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Abstract: -Considering full Logistic proliferation of CD4+ T-cells and retarded immune response, we analyze
a HIV model in this paper. Global asymptotic stability of the infection-free equilibrium and immune-absent
equilibrium is investigated, and some conditions for Hopf bifurcation around infected equilibrium to occur are
also obtained by using the time delayed as a bifurcation parameter. Numerical simulating works are presented
to illustrate the main results, and we can observe the effects of the proliferation rate of CD4+ T-cells for the
dynamics of system. Thisresult can be used to explain the complexity of the immune state of AIDS.
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1 Introduction

Human Immunodeficiency Virus(HIV) has spread
in successive waves in various regions around the
globe and becoming a serious threat to public
health. Over the last several years extensive
research has been made in our understanding of the

pathogenesis of HIV infection, many mathematical
models [1-5] provide quantitative insights. The
results of these models help to design treatment
strategies which would more effectively bring the
infection under control.
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Immune response after vira infection is
universal and necessary to eiminate or control
HIV. A normal immune response to aviral usualy
contains antibodies, cytokines, natural killer cells,
and T cells. However, cytotoxic T lymphocytescri)
play a critical role in antiviral defense by killing
the infected cells in vivo. It is reasonable to
consider the number of CTLs into mathematical
[6-9] model. The turnover of free virus is much
faster than that of infected cells [10,11], so we
assume that the amount of free virus is simply
proportional to the number of infected cells. Thus,
we construct a mathematical model describing the
basic dynamics of the interaction between
susceptible host cells, infected cells, CTLs.

Time delay [6,12,13] has been introduced to
describe the period that antigenic stimulations
generating CTLs need. Time delay cannot ignored,
delay-differential equations exhibit much more
complicated dynamics than ordinary differentia
eguations since a time delay could cause a stable
equilibrium to become unstable and cause the
populations to fluctuate. The CTL response at the
time may depend on the population of antigen and
CTLsat aprevioustime.

In a norma healthy individua's peripheral
blood, the level of CD4+ T-cells is between 800
and 1200/mM . The body is believed to produce
CDA4+ T cells from precursors in the bone marrow
and thymus at a constant rate A, and have natural
nature death rated , When stimulated by antigen or
mitogen, T cells multiply through mitosis with a
rate r , some scholarg14,15] incorporate simple
Logistic proliferation term rx(1-x/xmax) into
healthy CD4+ T cells. However, HIV infection
will interrupt the normal CD4+ cells dynamics, a
reasonable model for the number of thiscellsis

X =4 —dX+rXA—(X+ Y)/ Xn) -
Therefore, we shall establish a mathematical model
asfollow:

ﬁzﬂ—dx+ rx(l—u) — kxy,
dt X
dy kXy (1)
— = —ay — .
at y — PyZ
% =ce*y(t—7)z(t—7)—bz
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where x is the population of susceptible CD4+ T-
cells, yisthe population of infected CD4+ T-cells,
z is the number of virus-specific CTL cells;, we
supposed that uninfected cells are recruited at a
constant rate 4 from the source within the body,
such as the bone marrow and precursors. r denotes
the maximum proliferation rate of CD4+ T-cells,
X 1S the maximum level of CD4+ T-cells density
a which proliferation shuts off. d,ab denote
nature death rates of uninfected CD4+ T-cells and
infected CD4+ T-cells and the decay rate of CTL
cells, respectively. when x reachesx, , X' must

be negative, so we require A < dTmax , the Logistic
functions rX@A—(X+Y) / X,) denotes  the
proliferation of heathy CD4+ T-cellsthe terms
kxy denotes the incidence of HIV infection of

heath CD4+ T-cells. p is the efficacy of the

immune response in killing infected cells. The
immune response, which is activated, depends not
only on the population of infected cells but also
depends on the population of CTL cells a a
previous time, then the term ce®y(t—r7)z(t-7)
accounts for the increasing of immune activity.
Furthermore, 7 is the time delay of immune
response. The initial values of system (1) are

X(6) = (), Y(6) = 8,(), Zs) = 43(¢),—7 <5 <0 (2)

where (¢,(s), #,(s), #5(s)) € C([-7,0],R?) , and
C([-7,0],R’) is the Banach space of continuous

functions mapping the interval [-7,0]intoR’.

It is well known by the fundamental theory of
functional differential equations [16] system (1)
has a unique solution (x(¢), y(c), z(¢)) satisfying the
initial conditions (2).

The organization of this paper is as follow: the
next section deals with some basic results. In
Section 3, the dynamic behavior of system of (1) is
investigated. Some numerical simulations are
performed to illustrate the analytical results in
Section 4. The paper ends with conclusions.

2 Main Results

It is important to show positivity and boundedness
for the system (1) as they represent the
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concentration of CD4+ T-cells. Positivity implies
that they survive and boundedness may be
interpreted as a natural restriction to growth as a
consequence of limited resources. In this section,
we present some basic results, such as the positive
invariance of system (1), the existence of equilibria,
the boundedness of solutions.

2.1 Positiveinvariance

Theorem 1. For dlt>0, all solutions of system
(1) with theinitial conditions (2) are positive.
Proof. Suppose x(t) is not always positive. Then,
we let t, >0 be the first time such that x(t,) =0,
By the first equation of (1), we have x'(t,) =4 >0,
that is x(t)<0 for te(t,—ut,) , where ; is an
arbitrarily small positive constant. This is a
contradiction, it follow that x(t) is aways positive.
By the second and third equation of system (1.1),
we can get

° (lx(c)-a- pz(¢))de

y(t) = y(0)& |
z(t) > z(0)e™

Then, it is easy to see that y(t) and z(t) are
positive on the existence interval .

2.2 Equilibria

It iseasy to see that system (1) always has ainfe-
cted-free equilibriakE, = (x,,0,0), where

X e f , A4rk
= e —d —+r-d],
X, o [J(r=d) + +r—d]

which shows the state that the HIV viruses are

absent.
XK. | . 4Ard
=T —d — +r—d],
R, 2ar[ (r )+ +r ]
We denote
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I:\,Fﬂk[\/(r_d_rbe""’_kbe""’)2+4r/1 o

2ar X c Xorox
_q_rbe” _kbef]_
CXpex c

If R <R, <1, there only exists an infected-free
equilibrium E,.

If R, >1LR <1, the system (1) has an immune-
absent  equilibrium E =(x,y;,0) , which
corresponding to the survival of free virus and the
extinction of CTL, except E,.where

a y A + (= d)X X — X
2y = _

Xl:k X +aX. .

If R, >R >1, the system (1) has an infected
equilibriumE, = (x,,Y,,2,) , which corresponding to
the survival of free virus and CTL, except
E,and E, . here

&:%[\/(r_d_rbe’_kbef)%m;t

CXirax C Xiax
+r_d_rbeaf_kbeaf],
CX e c
_bea‘f _kxz_a
Y, = c 4, = P

2.3 Boundedness of solutions

Theorem 2.There is an M >0 such that for any
solutions (x(t),y(t),z(t)) of system (1) with the
initial conditions(2), x(t) <M, y(t)<M,z{t)<M for
al t>o0.

Proof. By thefirst equation of system (1)

and x(t), y(t), z(t) > 0, we get

X <A—dx+ rx(l—i).
Xrrex

Evidently, if x(0)<x,, SO !imsupx(t)s x, for all
t>0. Let
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ar

D(t) = X(t) + y(t) + =

Z(t+7)

Calculating the derivate of D(t) along the
solutions of system (1), then

, X+ be™
D'y :ﬂ—dx+rx(1—ay)—ay— 0 Z(t+7)

< i—yD+rx(1—i)

<o—uD

where w=/1+rTX”Bx,y=min(d,a,b), we can get

D(t) < %+[D<0) —%]e*”‘ 3)

Accord to inequality (3), There exists an M >0
that depending only on the parameters of system
(1), suchthat D(t)<M for al t>0. Recall that

X(t), y(t), z(t) = 0, then x(t) <M, y(t) <M, z(t) <M
foral t>0.

3 Stability of Equilibrium
The purpose of this section is to give a detailed
analysis for dynamic behavior of system (1).

Theorem 3. The infected-free equilibrium E, is
globally asymptoticaly stablewhen R, <1.

Proof. Let (x(t),y(t),z(t)) be any positive

solution of system (1) with initial conditions (2).
Define a Lyapunov function as follow:

1 2 r o
L(t) = E(X(t) — %) + (l+@)xoy(t) +€Z(t)

+8[. " y(e)ale)dg

here &= px,+

rIO—X">O, Calculating the time
KX

derivative of L (t) along the positive solution of
model (1), we have
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Ly = (KO — %)= (X() — ,)(d —F +%)
- POYO oyt + @ ket y(t) - ay(e)
Xire Xirex
- YOO+ S{oe (- 7)2(t ) - ()]
+ LY 2 - y(t - 7) 2t — )]
5 r
<—(X(®) - %) (d 1 +i)

= (X(1) = %)l

rx(t) + ry(t) FRy(0)]
Xirex

~axy()(- R)(L+ @) —‘icb ()

From Theorem 1, we can see that x(t), y(t), z(t) are
positive, it follows from R, <1 that L <0, and

L' =0 if and only if (x,vy,2) =(x,,0,0). Then from
the classical Lyapunov-LaSale invariance
principal [17] E,is globally asymptotically stable
for any timedelay r>0.

Theorem 4. The immune-absent equilibrium E,
is globally asymptotically stable when R, >1 and
R <1.

Proof. Let (x(t),y(t).z(t)) be any positive

solution of system (1) with initial conditions (2).
Define aLyapunov function as follow:

kx;xm[y(t) vy,

L(t) = %(x(t) Cx)P (At

y nY®
Ty

1

1+55 20 + o[ Y@ Ae)de
C

here &= px (1+r/kx,) >0, Caculating the time
derivative of L,(t) aong the positive solution of
model (1), we get
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L ky= (X0 =) (x(®) —x)(d -1 + %)

— (XA V() — X Y]
Xorax

r
1 t) — v, )[kx(t) — kx, — pz(t
+X1(+| )(Y(®) — yp)[kx(t) — ko, — pz(t)]

—ar

7) —bz(t)]
7)2(t—17)]

_r+r_X1)
Xirex

+ely(®)z(t) - y(t-
< —(x(t) - %)*(d

OIS & La CALPIOB
Xrex

ar

x4 @)(b‘z

We can easily find that be* /c-y, >0 from R, >1
and R <1. Thus L, <0, and L,'=0 if and only if
(X Y,2)=(%,Y,,0) . Then from the classica
Lyapunov-LaSalle invariance principal [17] E, is
globaly asymptotically stable for any time delay
720.

From now on, we will analyze the stability of the
infected equilibria E, of system (1) when R >1.
Then the characteristic equation about E, is given
by

- yl)

_d+|’_2r_xz_&_ky2_s _&_k)(2 0
Xrax  Xrax Xrex
kYZ =S - Py,
0 ce“e¥z, ce¥e”y,-b-g
=0
(4)
that is,
P(s,7)-Q(s,7)e ¥ =0. 5)
where
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P(s,7) =S+ A(r)S" + A (1)s+ A(r),Q(s7) =
A =d-r+ 2% e py b,
X Ko

B,(r)s’ + B,(r)s+B,(7)

A()=bd—br 4208 Do e ey, o TRV
X Xoms Xoes

rkb —ar
Ax(r):bk%yﬁ%,sl(r) ™y,

B,(r)=ce™y,(d- r+—+
e

X 2 k) poeyz,

kar§ X2
By(r) =kee ™y, (kx, + KW)

ar r
~ pee “y,z,(d~ me 2 k).

Let us consider loca stability of E,.when =0,
Eq.(5) reducesto

S+ +7,5+y,=0 (6)
Where
2r r
71=d—l’ X2 kY2 i’
me Xz Xirex
k*X,Y, + IOX: + pcy,z,,

2r ry.

Vs = pcyzzz(d—r+ﬁ+af+kyz)-

It is clear that y,>0, y,>0 and y,>0. We aso
have

ry,

=(d-r+ +ky, ) (K*%,Y,

Va2~ 2rX2 +—rkX2y2)>O
Xnax X

By Routh-Hurwitz Criterion, we have the

following theorem.

Theorem 5. If R>1 and =0, the infected
equilibrium E, islocally asymptotically stable.

In the following, using stability switch criteria, we
try to investigate the local stability of infected
equilibrium E, . we analyze the existence of purely
imaginary roots s=iw(w>0) to (5). Eq.(5) takes
the form of a third-degree exponential polynomial
ins,and all the coefficientsof P and Q depend on
7 .Beretta and Kuang [18] and Li and Ma [19]
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established a geometrical criterion which gives the
existence of purely imaginary of a characteristic
eguation with delay dependent coefficient. In order
to apply this criterion, we need to verify the
following properties for al 7 <[0,z,,,), Where 7,

isthe maximum value which E, exists.

(i) P(0,7)-Q(0,7)#0,Vr e R,;

(i) If s=iw,we R, then
P(iw,7)-Q(iw,7)#0,7e R,

@iii) limsup{| Q(s,7)/ P(s,7) |:| sS|»> «,Res> (0} <1

forany 7;

(iv) F(w,7)=|P(iow,7)] -|Q(iw,7) | for each

7 hasat most afinite number of rea zeroes,

(v) Each positive root w(r) of F(w,7)=0 is

continuous and differentiable in © whenever it

exists.

We can easily find

P(0,7)-Q(0,7) = A(r) = By(z) # 0

which impliesthat (i) is satisfied.
P(iw,7)-Q(iw,7) =[A(r) — By(r) + B (r)®”
~ A(0)o* 1+ A7) - B,(r) - @’] £ 0
which impliesthat (ii) is satisfied.
From (5) we can know that
lim{ | Q(s,7)/ P(s,7) || s|> o, Res> 0} =0
Therefore (iii) follows.

| P(io,7) P= 0° +[-2A,(7) + A’ (1)]@"
+[A (D) - 2A (D) A(D)]e” + AX(T)

|Q(iw,7) P= B! (r)w* +[B; (7) - 2B,(r) B,(r)]0’

+B;(7)

weget F(o,7) =0’ +Q o' +Q,0° +Q,, here

Q, = A’ (1) - 2A,(2) - BY (2).Q, = AL (r) - B (7),
Q, = A(7) +2B,(7)By(7) - 2A (1) A(7) - B (1),

It isobviousthat (iv) and (v) is satisfied.
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Now, let s=iw(w >0) be a root of (5), separating
thereal and imaginary parts, we have the following

A7) - Ai(z')a)2 =B, (r)wsin(w7) +[B,(r) - Bl(r)a)z] cos(wr),
A (r)o-o® =-{B,(r) - B (r)o’]sin(wr) + B, (r)wcos(wr)

()
Thus
sin(or) = [A(2) - A(r)0’]B,(r)o-[A()o - »’][B,(r) - B/(r)o’]
[B,(r) - B(r)@’]* + B} (r)o®
(8a)
cos(or) = [A[@)-A@)’][By(r) - 51(72)6;)2] +ZBZ(T)§J[AZ(T)w— ']
[B;(z)-B(r)0’]" + B, (r)e
(8b)
From (5), and applying the property (i), we have
. _ - Plior) P(iw,7)
sin(wr) = mQ(Iw, 0 ,cos(wr) = ReQ(ia), D’
which yields P(iw,7) f=|Q(iw,7) F i.e. wo(r) must

be a positive root of:

F(@,7) = P(io,7) [ - |Q(w,7) [ ©)
Assume that U c R, is the set where w(z) is a
positive root of (9) and for r not in U , w(z) is
not definite. Then for all 7 eU, w(r) satisfies that

F(w,7)=0 (10)
And we define the angle 6 [0, 2], as the solution
of (8),

s$né(z) =-Im Plo.)

Qliw,7)’

M ,COS ( ) Re——~2
7)’

(11)
We can know that w7 =6(r)+2nz,ne N, Hence
we can definethemaps: 7, :U — R, given by

_O()+2n7

eN,,7eU
w(7)

where o(r) is a positive root of (10). Let us
introduce the functions U — R given by
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S(r)=7-7,,neN;,7eU

that are continuous and differentiable in z . Thus
we give the following theorem following the line
of literature [18] and [19].

Theorem 6. Assume that o(z) is a positive root
of (10) defined for reU,UcR,, and a some

'O

7eU,S (r) for some ne N,, then a pair of simple
conjugate pure imaginary roots s=+iw exists at
r =7 which crosses the imaginary axis from left to
right if 5(z)>0 and crosses the imaginary axis

fromright to left if 5(z) <0, here

dRes . ,
a7 lsi(sy} = SIG{F, (7)., 7H

5(7= sign =0y,

Applying Theorem 6 and the Hopf bifurcation
theorem [20] for functional differential equation,
we can conclude the following theorem.

Theorem 7. For system (1), then there is a value
teU , the infected equilibrium E, is localy
asymptotically stable whenz <[0,7), and unstable
whenz staying in some right neighborhood of 7 ,
Furthermore, whenz =7, system (1) undergoes a
Hopf bifurcation to periodic solutions at E, .

4 Numerical Simulation

In this section, we will give numerical simulations
of system (1). To investigate the dynamical
behaviors of the system, we choose the parameters
as those in papers [6, 12, 14, 15]. We obtain the
following numerical results by using the software
Mathematica 7.0.
First, considering 4 = 269,d = 0.05,a=0.5,b=0.3,

r= 0.0001 X, =1000,k = 0.000, p = 0.005,c=0.08 ,
we can draw the graph of S versus z on U in

Fig 1 which show two critical valuesr ,dencte by
7, andz,, andr, ~0.21. By using Theorem 6 and

Theorem 7, we can know that, system (1)
undergoes a Hopf bifurcation to periodic solutions
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atE, whenr:r?. Fig 2 and Fig 3 confirm our

results of Theorem 7. Fig 2 shows that the phase
trgjectories of system (1) with r =0.05 converges
to the positive equilibrium E, = (529379, 3.84493,

58758) and Fig 3 shows that with r = 0.3 stability

of system switch occurs.

To study the effects of the proliferation rate of
CD4+ T-cellsr, we choose a set of parameters as
follow: 4=1000, d =0.1, a=5, b=0.1, xmax = 2000,
k=0.002, p=0.1, c=0.2, 7=0.75. Whenr =1, the
phase trgjectories of system (1) converges to the
immune-absent equilibrium E, =(2500,20,0) as
in Fig 4. When r=0.7 , the phase
trajectories of system converges to the infected

shown

equilibrium E, = (264979, 21.2605, 299578)

shown in Fig 5. When r=0.08 the system
becomes unstable as shown in Fig 6. These results
infer that the change of r infects stability of
system, and it is necessary to consider the full
Logistic proliferation of CD4+ T-cells into HIV

infection moddl.

5 Conclusions

In this paper, we proposed and anayzed, both
analytically and numerically, a HIV infection
model. The results obtained shown that if R, <1,

the uninfected equilibrium E, of the system is

globally asymptotically stable for any r>0 .
Biologically, HIV/AIDS will be eradicated. We
adso presented that if R >1 and R <1, the
is globaly
asymptotically stable. In addition, some conditions
for Hopf bifurcation around infected equilibrium to
occur are obtained by using the time delayed as a
bifurcation parameter. Numerical simulations
confirm our previous analysis and show that it is
necessary to consider the full Logistic proliferation
of CD4+ T-cells into HIV infection model. These
results also prove the complexity of the immune

immune-absent  equilibrium  E,

state of AIDS.
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Fig. 3. Thefigure depicts the infected equilibrium E, unstable.

104 200 300 400 Jo0 G
p 4
o 5 10 15 20

Fig.4. The figure depicts the trgjectories converges to the
immune-absent equilibrium E, = (2500, 20,0) with r =1.
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Fig.5. The figure depicts the trajectories converges to the
equilibrium E, = (264979, 21.2605,299578) with r = 0.7.
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Fig.6. The figure depicts periodic oscillations of the
trajectories emerge with r = 0.08.
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