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Abstract: We present the principal properties of the weak efficient points given in the literature. We study a vector
optimization problems for multifunctions, defined with infimal and supremal efficient points in locally convex
spaces ordered by convex, pointed closed cones with nonempty interior. We introduce and study the solutions for
these problems using the algebraic and topological results for the efficient points. Also, we’ll present the links
between our problems and 2 special problems, the scalar and the approximate problems as well as some saddle
points theorems and duality results using a suitable Lagrangian adapted for the INFSUP problem, a generalization
of the MINMAX problem.
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1 Introduction

It is a well known fact that the Pareto and the weak
Pareto efficiencies was intensively used for the study
of the optimal problems in the literature of mathemat-
ical economics.

The special conditions imposed for the existence
of such points led to the study of other kinds of effi-
cient points, the so called supremal and infimal points.
These points are natural generalizations for ordinary
concepts of infimum and supremum known in real
analysis. Firstly, these notion was given in vector lat-
tices (see [21]) or in a multi-dimensional Euclidian
space using the lower and upper bounds (see [3]) or
efficiencies for different sets (see [4], [9], [7]).

Nieuwenhuis, firstly introduced ([8]) the supre-
mal and infimal points in Banach spaces ordered by
a closed convex cone with nonempty interior and
Tanino ([18]) present such points in a linear topologi-
cal space ordered by a nonempty interior cone.

In the general form, these notions was given by
Postolica ([10]) and the above discussed points can be
found in the weak efficiencies introduced here.

A general vector optimization problem with mul-
tifunctions can be presented in the following form:

(V P ) Eff
⋃

x∈G

F (x)

where F : X→→Z is a multifunction between two vec-
tor spaces X, Z, G ⊂ X and Eff denotes one’s of

the efficient points set, the minimum and maximum
Pareto points set, usually.

These problems was intensively studied in the last
20 years taking into account the interest generated in
mathematical economics. Thus lagrangean and conju-
gate duality results was obtained as well as weak and
strong duality theorems and scalarization results.

Nevertheless, the authors continue the study of
the Problem (VP) by replacing the Pareto efficient
points with other efficient points. Thus, in [20], [11],
we can find the ε-Lagrangean multiplicators, ε-weak
saddle points, ε-duality problem studied in connection
with the approximate efficient points.

We consider in the following the optimization
problem obtained with the efficient points given in
[10] and it will be called the INF (or SUP) problem.
The essential property of these efficient points set is
that it is nonempty for a large class of sets and thus the
problem has often nonempty values but it was not easy
to find a suitable notion of a solution for this problem
since an infimum point is not really a point of the set.
The final solution was the consideration of a sequence
as a solution for such vector problem as we will see in
the section 3. The paper is structured in 6 parts. The
second section present the principal properties of the
infimal and the supremal points which will be used in
what follows.

The third part present the notion of the solution
for our problem and the links between this solution
and some notion introduced in [2]. A study of some
optimization problems closely related with our prob-

WSEAS TRANSACTIONS on MATHEMATICS Cristina Stamate

ISSN: 1109-2769 408 Issue 11, Volume 10, November 2011



lem, i.e. the approximate problem (P a) and the scalar
problem (P ∗) is given in the fourth section. The per-
turbed problem is also studied in connection with the
INFSUP problem, a generalization of the MINMAX
problem; a notion of saddle point is given and the
weak and the strong duality theorems are proved. The
lagrangean and the conjugate duality are studied in the
fifth section.

2 Background to the efficient points

Let Z be a locally convex space ordered by a closed,
convex, pointed cone Z+. We will write a ≤ b if
b − a ∈ Z+ and a < b if b − a ∈ Z+ \ {0}. As
usually, we can consider a smallest element denoted
−∞ and a biggest element denoted +∞ and Z̄ =
Z∪{+∞}∪{−∞}. The complementary set of A will
be denoted Ac = Z \A. We’ll denote IRp

+ the positive
cone of the euclidian space IRp. The closure (resp. the
interior and the boundary) of the set A ⊂ Z will be de-
noted cl A (resp. Int A, Fr A) and if Int Z+ 6= ∅
then K = Int Z+ ∪ {0}. In this case, the efficiencies
considered with respect to the cone K will be called
weak efficiencies and will be denoted wEFF A. As
usually, a fundamental system of neighborhoods for
a point x will be denoted by V(x). If the interior
of the cone Z+ is nonempty, we can consider a fun-
damental system of neighborhoods for −∞ denoted
V(−∞) (resp. for +∞ denoted V(+∞)) given by the
sets V = [−∞, a) = {x ∈ Z | x < a} ∪ {−∞}
(resp. V = (a,+∞] = {x ∈ Z | x > a} ∪ {+∞}).

Definition 2.1. 1)(Pareto minimum)
MIN A = {a ∈ A | a 6> b, ∀b ∈ A}
(MAX A = {a ∈ A | a 6< b, ∀b ∈ A});
2)[21] INF A = {y ∈ Z | y ≤ a, ∀a ∈
A, and if y′ ≤ a ∀a ∈ A ⇒ y′ ≤ y}
(SUP A = {y ∈ Z | y ≥ a, ∀a ∈ A, and if y′ ≥
a ∀a ∈ A ⇒ y′ ≥ y});
3)[10] INF A = MIN cl A
(SUP A = MAX cl A);
4)[4][17] INF A = MIN cl (A + IRp

+)
(SUP A = MAX cl (A + IRp

+));
5)[7][18] INF A = wMIN cl (A + Int Z+)
(SUP A = wMAX cl (A + Int Z+));
6)[8] INF A = {y ∈ Z | y − a /∈ Int Z+, ∀a ∈
A, and if y′ − y ∈ Int Z+ ⇒ a ∈ A, y′ − a ∈
Int Z+}
(SUP A = {y ∈ Z | y − a /∈ −Int Z+, ∀a ∈
A, and if y′ − y ∈ −Int Z+ ⇒ a ∈ A, y′ − a ∈
−Int Z+});
7)[10] INF A = {y ∈ Z̄ | y − a /∈ Z+ \ {0}, ∀a ∈
A, and if y′ − y ∈ Z+ \ {0} ⇒ ∃a ∈ A, y′ − a ∈
Z+ \ {0}}

(SUP A = {y ∈ Z̄ | y − a /∈ −Z+ \ {0}, ∀a ∈
A, and if y′ − y ∈ −Z+ \ {0} ⇒ ∃a ∈ A, y′ − a ∈
−Z+ \ {0}}).

Remark 2.2. a) Definition 2.1 5) may be given in a
general form INF A = MIN cl (A + Z+).

b) The author denote the infimal points set given
in Definition 2.1 7) by INF1A and it is called the
proximal infimum points set. An other infimal points
set may be found in [9], the infimum set given by
ĨNF A = {y ∈ Z̄ | y 6> a ∀a ∈ A} =
(A + Z+ \ {0})c ∪ {−∞}. Using this notations, let
remark that INF1A = MAX ĨNF A and the set
given in Definition 2.1 6) is wINF1A.

c) In [8], the author proves that the infimal
set given in Definition 2.1 6) has the property that
INF A = Fr (A + Z+) (see Theorem I-17).

d) Obviously, the notions presented in Definition
2.1 1)-6) may be given in the same form for sets from
Z̄.

In what follows we are interested about the rela-
tionships between these kinds of infimal points, more
exactly between
(1) INF A = Fr (A + Z+)
(2) INF A = MAX ĨNF A (w2) INF A =
wMAX wĨNF A
(3) INF A = MIN cl (A + Z+) (w3) INF A =
wMIN cl (A + Z+).

Proposition 2.3. Let A ⊂ Z̄. Under the previous
notations, we have: (2) ⇒ (1), (3) ⇒ (1) and if
Int Z+ 6= ∅ then (1) ⇐⇒ (w2) ⇐⇒ (w3)

Remark 2.4. In general, the implications (1) ⇒ (2),
(1) ⇒ (3), (2) ⇒ (3) and (3) ⇒ (2) are not
true. Indeed, let consider Z = IR2, Z+ = IR2

+ and
A = {(x, y) | (x − 1)2 + (y − 1)2 < 1}. The
point a = (0, 1) ∈ Fr (A + Z+), a ∈ ĨNF A

but a < b = (0, 2) ∈ ĨNF A, so (1) 6⇒ (2). Also,
b ∈ Fr (A + Z+) but b /∈ MIN cl (A + Z+) since
a ∈ cl (A + Z+) and a < b. Thus (1) 6⇒ (3). In the
same time, we can see that a ∈ MIN cl (A+Z+) but
a /∈ MAX ĨNF A since b > a and 6 ∃a′ ∈ A such
that a′ < b. By this way, (3) 6⇒ (2). Now, if we take
B = A∪ {b}, we’ll have that b ∈ MAX ĨNF B but
b /∈ MIN cl (B + Z+) and thus (2) 6⇒ (3).

Proof. (of the proposition) For proving (2) ⇒ (1),
let x ∈ MAX ĨNF A and suppose that x /∈
Fr (A + Z+). Since Fr (A + Z+) = Fr (A +
Z+ \ {0}) = Fr (A + Z+ \ {0})c = Fr ĨNF A,
we have x /∈ Fr ĨNF A. Since x ∈ ĨNF A,
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we must have x ∈ Int (ĨNF A) and consequently
there exists V ∈ V(x), V ⊂ ĨNF A. Since x ∈
cl (x + Z+ \ {0}), we find y ∈ V ∩ (x + Z+ \ {0}).
Thus, y ∈ ĨNF A and y > x, which contradict the
fact that x ∈ MAX ĨNF A.

Now, let x ∈ MIN cl (A + Z+) and sup-
pose that x ∈ Int (A + Z+). This implies that
∃V ∈ V(x), V ⊂ A + Z+. Consequently, we
find ε ∈ Z+ \ {0} such that x − ε ∈ V ⊂ A +
Z+ ⊂ cl (A + Z+) which contradict the choices of
x ∈ MIN cl (A + Z+). Thus, (3) ⇒ (1). If the
interior of the cone Z+ is nonempty, then we consider
ε ∈ Int Z+ and this will yields to (w3) ⇒ (1). Fol-
lowing Remark 2.2c) we get (1) ⇐⇒ (w2). Simi-
larly to implication (2) ⇒ (1), we get (w2) ⇒ (1)
and thus, (w2) ⇐⇒ (1). We’ll prove in what follows
that (1) ⇒ (w3). Let x ∈ Fr (A + Z+) and sup-
pose that x /∈ wMINcl (A + Z+). This means that
there exists y ∈ cl (A+Z+), y−x ∈ −Int Z+. Thus,
x−Int Z+ ∈ V(y) and so x−Int Z+∩(A+Z+) 6= ∅
which gives that x ∈ A + Int Z+ ⊂ Int (A + Z+).
But initially, we chose x ∈ Fr (A+Z+) and this con-
tradiction shows that our implication is valid. Finally,
the proposition’s equivalencies are shown. ¦

It is a known fact that the existence of the Pareto
minimal points involves some special conditions con-
cerning the set or the cone. A necessary and sufficient
condition for this fact appears in [6], Theorem 3.4:

Theorem 2.5. Assume that Z+ is a convex cone and
A ⊂ Z, A 6= ∅. MIN A 6= ∅ if and only if A has a
nonempty strongly Z+-complete section.

Let recall that a set U ⊂ Z is K-complete (resp.,
strongly K-complete) if it has no cover of the form
{(xα − cl K)c, α ∈ I} (resp., {(xα −K)c, α ∈ I})
with {xα, α ∈ I} being a decreasing net in A. A
section of A is a set Ax = A ∩ (x−K) (see [6]).

Following this, we deduce necessary and suffi-
cient conditions for the existence of the infimal (supre-
mal ) points given in Proposition 2.3.

Theorem 2.6. a) A nonempty set A ⊂ Z has a
nonempty infimal points set (2) if and only if −(A +
Z+)c has a nonempty strongly Z+-complete section.
b) A nonempty set A ⊂ Z has a nonempty infimal
points set (3) if and only if cl (A+Z+) has a nonempty
strongly Z+-complete section.

For the weak infimal or supremal points we can
prove a more explicit result. Following Proposition
2.3, the infimal points sets (1), (w2) and (w3) are coin-
cident with the general notion of weak infimum points
set presented in Definition 2.1 7). By this reason, in
what follows we’ll use the notations presented in Re-
mark 2.2b).

Theorem 2.7. Let A ⊂ Z̄ be a nonempty set of a lo-
cally convex space Z ordered by a convex, pointed,
closed cone with nonempty interior. Then, ∅ 6=
wINF1A ⊂ Z if and only if wĨNF A 6= {−∞}.
In this case, the following ”domination” properties
(wDP ) does holds:

A ⊆ (wINF1A + K) ∪ {+∞};
wĨNF A = (wINF1A−K) ∪ {−∞}

Proof. Obviously, if ∅ 6= wINF1A 6=⊂ Z, then
wĨNF A 6= {−∞} since wINF1A ⊂ wĨNF A.
Now, let a ∈ A, a 6= ∞ and ỹ ∈ wĨNF A \ {−∞}.
Since K is a generating cone, we find z 6= a, 6= ỹ
such that z−a ∈ −K and z− ỹ ∈ −K which implies
z ∈ wĨNF A. Let denote z(t) = z + t(a− z), t > 0
and we remark that for t > 1, z(t) ∈ A + K \ {0}. If
we consider inf{t > 0 | z(t) ∈ A + K \ {0}} = t̄,
we have t̄ ≤ 1 and z̄ = z + t̄(a− z) /∈ A + K \ {0}
which implies z̄ ∈ wĨNF A. We’ll prove in what
follows that z̄ ∈ wINF1A. Let consider µ ∈ Int Z+;
we can find ε > 0 such that µ − ε′(a − z) ∈ Int Z+,
for all 0 < ε′ < ε and for this ε there exists ε′ such
that z +(t̄+ε′)(a−z) ∈ A+K \{0}. Thus, z̄ +µ =
z+ t̄(a−z)+µ = z+(t̄+ε′)(a−z)−ε′(a−z)+µ ∈
A + K \ {0}.

Consequently, z̄ ∈ wINF1A 6= ∅ and z̄ − a =
(t̄−1)(a−z) ∈ K which gives that A ⊂ (wINF1A+
K) ∪ {+∞}.

Similarly, if we consider z ∈ wĨNF A \ {−∞}
and a ∈ A, we can find a′ ∈ A + K \ {0}, a′ −
z ∈ Int Z+ and the element z̄ = z + t̄(a′ − z) with
t̄ = inf{t > 0 | z + t(a′− z) ∈ A + K \ {0}} will be
an element from wINF1A which have the property
that z̄ − z ∈ K and thus the equality wINF A =
(wINF1A−K) ∪ {−∞} does holds. ¦

Remark 2.8. If A ⊂ Z, the equivalence
”wINF1A 6= ∅ if and only if wĨNF A 6= ∅” is
Theorem I-18 [8].

The following proposition will be useful for the
study of the solution properties in the next section.

Proposition 2.9. Let A ⊂ Z, x ∈ A + Int Z+ and
y ∈ wINF A. Then, [x, y] ∩ wINF1A 6= ∅.

Proof. Since Z = (A + K \ {0}) ∪ (A + K \ {0})c,
following Proposition 2.3 we get Z = (A + K \
{0})∪wINF A = (A+K \ {0})∪ Int wINF A∪
Fr wINF A = (A + K \ {0}) ∪ Int wINF A ∪
wINF1A. Thus [x, y] = ([x, y] ∩ (A + K \ {0})) ∪
([x, y] ∩ Int wINF A) ∪ ([x, y] ∩ wINF1A). If we
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suppose [x, y]∩wINF1A = ∅ then [x, y] = ([x, y]∩
(A + Int Z+)) ∪ ([x, y] ∩ Int wINF A). Following
the hypothesis, y /∈ A+Int Z+ and thus the both sets
[x, y] ∩ (A + Int Z+) and [x, y] ∩ Int wINF A will
be nonempty, open and disjoint sets. But [x, y] is a
point wise set and then, this contradiction prove the
proposition. ¦

Remark 2.10. The properties of the weak infimal and
the weak supremal points made possible the definition
of a vector fuzzy integral for multifunction with some
properties similar to the real fuzzy integral as we can
see in [15], [16], [1].

3 Solutions for (V P0)

In what follows we’ll consider Z be a locally convex
space, V(X) be a fundamental system of neighbor-
hoods forms by symmetric, barrelled, convex neigh-
borhoods and F : X→→Z̄, C ⊂ X . The vector opti-
mization problems

(V P0) INF1

⋃

x∈C

F (x)

(wV P0) wINF1

⋃

x∈C

F (x)

As usually, an element from INF1
⋃

x∈C

F (x)

(wINF1
⋃

x∈C

F (x)) will be called a value of (V P0)

(respectively (wV P0)) and following Theorem 2.7,
the set of values for (wV P0) is identically {−∞} or is
a nonempty subset of Z which satisfies (wDP ) prop-
erties.

Generally, for a vector optimization problem
(V P ), a solution for the problem is a point x0 ∈ C
with the property F (x0) ∩ Eff

⋃
x∈C

F (x) 6= ∅.

For the problem (V P0), this definition is not suit-
able since if F (x0) ∩ INF1

⋃
x∈C

F (x) 6= ∅ then

F (x0) ∩ MIN
⋃

x∈C

F (x) 6= ∅. Thus, using this

definition, we will study in fact the existence of so-
lutions for the problem MIN

⋃
x∈C

F (x) which may

not exist even the values set for the problem (V P0) is
nonempty.

In [20] we can find an approximative vector prob-
lem i.e. (V P ε) εMIN ∪

x∈C
F (x). As usually, a

solution for this problem will be a point x0 ∈ C with
the property F (x0) ∩ε MIN

⋃
x∈C

F (x) 6= ∅.

Let recall that for ε > 0, εMIN A = {a ∈ A |
a 6< b − ε, ∀b ∈ A}. We remark that if INF1A 6= ∅
then for all ε > 0, εMIN A 6= ∅.

Taking into account this remark, we may think to
define the solution of the problem (V P0) using the so-
lutions for the approximative problems, (V Pε). Thus
we can consider that x0 ∈ C is a solution for (V P0)
if F (x0) ∩ εMIN

⋃
x∈C

F (x) 6= ∅ for all ε > 0. A

problem occur now if F is a single valued map since in
this case, the previous condition F (x0)∩ εMIN

⋃
x∈C

F (x) 6= ∅ for all ε > 0 conclude to the fact that
F (x0) ∩ MIn

⋃
x∈C

F (x) 6= ∅ and we reduce our

study again to the problem MIN ∪
x∈C

F (x).

By this reasons, we will consider in Definition 3.4
the solution of our problem as a net of approximative
efficient points. Firstly, we’ll present a general notion
of approximative efficient points.

Definition 3.1. Let V ⊂ V(0) and A ⊂ Z. The V -
minimum points set of A will be denoted V MIN A
and it will be given by

V MIN A = {y ∈ A | (y + V ) ∩ INF A 6= ∅}
Remark 3.2. If Z+ is a generating cone then

⋃

ε>0

ε
MIN A = ∪

V ∈V(0)

V MIN A

.

Indeed, if y ∈ε MIN A then y ∈Vε MIN A
where Vε = V ∪ {ε} with V ∈ V(0). Now, if y ∈V

MIN A where V ∈ V(0) and v ∈ V such that y+v ∈
INF A we can find ε > 0 with v > −ε (Z+ is a
generating cone ). Thus, y − ε ∈ INF A which
implies y ∈ε MIN A and the equality follows.

Definition 3.3. a) A generalized sequence
(aα)α∈I ⊂ Z ((I,º) is a directed set) is con-
vergent to y ∈ Z̄ if for each V ∈ V(0), ∃α′ ∈ I such
that aα ∈ y + V , ∀α º α′. In this case we denote
aα →α Y

b) Let (Aα)α∈I ⊂ Z. Liminf
α

Aα = {y ∈ Z |
∃aα ∈ Aα, aα →α y}.

In what follows we’ll consider V(0) a fundamen-
tal system of convex, symmetric and barrelled neigh-
borhoods. This is a directed set if we consider the
preorder given by V º V ′ if and only if V ⊂ V ′.

Proposition 3.4. Let A ⊂ Z be a nonempty set. Then,

Liminf
V

wV MIN A = wMIN Ā

.
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Proof. Let y ∈ wMIN Ā = Ā ∩ wINF1 Ā. For
all V ∈ V(0) we’ll find µV ∈ (α + V ) ∩ A. Thus
α ∈ (µV − V ) ∩ wInf1Ā = (µV + V ) ∩ wINF1A,
which say that µV ∈ wV MIN A and µV ⇒V y.
We obtain that y ∈ Liminf wV MIN A and finally
wMIN Ā ⊆ Liminf wV MIN A.

Now, let consider y ∈ Liminf wV MIN A. We
find aV ∈ wV MIN A, aV ⇒V y and since aV ∈ A
we get y ∈ Ā. Let suppose that y /∈ wINF A;
in this case we find a ∈ (y − Int Z+) ∩ A. Since
x = 1/2(a + y) + Int Z+ ∈ V(y) we find V ′ ∈ V(0)
such that for all V ⊂ V ′, aV ∈ x + Int Z+. Also,
there exists U ∈ V(0) such that x + U ⊂ a + Int Z+.
For V = V ′ ∩ U we have x + V ⊂ a + Int Z+ and
aV + V ⊂ x + V + Int Z+ ⊂ a + Int Z+.
But aV + V ∩ wINF A 6= ∅ and this contradic-
tion proves the inclusion Liminf

V
wV MIN A ⊆

wMIN Ā and finally we get the equality. ¦

Definition 3.5. We’ll call solution for the problem
(V P0) a net (xV )V ∈V(0) from X such that for all
V ∈ V(0), xV ∈V MIN ∪

x∈C
F (x). Shortly, we’ll

write (xV ).

Remark 3.6. If the interior of the ordering cone Z+

is nonempty, then (xV )V ∈V(0) ⊂ X is a solution for
(wV P0) if and only if for all V ∈ V(0), (F (xV ) +
V ) ∩ wINF1 ∪

x∈C
F (x) 6= ∅.

Indeed, following Definition 3.1, if for all V ∈
V(0), (F (xV ) + V ) ∩ wINF1 ∪

x∈C
F (x) 6= ∅,

then (xV )V ∈V(0) ⊂ X is a solution for (wV P0).
Now, let V ∈ V(0), α ∈ F (xV ) and v ∈ V
such that α + v ∈ wINF

⋃
x∈C

F (x). If α ∈
wINF

⋃
x∈C

F (x), then α ∈ wINF1
⋃

x∈C

F (x)

and (F (xV ) + V ) ∩w INF1
⋃

x∈C

F (x) 6= ∅. If

α /∈ wINF
⋃

x∈C

F (x), following Proposition 2.9

we get [α, α + V ] ∩ wINF1
⋃

x∈C

F (x) 6= ∅. Since V

is a barrelled set we have [α, α+v] ⊂ F (xV )+V and
thus (F (xV ) + V ) ∩ wINF1

⋃
x∈C

F (x) 6= ∅. ¦

In [2] we find the notion of ”asymptotically
weakly Pareto optimizing” (a.w.p.) sequence used
for the characterization of the vector convex functions
having the property that approximate necessary first
order weakly-efficiency condition implies approxi-
mate weakly efficiency, a generalization of the asymp-
totically well-behaved functions from the scalar case.
Thus, if X,Z are Banach spaces and F : X→→Z̄ is
a set-valued map, a sequence (xn) in dom F will

be called asymptotically weakly Pareto optimizing
(a.w.p) if dist(F (xn), wMIN

⋃
x∈X

F (x)) → 0 when

−∞ /∈ ⋃
x∈X

F (x) and F (xn) → −∞, else.

It is not difficult to see that a generalization for
this notion in a locally convex space is the following:

Definition 3.7. (xV ) is a
asymptotically weakly Pareto optimizing se-
quence if for all V ∈ V(0), there exists
V ′ ∈ V(0) such that for all V ′′ º V ′ we have
F (xV ′′) ∩ wMIN

⋃
x∈X

F (x) + V 6= ∅ when

−∞ /∈ ⋃
x∈X

F (x) and F (xV ) → −∞, else.

Now we’ll present the links between the solution
of a vector optimization problem and an a.w.p. se-
quence.

Proposition 3.8. Let X, Z be locally convex spaces
and let F : X→→Z̄ be a set-valued map. If (xV ) is
a solution for the (V P0) problem, then there exists
a subsequence (xV ′) of (xV ) which is an a.w.p. se-
quence. Conversely, if (xV ) is an a.w.p. sequence and
(V P0) has a solution, then there exists a subsequence
(xV ′) of (xV ) which is a solution for the (V P0) prob-
lem.

Proof. Let (xV ) be a solution for the (V P0) problem.
Obviously, −∞ /∈ ⋃

x∈X

F (x). Thus, F (xV ) ∈V

MIN
⋃

x∈X

F (x). Following Proposition3.4, for

all V ∈ V(0), there exists a subsequence (xV ′)
of (xV ) such that for all V ′′ º V ′, F (xV ′′) ∩
wMIN

⋃
x∈X

F (x) + V 6= ∅. Thus, (xV ) is an a.w.p.

sequence.
Now, let (xV ) be an a.w.p. sequence. If (V P0)

has a solution, then −∞ /∈ ∪
x∈X

F (x) and thus for all

V ∈ V(0), there exists V ′ ∈ V(0) such that for all
V ′′ º V ′ we have F (x′′V )∩wMIN

⋃
x∈X

F (x)+V 6=
∅. Thus,for all V ∈ V(0), there exists V ′ ∈ V(0) such
that for all V ′′ º V ′ we have F (x′′V ) ∩ wINF

⋃
x∈X

F (x)+V 6= ∅. Consequently, F (xV ′) ∈V MIN
⋃

x∈X

F (x) and thus, (xV ′) is a subsequence of (xV ) which
is a solution for (V P0). ¦

To conclude this section, let’s give a characteri-
zation for the (V P0)’s solution using the Pareto ap-
proximative subdifferentials. Let recall that for a mul-
tifunction F : X → Z and V ⊂ Z, the Pareto
V -subdifferential of F at x0 denoted by ∂V

6>F (x0) is
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∂V
6>F (x0) = {T ∈ L(X, Z) | ∃y0 ∈ F (x0) and v ∈

V T (x− x0) 6> y − y0 + v}.
We remark that T ∈ ∂V

6>F (x0) if and only if

(T (x− x0) + F (x0) + V ) ∩ INF
⋃

x∈X

F (x) 6= ∅

It is not difficult to give now the proposed characteri-
zation.

Proposition 3.9. (xV ) is a solution for (V P0) if and
only if 0 ∈ ∂V

6>F (xV ) for all V ∈ V(0).

4 Vector and scalar optimization
problems

We study in this section the vector optimization prob-
lem defined with the efficient points presented in the
first section in connection with a scalar optimization
problem. The vector optimization problems will be

(V P0) INF1

⋃

x∈C

F (x)

(wV P0) wINF1

⋃

x∈C

F (x)

As usually, an element from INF1
⋃

x∈C

F (x)

(wINF1
⋃

x∈C

F (x)) will be called a value of (V P0)

(respectively (wV P0)) and following Theorem 2.7,
the set of values for (wV P0) is identically {−∞} or is
a nonempty subset of Z which satisfies (wDP ) prop-
erties. For V ∈ V(0), we say that xV ∈ C is an
approximative solution for (V P0) if (F (xV ) + V ) ∩
INF

⋃
x∈C

F (x) 6= ∅.
For x∗ ∈ Z∗+ \{0} we’ll consider the scalar prob-

lems:
(Px∗) : inf

⋃
x∈C

x∗ ◦ F (x)

(P ∗) :
⋃

y∗∈Z∗+\{0}
inf ∪

x∈C
x∗ ◦ F (x)

(SP ) : inf
⋃

x∈C

inf x∗ ◦ F (x). Similarly, for V ∈
V(0), an approximative solution for (Px∗) will be an
element xV ∈ C such that x∗(F (xV )+V )∩INF

⋃
x∈C

x∗ ◦ F (x) 6= ∅. For the problem (P ∗), an approx-
imative solution will be a pair (xV , x∗V ) satisfying
x∗V (F (xV ) + V ) ∩ INF

⋃
x∈C

x∗V ◦ F (x) 6= ∅.

Remark 4.1. Following Theorem 2.7 and the def-
inition of the ”INF1” set we have wINF1

⋃
x∈C

F (x) + Int Z+ = ∪
x∈C

F (x) + Int Z+ and thus

x∗ ◦ v(wV P0)+ (0,∞) = x∗ ◦ (
⋃

x∈C

F (x))+ (0,∞).

Consequently, v(Px∗) = inf x∗ ◦ v(wV P0).

Remark 4.2. It is not difficult to see that our scalar
multivalued problem (Px∗) is equivalent with the
scalar single valued problem (SP ) i.e. the prob-
lems (SMP ) and (SP ) have the same approxima-
tive solutions and the same values. Indeed, since
inf

⋃
i∈I

Ai = inf ∪
i∈I

inf Ai for Ai ⊂ IR, we deduce

that the both problems have the same values. Now, for
V = (−ε, ε), if xV = xε) is an approximative solu-
tion for (SP ) we have m(xε) < inf

⋃
x∈X

m(x) + ε =

inf
⋃

x∈X

inf x∗ ◦ F (x) + ε = inf
⋃

x∈X

x∗ ◦ F (x) + ε.

We can find ε′ > 0 and yε ∈ F (xε) such that
x∗(yε) < m(xε) + ε′ < inf

⋃
x∈X

x∗ ◦ F (x) + ε.

Thus, xε is an approximative solution for (Px∗). Con-
versely, let xε be an approximative solution for (Px∗).
Thus, there exists yε ∈ x∗ ◦ F (xε) such that inf

⋃
x∈X

m(x) + ε = inf
⋃

x∈X

x∗ ◦ F (x) + ε > yε ≥ m(xε).

We conclude that xε is an approximative solution for
(SP ).
We remark also that F is convex if and only if m is
convex.

Proposition 4.3. Let V ∈ V(0). If (xV , x∗V ) is an ap-
proximative solution for (P ∗) then xV is an approxi-
mative solution for (wV P0).
If xV is an approximative solution for (Px∗) for some
x∗ ∈ Z∗+ \ {0} then xV is a solution for (wV P0).
If

⋃
x∈C

F (x) + Z+ \ {0} is a convex set and xV is

an approximative solution for (V P0) then there exists
x∗V ∈ Z∗+ \ {0} such that (xV , x∗V ) is an approxima-
tive solution for (P ∗).

Proof. Let (xV , x∗V ) be an approximative solution
for (P ∗). This means that there exists v ∈ V and
yV ∈ F (xV ) such that x∗V (yV + v) ≤ x∗V (y) for
all y ∈ F (x), x ∈ C. Thus yV + v /∈ ⋃

x∈C

F (x) +

Int Z+ which implies that (F (xV )+V )∩wINF
⋃

x∈C

F (x) 6= ∅ i.e. xV is a solution for (wV P0).
The proof is similar for the second assertion. The

last part follows using the Hahn-Banach separation
theorem. ¦

In what follows we’ll prove that, although uV is
not an approximative solution for our problem, we
can find an approximative solution xV in a ”neighbor-
hood”. More exactly, we have the following result.
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Proposition 4.4. Let V ∈ V(0) and let uV ∈ C which
is not an approximative solution for (V P0). Then
there exists an approximative solution xV ∈ C such
that F (xV ) ∩ (F (uV ) + V − Z+ \ {0}) 6= ∅.

Proof. Let consider K(u) = {v | F (v) ∩ (F (u) +
V −Z+\{0}) 6= ∅}. Since uV is not an approximative
solution , K(uV ) 6= ∅ and we denote Y (v) = F (v) ∩
(F (u) + V − Z+ \ {0}). For x∗ ∈ Z∗+ \ {0}, there
exists xV ∈ K(uV ) such that

inf
v∈K(uV )

x∗ ◦ Y (v) + supx∗(V ) > x∗(yV )

where yV ∈ Y (xV ). Consequently, we can find ṽ ∈
V such that

inf
v∈K(uV )

x∗ ◦ Y (v) + x∗(ṽ) > x∗(yV ).

We’ll prove that xV is an approximative solution. Let
suppose that this is not true and thus

F (xV ) + V ⊆
⋃

x∈X

F (x) + Z+ \ {0}.

This inclusion implies that for al v ∈ V there exists
zV such that yV + v ∈ F (zV ) + Z+{0}. Since yV ∈
Y (xV ) we get F (zV )∩ (F (uV )+V −Z+ \{0}) 6= ∅
which say that zV ∈ K(uV ) and yV + v ∈ Y (zV ) +
Z+ \ {0}. Let consider now v = −ṽ; we get

inf
v∈K(uV )

x∗ ◦ Y (v) > x∗(yV ) + x∗(−ṽ) ≥

≥ inf x∗ ◦ Y (zV ) ≥ inf
v∈K(uV )

x∗ ◦ Y (v)

which is a contradiction. Thus xV is a solution and
F (xV ) ∩ (F (uV ) + V − Z+ \ {0}) 6= ∅. ¦

Another simplified problem which allows to us
some information concerning the (wV P0) problem is
the problem (wV Pa) considered for the case when F
is a subdifferentiable multifunction and given by

(wV Pa) : wINF1

⋃

x∈X

S(x)

where S(x) = {Tx | T ∈ ∂≤F (x)}.

Proposition 4.5. Let V ∈ V(0). If xV is an approx-
imative solution for (wV Pa) then xV is an approxi-
mative solution for (wV P0).

Proof. Let suppose that xV is an approximative so-
lution for (wV Pa) and is not an approximative solu-
tion for (wV P0). In this case, F (xV ) + V ⊆ ⋃

x∈X

F (x) + Int Z+. Let consider T ∈ ∂≤F (xV ). There
exists yV ∈ F (xV ) such that T (x − xV ) ≤ y −
yV , ∀y ∈ F (x), ∀x ∈ X . Let v ∈ V and follow-
ing our assumption, we can find x′ ∈ X such that
yV + v ∈ F (x′) + Int Z+. Thus, T (x′ − xV ) ≤
y − yV − v + v, ∀y ∈ F (x′) which give to us that
T (x′ − xV ) ≤ v. Consequently, T (xV ) + V ⊆ ⋃

x∈X

T (x) + Int Z+ for all T ∈ ∂≤F (xV ) which contra-
dict the fact that xV is an approximative solution for
(wV Pa). ¦

5 The INFSUP problem.

Let Y be a locally convex space, D ⊂ Y , 0 ∈ D and
Φ : X × Y −−→−→ Z such that Φ(x, 0) = F (x). For
y ∈ D, let consider the following problem called the
perturbed problem:

(Py) : INF1

⋃

x∈C

Φ(x, y)

We denote H(y) = INF1
⋃

x∈C

Φ(x, y) and we’ll

say that (Py) is stable if ∂V
6>H(0) 6= ∅ for all V ∈

V(0) where ∂V
6>H(0) = {S ∈ L(Y, Z) | H(0) +

V 6⊂ ∪
y∈Y

H(y)− S(y) + Z+ \ {0}}. Let remark that

if (−ε, ε) is a neighborhood for 0 for ε ∈ Z+ \ {0}
the ∂

(−ε,ε)
6> H(x0) is the Pareto ε subdifferential for H

at x0 given in [5].

Definition 5.1. We say that (xV , yV ) is a solution for
the perturbed problem if (Φ(xV , yV )+V )∩INF

⋃
x∈C

Φ(x, yV ) 6= ∅.

Obviously, this definition is equivalent with the
following

Definition 5.2. We say that (xV , yV ) is a solution
for the perturbed problem if Φ(xV , yV ) ∩ INF

⋃
x∈C

(Φ(x, yV ) + V ) 6= ∅.

As the problem (Py), we can consider the prob-
lem (Px) : INF1

⋃
y∈D

Φ(x, y) and the ”comple-

mentary” problems (Qx) : SUP1
⋃

y∈D

Φ(x, y) and

(Qy) : SUP1
⋃

x∈C

Φ(x, Y ).

As expected, (xV , yV ) is a solution for the prob-
lem (Qx) if (Φ(xV , yV )+V )∩SUP

⋃
x∈C

Φ(x, yV ) 6=
∅.
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The dual problem for (Px) (respectively (Py))
will be

(D) : SUP1

⋃

y∈D

INF1

⋃

x∈C

Φ(x, y)

(respectively (D) : SUP1
⋃

x∈C

INF1
⋃

y∈D

Φ(x, y))

and the dual problem for (Qx) (respectively (Qy))
will be

(D′) : INF1

⋃

x∈C

SUP1

⋃

y∈D

Φ(x, y)

(respectively INF1
⋃

y∈D

SUP1
⋃

x∈C

Φ(x, y).)

Since our problem (D) may be expressed as
SUP1

⋃
y∈D

H(y), similarly to definition 3.5, a so-

lution for this problem will be a net (yV )V such that

H(yV ) ∩ (SUP
⋃

y∈D

H(y) + V ) 6= ∅.

The problems (D) and (D′) are similar to the
MINMAX problems and will be called the INFSUP
problems. The saddle points for the MINMAX prob-
lems will be replaced by the saddle solutions given in
the following definition.

Definition 5.3. A net (xV , yV )V will be called a sad-
dle solution for (D) if for all V ∈ V(o) we have
Φ(xV , yV )

⋂
(INF

⋃
x∈C

Φ(x, yV )+V )
⋂

(SUP
⋃

y∈D

Φ(xV , y) + V ) 6= ∅.
Remark 5.4. If (xV , yV ) is a saddle solution for (D)
then (xV , yV ) is a solution for (Py) and (Qx).

Using theorem 2.7, the following proposition fol-
lows easily.

Proposition 5.5. Let (xV , yV ) be a saddle solution
for (D). Then Φ(xV , yV )

⋂
(SUP1

⋃
y∈D

INF1
⋃

x∈C

Φ(x, y) + V − Z+)
⋂

(INF1
⋃

x∈C

SUP1
⋃

y∈D

Φ(x, y) + V + Z+) 6= ∅.
Now we are interested to see the links between the

saddle solutions for (D) and the solutions for (V P0)
and (D). For this, we’ll prove firstly a weak duality
theorem.

Theorem 5.6. (weak duality theorem ) Let suppose
that the following hypothesis does hold:
(H1) : SUP1

⋃
y∈D

Φ(x, y)
⋂

(INF1
⋃

x∈C

Φ(x, y) −
Int Z+) = ∅,∀x ∈ C, y ∈ D,

then INF1
⋃
x

SUP1
⋃
y

Φ(x, y) ⊂ SUP
⋃
y

INF1
⋃
x

Φ(x, y),
SUP1

⋃
y

INF1
⋃
x

Φ(x, y) ⊂ INF
⋃
x

SUP1
⋃
y

Φ(x, y), and v(P0)
⋂

(v(D)− Int Z+) = ∅.

Proof. Let α ∈ INF1
⋃
x

SUP1
⋃
y

Φ(x, y) and sup-

pose that there exists y0 and µ ∈ INF1
⋃
x

Φ(x, y0)

such that µ > α. In this case will exists x0 and
β ∈ SUP1

⋃
y

Φ(x0, y), β − µ ∈ −Int Z+. This con-

tradict our hypothesis, and thus the first inclusion id
proved. Similarly, we get the second inclusion. Now,
following the hypothesis and Theorem 2.7, we obtain

⋃
x

Φ(x, 0)
⋂

(v(D)− Int Z+) = ∅

and finally v(P0)
⋂

(v(D)− Int Z+) = ∅. ¦

Remark 5.7. The conclusions from this theorem may
be rewritten as follows:

v(P0) ⊂ (v(D) + Int Z+) ∪ {+∞}

v(D) ⊂ (v(P0)− Int Z+) ∪ {−∞}

v(P0)
⋂

(v(D)− Int Z+) = ∅
Using the notations from [12], this is equivalent with
(D) <<

↔
(P0).

Theorem 5.8. (strong duality theorem) Let suppose
that the following hypothesis does hold:
(H1) : SUP1

⋃
y∈D

Φ(x, y)
⋂

(INF1
⋃

x∈C

Φ(x, y) −
Int Z+) = ∅,∀x ∈ C, y ∈ D
(H2) : SUP1

⋃
y∈D

Φ(x, y) = Φ(x, 0).

If (xV , yV ) is a saddle point for Φ then :
i) (xV ) is a solution for (V P0)
ii) (yV ) is a solution for (D) and
iii) (Φ(xV , 0) + V + K)

⋂
(H(yV ) + V −K) 6= ∅.

Proof. Following the Definition 5.3, if (xV , yV ) is a
saddle solution for (D), then for all V ∈ V(o) there
exists
αV ∈ Φ(xV , yV )

⋂
(INF

⋃
x∈C

Φ(x, yV ) +

V )
⋂

(SUP
⋃

y∈D

Φ(xV , y) + V ). (∗)
Following Theorem 2.7 there exists v1 ∈ V such that
αV − v1 ∈ (SUP1

⋃
y∈D

INF1
⋃

x∈C

Φ(x, y)−K).(1)
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Also, following the same theorem and the hypoth-
esis (H2), we have

αV ∈ Φ(xV , 0) + V + K.

Let suppose that (Φ(xV , 0) + V )
⋂

INF
⋃
x

Φ(x, 0) = ∅. Thus,

(Φ(xV , 0) + V ) ⊂
⋃
x

Φ(x, 0) + Int Z+.

Following hypothesis (H2), (Φ(xV , 0) + V ) ⊂⋃
x

SUP1
⋃
y

Φ(x, y) + Int Z+ = INF1
⋃
x

SUP1
⋃
y

Φ(x, y) + Int Z+.
By these reasons, αV −v1 ∈ Φ(xV , 0)+V −v1+K ⊆
Φ(xV , 0) + V + K ⊆ INF1

⋃
x

SUP1
⋃
y

Φ(x, y) +

Int Z+. (2)
From (1) and (2) we deduce that there exists α ∈
SUP1

⋃
y∈D

INF1
⋃

x∈C

Φ(x, y) and α′ ∈ INF1
⋃
x

SUP1
⋃
y

Φ(x, y) = INF1
⋃
x

Φ(x, 0) such that

α′ − α ∈ −Int Z+. Using the weak duality theo-
rem we have α′ ∈ SUP

⋃
y

INF1
⋃
x

Φ(x, y). In

this case, we can’t have α′ − α ∈ −Int Z+ and the
contradiction shows that (xV ) is a solution for (wP0).
Similarly we get that (yV ) is a solution for (D) and
iii) follows obviously from (*). ¦

Remark 5.9. In the hypothesis of the strong duality
theorem, if iii) does hold, then i) and ii) follows .

Indeed if (Φ(xV , 0) + V + K)
⋂

(H(yV ) + V −
K) 6= ∅, then (SUP1

⋃
y

INF1
⋃
x

Φ(x, y) + V −
K)

⋂
(INF1

⋃
x

SUP1
⋃
y

Φ(x, y) + V + K) 6= ∅.

Following the same idea as in the theorem’s proof,
will exists αV and v1 such that αV −v1 ∈ (SUP1

⋃
y∈D

INF1
⋃

x∈C

Φ(x, y)−K) and αV − v1 ∈ (INF1
⋃

x∈C

SUP1
⋃

y∈D

Φ(x, y)+K). Using the same argument as

in the theorem’s proof, if we suppose that i) or ii) does
not hold, we obtain a contradiction and the conclusion
follows.

Proposition 5.10. In the hypothesis of the strong du-
ality theorem, if (yV ) is a solution for (D), then there
exists (xV ) a solution for (V P0) and iii)does hold.

Proof. Following the definition, if (yV ) is a solution
of (D), we have H(yV )

⋂
(SUP

⋃
y

H(y) + V ) 6= ∅.

In this case, there exists v ∈ V such that H(yV )−v 6⊂
H(0)−Int Z+ = INF1

⋃
x

Φ(x, 0)−Int Z+ and con-

sequently, (H(yV ) − v)
⋂ ⋃

x
Φ(x, 0) + Int Z+ 6= ∅

or H(yV ) − v
⋃

H(0) 6= ∅. In the first case we get
(xV ) such that (H(yV ) − v)

⋃
Φ(xV , 0) + K 6= ∅

which implies iii). For the second case, we can
find v+ ∈ V

⋂
Int Z+ such that v+ − v ∈ V and

H(yV ) − v + v+
⋂ ⋃

x
Φ(x, 0) + K 6= ∅ and the

conclusion follows now similarly to the first case. Us-
ing the precedent remark, (xV ) will be a solution for
(V P0). ¦

6 The lagrangean duality.

In this section we present a particular case for the du-
ality problems presented in the previous section. In
the following let consider U be a locally convex space
ordered by a convex pointed cone U+ and G : X→→U
be a set valued map. The constraint set C is usually
considered on form

C = {x | G(x) ⊂ −U+} (1)

or
C = {x | G(x)

⋂
−U+ 6= ∅} (2)

. Y will be Y = L(U,Z) and D = L+(U,Z) =
T ∈ L(U,Z), T (U+) ⊂ Z+. If the interior of
the cone U+ is nonempty and there exists x such
that G(x)

⋂−Int U+ 6= ∅ we’ll say that G satis-
fies the Slater condition. In this case, Φ(x, T ) =
F (x)+T ◦G(x) and it is called the lagrangean. Usu-
ally, it is denoted L(x, T ) and the duality in this case
is called the lagrangean duality. A saddle solution for
the problem (D) will be called the saddle point for the
lagrangean. The perturbed problem is

(PT ) : INF1

⋃

x∈C

(F (x) + T ◦G(x)).

The dual problem is

(D)SUP1

⋃

T∈D

INF1

⋃

x∈C

L(X, T ).

In this conditions, it is not difficult to observe
that SUP1

⋃
T∈D

L(x, T ) = SUP1F (x) and

(SUP1F (x))
⋂

(INF1
⋃

x∈C

L(x, T ) − Int Z+) = ∅.

Thus, (H1) is satisfied and the weak duality theorem
does hold. If SUP1F (x) = F (x) (in particular if F is
a single valued map ), (H2) is also satisfied and thus
the strong duality theorem does hold.
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Proposition 6.1. Let suppose that C is on form (2),
the Slater condition is satisfied for the G and F ×
G(C)+Int Z+× Int U+ is a convex set (this say that
F ×G is a Z+×U+- subconvexlike multifunction) . If
(xV ) is a solution for (V P0), then there exist (HV ) ⊂
L+(U,Z) such that HV (G(xV ) ∩ −U+) ⊂ V and
(xV ,HV ) is a solution for (PH). The converse is true
if C is on form (1).

Proof. Let (xV ) be a solution for (V P0) and (α′V ) ∈
F (xV ) + V such that α′V ∈ INF

⋃
x∈C

F (x). Since

α′V = yV + v where yV ∈ F (xV ), v = v′+ − v+ ∈ V
(v+, v′+ ∈ V ∩Z+), we remark that αV = yV − v+ ∈
INF

⋃
x∈C

F (x). Thus ((F−αV )×G)(C)+Int Z+×
Int U+)

⋂
(−(Int Z+ × Int U+)) = ∅.

In this case will exist z∗ ∈ Z∗+ and u∗ ∈ U∗
+ such that

z∗(y − αV ) + u∗(z) ≥ 0

for all y ∈ F (x), z ∈ G(x), x ∈ C. Let
x = xV , y = yV , z = zV ∈ G(xV )

⋂
(−U+).

Thus, z∗(v+) + u∗(zV ) ≥ 0, u∗(zV ) ≤ 0 and con-
sequently, z∗(v+) ≥ −u∗(zV ). Necessarily, z∗ 6= 0
(else, u∗(z) ≥ 0 for all z ∈ G(C) and the Slater
condition assure the existence of z0 ∈ Int U+ with
u∗(z0) < 0). Let HV (z) = u∗(z) v+

z∗(v+) . It is not
difficult to see that HV (zV ) ∈ −V = V and thus
HV (G(xV ) ∩ −U+)) ⊂ V . Also, HV (U+) ⊂ Z+

and z∗ ◦ HV = u∗ which gives that z∗(y − αV ) +
z∗ ◦HV (z) ≥ 0, for all y ∈ F (C), z ∈ G(C). This
implies that y − yV + v+ + H(z) /∈ −Int Z+, ∀z ∈
G(x), y ∈ F (x), x ∈ C or equivalently, y − yV +
v+ −HV (zV ) + H(z) + HV (zV ) /∈ −Int Z+, ∀z ∈
G(x), y ∈ F (x), x ∈ C.
Since HV (zV ) ∈ V and V + V = V , we deduce
(F (xV ) + V + HV (G(xV )

⋂−U+))
⋂

INF
⋃

x∈C

F (x) + HV ◦ G(x) 6= ∅ which say that (xV ,HV )
is a solution for (PH).

For the converse, let (xV ,HV ) be a solution for
(PH) and HV ◦ G(xV )

⋂−U+ ⊂ V . Since C is on
form (1), this means that HV ◦ G(xV ) ⊂ V . Thus
there exists yV ∈ F (xV ), zV ∈ G(xV ), v ∈ V
such that βV = yV + HV (zV ) + v ∈ INF

⋃
x∈C

(F (x) + HV ◦G(x)). Let observe that following our
hypothesis, HV (zV ) ∈ V and thus βV ∈ F (xV ) + V .
Now, let suppose that βV /∈ INF

⋃
C

F (x). In

this case, there exists x ∈ C and y ∈ F (x) such
that y < βV . Since the Slater condition does hold
and HV ∈ L+(U,Z), there exists z ∈ G(x)

⋂−U+

and thus HV (z) + y < βV which contradict the fact
that βV ∈ INF

⋃
x∈C

(F (x) + HV ◦ G(x)). Thus,

(F (xV )+V )
⋂

INF
⋃
x∈c

F (x) 6= ∅ and (xV ) will be

a solution for (V P0). ¦

Remark 6.2. We may observe that for the second part
of the previous theorem we don’t use the fact that F ×
G is a Z+ × U+-subconvexlike multifunction so, this
part rest valid without this condition.

Corollary 6.3. Let suppose that C is on form (1), the
Slater condition is satisfied for G and F × G(C) +
Int Z+ × Int U+ is a convex set. Also, let suppose
that SUP1F (x) = F (x). Then, (xV ) is a solution for
(V P0) if and only if there exists (HV ) solution for (D)
such that (F (xV )+V +Z+)

⋂
(Φ(HV )+V −Z+) 6=

∅.

Proof. Following the precedent theorem, if (xV ) is
a solution for (V P0), there exists (HV ) ⊂ D such
that HV (G(xV )

⋂−U+) ⊂ V and (F (xV ) + HV ◦
G(xV ))

⋂
INF

⋃
x∈C

(F (x) + HV ◦ G(x) + V ) 6=
∅. Thus, (F (xV ) + V )

⋂
(Φ(HV ) + V − Z+) 6= ∅.

Following Remark 5.9, (HV ) will be a solution for
(D). The same remark proves the converse. ¦

Theorem 6.4. The characterization of the saddle
points for the lagrangean.

A set of ordered pairs (xV , TV ) ∈ C × D is a
saddle point for the lagrangean L if and only if for
all V ∈ V(0), there exists yV ∈ F (xV ), zV ∈
G(xV ), v ∈ V such that:
a) yV + TV (zV ) ∈V MIN L(C, TV )
b) G(xV ) ⊂ −Z+

c) −T (G(xV )) ⊂ Z+ \ (v + Int Z+), ∀T ∈ D
d)(F (xV )− yV − TV (zV )− v)

⋂
Int Z+ = ∅

Remark 6.5. If (−ε, ε) is a fundamental system of
neighborhoods for 0, these results leads to the theo-
rems about the ε−duality, ε-Lagrangean multiplica-
tors and ε-saddle points given in [11].

Proof. (of the theorem) Let (xV , TV ) be a saddle point
for the lagrangean. Following the definition, there ex-
ists yV ∈ F (xV ), zV ∈ G(xV ), v ∈ V such that

(yV + TV (zV ) + V )
⋂

INF
⋃

x∈C

L(x, TV ) (1)

and

yV + TV (zV ) + v − α− Tz′ /∈ −Int Z+ (2)

∀α ∈ F (xV ), z′ ∈ G(xV ), T ∈ D. Obviously, (1)
is equivalent with a).
Let put in (2), α = yV , z′ = zV . We get TV (zV ) −
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T (zV ) + v2 /∈ Int Z+, ∀T ∈ D. let suppose that b)
does not holds, i.e. there exists zV ∈ G(xV ) such that
zV /∈ −Z+. Thus, there exists z∗ ∈ Z∗+ \ {0} with
z∗(zV ) > 0. Let consider T̄ (z) = z∗(z)

z∗(zV )(k̄ + v) +
TV (z), k̄ ∈ Int Z+, k̄ > −v. We observe that T̄ ∈ D
and if we take T̄ in (2), we get k̄ /∈ Int Z+, false.
Thus, b) does holds and −TV ◦ G(xV ) ⊂ Z+.If we
take T = 0 in (2), we get−TV ◦G(xV )−v /∈ Int Z+

and c) follows. For d), it suffice to take T = 0 in (2).
For the converse, using d), b), c) we obtain

yV + TV (zV ) = v − y /∈ −Int Z+, ∀y ∈ F (xV )

Let suppose that there exists T ∈ D, z ∈ G(xV ) such
that

yV + TV (zV ) + v − y − T (z) ∈ −Int Z+

This gives that yV + TV (zV ) = v − y ∈ T (z) −
Int Z+ ⊂ −Z+ − Int Z+ = −Int Z+, false. We
conclude that yV +T (zV ) ∈ V +SUP

⋃
T∈D

(F (xV )+

T ◦ G(xV )) and following a) we get also that yV +
TV (zV ) ∈ V +INF

⋃
x∈C

(F (x)+TV ◦G(x)). Thus,

(xV , TV ) will be a saddle point for the lagrangean. ¦

7 The conjugate duality

In this section we present another kind of vector du-
ality, the conjugate duality. The name comes from
the use of the conjugate multifunction to defining the
dual problem. We recall that the conjugate of a mul-
tifunction G : V −−→−→ Z ∪ {+∞} is a multifunction
G∗ : L(V, Z) −−→−→ Z̄ given by

G∗(S) = wSUP1{Sv − u, u ∈ G(v), v ∈ Dom G}

where Dom G = {v ∈ V | ∅ 6= G(v) ⊂ Z.
Our constrained vector problem considered until now
(Py) : INF1

⋃
x∈C

Φ(x, y) will be restrained to an

unconstrained problem

(P̃y) : INF1

⋃

x∈X

Φ̃(x, y)

by replacing the multifunction Φ with Φ̃ , Φ̃(x, y) =
Φ(x, y) if x ∈ C, y ∈ D and Φ̃(x, y) = +∞ for
the complementary cases. The conjugate dual prob-
lem associated to (P̃0) is

(DC) : SUP1

⋃

S∈L(Y,Z)

−Φ̃∗(0, S).

These problems are presented in [14] and a weak du-
ality theorem can be deduced from more general re-
sults presented there. Firstly, we recall some nota-
tions which will be used introduced in [12]. For two
nonempty subsets of Z̄
• A << B if there is no a ∈ A and b ∈ B such that
a > b
• A <<

→
B if A << B and for all a ∈ A there exists

b ∈ B such that a ≤ b.
• A <<

←
B if −B <<

→
−A.

• A <<
↔

B if A <<
→

B and A <<
←

B.

Theorem 7.1. [14]

(DC) <<
↔

(P̃0).

Proof. Following theorem 3.1 [10] we have

wINF1 x ∈ X⋃ Φ̃(x, 0) ⊆ wSUP
⋃

T∈L(Y,Z)

(−wΦ∗(0, T ))

wSUP1

⋃

T∈L(Y,Z)

(−wΦ∗(0, T )) ⊆ wINF x ∈ X⋃ Φ̃(x, 0).

Now, following theorem 2.7 and the precedent nota-
tions, the theorem follows. ¦

Remark 7.2. The condition (DC) << (P̃0) means
that v(P̃0)

⋂
(v(DC) − Int Z+) = ∅, a conclusion

presented in the weak duality theorem 5.6. We remark
also that the condition (H1) imposed in theorem 5.6
is equivalent in this case with Φ(x, 0)

⋂
(−Φ̃∗(0, S)−

Int Z+) = ∅ which is satisfied because the conjugate
definition.

A lagrangean is also considered in this case,
Φ′(x, S) = −SUP1

⋃
y

(S(y) − Φ̃(x, y)). Let re-

mark that INF1
⋃
x

Φ′(x, S) = −Φ∗(0, S) and thus

the dual problem may be written as

(DC) : SUP1

⋃

S∈L(Y,Z)

INF1

⋃

x∈X

Φ′(x, S).

A saddle point for the lagrangean Φ′ is a sad-
dle solution for the problem (DC), i.e. a net of
pairs (xV , SV )V such that Φ′(xV , SV )

⋂
(INF

⋃
x

Φ′(x, SV ) + V )
⋂

(SUP
⋃
S

Φ′(xV , S) + V ) 6= ∅. A

strong duality theorem may also be given, in the same
conditions as in theorem 5.8. More exactly, the condi-
tion (H1) is automatically satisfied as we already have
seen in the precedent remark and the condition (H2)
means that SUP1

⋃
S

Φ′(x, S) = Φ(x, 0).
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Theorem 7.3. Let suppose that SUP1
⋃
S

Φ′(x, S) =

Φ(x, 0) and (xV , SV ) is a saddle point for the la-
grangean. Then, (xV ) is a solution for (P0), (SV )
is a solution for (DC) and −Φ∗(0, SV )

⋂
Φ(xV , 0)+

K + V 6= ∅.

Proof. Let consider (xV , SV ) a saddle point for
the lagrangean. Thus, there exists αV ∈
Φ′(xV , SV )

⋂
INF (

⋃
x

Φ′(x, SV ) + V )
⋂

SUP (
⋃
S

Φ′(xV , S) + V ). Thus, αV ∈ −Φ∗(0, SV ) −K + V
and αV ∈ Φ(xV , 0) + K + V . In this case, we can
find v ∈ V such that αV ∈ −Φ∗(0, SV ) − Int Z+ ⊂
SUP1

⋃
S

−Φ∗(0, S)− Int Z+ = v(DC)− Int Z+. If

we suppose that (xV ) is not a solution for (P0), we’ll
have Φ(xV , 0) + V ⊂⋃

x
Φ(x, 0) + Int Z+ and conse-

quently, we have αV − v ∈ Φ(xV , 0) + K + V − v ⊂
Φ(xV , 0)+K +V ⊂⋃

x
Φ(x, 0)+Int Z+ = INF1

⋃
x

Φ(x, 0)+Int Z+ = v(P )+Int Z+. We conclude that
α−v ∈ V (DC)

⋂
v(P )+Int Z+ which contradict the

weak duality theorem. Similarly, (SV ) is a solution
for the dual problem (DC) and the intersection does
hold obviously from the saddle point condition. ¦

Remark 7.4. As we can see from the theorem proof,
the condition −Φ∗(0, SV )

⋂
Φ(xV , 0) + K + V 6= ∅

implies that (xV ) is a solution for (P0) and (SV ) is a
solution for (DC).

Remark 7.5. It is not difficult to see that if we denote
Φx(y) = Φ(x, y), the condition (H2) is equivalent
with Φx(0) = Φ∗∗x (0).

Conclusions. We studied here a general vector
optimization problem (wV P0) with a nonempty val-
ued set in some general conditions concerning the
multifunction values set. The results proved show
that we may obtain informations concerning the val-
ues and the approximative solutions for our vector
optimization problem (wV P0) by studying a more
simplified problem, the scalar optimization problem.
Also, we define a dual problem and we present the
lagrangean and the conjugate duality. Some stability
results as well as some results for the case when the
cone has an empty interior will be given in a future
paper.
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