, the number of e_T containing e_L is $q^{3(n-3)3l(2n-3n+1+l)}$.

Proof: $\forall e_L = (e_{R_1}, \cdots, e_{R_l}) \in E_L$, we can assume that

$$e_L = \left(R_1 R_2 I^{(3)} \right) 0 R_5 R_6 0 R_8 R_9 R_{10} ,$$

where $R_1, R_2, R_5, R_6, R_8, R_9, R_{10}$ arbitrarily. Therefore, the number of e_T containing e_L is $q^{3(n-3)3l(2n-3n+1+l)}$.

Lemma 18 For any $m \in M$ and $e_L, e_{R_i} \subseteq m$,

(1) The number of e_T contained in m and containing e_L is $q^{3(n-3)3l(2n-3n+k)}$; (2) The number of e_T contained in m and containing e_L, e_{R_i} is $q^{3(n-3l-3)(2n-3n+k)}$.

Proof: (1) The matrix of m is like lemma 15, then $\forall e_L \subseteq m$, we can assume that

$$e_L = \left(R_1 R_2 I^{(3)} \right) 0 R_5 0 0 R_8 R_9 0 ,$$

where R_1, R_2, R_5, R_8, R_9 arbitrarily. Therefore, the number of e_T contained in m and containing e_L is $q^{3(n-3)3l(2n-3n+k)}$.

If $e_T \subset m$ and $e_T \supset e_L$, then

$$e_T = \left(R_1 R_2 I^{(3)} \right) 0 R_5 0 0 R_8 R_9 0 ,$$

where R_1, R_2, R_5, R_8, R_9 arbitrarily. Therefore, the number of e_T contained in m and containing e_L is $q^{3(n-3)3l(2n-3n+k)}$.
Lemma 19 Assume that m_1 and m_2 are two distinct messages which commonly contain a transmitter’s encoding rule e_T. s_1 and s_2 contained in m_1 and m_2 are different source states, respectively. Assume that $so = s_1 \cap s_2$, $dim s_0 = k_1$, then $3n + 1 \leq k_1 \leq 2\nu - 3n + k - 1$. For any $e_L, e_R, \subseteq m_1 \cap m_2$, the number of e_T contained in $m_1 \cap m_2$ and containing e_L, e_R, is $q^{3(n-3l)}(k_1-3n-1)$.

Proof: Since $m_1 = s_1 + e_T, m_2 = s_2 + e_T$, and $m_1 \neq m_2$, then $s_1 \neq s_2$. And for any $s \in S, s \subseteq U$, therefore, $3n + 1 \leq k_1 \leq 2\nu - 3n + k - 1$. Assume that s_i' is the complementary subspace of s_0 in the s_i, then $s_i = s_0 + s_i'$ ($i = 1, 2$). From $m_i = s_i + e_T = s_0 + s_i' + e_T$ and $s_i = m_i \cap U\perp$, we have $s_0 = (m_1 \cap U\perp) \cap (m_2 \cap U\perp) = m_1 \cap m_2 \cap U\perp = s_1 \cap m_2 = s_2 \cap m_1$ and $m_1 \cap m_2 = (s_1 + e_T) \cap m_2 = (s_0 + s_i' + e_T) \cap m_2 = ((s_0 + e_T) + s_i') \cap m_2$. Because $s_0 + e_T \subseteq m_2, m_1 \cap m_2 = (s_0 + e_T) + (s_i' \cap m_2)$.

While $s_i' \cap m_2$ is contained in s_0, then $m_i(i = 1, 2)$ as follows

$$m_i = \begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & h_{12} & 0 & h_{14} & 0 & h_{16} & 0 & 0 & 0 \\
X_1 & X_2 & I^{(3n)} & X_4 & 0 & X_7 & X_8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_{18} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
3n & \nu-3n & 3n & \nu-3n & 111 & k-1 & l-k \end{pmatrix}$$

Let

$$m_1 \cap m_2 = \begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & Q_2 & 0 & Q_4 & 0 & 0 & 0 & Q_8 & 0 \\
X_1 & X_2 & I^{(3n)} & X_4 & 0 & X_7 & X_8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & Q_8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
3n & \nu-3n & 3n & \nu-3n & 111 & k-1 & l-k \end{pmatrix}$$

from above we know that $m_1 \cap m_2 = s_0 + e_T$, then $dim (m_1 \cap m_2) = k_1 + 3n$, therefore,

$$dim \begin{pmatrix}
0 & Q_2 & 0 & Q_4 & 0 & 0 & 0 & Q_8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & Q_8 & 0 \end{pmatrix} = k_1 - 3n - 1.$$

For any $e_L, e_R, \subseteq m_1 \cap m_2$, we can assume that $e_L = (R_1 R_2 I^{(3l)} 0 0 0 R_7 0 0 R_{10} R_{11} 0), \quad 3n+3n-3l \quad 3l \quad 3(n-i) \quad \nu-3n \quad 111 \quad k-1 \quad l-k$ and $e_R = (X_1 X_2 0 0 I^{(3l)} 0 X_7 0 0 X_{10} X_{11} 0), \quad 3n+3n-3l \quad 3l \quad 3(n-i) \quad \nu-3n \quad 111 \quad k-1 \quad l-k$

If $e_T \subseteq m_1 \cap m_2$ and $e_L, e_R, \subseteq e_T$, then e_T has the form as follows

$$\begin{pmatrix} R_1 & R_2 & I^{(3l)} & 0 & 0 & 0 & R_{11} & R_{12} & 0 \\
H_1 & H_2 & 0 & I^{(3(l-i-1))} & 0 & 0 & H_{11} & H_{12} & 0 \\
X_1 & X_2 & 0 & 0 & I^{(3l)} & 0 & X_{10} & X_{11} & 0 \\
N_1 & N_2 & 0 & 0 & I^{(3(n-i))} & N_{10} & N_{11} & 0 \end{pmatrix}$$

From the definition of the message, we may take $m_i(i = 1, 2)$ as follows

$$\begin{pmatrix}
I^{(3n)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & h_{12} & 0 & h_{14} & 0 & h_{16} & 0 & 0 & 0 \\
X_1 & X_2 & I^{(3n)} & X_4 & 0 & X_7 & X_8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_{18} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
3n & \nu-3n & 3n & \nu-3n & 111 & k-1 & l-k \end{pmatrix}$$

So it is easy to know that the number of e_T contained in $m_1 \cap m_2$ and containing e_L, e_R, is $q^{3(n-3l)}(k_1-3n-1)$.

Theorem 20 In this multireceiver authentication codes, under the assumption that the encoding rules of the transmitter and the receiver are chosen according to a uniform probability distribution, the largest probabilities of success for impersonation attack and substitution attack from R_l to a receiver R_i are

$$P_I[i, L] = \frac{1}{q^{(3n-3l-3)(l-k+1)+3(2\nu-3n+k+1)}}$$

$$P_S[i, L] = \frac{1}{q^{(3n-l-1)(3n+2)+3(2\nu-3n+k)+1}}$$

respectively, where $i \notin L$.

Proof: Impersonation attack: R_l, after receiving their secret keys, send a message m to R_i. R_i is successful if m is accepted by R_i as authentic. Therefore

$$P_I[i, L] = \max_{e_L \subseteq E_L} \left\{ \frac{|\{e_T \subseteq E_T | e_T \subseteq m \text{ and } e_T \supseteq e_L, e_R\}|}{|\{e_T \subseteq E_T | e_T \supseteq e_L\}|} \right\}$$

$$= \frac{q^{(3n-3l-3)(2\nu-3n+k)}}{q^{(3n-3l)(2\nu-3n+k)+1}}$$

Substitution attack: R_l, after observing a message m that is transmitted by the sender, replace m with another message m'. R_l is successful if m' is accepted by R_i as authentic. Therefore

$$P_S[i, L] = \max_{e_L \subseteq E_L} \max_{m' \subseteq M} \left\{ \frac{|\{e_T \subseteq E_T | e_T \subseteq m, e_T \supseteq e_L, e_R\}|}{|\{e_T \subseteq E_T | e_T \supseteq e_L\}|} \right\}$$

$$= \frac{q^{3(n-l-1)(k_1-3n-1)}}{q^{(3n-3l)(2\nu-3n+k)+1}}$$

This completes the proof.

Acknowledgements: This work is supported by the National Natural Science Foundation of China under Grant No. 61179026.
References:

