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1 Introduction

Queueing networks are widely used in modelling
communication and data transmission systems, data
processing systems, etc. [1] - [5]. The most important
problem of their investigation is to simplify a calcula-
tion and an estimation of their characteristics in spite
of large number of their elements. The most widely
used mathematical tools for solution of this problem
are product-form theorems based on solving a system
of balance equations. At the same time, there is a large
number of papers devoted to estimation of parameters
of particular queueing systems [6] - [8] etc. However,
it is quite difficult to transfer these methods to estima-
tion of parameters of queueing networks whose mod-
elling is based on product-form theorems. In this pa-
per statistical estimation of closed and opened queue-
ing networks parameters is based on loading factors
which define their product-form limiting distribution-
s. This approach allows to get over a solution of large
system of balance equations with inaccurately defined
coefficients.

Another possibility to simplify stochastic model
with large number of elements is to analyze cooper-
ative effects or effects of subsystems aggregation in
stochastic system. It plays large role in different ap-
plications. The most well known results are devoted to
random graphs with identical edges in which working
probabilities of edges decrease to zero with increase
of nodes number. In this case there are conditions
when connectivity probability of random graph tends
to one [11] - [13]. Such effects are accompanied by
phenomena analogous to phase transitions in physical

statistics [14] -[16]. Continuation of these results con-
tains in [17] - [19]. But analogous phenomena may
be established in queueing systems and networks al-
so. The first results in this area have been obtained
in [20, chapter II, chapter III, § 4] and are devoted
to limit distribution of a number of occupied servers.
In this paper cooperative effects have been analyzed
as in multiserver queueing systems so in closed and
in opened queueing networks in terms of stationary
waiting times and queue lengths.

Large number of papers is devoted to an optimiza-
tion of different queueing networks characteristics by
their route matrices (see [21] and references there-
in). Large complexity of a solution of optimal rout-
ing problem in queueing networks is closely connect-
ed with a choice of the network characteristics. Nev-
ertheless a concept of the ergodicity in opened queue-
ing networks [22] allows to define an ability to handle
customers which is closely connected with an abili-
ty to handle in deterministic transportation networks
and its equality with maximal flow [23]. So suggested
in this paper algorithms of the flow maximization in
opened queueing network occur similar to a definition
of permissible solutions in the transportation problem
of the linear programming [24], [25].

2 Parameter estimation for product-
form distributions

The first part of this paper is devoted to a construction
of a statistical estimation of parameters of a queue-
ing network with exponential service distributions and
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Poisson input flow. Main parameters of the consid-
ered queueing network are a route matrix, an input
flow intensity and service intensities in the network n-
odes. To estimate these parameters it is necessary to
solve a system of balance equations. But for consid-
ered networks limit distributions of numbers of cus-
tomers in network nodes have product form and are
defined by load coefficients of different nodes. In this
section load coefficients are estimated using estima-
tion of its limit distribution. This approach allows to
avoid a solution of the system of balance equations
with incorrectly defined coefficients. This approach
is realized for opened and closed Jackson networks:
classical, in random environment and with some pro-
hibited transitions between nodes.

2.1 Classical Jackson networks
Consider an open Jackson network consisting of m
single-server queueing systems with exponential ser-
vice times of rates µ1, ..., µm fed by a Poisson arrival
flow of rate λ. The network routing dynamics is given
by a routing matrix Θ = ||θij | |mi,j=0 where θij is the
probability of a transition after getting service from
the ith node to the jth, θ00 = 0, and 0 is an external
source. Assume that the routing matrix is irreducible:
∀i, j ∈ {0, 1, ...,m}

∃ i1, i2, ..., ir ∈ {1, ...,m} : θii1 , θi1i2 , . . . , θirj > 0.

Then there exists a unique solution Λ =
(λ, λ1, λ2, ..., λm) of the system Λ = ΛΘ,
λ1, ..., λm > 0.

If
ρi =

λi
µi
< 1, i = 1, ...,m, (1)

then the discrete Markov process y(t) describing the
number of customers at the network nodes with the
state set N = {n = (n1, ..., nm), ni ≥ 0} and tran-
sition rates

L(n,n+ ek) = λθ0k, L(n+ ek,n) = µkθk0,

L(n+ek,n+ei) = µkθki, 1 ≤ k ̸= i ≤ m, n ∈ N ,

(ek is the vector whose kth component is 1 and all the
others are 0) is ergodic [26] and its limiting distribu-
tion [1] is given by

π(n) = C
m∏
i=1

ρni
i , n ∈ N ,

C−1 =
∑
n∈N

m∏
i=1

ρni
i . (2)

Denote by φ = (ρ1, . . . , ρm, C) the vector of param-
eters of the product formula (2).

Since π(0) = C, π(ei) = Cρi for an open Jack-
son network we obtain formulas expressing the pa-
rameter vector φ by the distribution π, φ = f(π),
in the form

ρi =
π(ei)

π(0)
, i = 1, ...,m, C = π(0). (3)

In turn the probabilities π(n), n ∈ N , can be esti-
mated by relative frequencies

πT (n) =
1

T

∫ T

0
I(y(t) = n) dt,

where I(A) is the indicator function of an event A,
since the convergence in probability takes place ([9],
[10, chapter 4], [27], [2, theorem 1.2])

πT (n) → π(n), T → ∞. (4)

Therefore as an estimate for the parameter vector φ
we propose to take f(πT ) which converges in proba-
bility to φ = f(π) as T → ∞ by virtue of (3) and
(4).

A closed Jackson network differs from an open
one in the fact that there is a constant number of cus-
tomers K in it and no customers arrive from the out-
side. The behavior of customers in the network is de-
scribed by a routing matrix Θ̂ = ||θij ||mi,j=1, the ma-
trix Θ̂ is assumed to be irreducible. Then a solution of
the system

λ1 = a, (λ1, λ2, ..., λm) = (λ1, λ2, ..., λm)Θ̂

for any a > 0 exists, is unique and consists of positive
components. Operation of such a network (number
of customers at the servers) is described by a discrete
Markov process ŷ(t) with state set

NK = {n, n ∈ N :
m∑
i=1

ni = K}

and transition rates

L(n,n−ek+ei) = µkθki, n ∈ NK , 1 ≤ k ̸= i ≤ m.

The process ŷ(t) is ergodic [26] and its stationary dis-
tribution [1] is given by

π(n) = C
m∏
i=1

ρni
i , n ∈ NK ,

C−1 =
∑

n∈NK

m∏
i=1

ρni
i . (5)
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If H = CρK1 , εi = ρi/ρ1, 2 ≤ i ≤ m, then
equation (5) can be rewritten in the form

π(n) = H
m∏
i=2

εni
i , n ∈ NK , H

−1 =
∑

n∈NK

m∏
i=2

εni
i .

(6)
Denote by φ̂ = (ε2, . . . , εm,H) the vector of param-
eters of the product formula (6). Since

π(Ke1) = H, π((K−1)e1+ei) = Hεi, 2 ≤ i ≤ m,

for a closed Jackson network we obtain formulas ex-
pressing the parameter vector φ̂ through the distribu-
tion π, φ̂ = f̂(π), in the form

εi =
π((K − 1)e1 + ei)

π(Ke1)
, i = 2, ...,m, (7)

H = π(Ke1).

In turn the probabilities π(n), n ∈ NK , can be es-
timated by relative frequencies πT (n), which satis-
fy the convergence in probability (4) due to [9], [10,
chapter 4], [27], [2, theorem 1.2]. Therefore as an es-
timate for the parameter vector φ̂ we propose to take
f̂(πT ) which converges in probability to φ̂ = f̂(π) as
T → ∞ by virtue of (4) and (7).

2.2 Networks in a random environment
Consider an open Jackson network. Denote by S the
set of all nonempty subsets s (with elements in as-
cending order) of the set {1, ...,m}. Assume that for
a given s the network is determined by the character-
istics

λ = λ(s), µ1 = µ1(s), ..., µm = µm(s), Θ = Θ(s).

Operation of the network for a given s is described by
a Markov process with state set N and transition rates
Ls(n,n

∗),n,n∗ ∈ N , satisfying the conditions:
1) ∃ s ∈ S such that

∀ n,n∗ ∈ N ∃ n1, . . . ,nq ∈ N : Ls(n,n
1) > 0,

Ls(n
1,n2) > 0, . . . , Ls(n

q−1,nq), Ls(n
q,n∗) > 0,

2) ∃ D <∞ : ∀ s ∈ S, ∀ n ∈ N∑
n∗∈N

Ls(n,n
∗) ≤ D,

3) the function π(n), n ∈ N , given by (2) satisfies
the equality

π(n)
∑

n∗∈N
Ls(n,n

∗) =
∑

n∗∈N
π(n∗)Ls(n

∗,n).

Let operation of the network with randomly vary-
ing s be described by a discrete Markov process

x(t) = (s(t), y(t)) with state set X = S × N and
transition rates

Λ((s,n), (s∗,n∗)) =

= Ls(n,n
∗)I(s = s∗) + ν(s, s∗)I(n = n ∗) (8)

where ∀ s, s∗ ∈ S ∃ s1, . . . , sl ∈ S :

ν(s, s1), ν(s1, s2), . . . , ν(sl−1, sl), ν(sl, s∗) > 0

and ∃ C < ∞ : ∀ s ∈ S
∑
s∗∈S

ν(s, s∗) ≤ C. As-

sume that there exists a function A(s) > 0 satisfying
the conditions

A(s)
∑
s∗∈S

ν(s, s∗) =
∑
s∗∈S

A(s∗)ν(s∗, s), s ∈ S,

∑
s∈S

A(s) = 1.

Then the process x(t) is ergodic [28, theorem 1] and
its limiting distribution is of the form

Π(s,n) = A(s)π(n), (s,n) ∈ X = S ×N . (9)

It is seen from (8) that the term

Ls(n,n
∗)I(s = s∗)

entering the transition rate of the Markov process x(t)
and which accounts for changes of the component
y(t), depends on the component s(t) varying in time.
Therefore, strictly speaking, the component y(t), is
not a Markov process. However we can use the law
of large numbers for the process x(t) to construct an
estimate πT (n) =

∑
s∈S

ΠT (s,n), which converges in

probability as T → ∞ because of finiteness of S and
by virtue of (9) to the sum

∑
s∈S

Π(s,n) = π(n).

Therefore as an estimate for the parameter vector
φ of the limiting distribution π(n) of the process y(t)
one can take f(πT ) which converges in probability to
φ = f(π) as T → ∞. This provides rather simple
estimates for parameters of open queueing networks
in a random environment and allows us to transfer the
obtained results to open queueing networks with unre-
liable elements: nodes, paths between nodes, channels
at the nodes, and also to closed networks.

2.3 Networks with blocked transitions
We describe an open blocking network with blocked
transitions between some states [29, § 3] by assigning
to it a connected undirected graph Γ with edges of the
form

[n,n+ ek], n ∈ L, (10)
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[n+ ek,n+ ei], n ∈ L, nk > 0, k ̸= i, (11)

where 1 ≤ i, k ≤ m, L ⊆ N . Denote by NL the
set of all vertices of the graph Γ. The number of cus-
tomers at nodes of a blocking network is described by
a Markov process y(t) with the state set NL and tran-
sition rates

L(n,n+ ek) = λθ0k, L(n+ ek,n) = µkθk0,

L(n+ek,n+ei) = µkθki, 1 ≤ k ̸= i ≤ m, n ∈ L.
If the routing matrix Θ is irreducible, condition (1) is
fulfilled and 0 < θ0k, θk0 < 1, 1 ≤ k ≤ m, then the
limiting distribution of the process y(t) is of the

π(n) = C
m∏
i=1

ρni
i , n ∈ NL,

form

C−1 =
∑

n∈NL

m∏
i=1

ρni
i . (12)

If n∗ ∈ L then (12) can be rewritten as

π(n) = D
m∏
i=1

ρ
ni−n∗

i
i , n ∈ NL,

D−1 =
∑

n∈NL

m∏
i=1

ρ
ni−n∗

i
i . (13)

Denote by Φ = (ρ1, . . . , ρm, D) the vector of param-
eters of the product formula (13). Then for an open
blocking Jackson network we obtain the following
formulas expressing the parameter vector Φ through
the distribution π, Φ = F (π) :

ρi =
π(n∗ + ei)

π(n∗)
, i = 1, ...,m, (14)

D = π−1(n∗).

As an estimate for the parameter vector Φ of the prod-
uct formula (13) we propose to take F (πT ) which
converges in probability to Φ = F (π) as T → ∞
by virtue of (4), (14).

To describe a closed blocking network with
blocked transitions between some states [29, § 3] we
assign to it a connected undirected graph Γ̂ with edges
of the form (11). Here we have L ⊂ N and the vertex
set of Γ̂ is of the form

N̂L = {n+ ei, 1 ≤ i ≤ m, n ∈ L} ⊆ NK .

The number of customers at nodes of the closed block-
ing network is described by a Markov process ŷ(t)
with state set N̂L and transition rates

L(n+ek,n+ei) = µkθki, n ∈ L, 1 ≤ k ̸= i ≤ m.

If the network routing matrix Θ̂ = ||θki| |mk,i=1 is ir-
reducible and satisfies the condition 0 < θki < 1,
1 ≤ k, i ≤ m, then the limiting distribution of the
process ŷ(t) is given by formula (12).

Let n∗ ∈ NL then (12) can be rewritten as

π(n) = G
m∏
i=2

ε
ni−n∗

i
i , n ∈ N̂L,

G−1 =
∑

n∈N̂L

m∏
i=2

ε
ni−n∗

i
i . (15)

Denote by Φ̂ = (ε2, . . . , εm, G) the vector of param-
eters of the product formula (15). Then for a closed
blocking Jackson network we obtain the following
formulas expressing the parameter vector Φ̂ through
the distribution π, Φ̂ = F̂ (π) :

εi =
π(n∗ + ei − e1)

π(n∗)
, i = 2, ...,m, (16)

H = π(n∗).

As an estimate for the parameter vector Φ̂ of the prod-
uct formula (15) we propose to take F̂ (πT ) which
converges in probability to Φ̂ = F̂ (π) as T → ∞
by virtue of (4) and (16).

3 Aggregation of Closed Networks
In the second part a closed cycle of a mass consump-
tion and a renewal of some product is investigated. For
this aim a closed queueing network with a number of
customers, a number of servers in a consumption node
and service intensities proportional to a large param-
eter n is considered. The parameter n characterizes
a network size. For n → ∞ a law of zero and one
is established for a probability that all consumers are
satisfied. If the limit equals 0 a convergence by a prob-
ability to some b, 0 < b < 1, of a part of satisfied
consumers is proved. A problem of b maximization
by the network route matrix Θ is solved. The maxi-
mization procedure consists of a finding of a route for
some one-variable function and includes a definition
of permissible solutions of some auxiliary transporta-
tion problem.

A model of an aggregated closed queueing net-
work is considered. This model is constructed
from n copies of a closed queuing network. Each
copy consists of single servers arranged in the nodes
0, 1, . . . ,mwith service intensities ν0, ν1, . . . , νm and
contains α > 1 customers which circulate in this net-
work in an accordance with the indecomposable route
matrix. The customers play a role of products and the
node 0 plays a role of a consumer. So in the node 0 the
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consumer receives a product. The nodes 1, . . . ,m are
places of the products renewal (customers service).

The aggregated system is the closed queueing net-
work with the nodes 0, 1, ...,m, which contain

r0 = n, r1 = 1, . . . , rm = 1

servers correspondingly. M = αn customers circu-
late in the aggregated network. The service inten-
sities in the servers which are arranged in the nodes
0, 1, . . . ,m are

µ0 = ν, µ1 = nν1, ..., µm = nνm.

The customers motions are described by the route ma-
trix Θ = ||θij ||mi,j=0. Then the solution (1,Λ) of the
system

(1,Λ) = (1,Λ)Θ, Λ = (λ1, . . . , λm), (17)

exists and is single [1]. Numbers of customers in
the nodes of the aggregated network is described by
the ergodic [26, chapter 2] discrete Markov process
y(t) = (y0(t), y1(t), . . . , ym(t)) with the states set

Y = {n = (n0, n1, ..., nm) : ni ≥ 0,
m∑
i=0

ni =M}.

The process y(t) limit distribution [1] Π(n), n ∈ Y,
is the following

Π(n) = C−1
m∏
i=0

ai(ni), C =
∑
n∈Y

m∏
i=0

ai(ni), (18)

ai(0) = 1, ai(ni) =
ni∏
k=1

λi
min(k, ri)µi

, 0 < ni ≤M.

Our aim is to analyze the limit for n → ∞ of the
stationary distribution

Pn = lim
t→∞

P (y0(t) ≥ n). (19)

3.1 Zero-one law for probability of con-
sumers satisfaction

Denote

ρi =
nνλ1
nνi

= λigi, i = 1, ...,m. (20)

Without a restriction of a generality assume that

ρ1 ≥ ρ2 ≥ . . . ≥ ρm.

Theorem 1 If

ρ1 > ρ2 > . . . > ρm > 0 (21)

then

lim
n→∞

Pn =

{
0, ρ1 > 1,
1, ρ1 < 1,

(22)

and the convergence in (22) is geometric.

3.2 Law of large numbers for part of satis-
fied consumers

Theorem 2 If the condition (21) is true and ρ1 > 1
then for any ε, 0 < ε < 1/2,

lim
n→∞

P

(
(1−2ε)n

ρ1
< y0(t) <

(1+2ε)n

ρ1

)
= 1 (23)

and a convergence in (23) is geometric.

Remark 1 Using the theorem [2, theorem 1.32] it is
possible to prove the theorems 1, 2 statements if the
condition (21) is replaced by

ρ1 = ρ2 = ... = ρm1 = ρ(1) > ρm1+1 = ...

... = ρm1+m2 = ρ(2) > ρm1+m2+1 = ... >

> ρm1+...+ml−1+1 = ... = ρm1+...+ml
= ρ(l) > 0,

m1 + ...+ml = m.

Remark 2 The theorems 1, 2 remain true in the case
M = [αn] with 1 < α <∞ also.

Remark 3 The law of large numbers proved in the
theorem 2 for large n. In the aggregated closed queue-
ing network the number

min

(
1,

1

ρ(1)

)
=

1

max(1, ρ(1))

characterizes a part of satisfied consumers. So it is
worthy to consider different variants of ρ(1) maximiza-
tion problem.

3.3 Minimization of ρ(1) by the route matrix
Consider a problem of a minimization of the function

Φ(Λ) = ρ(1) = max
1≤i≤m

λigi =⇒ min, (24)

Λ = (λ1, . . . , λm) ∈ M,

where the set M consists of vectors Λ so that

λ1 > 0, . . . , λm > 0,
m∑
k=1

λk ≥ 1, (25)

and satisfies the conditions:
a) the set M is convex and closed and has a smooth
boundary,
b) ∃ Λ∗ ∈ M so that the minimum Φ(Λ) by all Λ ∈
M which satisfy the equalities λ1g1 = ... = λmgm is
in the point Λ∗.
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Theorem 3 Suppose that the set M satisfies the con-
ditions a), b). If a tangent plane L to M in the point
Λ∗ may be represented by the equation Λ · A = d in
which the vector A = (a1, . . . , am) satisfies the con-
ditions a1 > 0, . . . , am > 0 then a single solution of
the problem (24) is the point Λ∗ = (λ∗1, . . . , λ

∗
m).

Remark 4 The theorem 3 allows to reduce the prob-
lem (24) solution to a search of the point Λ∗. This ap-
proach is suggested in [25] for deterministic problems
of vector optimization and gives a simple calculation
procedure.

Suppose that the set M satisfies the conditions a),
b) and the problem (24) has the single solution Λ∗. For
the route matrix Θ with non zero elements (besides of
the element with zero subscript) define Λ = Λ(Θ) as
a single solution of the equations system (17) and put
Θ(M) = {Θ : Λ(Θ) ∈ M}. Consider the following
optimization problem:

1

ρ(1)
=⇒ max, Θ ∈ Θ(M), (26)

equivalent to the problem

Φ(Λ(Θ)) = ρ(1) =⇒ min, Θ ∈ Θ(M).

Denote λ∗0 = 1 and put

ψi,j = λ∗i θij , 0 ≤ i, j ≤ m.

Corollary 1 The route matrix Θ is a solution of the
problem (26) if and only if the matrix ||ψi,j ||mi,j=0 is a
permissable solution of the transportation problem

m∑
j=0

ψi,j =
m∑
j=0

ψj,i = λ∗i , 0 ≤ i, j ≤ m. (27)

The condition (25) guarantees a solvability of the
transportation problem (27).

Remark 5 The most convenient form for a solution
of the ρ(1) maximization problem is a choice of con-
tingencies not on the route matrix Θ but on the vec-
tor λ1, . . . , λm. If Φ(Λ∗) < 1 then a transition to
a maximization of the index max(1, ρ(1)) may be re-
alized by a finding of the solution Λ∗∗ of the system
λ1g1 = . . . = λmgm = 1 and by a test of the inclu-
sion Λ∗∗ ∈ M.

Remark 6 The statements of the theorem 3 and of the
corollary 2 are proved in [30] where a similar opti-
mization procedure appears in a maximization of an
ability to handle customers in an opened queueing
network.

4 Aggregation of Opened Networks
In the third part a model of an aggregated queuing net-
work and an optimization of its limit characteristics
are considered. In the aggregated queueing network
numbers of servers in different nodes and an intensity
of Poisson input flow are proportional to a large pa-
rameter n. Each node of the aggregated opened queue-
ing network is described by stationary occupancy of
its servers. These stationary occupancies tend by a
probability to some deterministic values for n → ∞.
A maximization of a minimum of these limit occu-
pancies consists of a finding of a route for some one-
variable function and includes a definition of permis-
sible solutions of some auxiliary transportation prob-
lem.

A model of an aggregated opened queueing is
constructed from n copies of an opened queuing net-
work. Each copy G consists of the nodes 0, 1, . . . ,m
where the nodes 1, . . . ,m are one server queueing
systems with service intensities µ1, . . . , µm. The n-
ode 0 is a source for customers arriving the network
G with the intensity λ and an outflow for customers
leaving G. In the network G customers circulate in an
accordance with the indecomposable route matrix.

The aggregated opened queueing networkGn has
the Poisson input flow with the intensity nλ and n-
server queueing systems in the nodes 1, . . . ,m. Each
server in the node i has the service intensity µi. As
customers motions in the network Gn are described
by the indecomposable route matrix Θ = ||θij ||mi,j=0

so the solution (1,Λ), Λ = (λ1, . . . , λm), of the sys-
tem (17) exists, is single and consists of positive com-
ponents [1].

Suppose that

ρi =
λλi
µi

< 1, i = 1, . . . ,m, (28)

then a vector of numbers of customers in the nodes
1, . . . ,m of the aggregated network Gn is described
by the ergodic [26, chapter 2] discrete Markov process
y(t) = (y1(t), . . . , ym(t)) with the states set

Y = {n = (n1, ..., nm) : ni ≥ 0, i = 1, ...,m}.

The process y(t) limit distribution [1, § 2]

Π(n) =
m∏
i=1

πi(ni), n ∈ Y, (29)

πi(ni) = C−1
i ai(ni), Ci =

∞∑
ni=0

ai(ni),

ai(0) = 1, ai(k) =
∏

1≤j≤k

nρi
min(j, n)

, k > 0. (30)

Here πi(ni) is a limit distribution of a stationary num-
ber of customers in the node i.
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4.1 Law of large numbers for distribution
Π(n)

Theorem 4 If the condition (28) is true then for any i
and for any ε, 0 < ε < 1/2 we have that

lim
n→∞

∑
nρi(1−2ε)<ni<nρi(1+2ε), 1≤i≤m

Π(n) = 1 (31)

and a convergence in (31) is geometric.

The theorem 4 establishes that the vector
(ρ1, . . . , ρm) characterizes the limit occupancies
of the nodes 1, . . . ,m in the aggregated network
Gn, n→ ∞.

4.2 Optimization of limit network character-
istics

Fix the intensities λ, µ1, . . . , µm and introduce the
functions

Φ(Λ) = max
1≤i≤m

ρi, Ψ(Λ) = min
1≤i≤m

ρi,

Λ = (λ1, ..., λm).

Define the equalities

ρ1 = . . . = ρm. (32)

Suppose that the set M consists of vectors Λ so that

λ1 > 0, . . . , λm > 0,
m∑
k=1

λk ≥ 1, (33)

and satisfies the conditions:
a) the set M is convex and closed and has a smooth
boundary,
b) ∃ Λ∗ ∈ M so that the minimum Φ(Λ) by all Λ ∈
M which satisfy the equalities (32) is in the point Λ∗,
c) ∃ Λ∗ ∈ M so that the maximum Ψ(Λ) by all Λ ∈
M which satisfy the equalities (32) is in the point Λ∗,
d) the inclusion M ⊆ {Λ : Φ(Λ) < 1} is true.

Consider a problem of a minimization of the func-
tion

Φ(Λ) =⇒ min, Λ ∈ M. (34)

Theorem 5 If a tangent plane L to M in the point Λ∗

may be represented by the equation Λ·A = d in which
the vector A = (a1, . . . , am) satisfies the conditions
a1 > 0, . . . , am > 0 then a single solution of the
problem (34) is the point Λ∗ = (λ∗1, . . . , λ

∗
m).

Corollary 2. The route matrix Θ is a solution of the
problem (34) if and only if the matrix Θ = ||θij ||mi,j=0
is a permissible solution of the transportation problem

m∑
j=0

θij =
m∑
j=0

θji = λ∗i , 0 ≤ i ≤ m. (35)

The condition (33) guarantees a solvability of the
transportation problem (35).

Consider a problem of a maximization of the
function

Ψ(Λ) =⇒ max, Λ ∈ M. (36)

Theorem 6 If a tangent plane L to M in the point
Λ∗ may be represented by the equation Λ · C = f in
which the vector C = (c1, . . . , cm) satisfies the con-
ditions c1 > 0, . . . , cm > 0 then a single solution of
the problem (36) is the point Λ∗ = (λ1∗, . . . , λ

m
∗ ).

Corollary 3 The route matrix Θ is a solution of the
problem (36) if and only if the matrix Θ = ||θij ||mi,j=0
is a permissible solution of the transportation problem

m∑
j=0

θij =
m∑
j=0

θji = λi∗, 0 ≤ i, j ≤ m. (37)

The condition (33) guarantees a solvability of the
transportation problem (37).

Remark 7 The statements of the theorem 5 and of the
corollary 2 are proved in [30] where a similar opti-
mization procedure appears in a maximization of an
ability to handle customers in an opened queueing
network. This approach is suggested in [25] for de-
terministic problems of vector optimization and gives
a simple calculation procedure. The statements of the
theorem 6 and of the corollary 3 may be proved anal-
ogously.

4.3 Stationary characteristics
There are some more properties of aggregated opened
queueing networks connected with mean stationary
queue length

N
(n)
i =

∑
k>n

πi(k)(k − n), 1 ≤ i ≤ m,

or mean stationary waiting time

W
(n)
i =

1

nλ

∑
k≥n

πi(k)(k − n+ 1), 1 ≤ i ≤ m,

in the network nodes in the condition

ρ1 = ... = ρm = ρ. (38)

Suppose that m = 1, n = 1, ρ → 1 then
N1

1 ,W
1
1 → ∞. But if m = 1, n → ∞ and

ρ = ρ(n), 1 − ρ(n) ∼ n−α then for 0 < α < 1 we
have W (n)

1 → ∞ and for 1 < α we have W (n)
1 → 0

as n → ∞. Analogously if m = 1, n → ∞ and
ρ = ρ(n), 1− ρ(n) ∼ n−α then for 0 < α < 1/2 we
haveW (n)

1 → ∞ and for 1/2 < αwe haveW (n)
1 → 0
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as n→ ∞. These cooperative effects have been estab-
lished for one node queueing network in [31, corol-
laries 1, 2]. But for opened queueing network with
arbitrary number of nodes these results may be gener-
alized in the case of equal nodes load or in the case of
approximately equal nodes load as follows.

Theorem 7 Suppose that the condition (38) is true
and ρ = ρ(n) = const < 1, n > 0, then

N
(n)
i → 0, W

(n)
i → 0, n→ ∞, 1 ≤ i ≤ m, (39)

with a geometric rate of convergence.

The formula (39) is a corollary of the inequality (48).
The conditions of the theorem 7 may be realized in the
following way:

λ1
µ1

= . . . =
λm
µm

= a, ρ = λa < 1.

Theorem 8 Suppose that the condition (38) is true. If
for n→ ∞ 1− ρ(n) ∼ n−α then for 1 ≤ i ≤ m

N
(n)
i →

{
0, 0 < α < 1/2,
∞, α > 1/2,

W
(n)
i →

{
0, 0 < α < 1,
∞, α > 1.

The theorem 8 may be proved using the formulas
(29), (30) and [31, corollaries 1, 2]. The conditions of
the theorem 8 may be realized in the following way:

λ1
µ1

= . . . =
λm
µm

= a, λ = λ(n) =
1− n−α

a
.

Theorem 9 If 1 − ρi(n) ∼ n−αi , n → ∞, for 1 ≤
i ≤ m then

N
(n)
i →

{
0, 0 < αi < 1/2,
∞, αi > 1/2,

W
(n)
i →

{
0, 0 < αi < 1,
∞, αi > 1.

The theorem 9 may be proved using the formulas (29),
(30) and [31, corollaries 1, 2]. The conditions of the
theorem 9 may be realized in the following way:

λ(n) ≡ λ, µi(n) =
λλi

1− n−αi
.

Remark that if we consider multi phase queueing
system with loaded nodes then from the theorem 9 it
is possible to obtain in last nodes a very small queue
and in first nodes - a very large queue. This property
may be interpreted as a cooperative network property.
An existence of such network properties were noted
by some specialists in computer science.

5 Superposition of Queueing Net-
works

In the fourth part a problem of a calculation of limit
distributions in a superposition of queueing network-
s is solved. A superposition of queueing network is
an opened or a closed network in which some nodes
are replaced by opened networks. Such construction-
s allow to calculate their distributions and realized a
few steps of networks superposition. In this section
an ability to handle customers in a superposition of
networks is calculated. Network superpositions may
be interpreted as recursively defined structures and are
widely used in the nanotechnology.

5.1 Product Theorem
Consider opened Jackson networks G, G′ with
the sets of oneserver nodes {g0, g1, ..., gm},
{g′0, g′1, ..., g′r}, with the input Poisson flows
(with single intensities) and with the service in-
tensities µ1, ..., µm and µ′1, ..., µ

′
r. Denote by

Θ = ||θij ||mi,j=0, Θ′ = ||θ′ij ||ri,j=0 the route matrixes
of the networks G, G′. Define the superposition
G = G

m
⊗ G′ of the networks G,G′ by a replacement

of the node gm in G by the network G′. Here an input
flow (output flow) of the network G′ is created from
customers arriving (departing) to the node (from the
node) gm. In the network G the input flow is Poisson
with the single intensity, the nodes set is

{g0, g1, ..., gm+r−1} = {g0, g1, ..., gm−1, g
′
1, ..., g

′
r}

and the route matrix Θ = ||θij ||m+r−1
i,j=0 is defined from

the formulas

θij = θij , i, j = 0, 1, ...,m− 1,

θm−1+i m−1+j = θ′ij , i, j = 1, ..., r,

θi m−1+j = θimθ
′
oj , i = 0, 1, ...m− 1, j = 1, ..., r,

θm−1+i j = θ′ioθmj , i = 1, ..., r, j = 0, 1, ...,m− 1.

Lemma 1 If θmm = 0 then the matrix Θ =
||θij ||m+r−1

i,j=0 satisfies properties of a route matrix and
is indivisible.

From Lemma 1, [1, § 2] there is the single vector Λ so
that

Λ = Λ Θ, Λ=(1, λ1, ..., λm+r−1). (40)

Lemma 2 If θmm = 0 then

λi = λi, i = 1, ...,m− 1,

λm−1+i = λmλ
′
i, i = 1, ..., r.

Here Λ = (1, λ1, λ2, ..., λm), Λ′ = (1, λ′1, λ2, ..., λ
′
r)

are solutions of the systems Λ = ΛΘ, Λ′ = Λ′Θ′.
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Describe a dynamics of the network G by the dis-
crete Markov process y(t) with the state set

Y = {y = (n1, ..., nm−1, n
′
1, ..., n

′
r) :

n1, ..., nm−1, n
′
1, ..., n

′
r ≥ 0}.

Theorem 10 If θmm = 0 and

ρi = λi/µi < 1, i = 1, ...,m− 1,

ρ′i = λmλ
′
i/µ

′
i < 1, i = 1, ..., r,

then the Markov process y(t) is ergodic and its limit
distribution P (y), y ∈ Y , has the form

P (y) =
m−1∏
i=1

(1− ρi)ρ
ni
i

r∏
i=1

(1− ρ′i)(ρ
′
i)
n′
i .

The networkG is Jackson network and so the the-
orem 10 statement is a corollary of Lemmas 1, 2 and
[1, theorem 2.1].

5.2 Abilities to Handle Customers
Construct the following sequence of the opened net-
works. Replace each node of the network G by the
network G and denote this network by G(1). In the
networkG(1) replace each node by the networkG and
obtain the network G(2) and so on. After n steps ob-
tain the network G(n) with mn+1 nodes among which
there are mn nodes with the service intensity µk. De-
note the route matrix of the network G(i) by Θ(i) and
suppose that the single solution of the system

Λ(i) = Λ(i)Θ(i)

is Λ(i) = (1, λ
(i)
1 , . . . , λ

(i)
mi+1).

If θii = 0, i = 1, . . . ,m, then from the lemma 2
the network G(1) satisfies the formulas

λ
(1)
k = λkλ1, λ

(1)
m+k = λkλ2, . . . , λ

(1)
m2−m+k = λkλm,

k = 1, . . . ,m,

and the network G(2) satisfies the formulas

λ
(2)
k = λkλ

(1)
1 , λ

(2)
m+k = λkλ

(1)
2 , ..., λ

(2)
m3−m+k =

= λkλ
(1)
m2 , k = 1, . . . ,m.

and so on. Then the network G(n) satisfies the formu-
las

λ
(n)
k = λkλ

(n−1)
1 , λ

(n)
m+k = λkλ

(n−1)
2 , ...,

λ
(n)
mn+1−m+k = λkλ

(n−1)
mn , k = 1, ...,m.

So in the network G(n) all nodes with the service in-
tensities µk correspond to the vector Λ(n) components
of the form λkλ

(n−1)
j where

λ
(n−1)
j = λh1

1 λ
h2
2 · · ·λhn

n , h1 + . . .+ hn = n.

Calculate now the ability to handle customers an
of the network G(n). Here the ability to handle cus-
tomers equals maximal intensity of input flow for
which the network is not overloaded. From [30] ob-
tain

an = min
1≤k≤m, 1≤j≤mn

µk

λkλ
(n−1)
j

=

= min
1≤k≤n

µk
λk

(
min

1≤j≤n

1

λj

)n

.

If min
1≤j≤n

1

λj
< 1 then an → 0, n → ∞, if

min
1≤j≤n

1

λj
> 1 then an → ∞, n → ∞, if

min
1≤j≤n

1

λj
=1 then an ≡ min

1≤k≤n

µk
λk

.

6 Proofs of main results
The Proof of Theorem 1. From the formulas (18),
(19)

Pn =
αn∑
k=n

πn(k),

πn(k) =
∑

n1, ..., nm ≥ 0,
n1 + ...+ nm = αn− k

Π(k, n1, . . . , nm) =

= C−1ψn(k)Dn(k),

ψn(k) =

{
nn/n!, k > n,
nk/k!, k ≤ n,

Dn(k) =
∑

n1, ..., nm ≥ 0,
n1 + ...+ nm = αn− k

m∏
i=1

ρni
i ,

C =
∑

k, n1, ..., nm ≥ 0,
k + n1 + ...+ nm = αn

ψn(k)Dn(k).

From [2, theorem 1.31] we have the equality

Dn(k) =
m∑
j=1

cjρ
αn+m−k−1
j (41)

where

cj =
∏
k ̸=j

(
1− ρk

ρj

)−1

, 1 ≤ j ≤ m,
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so

Dn(k) ≤ cραn+m−k−1
1 , c =

m∑
j=1

|cj |. (42)

Suppose that ρ1 > 1 and construct the upper
bound of πn(k), k ≥ n, assuming that

0 < ε < 1− 1/ρ1.

Then it is obvious that ([a] is an integer part of a real
number a)

πn(k) ≤
πn(k)

πn([n(1− ε)])
=

=
nn−[n(1−ε)][n(1− ε)]! Dn(k)

n! Dn([n(1− ε)])
.

By the fixed ε > 0 it is possible to chooseN = N(ε) :
∀n > N (

ρj
ρ1

)αn+m−[n(1−ε)]−1

< ε.

Consequently the following inequality is true

Dn([n(1−ε)]) > ρ
αn+m−[n(1−ε)]−1
1 (c1−c(m−1)ε).

So for k ≥ n > N we have

πn(k) ≤
(

1

1− ε

)n−[n(1−ε)] cρ
[n(1−ε)]−k
1

c1 − c(m− 1)ε
≤

≤
(

1

ρ1(1− ε)

)nε c

(1− ε)(c1 − c(m− 1)ε)

then for n→ ∞

Pn =
αn∑
k=n

πn(k) ≤

≤ c(α− 1)n

(ρ1)nε(1− ε)nε+1 (c1 − c(m− 1)ε)
→ 0. (43)

Suppose now that ρ1 < 1 and construct the upper
bound of πn(k), 0 ≤ k < n, assuming that

0 < ε < min(1, α− 1, 1/ρ1 − 1).

By the fixed ε > 0 choose N = N(ε) : ∀n > N(
ρj
ρ1

)αn+m−[n(1+ε)]−1

< ε

consequently

Dn([n(1+ε)]) > ρ
αn+m−[n(1+ε)]+1
1 (c1− c(m−1)ε)

then

πn(k) ≤
πn(k)

πn([n(1 + ε)])
=

=
nk[n(1 + ε)]! Dn(k)

k!n[n(1+ε)]Dn([n(1 + ε)])
≤

≤ nk[n(1 + ε)]!cρ
[n(1+ε)]−n
1

k!n[n(1+ε)](c1 − c(m− 1)ε)
≤

≤ nkn![n(1 + ε)][n(1+ε)]−ncρ
[n(1+ε)]−n
1

k!nnn[n(1+ε)]−n(c1 − c(m− 1)ε)
≤

≤ [n(1 + ε)][n(1+ε)]−ncρ
[n(1+ε)]−n
1

n[n(1+ε)]−n(c1 − c(m− 1)ε)
≤

≤ c(ρ1(1 + ε))nε

c1 − c(m− 1)ε
.

As a result obtain for n→ ∞

1− Pn =
n−1∑
k=0

πn(k) ≤

≤ nc(ρ1(1 + ε))nε

c1 − c(m− 1)ε
→ 0.

The Proof of Theorem 2. Fix ε, 0 < ε < 1/2, then
from the inequality (42) find an upper bound of the
probability

P

(
(1 + 2ε)n

ρ1
≤ y0(t) < n

)
=

∑
n(1+2ε)

ρ1
≤k<n

πn(k) ≤

≤
∑

(1+2ε)n
ρ1

≤k<n

πn(k)

πn
([

n
ρ1

]) =

=
∑

(1+2ε)n
ρ1

≤k<n

ψn(k)Dn(k)

ψn

([
n
ρ1

])
Dn

([
n
ρ1

]) ≤

≤
∑

(1+2ε)n
ρ1

≤k<n

ψn(k)cρ
αn+m−k−1
1

ψn

([
n
ρ1

])
c1ρ

αn+m−
[

n
ρ1

]
−1

1

=

=
c

c1

∑
(1+2ε)n

ρ1
≤k<n

n
k−
[

n
ρ1

]
ρ

[
n
ρ1

]
−k

1

[
n
ρ1

]
!

k!
≤

≤ c

c1

∑
(1+2ε)n

ρ1
≤k<n

n
k−
[

n
ρ1

]
ρ

[
n
ρ1

]
−k

1

k(k − 1) . . .
([

n
ρ1

]
+ 1

) ≤
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≤
∑

(1+2ε)n
ρ1

≤k<n

c
c1

(
n
ρ1

)k−[ n
ρ1

]
(

n
ρ1

)[ (1+ε)n
ρ1

]
−
[

n
ρ1

] (
(1+ε)n

ρ1

)k−[ (1+ε)n
ρ1

] .
So we have for n→ ∞ that

P

(
(1 + 2ε)n

ρ1
≤ y0(t) < n

)
≤

≤
nc
c1

(
1− 1+2ε

ρ1

)
(1 + ε)

[
(1+2ε)n

ρ1

]
−
[
(1+ε)n

ρ1

] → 0. (44)

Unite the formulas (43), (44) and obtain the limit

P

(
(1 + 2ε)n

ρ1
≤ y0(t) < αn

)
→ 0, n→ ∞, (45)

with a geometric rate of a convergence.
Using the inequality (42) analogously to the pre-

vious case construct an upper bound of the probability

P

(
0 ≤ y0(t) ≤

(1− 2ε)n

ρ1

)
=

∑
0≤k≤ (1−2ε)n

ρ1

πn(k) ≤

≤
∑

0≤k≤ (1−2ε)n
ρ1

πn(k)

πn
([

n
ρ1

]) ≤

≤ c

c1

∑
0≤k≤ (1−2ε)n

ρ1

(
n
ρ1

)k−[ n
ρ1

] [
n
ρ1

]
!

k!
=

=
c

c1

∑
0≤k≤ (1−2ε)n

ρ1

(
n

ρ1

)k−
[

n
ρ1

]
(k + 1) · . . . ·

[
n

ρ1

]
.

As for 0 ≤ k ≤
[
n
ρ1

]
the product

(
n

ρ1

)k−
[

n
ρ1

]
(k + 1) · . . . ·

[
n

ρ1

]
increases by k so the following inequalities are true

P

(
0 ≤ y0(t) ≤

(1− 2ε)n

ρ1

)
≤

≤ (1− 2ε)nc

ρ1c1

(
n

ρ1

)[ (1−2ε)n
ρ1

]
−
[

n
ρ1

]
×

×
([

(1− 2ε)n

ρ1

]
+ 1

)
× . . .×

[
n

ρ1

]
≤

≤ (1− 2ε)nc

ρ1c1

(
n

ρ1

)[ (1−2ε)n
ρ1

]
−
[

n
ρ1

]
×

×

(
(1−ε)n

ρ1

)[ (1−ε)n
ρ1

]
−
[
(1−2ε)n

ρ1

]
(

n
ρ1

)−[ n
ρ1

]
+

[
(1−ε)n

ρ1

] ≤

≤ (1− 2ε)nc

ρ1c1
(1− ε)

[
(1−ε)n

ρ1

]
−
[
(1−2ε)n

ρ1

]
≤

≤ (1− 2ε)nc

ρ1c1
(1− ε)

(1−ε)n
ρ1

− (1−2ε)n
ρ1

−1
.

As a result obtain for n→ ∞ that

P

(
0 ≤ y0(t) ≤

(1− 2ε)n

ρ1

)
≤

≤ (1− 2ε)nc

ρ1c1
(1− ε)

εn
ρ1

−1 → 0. (46)

From the formulas (45), (46) obtain the formula (23).

The Proof of Theorem 4. Fix ε, 0 < ε < 1/2 then
from the definition (30)

πi(k) ≤
πi(k)

πi([nρi])

and consequently

∑
0≤k≤nρi(1−2ε)

πi(k) ≤
∑

0≤k≤nρi(1−2ε)

πi(k)

πi([nρi])
≤

≤
∑

0≤k≤nρi(1−2ε)

∏
k<j≤nρi

j

nρi
≤

≤
∑

0≤k≤nρi(1−2ε)

∏
nρi(1−2ε)<j≤nρi(1−ε)

j

nρi
.

As a result obtain that for fixed ε, 0 < ε < 1/2, and
for n→ ∞∑

0≤k≤nρi(1−2ε)

πi(k) ≤ nρi(1− ε)nρiε → 0. (47)

Analogously it is easy to prove that∑
nρi(1+2ε)≤ni≤n, 1≤i≤m

Π(n) ≤

≤ n(1− ρi)(1 + ε)−nρiε → 0 (48)

and
πi(k) ≤ (1 + ε)−nρiερk−n

i , k > n (49)
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so from the condition (28)

∑
n<k<∞

πi(k) ≤
(1 + ε)−nρiε

1− ρi
→ 0. (50)

The limits (47) - (50) have a geometric (by n) rate
convergence and lead to the formula

lim
n→∞

∑
nρi(1−2ε)<k<nρi(1+2ε)

πi(k) = 1. (51)

Then the formulas (29), (51) give the limit (31) with a
geometric rate convergence.

The Proof of Lemma 1. The matrix Θ is route as all
its elements are nonnegative and

m+r−1∑
j=0

θij =
m−1∑
j=0

θij +
r∑

j=1

θimθ
′
0j =

= 1− θim + θim = 1, i = 0, 1, ...,m− 1,

m+r−1∑
j=0

θm−1+i j =
m−1∑
j=0

θ′ioθmj +
r∑

j=1

θ′ij =

= θ′io(1− θmm) + 1− θ′i0 = 1, i = 1, ..., r.

Show that for ∀ i, j ∈ {0, 1, ...,m+ r − 1}

∃ k1, ..., ks ∈ {1, ...,m+ r − 1} :

θik1 , θk1k2 , ..., θksj > 0. (52)

If

i, j ∈ {0, 1, ...,m− 1} (i, j ∈ {m, ...,m+ r − 1})

then the formulas (52) may be obtained from the ma-
trix Θ (from the matrix Θ′) indivisibility. If

i ∈ {0, 1, ...,m− 1}, j ∈ {m, ...,m+ r − 1}

then from the matrix Θ indivisibility ∃i1, ..., is ∈
{1, ...,m− 1} :

θii1 = θii1 > 0, ..., θis−1is = θis−1is > 0, θism > 0,

and from the matrix Θ′ indivisibility ∃ j1, ..., jn ∈
{1, ..., r} :

θ′0 m−1+j1 > 0, θm−1+j1 m−1+j2 = θ′j1j2 > 0, ...,

θm−1+jn j = θ′jn j−m+1 > 0.

As θis m−1+j1 = θismθ
′
0 m−1+j1

then

θii1 > 0, ..., θis−1is > 0, θis m−1+j1 > 0,

θm−1+j1 m−1+j2 > 0, ...., θm−1+jn j > 0.

The case i ∈ {m, ...,m+r−1}, j ∈ {0, 1, ...,m−1}
is considered similar.

The Proof of Lemma 2. Indeed if i ∈ {1, ...,m− 1}
then from the formula (40) obtain

λi = λi = θ0i +
m+r−1∑
j=1

λjθji = θ0i +
m−1∑
j=1

λjθji+

+
r∑

j=1

λmλ
′
jθ

′
j0θmi = λi.

If i ∈ {1, .., r} then

λmλ
′
i = λm−1+i = θ0 m−1+i +

m+r−1∑
j=1

λjθj m−1+i =

= θ′0iθ0m +
m−1∑
j=1

λjθ
′
0iθjm +

r∑
j=1

λmλ
′
jθ

′
ji =

= θ′0iθ0m + θ′0i(λm − θ0m − λmθmm)+

+λmλ
′
i − λmθ

′
0i = λmλ

′
i.
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