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Abstract: In this paper, we introduce a new iterative scheme for finding the common element of the set of common
fixed points of infinitely many nonexpansive mappings, the set of solutions of an equilibrium problem and the
set of solutions of a general system of variational inequalities for inverse-strongly monotone mappings in Hilbert
spaces. We prove that the sequence converges strongly to a common element of the above three sets under some
parameters controlling conditions. This main result improve and extend the corresponding results announced by
many others. Using this theorem, we obtain three corollaries.
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1 Introduction and Preliminaries

Let H be a real Hilbert space with inner product (-, -)
and norm ||-||. — and — denote weak and strong con-
vergence, respectively. Let C' be a nonempty closed
convex subset of H and F' : C' x C — R be a bifunc-
tion of C' x C into R, where R is the set of real num-
bers. The equilibrium problem for /' : C' x C' — R is
to find x € C such that

F(z,y) =20 (1)

forally € C. The set of solutions of (1) is denoted by
EP(F). Givenamapping T : C — H,let F(z,y) =
(T'e,y — x) for all z,y € C. Then z € EP(F) if
and only if (Tz,y — z) > Oforally € C,ie., zisa
solution of the variational inequality. For solving the
equilibrium problem for a bifunction ' : C'xC — R,
let us assume that I satisfies the following conditions:

(Al) F(z,z) =0forallx € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0
forall z,y € C;

(A3) for each z,y,z € C, limy_0 F(tz + (1 —
tr,y) < F(z,y);

(A4) foreach x € C, y — F(x,y) is convex and
lower semicontinuous.

It is well known that for every point x € H, there
exists a unique nearest point in C, denoted by Prx,
such that

o — Pea|) < [l =yl
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forall y € C. P¢ is called the metric projection of H
onto C'. P¢ is a nonexpansive mapping of H onto C
and satisfies

(x —y,Pox — Poy) > ||Pox — Peyl” (2)
for every x,y € H. Moreover, Pox is characterized
by the following properties: Pox € C and

<33_PO=’/U7ZU—PC$>§07

(3)
(4)

lz = ylI* > [la = Pox|® + |y - Pox|?

forallz € H,y € C.

Let A : C' — H be a mapping. The classical
variational inequality, denoted by VI(A, C), is to find
x* € C such that

(Az*, v —2%) >0 (5)
for all v € C. In this paper, u € VI(C, A) denotes u
is a point of the set of solutions of the variational in-
equality VI(C, A). It is easy to see that the following
is true:

u€eVI(AC) s u= Po(u— NAu), A >0. (6)

A mapping A of C'into H is called a-inverse-strongly
monotone if there exists a positive real number « such
that (Au — Av,u —v) > a||Au — Av||? for all u,v €
C. Itis obvious that any a-inverse-strongly monotone
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mapping A is monotone and Lipschitz continuous. A
mapping 1" of C' into itself is called nonexpansive if
I Tu — Tv|| < ||u— v|| forall u,v € C. We denoted
by F(T) the set of fixed points of T, i.e., F(T) =
{reC: Tz =z}

For finding an element of F(T) N VI(A,C),
Takahashi and Toyoda [1] introduced the following it-
erative scheme:

Tnt1 = nZpn + (1 — ap)TPo(xy — AMAxy), (7)

where xg = « € C, {ay,} is a sequence in (0, 1) and
{A\n} is a sequence in (0, 2a). Motivated by the idea
of Korpelevich [2], Nadezhkina and Takahashi [3],
Zeng and Yao [4] and Yao and Yao [5] proposed some
so-called extragradient methods for finding a common
element of the set of fixed points of a nonexpansive
mapping and the set of solutions of a variational in-
equality problem.

Let A, B : C — H be two mappings. Now we
concern the following problem of finding (z*,y*) €
C x C such that

Ve € C,

0,
0, VxeCl,

{ (NAy* + 2* —y*,z — x*) (8)

>
(uBz* +y* —z*, 2 —y*) >
which is called a general system of variational in-
equalities where A > 0 and p > 0 are two constants.
In particular, if A = B, then problem (8) reduces to
finding (z*,y*) € C x C such that

0, VxeC,
0,

Ve € C,

{ (MNMy* +z* —y*,x — %) ()

>
(HAx* +y* — 2", 2 —y*) >

which is defined by Verma [6] (see also [7]) and is
called the new system of variational inequalities. Fur-
ther, if we add up the requirement that z* = gy,
then problem (9) reduces to the classical variational
inequality problem (5). For solving problem (8), re-
cently, Ceng et al. [8] introduced and studied a relaxed
extragradient method. Based on the relaxed extragra-
dient method and the viscosity approximation method,
W. Kumam and P. Kumam [9] constructed a new vis-
cosity relaxed extragradient approximation method.
Very recently, based on the extragradient method, Yao
et al. [10] proposed an iterative method for finding
a common element of the set of a general system of
variational inequalities and the set of fixed points of
a strictly pseudocontractive mapping in a real Hilbert
space.

On the other hand, let {7,}°°, be a sequence
of nonexpansive mappings of C' into itself and let
{tn}>2, be a sequence of nonnegative numbers in
[0,1]. For each n > 1, define a mapping W,, of C
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into itself as follows:

Un,n+l = I,

Un,n == tnTnUn,n—i-l + (1 - tn)Ia
Un,n—l - tn—lTn—lUn,n + (1 - tn—l)Ia

Unji = tThUn g1 + (1 — tp)1,

Una =toToUp3+ (1 —to2)1,
W, = nl = tlTlUmQ + (1 — tl)I.

Such a mapping W, is called the W, -mapping gen-
erated by 7, T,—1,...,T1 and t,,,tr—1,...,%1; see
[11]. For finding a common element of the set of so-
lutions of the equilibrium problem (1) and the set of
common fixed points of infinitely many nonexpansive
mappings in H, Yao et al. [12] introduced the follow-
ing iterative scheme:

{ F(up,x) + %(x—un,un —xp) >0, Vo el
Tn4+1 = anf(l'n) + ﬂnl'n + 'Yanuna

where o € H, {t,} is a sequence in (0, b] for some
b € (0,1), f is a contraction of H into itself and
{an}, {Bn}, {7n} are three sequences in (0, 1) such
that a, + B, + 7, = 1. They obtained a strong con-
vergence theorem.

Motivated and inspired by the above works, in
this paper, we introduce an iterative method based
on the extragradient method and viscosity method for
finding the common element of the set of common
fixed points of infinitely many nonexpansive map-
pings, the set of solutions of an equilibrium prob-
lem and the set of solutions of a general system of
variational inequalities for inverse-strongly monotone
mappings in real Hilbert spaces. We establish some
strong convergence theorems for our iterative scheme.

In order to prove our main results, we also need
the following lemmas.

Lemmal ([13]) Let {x,} and {y,} be bounded
sequences in a Banach space X and let {3,} be
a sequence in [0,1] with 0 < liminf, ,» 8, <
lim sup,,_, - Bn < 1. Suppose xn11 = (1 — Bp) yn +
B Ty, for all integers n > 0 and limsup,,_, . (||
Ynt1 = Yn | = || @npr — 2 |[) < 0. Then

Lemma 2 ([14]) Let H be a Hilbert space, C a
closed convex subset of H, and T : C — C a non-
expansive mapping with F(T) # 0. If {x,} is a
sequence in C' weakly converging to x € C and if
{(I=T)zy} converges strongly to y, then (I —T)x =
.

Issue 1, Volume 11, January 2012



WSEAS TRANSACTIONS on MATHEMATICS

Lemma 3 ([15]) Assume {a,,} is a sequence of non-
negative real numbers such that

On+1 < (1 - an)an +0,, n>0,
where {c, } is a sequence in (0,1) and {6, } is a se-
quence in R such that

(1) 2202, an =0,

(2) limsup,, o, r% <0or) 2| 0n|< o0
Then lim,,_,o a, = 0.

Lemma 4 ([16]) Let C be a nonempty closed convex
subset of H and let F be a bifunction of C x C'into R
satisfying (A1) — (A4). Letr > 0 and x € H. Then,
there exists z € C such that
F(z,y)+ %(y—z,z—a:) > 0forally € C.
Lemma 5 ([17]) Assume that F : C x C — R sat-
isfies (A1) — (A4). Forr > 0 and x € H, define a
mapping T, : H — C as follows:
To(x)={2€C: F(z,y)+ +{y — 2,2 —x) >
0, Yy e C}
forall x € H. Then, the following hold:
1. T, is single-valued;
2. T, is firmly nonexpansive, i.e., for any x,y € H,
HTrx - TryHQ < <Trx - Ty, — y>;
3. F(T,) = EP(F);
4. EP(F) is closed and convex.

Let {7}, }°° ; be a sequence of nonexpansive map-
pings of C' into itself, where C' is a nonempty closed
convex subset of a real Hilbert space H. Given a
sequence {t,}°°, in [0,1], we define a sequence
{Wy,}oo, of self-mapping on C' by (10). Then we
have the following results.

Lemma 6 ([11]) Let C be a nonempty closed convex
subset of a real Hilbert space H. Let {T,,}>°, be a
sequence of nonexpansive self-mappings on C' such
that 02 F(T,,) # 0 and let {t,,} be a sequence in
(0, 0] for some b € (0,1). Then, for every x € C and
k > 1 the limit lim,, o U, . exists.

Remark 7 ([12]) It can be known from Lemma 6 that

if D is a nonempty bounded subset of C, then for ¢ >

0 there exists ng > k such that for all n > ng
SUPzeD HUn,kx - Uk«TH <g

where Uz = limy, o Up, 2.

Remark 8 ([/12]) Using Lemma 6, we define a map-
ping W : C' — C as follows:
Wz = limy, o0 Wi = limy, 00 Up 12

for all x € C. Such a W is called the W -mapping
generated by Ty, Ts, - - - and ty,to,---. Since W, is
nonexpansive, W : C — C' is also nonexpansive.
Indeed, observe that for any x,y € C,

IWa = Wy = iy [Woz — Way| < llz — .
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If {xy,} is a bounded sequence in C, then we put

D = {z,, : n > 0}. Hence, it is clear from Remark 7

that for any arbitrary € > 0 there exists Ng > 1 such

that for all n > Ny
HWn‘rn - Wan = ”Un,lxn - Ull‘nH

<sup,ep |Unpz — Urz|| <e.

This implies that lim,_, ||Whx, — Wa,|| = 0.

Lemma9 ([11]) Let C be a nonempty closed convex
subset of a real Hilbert space H. Let {T,,}5° | be a
sequence of nonexpansive self-mappings on C' such
that N2 F(T,,) # 0, let {t,} be a sequence in (0,b]
for some b € (0,1). Then F(W) = N, F(T5,).

Lemma 10 (/8]) For given z*,y* € C, (x*,y*) isa
solution of problem (8) if and only if ©* is a fixed point
of the mapping G : C' — C defined by

G(z) = Po[Pc(x — pBx) — AMAPo(x — pBrx)]

forall x € C, where y* = Po(x* — uBz™).

Note that the mapping G is nonexpansive provid-
ed A € (0,2a) and o € (0,253). Throughout this
paper, the set of fixed points of the mapping G is de-
noted by I

Lemma 11 In a real Hilbert space H, there holds the
inequality

lz+y|* < |lz]* + 2(y,z +y), Vz,y € H.

2 Main Results

Theorem 12 Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let F' be a b-
ifunction from C x C — R satisfying (Al) —
(A4), the mappings A,B : C — H be a-inverse-
strongly monotone and (B-inverse strongly mono-
tone, respectively. Let {T,,}°° | be a sequence of
nonexpansive self-mappings on C such that ) =
N F(T,)NEP(F)NL # 0. Let f : C — C
be a p-contraction with p € [0, 3). Suppose z1 € C
and {x,} is generated by
F(unvy) + %(y — Up, Up — xn) >0,Vy e C,
zn = Po(uy, — pBuy,),
Yn = anf(xn) + (1 — an)Po(zn — Mzy),
T+l = ﬁnxn + ’YnPC(Zn - >\Azn) + 5anyn7

(0,2p), W, is defined by (10)
0,1), {an}, {Bn}, {1}, {0n}

where X € (0,2a), p €
Sor {t,} in (0,b] C (
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are sequences in [0,1] and {r,} C (0,00) is a real
sequence such that

(1) Bn+ v+, = Landliminf,, . ((1—2p)d,—
'Yn) >0,

(19) limy—y00 o, = 0 and X952, v, = 00,

(791) 0 < liminf,, o0 Bn < limsup,,_ o Bn < 1,

(i) limp oo (255 — 12%7) =0

(v) liminf, oo mn > 0 and limy, o0 | THy1 —
Tn |: 0,
then {x,} converges strongly to x* = Pqf(x*) and
(x*,y*) is a solution of the general system of varia-
tional inequalities (8), where y* = Po(z* — pBx™).

Proof. Let Q = P. Then Qf is a contraction of C'
into itself. Since C' is a closed set of H, there exists
a unique element of z* € C such that * = Q f(z*).
For any z,y € C and A € (0, 2a), we note that

(I = XA)z — (I — AA)yl?
= Jlz—y— AAz — Ay)|?
= |z —yl* - 2X\z —y, Az — Ay)

A2 Az — A2 (11)
<z =yl + A\ = 2a)||Az — Ay|?
<z —yl?

which implies that I — AA is nonexpansive. In the
same way we can obtain that I — pB is also nonex-
pansive and

I(T = pB)a — (I — uB)y|?

12
< Jlw =yl + u(u — 28)|[ Bz — Byl ¥

for all z,y € C and px € (0,283). Let {T;,} be a
sequence of mapping defined as in Lemma 5 and let
z* € Q. Then z* = Wyz* = T, z* and z* =
Po[Po(z* — pBx*) — NMAPg(z* — pBx*)]. Putting
y* = Po(x* —puBx*), we have 2* = Po(y*—AAy™).
Let v, = Po(zn — ANAz,), we have that

lun — || = [T, 20 = T 2¥|| < [ln — 27,

Hzn - y*”
= |[[Po(un — pBuyn) — Po(z* — pBx*)||
< lun — 2 < lzn — 27,

|vn, — 2*|
= HPC(Zn — Mz,) — Po(y* — My ||
< lzn =yl < flon — 27|

and

1yn — 2|l
< apl|f(@n) — f@)]| + anll f(z7) — ¥
(1 — an)om — 2]
anpllen — 2*|| + anl| f(27) — 27|
+(1 = an)lzn — 27|

IN
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Since W,, is nonexpansive, we obtain

[
< Ballen = @[ 4 nllvn — 27|

+6n”Wnyn - .’L'*H
< Bullen — 2| + ynllzn — 2| + dnllyn — ™|
< (Bntv)llzn — 2| + dnanl f(z¥) — 27|

(1 = andn(1 = p))llzn — 2|
+ono || f(z) — 2|
< max{|z, — 2%, 155 [ f(2*) — 2|}

By induction, we have that

* * 1 * *
[n — 2"[| < max{||z1 — 27, ﬂllf(w ) — ="}
for all n > 1. Thus the sequence
{zn} 1is bounded. Consequently, the sets

{un}, {zn} {vn}; {Yn 1 {Wnyn}.{Bun} and {Az,}

are also bounded.

Next, we claim that lim,, . ||Zn+1 — 2n|| = 0.
Indeed, we define a sequence { sy, } by Tp41 = Bnan+
(1 = Bn)8n, VYn > 1. Thus, we have

Sn+1 — Sn
_ Tng2 = Bni1Zng1 Tngl — Baln
B 1- 5n+1 1- Bn
Y11 + O 1t Wi 1Unga
B 11— /Bn—‘rl
_ YnUn + O Winyn
1—fBn
_ Y1 (Ung1 — o)
1- Bn-&-l
Ont1(Was1yn+1 — Wait1yn)
_l’_
1- /Bn—f—l
Tn+1 Tn
+(1 _ﬁnJrl 1 _ﬁn)vn
5n+1 511
+(1 — Bn+1 - 1— Bn)Wn+1yn
+1 n (Wag1yn — Wayn).
- Bn
We note that
[vn+1 — vl
= ||Pc(I = AA)zpt1 — Po(l — MNA)z, ||
< lzns1r — zall (13)
= Pe(T — 1BYunsr — Po(l — B
< ungr — vl

From u, = T x, and uyy1 = T}, Tpi1, WE note
that

1

Tn
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and

1

Tn+1

<y — Un+1, Unt+1 — $n+1> >0

(15)
forall y € C. Putting y = uy41 in (14) and y = u,
in (15) respectively, we have

F(Un—l-b y) +

1
F(umun-l-l) + 7

n

<un—|—1 — Un, Un — xn> >0

and

F(Un+17 Un) + <un — Unp+1, Un+1 — $n+1> > 0.

T'n+1
So, from (A2) we have

Un — Tn Un+1 — Tn+l

<un+1 — Un, - > > 0.
Tn T'n+1

Hence

Tn
<Un+1 — Up,Un — Tn — ” (un—i-l - J5n+1)> >0

n+1

and

< Unp+1 — Up, Up — Up41
Tn

+  Uptl — Tp — (Unt1 — Tny1)) > 0.

T'n+1

Since lim inf,, o 7, > 0, without loss of generality,
we may assume that there exists a real number ¢ such
that r,, > ¢ > 0 for all n > 1. Then we have

|tnt1 — unH2

< (Upgl = Un, Tong1 — T
T
+(1 = —=)(Unt1 — Tny1))
Tn+1
< luntr — un[l{l|zns1 — znl|
r
+ 1= —— | Jttnt1 — Tny1 |}
Tn+1
and hence
||Un+1 - Un”
< Hxn—&-l xn” (16)
+r — | o1 — 74n | [unt1 — Zpta ]

< lzngr — zall + 2 | ragr —7a |,

where L1 = sup{||u, — z,|| : n > 1}. Substituting

(16) into (13), we have

Ly
an—l— |-

(17)

HUn—H - Un” < zngr — ‘ Tn41 —
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Moreover, we have

Wat1¥Yns1 — Waraynl|

< Ynt1 — yall

< lvngr — vl
+an 1l f(Tnt1) — vt (18)
+an || f(Tn) — val

< o — anll + 2 | a1 — |

+(ap41 + an) Lo,

where Ly = sup{|| f(zn) —vn|| : n > 1}. From (10),
since T; and U, ; are nonexpansive, we deduce that
foreachn > 1,

Whs1yn — Waynll
= |[[t1ThUns12yn — 111U 295 |
S t1||Un+1,2yn - n,2yn||
= U|t2ToUny1,3Yn — 212Uy 395 || (19)
< tite)|Uns1,3Yn — Un,aynl|
< (H?:l ti) "Un+1,n+lyn - n,n+1yn||
< L3 H?:1 ti

for some constant L3 > 0. Combining (17), (18) and
(19), we have

||S7l+1 - Sn”
14
< Hxn-i-l xn” + — ’ Tn+1 —
Ont1lo
+L(an+l + o)
1- ﬁnJrl
Yn41 Yn
- w,
Ls6,

1_ﬁnHt

i=1

Thus it follows from conditions (i) —
that 0 < ¢; <b< 1,Vi > 1)

(v) that (noting

limsup(|[sn+1 — snll = [[Tns1 — 20|) <O
n—oo

By Lemma 1 we get lim,, . ||$, — x| = 0. Conse-

quently,
nILH;o [Tns1 — @nll = nlgglo(l — Bu)llsn — anl = 0.
Further, we can obtain that lim,,_, « || Az, — Ay*|| = 0

and lim,, o ||Bu, — Bz*|| = 0. Indeed, from (11)
and (12) we get that

lyn — 2|2
< anl|f(@n) — 2"

+(1 = )| Po(I = AA)zy, — Po(I — AA)y*||?
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IN

IN

IN

have

anLla+ (1 —an)(llzn — y*Hz

+A\ = 20)|| Az, — Ay*|]?)

L + (1 — ) (s — 26) | Buy — B |
Hlun — &[] + A = 20) | Az, — Ay*|]?)
anLy + p(p — 28)||Buy, — Bx*|)?

Hlan — 2*? + M = 2a) |4z, — Ay*|?,

where Ly = sup{||f(z,) — 2*||> : n > 1}. So, we
|ln1 — 2*||?
Bullen — @*[1? + mllvn — 2*||?

IN

IN

IN

+5n”Wnyn - ‘T*HQ

Bullzn — 3U*H2 + Onllyn — =*||
+nll(yn — &) + anlvn — flzn))|
Bullan — (| + (1 = B) lyn — *||?
+OénL5

||xn - x*HQ + (1 - Bn)anL4 + ayLs
+(1 = Ba) [y — 28)|| Buy, — Ba*|?
FAN = 2a)[| Az, — Ay*|?],

(20)

where Ly is some appropriate constant. It follows that

(1= ) [1(28 — )| Bun — Ba*|]?
HFA(2a — \)|| Az, — Ay

< lan =2 = lzns — 2"
+an((1 - 5n)L4 + L5)
< len = znal[(lon — 27 + lzng — 27)
—i—Ozn((l - Bn)L4 -+ L5)
Since a, — 0, |z, — zpt1]] — 0 and

limsup,_,. Bn < 1, we obtain lim, o ||Az, —
Ay*|| = 0 and lim,,_, || Buy, — Bx*|| = 0.

Now we show that ||[Wy,, — y| — 0asn — oo.

Noting that Pr is firmly nonexpansive, from ||u, —
¥|| < ||zn, — x*|| we have

IA

IN

IN

Iz — y*|I?

|Po(I = pB)uy — Po(I — pB)z*||?

((I = pB)un — (I = pB)a™, zn — y7)

]' * *
U = uB)un = (I = uB)z"|* + |20 — v
—I(I = uB)un, = (I = uB)a* = (zn — y")|I’]
1
2
_Hun _

N =211 + |20 — 4|

2n — p(Buy, — Bz*) = (2" = y*)|?]
lllzn = 21+ llzn — y*|?

—llun = 20 = (@ = y*)|* = p?|| Bun, — Ba*|)?
+2p{un — 2n — (2% — y*), Buy, — Bz™)]
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and from ||z, — y*|| < ||z, — || we also have

IA

IN

IN

Thus,

IN

and

<

lon — 2%

| Po(I — M)z, — Po(I — MA)y*||?

(I =XA)z, — (I = NA)y*, v, — ™)

1 * *
S = AA)z, = (I = AA)y 12+ [lon — 2*||?
—[|(I = AA)z — (I = AA)y* — (v — "))
1 . \

5[”271 -y H2 +[Jvn — H2 — lzn — vn
—AAzp — Ay*) — (y* — 2")|I”]

lllzn — o + [lon — 2*|?

—ll2n = vn + (2" — )|

+2X(z, — vy + (¥ — y¥), Az, — AY")
—N2|| Az, — Ay*|?].

we have

”zn - y*HQQ )

|zn — 2| = lun — 20 — (" —y")[I* (21)
+2uluy — 2z — (2* — y*), Bu, — Bx*)

o — 2*[?

[@n — 2*|* = 20 — vn + (2" —y")I? (22)

+2X(zp, — vp + (¥ — y*), Az, — Ay*).

By (21) we get

IA

IN N

IN N

241 — ¥

Bllzn — *[1? + mllvn — 212

+6n[Wnyn — x*Hz

Bullzn — 22 + allzn — 571 + Ballym — 7|1
Ballzn — 2*[1? + mllzn — y*|?

ol ) — 212 + (1= an)l2n — 57 )
Bullzn — 2*|12 + (1 = Ba)llzn — y*[1* + dnvn L
i — 21 = (1 = Bu)lm — 20 — (2" — ")
+2(1= )l — 7 — (& —5")] - | Bun— Ba*|
+5nanL4,

which implies that

<

<

(1= Ba)llun = 20 = (&* = y*)|1?

= 2*|* = |nt1 — ¥

+2(1 — Bn)pLg||Buyp, — Bx*|| + o L7
[#n — Zpial|(lzn — 2| + [|n41 — 27)
+2(1 — B,)pLg|| Bun, — Bx*|| + ap L7

(23)

for approximate constants Lg and Ly. It follows from
(20) and (22) that

241 — 27|
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< Ballan — 2|2+ (1= Bu)llyn — 21> + anLs

< Bullzn — 2% + (1 = Ba)[ewl| f(zn) — 2™
+(1 = an)llvn — 2*1*] + o Ls

< lwn — 2| + anLs + an(l — Ba) Ly

—(1 = B)llzn = va + (" =y
+2(1 = Bp) M zp — v + (2" — y¥)
7Azn - Ay*>7

which implies that

(1= Bu)llzn — vn + (2" — y*)HZ

< g — 2% = [Jen — 2%
+Lg|| Az, — Ay*|| + an Lo (24)
< lzn — zpga ||(|on — 27|

+|zns1 — 2*])
+Lg||Azn — Ay*|| + an Lo

for approximate constants Lg and Lg. Note that ||x,, —
ZTnti|l = 0, ay, — 0, || Buy, — Bx*|| — Oand || Az, —
Ay*|| — 0. From (23) and (24) we deduce

g{gollun—zn—(w —y)=0 (25)
and
lim |z, —vn + (2" —y")|| = 0. (26)

n—oo
Since T, is firmly nonexpansive for each n > 1, we
have
o — 2|2
T,z — Trnx*H2

(T, xp — Ty ™,y — ™)

IA

(Up, — 2", 20y — )
1
5
and hence |[u, — z*||? < ||zn — 2*||2 — ||2n — un?.
It follows that

lun = @[ + llzn = &*|* = lon — unl®)

[

< Bullwn - x*”Q + Ynllvn — x*Hz
+6n | Wayn — x*HQ
< Bullzn =1 + vallza =y 12 +6nllyn — 2"
< Bullwn - $*”2 + Ynllun — x*Hz
Al f(n) =2*||” + (1=an)vn — ")
< Ballen =2 + (v + 00) |l — 2|
+0p0n Ly
< lan — 2P = (1=Ba) ey — unl+6nan La,
and hence

(1= Bn)llzn — un||2
< lan — 2| = llengr — 2% + dnanla
< len = gl — 27|+l — 27))
+5nanL4
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for Ly = sup{||f(xn) — z*||* : n > 1}. So, we have

h_)n;o |xn — unl| = 0. (27)
Fromy,, = an f(zn)+(1—an)vn, we get [lyn—vn || =
anl|f(zn) — val| = 0 as n — oo. It follows from
(25), (26) and (27) that

limy, 00 ||y, — vp| = limy o0 || T — Un | (28)
= limy 0 |20 — Yull = 0.
Since
Onl|[Watn — n |

= ||37n+1 - /ann — YnUn — 5113771”

[Zn+1 — Zoll + YallTn — vnll,

IN

from ||zp4+1 — || — 0 and (28) we have |W,y,, —
Zn|| — 0 and hence |Wyy, — yn| — 0as n — oo.
Moreover, we get ||[Wy, — yn| — 0as n — oo from
Remark 8.

Next, we show that

limsup(f(z*) — z*, 2, — 2¥) <0,

n—oo

where x* = Pof(2*). As {y,} is bounded, we can
choose a subsequence {y, } of {y,} such that y,,, —
z € C and

limsup(f(z*) — =", y, — %)

n—oo
= lim <f(£C*) - x*7yni - LE*>
1—00
From |[Wy, — yn|| — 0 and Lemma 2, we ob-
tain z € F(W). It follows from Lemma 9 that
z € MY F(T,). Let us show z € EP(F). Since
Uy, = 1}, T, we have

1

Tn

From (A2), we also have

1
7<y — Up, Up — ZL‘n> Z F(ya Un)
n
and hence
Uy — Ty
<y_umvu> > F(y’um)

ng

From ||u, — x,|| — 0 and ||z, — yn|| — O
we get u,, — =z. Since ||up, — x| — 0 and
liminf, o, > 0, it follows from condition (A4)
that

0> F(y,2), VyeC.
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Fortwith0 <t <landy € C,lety, = ty+(1—t)z.
Since y € C'and z € C, we have y; € C and hence
F(yt,2) <0. So from (A1) and (A4) we have

0=Fy,y) < tF(ye,y) + (1 —1)F(yt,2)

< tF(yy)

and hence 0 < F(y:,y). From (A3), we get 0 <
F(z,y)forally € C'and z € EP(F). We shall show
z € ). We note that

lyn — G (yn) |
< anllf(@n) — Gyn)|
+(1 — an) || Pe|Pe(un — pBuy)
—AAPc(up — pBuy)] — G(yn)||
= oallf(zn) — Gyn)|l
+(1 = an)[|G(un) — Gyn) |l
< anllf(zn) = Glyn)ll + (1 — an)|lun — yal|
— 0.

From Lemma 2 we have z € F'(G) and hence z € I'.
Hence z € . It follows from ||z, — y,|| — 0 and (3)

that
lim sup(f(z*) — z*, z, — =*)
n—oo
= limsup(f(z*) — ", 2y — Yn + yn — %)
n—oo
< limsup(f(z*) — z*, y, — x*) (29)
n—oo
= lim (f(z*) — 2%, yn, — %)
1—00

= (f(z*)—a*,z—2a*) <0.

At last, we show that lim,, o, z,, = £*. From Lemma
11 we get that

s — 27|

< |Bn(@n — %) + n(yn — 2%)
60 (Wnyn — %) + Ynan(vn — f(inn))HQ
< |Bn(zn — %) + n(yn — 2%)
+6n(Wnyn — x*)Hz
+29n0n(Vn — f(Zn), Tnt1 — 27)
< Ballen =2 + (v + 60) lyn — "2
+2ypan vy — 2, pp1 — F)
+2ynan(z” — f(zn), Tne1 — *)
< Ballen — 2| + (1= B)[(1 = an) v, — ™|

+2Oén<f(xn) - $*, Yn — I*>]
+2mam|lvn — 2| - || Tng1 — 27
+2'7n04n<x* - f(wn)v Tn4+1 — $*>

It follows from |[|v,, — *|| < ||z, — «*|| that

241 — 27|
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Bullzn — 2 [1” + (1 = Ba) (1 = an)l|2n — 2*[|?
+200 (n + 00 )(f(20) — 2%,y — %)
+2vnan )Ty — ¥ - [|Tpt1 — 27|
+2yn00 (2" — f(xn), Tpe1 — )
(1 — an(1 = Bp)lllzn — x*HQ
+20n Y (f(Tn) — %, Yn — Tnt1)
+20,0n(f () — 2™, yn — ¥)
20 ||wn — 27| - [|angr — 27|
[1— an(1 = Bu)l|lzn — 2*?
+204n')’nL4Hyn - mn—i—lH
+20,0n (f () — 2%, Yn — )
+2a0,0, (f (x) — ¥, 2, — =¥)
+2manllzn — 27| - |l2ng1 — 27|
11— an(1— Bu)lzn — 27|
+200 La(Yallyn — Tni1 |l + 0nllyn
+2an0npl| Ty — 7|

+2a,0,(f (%) — 2™, xp — 2¥)
Fynen[|len = 2|® + |[eps — 2],

IN

IN

IA

IN

— nl|)

which implies

[#ns1 — 2*|?

1—2p)d, —
- ( p)on '7nan] "
1 —apvn

(1 B 2/0)671 —Tn

+ oy, X

1— anyn " {(1 —20)0n — Yn
(Yallyn — Tptll + Onllyn — 2al)

20n N - x, — 2
e a) = o — )}

where Ly = sup{||f(x,) — z*||* : n > 1}.
1—2p)dn—7n

Note that liminf ¢ T > 0. We
n—o00 XnIn
have z %an = oo. It follows from ||y, —

Zn| —> 0 |z, — Tnt1]] = 0, (29) and Lemma 3 that
xy — «*. This completes the proof. g

As direct consequences of Theorem 12, we obtain
three corollaries.

Corollary 13 Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let F' be a b-
ifunction from C x C — R satisfying (Al) —
(A4), the mappings A,B : C — H be a-inverse-
strongly monotone and (-inverse strongly mono-
tone, respectively. Let {T,,}°°, be a sequence of
nonexpansive self-mappings on C such that Q) =

N> F(T,)EP(F)NT # 0. For fixedu € C
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and given x1 € C arbitrarily, {x,} is generated by

F(umy) + %<y — Un, Up — xn> >0, Yy e,
zn = Po(u, — pBuy,),

Yn = apu + (1 — ap) Po(zn — AAzy),

T+l = BnTn + 'YnPC(Zn - )\Azn) + 5anyna
where X € (0,2a), p € (0,20), Wy, is defined by (10)
Jor {tn} in (0,0] C (0,1), {an}, {Bn}, {m}, {on}
are sequences in [0, 1] and {rn} C (0,00) is a real
sequence such that

(2) B+ +0n =1,

i) hm an—OandZan—oo,

n=1
zzz) 0 < hm 1nf Bn < limsup 8, < 1,
'y +1 n—oo
n—soo 1= ﬁn+1_1_ )_0

(i
(
(iv) hm(
(v) hm 1nf(5 — ) >0,
(v

i) hmlnfrn > 0 and hm | "1 — 70 |[= 0

Then {xn} converges strongly to r* = Pou and
(z*,y*) is a solution of the general system of varia-
tional inequalities (8), where y* = Pco(z* — pBz*).

Corollary 14 Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let the mappings
A,B : C — H be a-inverse-strongly monotone
and [-inverse strongly monotone, respectively and
{T,}32, a sequence of nonexpansive self-mappings
on C such that Q = N F(T,)\I # 0. Let
f: C — C be a p-contraction with p € [0, %) Sup-
pose x1 € C and {x,} is generated by

Zn = PC’(«Tn - Nan)a
Yn = Oénf(l'n) + (1 - an)PC’(Zn - >\Azn)7
Tnt+1 = /ann + "YnPC(Zn - /\Azn) + 5anyn7

where X € (0,2a), u € (0,203), W, is defined by (10)
for {t,} in (0,0] C (0,1), {own}, {Bn}, {}, {0}
are sequences in [0, 1] such that

(1) Bn+m +0n =1,

(14) hm apn, = 0and Z ap = 00,

(im) 0 < 11m mf B < hril SUD,, o0 Bn < 1,
(
(

/I:/U) nll_)]:lgo(l’y%:il B ﬁn) O

v) hnl)mf((l — 2p)6n — ) >0,
n—oo
then {x,} converges strongly to * = Pqf(z*) and
(z*,y*) is a solution of the general system of varia-
tional inequalities (8), where y* = Pco(z* — pBz*).

Corollary 15 Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let the mappings
A,B : C — H be a-inverse-strongly monotone
and (B-inverse strongly monotone, respectively and
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{T,}52 1 a sequence of nonexpansive self-mappings
on C such that Q := N2, F(T,,) T # 0. For fixed
u € C and given x1 € C arbitrarily, {x,} is generat-
ed by

zn = Po(xy — pBxy,),
Yn = apu + (1 — o) Po(zn, — AAzy),
T+l = ﬁnxn + ’YnPC(Zn - >\Azn) + 5anyn7
where A € (0,2a), u € (0,28), W), is defined by (10)
Jor {tn} in (0,0] C (0,1), {an}, {Bn}, {1}, {n}
are sequences in [0, 1] such that

(1) B+ +0n =1,

(17) hm apn, = 0 and X2°

(i17) 0 < hm 1nf Br, < limsup,, . fn < 1,
'Yn+1 _
() Jim (2552~ 2) =0
(v) liminf (8, — v5) > 0.
n—oo

Then {x,} converges strongly to x* = Pqf(z*) and
(z*,y*) is a solution of the general system of varia-
tional inequalities (8), where y* = Po(z* — uBz*).

210y = 00,

Remark 16 We note that the results in Theorem 12
improved and extended the corresponding results in
Yao et al. [12] from equilibrium problem and infinitely
many nonexpansive mappings to equilibrium problem,
general system of variational inequalities and infinite-
ly many nonexpansive mappings.

Remark 17 Next, we can extend the main results of
this paper from Hilbert spaces to the general Bnanch
spaces.
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