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Abstract: - In this paper, we study dynamics of a logistical predator-prey system with state feedback control 
and a general functional responses. By using the Poincare map, some conditions for the existence and stability 
of semi-trivial solution and positive periodic solution are obtained. Numerical results are carried out to illustrate 
the feasibility of our main results, and it is shown that a chaotic solution is generated via a cascade of period-
doubling bifurcations, which implies that the presence of pulses makes the dynamic behavior more complex. 
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1 Introduction 
Recently, many authors have investigated the 
predator-prey models concerning the impulsive pest 
control [1-10]. Two important methods for pest 
control are biological control and chemical control.  
Pest controls involve two mathematical ways. One 
is the fixed moment pulse which often is applied to 
describe spraying pesticides or releasing natural 
enemies at fixed time [1, 2, 3, 5, 6, 10]. Another is 
the state pulse control which often is employed to 
represent the pest control when the number of insect 
pests in the field reaches the economic injury level 
[4, 7, 8, and 9]. 
 

In  the fixed moments pulse control, authors often 
assume that the pests grow with Logistic law and 
the predation effects follow different Holling 
functional responses  which made the standard 
Lotka-Volterra system more realistic[2,11,12]. In 
these literatures, pest-eradication periodic solutions 
and the permanence of systems are investigated. In 
the state pulse control, scholars often suppose that 
the pests grow with linear law and the predation 
effects follow bilinear law (such xyβ , x  and y  are 
the numbers of pest and natural enemy, 
respectively.). In these literatures, the existence and 
the stability of positive periodic solution are studied. 
In recently, the state pulse control has been widely 
applied in a microorganism continuous culture 
system such as literatures [13], [14] and [15]. In 
practical ecological systems, the control measures 
( by catching, poisoning the prey or releasing the 
natural enemy, etc.) are taken only when the amount 
of species reaches a threshold value, rather than the 

usual impulsive fixed-time control strategy for the 
former is more economical and beneficial to 
ecological equilibrium than the latter. 
 

As well known, the class of functional responses, 
how much "attention" the predator is pay to the prey, 
is undifferentiated among different predator-prey 
relationship. Pei has given detailed summary in 
literature [2]. But in the realistic situation, there are 
other functional responses such as Beddington-
DeAngelis, Arditi-cakaya, and AkArditi-Ginzburg 
which are modified by predator density [16]. 
Another hand, the Logistic model is applied widely 
which was proposed in 1837 by Holland biologist 
Verhulst [17] in his research on population 
development process. He considered that, for the 
population model, a stable population would 
consequently have a saturation level characteristic: 
this is typically called the carrying capacity K , and 
forms a numerical upper bound on the growth size. 
To incorporate this limiting form he introduced the 
logistic growth equation which is shown later to 
provide an extension to the exponential model. 
Morgan [18] ingeniously used the equation to 
describe herding behaviors of African elephants. 
Krebs [19] also used the logistic equation to fit to 
population data for Peruvian anchovies. The logistic 
function model is also being used to describe 
microbial growth [20]. More analysis of logistic 
growth models were proposed in 2001 by Solaris 
[21]. Some good results are also obtained [22-24]. 
Based on their study, it is more appropriate to add 
the logistic growth term to our models. In this paper, 
we will incorporate a general functional responses 
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and logistic growth law into a prey-predator model 
and formulate a state impulsive control system.  

The paper is arranged like this. In Section 2, a 
logistical predator-prey system with impulsive state 
feedback control and a general of functional 
responses is given. In Section 3, a semi-trivial 
periodic solution obtained and the stability is 
analyzed by making use of the analogue of the 
Poincare criterion. Theoretical results of dynamical 
behaviors are presented, including the transcritical 
and flip bifurcations. In Section 4, numerical results, 
such as phase portraits of period solutions, chaotic 
solutions and bifurcation diagrams, are illustrated by 
computer graphics. 
 
2 Problem Formulation 
 

The model we considered is based on the 
following plausible predator-prey interaction model: 
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where deKr ,,,, δ  are positive constants. The 
variables u  and v  denote the density of prey 
species and that of predator species, respectively. 
We assume that the prey is a dangerous pest, and 
that the predator was introduced to suppress its 
density. 
        It also is assumed that the prey (pest) grows 
logistically to its environmental capacity K , with an 
intrinsic birth rate constant r . The function )(uh is 
the functional response which means that the per 
capita rate at which predator u  is represented by the 
term )(uh . We can also understand it as follow: 

)(uh  represents how much "attention" the predator 
is pay to the prey.  The constant d  is the death rate 
of predator u  and δ  is the density restraint rate. It 
is the assumption that the equation 0)0( =h . Here 
the term of )(uh  indicates that the predator species 
is nonlinear density-dependent. 

It is convenient at the outset to rescue the 
aforementioned system by writing: 
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Then it becomes 
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It follows: where x  and  y  respectively, represent 

densities or biomass of the prey-species and the 

predator-species; 
r
d

=θ  and  rKδλ =  are 

resulting coefficients of the new system (2); )(xf  
and θ  is  the so-called functional response and the 
death rate of the predator in the new system, 
respectively. A direct calculation shows that (0, 0) 
are saddle. 

In (2), we will use the following notations and 
assumptions: 

(A1): ii yx ,  are positive equilibrium points of 
the system in the first quadrant with 0,0 >> ii yx , 

.2,1 ni = . 
 (A2): Set }min{*

ixx = , and A ),( ** yx  is a 
stable equilibrium point. 

(A3) 0)( >xf  for )1,0(∈x  and 
λ/)](1[)(/)1( xfxfxx +−>+   for ),0( *xx∈ . 

Based on the above assumptions, for ),0( *xx∈ . It 
follows that 

0)()()1()( 2 >+−−= xfxfxxxH λ .     (3) 
Now we consider the prey-predator model (2) by 

introducing a state feedback control strategy, rather 
than the usual fixed-time control strategy.  The 
controlled system is modeled by the following 
equations: 
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where the parameters )1,0(∈p , )1,0(∈h   and  
0* >> hx , 0>q , 0≥τ , )()()( txtxtx −=∆ +  , 

)()()( tytyty −=∆ + . The biological significance 
of the other coefficients is the same as in the model 
(2).  When the amount of the prey-species reaches 
the threshold value h  at the time )(hti , controlling 
measures (catching or poisoning the prey species 
and releasing the predator) are taken and the 
amounts of prey-species and predator-species 
abruptly turn to hp)1( −  and τ++ ))(()1( htyq i , 
respectively. In this paper, )0),(()( txtX =  is called 
a semi-trivial solution for .0=y  
 
3 Dynamical properties 
3.1 Poincare map 

To discuss the dynamics of system (4), we 
define three cross-sections to the vector field (4) by         
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1 {( , ) : , 0x y x h y∑ = = ≥  

0 {( , ) : (1 ) , 0}x y x p h y∑ = = − ≥ . 

 
Figure 1: Poincare map of system (3) 

As shown in Fig.1, The curveBB+ , and AD is 

respectively represented by 
(1 )

( )
x xy

f x
−

=  

and 1 ( )f xy
λ

− +
= , where (1 )p h x h− < < , 
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1 ( )( , ), ( ,0)f hC h D x
λ

− +
, where ( ) 1,f x =  

1 1( , ), ((1 ) , ).k k k kB h y B p h y+
− −= = −  Denote 

(1 ){( , ) | 0 , (1 ) }
( )

x xx y y p h x h
f x
−

Π = < < − < <  

and 1
1 ( ){( , ) | 0 , }f xx y y x x h
λ

− +
Π = < < < < . 

It is obvious that 0dx >  and 0, 0dx dy> > , are 
satisfied at the point ( , )x y ∈Π  and at the 
point 1( , )x y ∈Π , at the same time that 

0, 0dx dy> <  are satisfied at the 
point 1( , ) { }x y ∈ Π −Π . The case that 

0, 0dx dy= <  are satisfied at the 

point ( , )x y BB+∈ . Any orbit initialing at the point 

0 0ˆ( ,0)x B B+∈ keeps ( ) 0y t =  and tends to∞ . 
Now, we construct two Poincare maps. 
First, we choose section 1∑  as a Poincare′  

section. In view of the vector field of system (4), the 
trajectory with the initial point 1kB+

−  intersects the 
section 0∑  at the point )( ,k kB h y , where ky is 

determined by 1ky+
− , which can be expressed by 

1( )k ky g y+
−= . At the point kB  , the trajectory of (4) 

is subjected by impulsive effects to jumps to the 
((1 ) , (1 ) )k kB p h q y τ+ − + + , and it can be obtained 

the following Poincare map  P : 

1(1 ) ( ).k ky q g y+ +
−= +                          (5) 

 Secondly, we consider another type of the  
Poincare map. Choose section 0∑ as another 
Poincare section. In view of the vector field of 
system (4), the point kB  jumps to point kB+  on the 
section 1∑  due to the impulsive effects, and the 

trajectory with the initial point kB+  intersects the 
section 0∑  at the point 1 1( , )k kB h y+ +  , where 1ky + is 
determined by 1ky +  , which can be expressed by: 

1 ((1 ) ) ( , , )k ky g q y F q yτ τ+ += + + ≡ .        (6) 
The Poincare map 1P  is constructed as  (6). 
 

3.2     Existence and stability of positive  
periodic solution with the case of 0τ =  

 
Definition 5.  A solution ( ) ( ( ), ( ))z t x t y t=  of 
system (4) is called a semi-trivial solution if one of 
its components is zero and the other is nonzero.  

It is easy to see that the semi-trivial periodic 
solution with 0y =  of system (4) exists if and only 
if 0τ = . Hence we can begin our study by 
setting 0τ = . 

When 0τ = , system (4) has the following 
special form: 

2

(1 ) ( ) ,
,

( ( ) ),

.

x x x f x y
x h

y y f x y y

x px
x h

y qy

θ λ
 = − − 

≠ = − + − 

∆ = −  =∆ = 





           (7) 

 
3.2.1. Semi-trivial periodic solution 
 
      In this section, the semi-trivial solution of 
system (7) will be considered. Let ( ) 0y t = for 

(0, )t∈ ∞ , then from system (7), there have 
 (1 ), ,

, .
x x x x h

x px x h
= − ≠

∆ = − =



                              

(8) 

Setting 0 (0) (1 )x x p h= = −  leads to the 
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solution 0

0

exp( )( )
1 exp( )

c tx t
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for system (8), 

where 

0
(1 )

1 (1 )
p hc

p h
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=
− −

. Denote
0

ln
(1 )

hT
h c

=
−

, then 

there have ( )x T h= and ( ) (1 )x T p h+ = − . This 
means that system (7) has the semi-trivial periodic 
solution as follows: 

0

0

exp( ( 1) )( ) , ( 1) ,
1 exp( ( 1) )

( ) 0.

c t k Tx t k T t kT k N
c t k T

y t

− − = − < ≤ ∈ + − −
 =
                                  (9) 

which is denoted by ( ( ),0)tξ . 
We now discuss the stability of the semi-

trivial periodic solution (9). In order to present our 
results in a straight forward manner, we introduce 
the following technical lemma. 

 
Lemma 3.1 (see[25])  The T-periodic solution 
( , ) ( ( ), ( ))x y t tξ η= of the system 

( , ), ( , ),if ( , ) 0,

( , ), ( , ),if ( , ) 0
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is orbitally asymptotically stable if the Floquet 
multiplier satisfies the condition 1|| 2 <µ , where 
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calculated at the point  ( ( ), ( )),k kt tξ η  

( ( ), ( ))k kP P t tξ η+ +
+ =  and  ( ( ), ( ))k kQ Q t tξ η+ +

+ = . 
Here ( , )x yφ  is a sufficiently smooth function such 
that grad ( , ) 0x yφ ≠ , and ( )kt k N∈ is the time of 
the k-th  jump. 

By means of this lemma, we can derive the 
following result about the existence and the stability 
of the semi-trivial period solution of system (7): 

 
Theorem 3.1 The semi-trivial periodic solution 
( ( ),0)tξ of system (7) is stable if and only if the 
following condition holds: 

( )0

1 (1 )0 exp ( ( )) 1.
(1 )(1 )

Tp hq f t dt
h p

θ

θ ξ
 − −

< < − − − − 
∫

                                                                  (10) 
Proof.  In our case, we have 

( , ) (1 ) ( )P x y x x f x y= − − , 
2( , ) ( ( ) )Q x y y f x y yθ λ= − + − , 

 ( , ) , ( , )x y px x y qyα β= − = , 
( , ) , ( ( ), ( )) ( ,0)x y x h T T hφ ξ η= − = , 

( ( ), ( )) ((1 ) ,0)T T p hξ η+ + = − . 
Then, by virtue of Lemma 3.1, a simple 
calculation gives 
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Moreover, we find 
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Thus, the Floquet multiplier can be calculated 
directly as follows: 

2 1 0
exp ( ( ), ( )) ( ( ), ( )))

T P Qt t t t dt
x y

µ ξ η ξ η
 ∂ ∂

= ∆ + ∂ ∂ 
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( )0

1 (1 )(1 ) exp ( ( )) .
(1 )(1 )

Tp hq f t dt
h p

θ

θ ξ
−

 − −
= +  − − 

∫
     It is easy to see that | | 1µ <   if and only if (10) 
holds. So we complete the proof of Theorem 3.1. 

 
Remark 3.1. It is not able that if we set  
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( )*

0

1 (1 ) exp ( ( )) 1
(1 )(1 )

Tp hq f t dt
h p

θ

θ ξ
 − −

= − − − − 
∫  

(11) 
a bifurcation may occur at *q q=  for 2| | 1.µ =   
As a result, a positive periodic solution may appear 
when *.q q>  The detailed research will be brought 
forth in the next subsection.  
 
3.2.2   Transcritical bifurcation analysis 
 

In this subsection, we deal with the problem of 
the bifurcation of nontrivial periodic solution of 
system (7) near the semi-trivial one ( ( ),0)tξ . 
Consider the Poincare map (5) with 0τ = . Set 

ku y+=  and 0u ≥ to be sufficiently small. In terms 
of the new variable, the map can be written as 

(1 ) ( ) ( , ).u q g u G u q+ ≡                       (12) 
As a result of the uniqueness of solution, we 

have (0) 0g = . Hence, the semi-trivial periodic 
solution discussed in Section 6.1 is associated with 
the fixed point of zero of this map. Due to the 
dependence of solutions on the initial conditions, the 
function ( , )G u q is continuously differentiable with 
respect to both u  and q , then we have 
lim ( ) (0) 0.
t

g u g
→∞

= =  

       In order to discuss the bifurcation of the map 
(12), the following lemma is introduced: 
 
Lemma 3.2. (see [26])  Let F : R ×R → R be a one-
parameter family of 2C  map satisfying 

( ) (0, ) 0, ( ) (0,0) 0,Fi F ii
x

µ ∂
= >

∂
 

2 2

2( ) (0,0) 0, ( ) (0,0) 0.
( )

F Fiii iv
x xµ
∂ ∂

> <
∂ ∂ ∂

 

Then F has two branches of fixed points for μ near 
zero. The first branch is 1( ) 0x µ =  for all .µ  The 
second bifurcating branch 2 ( )x µ  changes its value 
from negative to positive as μ increases through 

0µ =  with 2 (0) 0x = . The fixed points of the first 
branch are stable if 0µ <  and unstable if 0µ > , 
while those of the bifurcating branch have the 
opposite stability. 
 

To apply Lemma 3.2, the values of ( )g u′  and 
( )g u′′ are needed to be calculated at 0u = . 

Denote 0
(1 ) (1 (1 ) )

((1 ) )
p h p hu
f p h

− − −
≡

−
. According to 

the above discussions, for 00 u u≤ ≤ , any trajectory 
through the initial point ((1 ) , )p h u−  always stays 
in Π  as t increases and intersects with the curve 0∑  
at the point ( , ( ))h g u . Thus, orbits in Π are 
concerned, any point in which satisfies 0x >  as 
indicated in Section 5, then system(2) can be 
transformed as follows: 

( , ) .
( , )

dy Q x y
dx P x y

=                                              (13) 

where  
P(x,y) = x(1-x)-f(x)y,

2( , ) ( ( ) ).Q x y y f x y yθ λ= − + −  
Let 0 0( , ( ; , ))x y x x y  be an orbit of system (13), and 
set 0 0 0(1 ) , ,0x p h y u u u= − = ≤ ≤ , then there have 

0

( ; (1 ) , ) ( , ),
0 , (1 ) .
y x p h u y x u

u u p h x h
− ≡

 ≤ ≤ − ≤ ≤
                       (14) 
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Clearly, it can be deduced that 
( , ) 0y x u

u
∂

>
∂
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( ,0)(0) y xg
u

∂′ =
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( , ( ,0))

h
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Q s y s ds
y P s y s−

 ∂
=  ∂ 

∫  

(1 )

( 1 ( ))exp
(1 )

h

p h

f s ds
s s

θ
−

 − +
=  − 

∫  

( )0
exp ( 1 ( ))

T
f s dtθ= − +∫  

( )0

1 (1 ) exp ( ( ))
(1 )(1 )

Tp h f t dt
h p

θ

θ ξ
−

 − −
=  − − 

∫  

(15) 
Furthermore, there have 

(1 )

( ,0)(0) (0) ( ) ,
h

p h

y sg g m s ds
u−

∂′′ ′=
∂∫  
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where ,  
2

2

( , ( ,0))( )
( , ( ,0))

Q s y sm s
y P s y s
 ∂

=  ∂  
 

2

2

( )( ( )
(1 ) ( )

K f s y f s y y
y s s f s y

θ λ ∂ + − + −
=  ∂ − − 

 

2 2

2 ( (1 ) ( )( 1 ( ))
(1 )

s s f s f s
s s

θ λ− − − − +
=

−
 

[(1 ) , ]s p h h∈ − , 
( 1 ( ) 2 )( (1 ) ( ) )K f s y s s f s yθ λ= − + − − −  

Using (3), ( )m s can be written as 

2 2

2 ( )( ) .
(1 )

H sm s
s s
θ−

=
−

 

It is easy to be found that 
( ) 0, [(1 ) , ].m s s p h h< ∈ −                    (16) 

Because the fact (3) is that ( ) 0f s > when 
*(0, ),s x∈  so we have 

(0) 0.g′′ <                                               (17) 
Moreover, we can apply Lemma 3.2 to the single 
parameter map (12) and obtain the following 
theorem: 
 
Theorem 3.2. In concerning with the map (12), a 
transcritical bifurcation occurs when ever *q q= , 
where *q  is given by (11). Therefore, a stable 
positive fixed point appears when the parameter q 
changes through *q from left to right. 
Correspondingly, system (7) has a stable positive 
periodic solution if  ( , )q q q δ∈ +  with 0δ > . 
 
Proof. To prove that system (7) has a stable positive 
periodic solution, we need to check whether the 
following conditions are satisfied.  
(i)  It is easy to verify 

(0, ) 0, (0, ).G q q= ∈ +∞  
(ii)  Using (15), we deduce 

(0, ) (1 ) (0)G q q g
u

∂ ′= +
∂

 

( )0

1 (1 )(1 ) exp ( ( )) .
(1 )(1 )

Tp hq f t dt
h p

θ

θ ξ
−

 − −
= +  − − 

∫
which yields 

*(0, ) 1.G q
u

∂
=

∂
 

This means that *(0, )q  is a fixed point with the 
eigenvalue 1 of the map (12). 
(iii)  By means of (15), we have 

2 *(0, ) (0) 0.G q g
u q

∂ ′= >
∂ ∂

 

(iv)  Finally, inequality (17) implies that 
2 *

*
2

(0, ) (1 ) (0) 0.G q q g
u

∂ ′′= + <
∂

 

By virtue of Lemma 3.2, the proof of Theorem 3.2 
is completed. 
 
3.3. The case of 0τ > . 
 

 
Figure 2: Location of positive periodic solution of 
system (3) 

In this section, we discuss the existence of 
positive periodic solution with 0τ > by using the 
Poincare map (6). As shown in Fig.2, set 0ky = , 
then  

(1 )k ky q y τ τ+ = + + = , ( , ,0) ( ) 0F q gτ τ= >  and 
0 ( , ,0) 0.F q τ− <                         (18) 

Consider the point  
(1 ) (1 (1 ) )((1 ) , )

((1 ) )
p h p hB p h
f p h

+ − − −
−

−
 where 0dy < , 

and 0dx = , the trajectory originated at the initial 
point B+  is tangent to the curve 1∑  and intersects 
the Poincare´ section 36 0.06 0.13q tττ τ= ≈ ≈  at 
the point 0( , )M h m= , and then jumps to the point 

0((1 ) , (1 ) )M p h q m τ+ = − + +  and reaches the 
point 1 0( , )M h m= on 0∑ again. To seek the 

location of the point M + , we suppose that there 
exists a number q  such that  

0
(1 ) (1 (1 ) )(1 ) .

((1 ) )
p h p hq m
f p h

τ − − −
+ + =

−
 

Then the point M coincides with the point 
B+ for q q= . Accordingly the point M + is above 
the B+  for q q>  while under the point 
B+ for q q< , and the trajectory of which is plotted 
with dashed and dotted points, respectively (see 
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Fig.2). However, for any 0q > , the point 1M  is not 
above the point M  in view of the vector field of 
system (2.1). As a result we have that 0 0m m≤ . That 
is, 
(1) If 0 0 ( )m m q q= = , then system (3) has a 

periodic solution MB M+


 
(2) If 0 0 ( )m m q q< ≠ , then  

0 0 0 0( , , ) 0.m F q m m mτ− = − >                 (19) 
It follows from (18) and (19) that the Poincare 

map (6) has a fixed point (0, )ky m∈ , which 
corresponds to a positive periodic solution of system 
(3). The result is summarized in the following 
theorem:  
 
Theorem 3.3.   System (3) always has a positive 
periodic solution under the condition 0τ >  and 

0q > . 
 
3.4. Flip bifurcation 
 

According to Sections 6 and 7, a positive 
periodic solution exists when 0τ = , *q q≥ or 0τ > , 

0q > . In what follows, we suppose that the 
periodic solution with period T passes through the 
points 0((1 ) , (1 ) )E p h q η τ+ − + + and 0( , )E h η  in 
which 0 0mη ≤ holds because of the reason of the 
vector field of system (2) discussed in the preceding 
subsection. 
       As the expression and the period T  of the 
solution is not known, we discuss the stability of 
this positive periodic solution by using Lemma 3.1. 
The difference between this case and that of 
Theorem 3.1 lies in that 

0( ( ), ( )) ( , )T T hξ η η= , 

0( ( ), ( )) ((1 ) , (1 ) )T T p h qξ η η τ+ + = − + + , 
while the others are just the same. Then we have 

1∆ =  

( ) ( )P Q
y x x y x x y y x y

P Q
x y

β φ β φ φ α φ α φ φ

φ φ

+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
+

∂ ∂

 

( 1) (0) 1 ( 1)(1 (1 ) )
(1 ) 1

P q Q p q p h
h h h

+ ++ + −
= = + − −

− −
 

0
0

[(1 ) (1 (1 ) ) ( ( )((1 ) )](1 )
(1 ) (

p h p h f T q q
h h f h

ξ η τ
η

+− − − − + + +
=

− −
. 

Set ( ) ( ( ), ( )) ( ( ), ( )))P QG t t t t t
x y
ξ η ξ η∂ ∂

= +
∂ ∂

, 

then we have 

2 1 0
exp ( ( ), ( )) ( ( ), ( )))

T P Qt t t t dt
x y

µ ξ η ξ η
 ∂ ∂

= ∆ + ∂ ∂ 
∫

0

0

)()1(
)])1)(((())1(1()1[()1(

η
τηξ

hfhh
qTfhphpq

−−
++−−−−

+=
+

• exp ∫
T

dttG
0

)(                                     (20) 

      As mentioned above, the point E+ , 

0((1 ) , (1 ) )E p h q η τ+ = − + + coincides with the 

point
(1 ) (1 (1 ) )((1 ) , )

((1 ) )
p h p hA p h
f p h

− − −
−

−
for 0q q= > , 

then we have 

0
(1 ) (1 (1 ) )(1 )

((1 ) )
p h p hq
f p h

η τ − − −
+ + =

−
, 

that is  
0 0

(1 ) (1 (1 ) ) 1
((1 ) )

p h p hq
f p h

τ
η η

− − −
= − −

−
. 

Hence,  

0
2

0

0

( ( )((1 ) )| (1 )
(1 ) ( )

exp ( ) 0

q q

T

A f T qq
h h f h

G t dt

ξ η τµ
η

+

=

− + +
= +

− −

=∫

 

where (1 ) (1 (1 ) )A p h p h= − − − . 
Thus, this periodic solution is stable since 

2| | 0 1µ = < . 

      For 0 q q< < , the point E+  is under the point 

A and 0
(1 ) (1 (1 ) )(1 )

((1 ) )
p h p hq
f p h

η τ − − −
+ + <

−
holds, 

which results in that 0(1 )1 0(1 ) (1 (1 ) )
((1 ) )

q
p h p h
f p h

η τ+ +
− >

− − −
−

  

In view of 
0

exp( ( ) ) 0
T

G t dt >∫ and  

0(1 ) ( ) 0h h f h η− − > , we have that 

2 0µ > for 0 q q< < . 

 For q q> , the point E+  is above the point A  , 
which results in  

0
(1 ) (1 (1 ) )(1 )

((1 ) )
p h p hq
f p h

η τ − − −
+ + >

−
. Then we 

have that 2 0µ < for q q> . 
If 2| | 1µ <  or q q<  , where 
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( )0
0

(1 ) ( ) exp ( ) 1.
Th h f hq G t dt

A B
η− −

= − −
− ∫

  

0

(1 ) (1 (1 ) ),
( ( )((1 ) ).

A p h p h
B f T qξ η τ+

= − − −

= + +
 

Then the periodic solution is stable. Consequently, 
the results about the stability of this positive period-
1 solution can be summarized as follows: 
 
Theorem 3.4.  For any τ > 0, q > 0 or τ = 0, 

*qq ≥  , system (3) has a positive period-1 solution. 
Furthermore, suppose that equality (20) holds, then 
this period-1 solution is stable. 
 
Remark 3.2.   From the above discussion, we know 
that 2 0µ <  for q q> . So if there exists a q̂ q>  
such that 2 1µ = − , the positive period-1 solution 
loses its stability at ˆq q= and a flip bifurcation may 
occur at ˆq q=  . If a flip bifurcation occurs, there 
exists a stable positive period-2 solution of system 
(3) for ˆq q> , which may also lose its stability when 
q increases. 
 
4.  Numerical simulations and discussion 
 

Our focus so far has been on the dynamic 
analysis of system (4). Now we study how the state 
impulsive perturbation affects the dynamical 
behavior of system (4). To facilitate the 
interpretation of our mathematical results in model 
(4), we proceed to investigate it by numerical 
simulations. Now consider the following example: 

2

2(1 ) ,
1 0.6 ,
22( 0.1 ),

1 0.6

.

xyx x x
x x h

xyy y y
x

x px
x h

y qy τ

 = − − + ≠
 = − + − + 
∆ = − 

=∆ = + 





       (21) 

In numerical simulation, let
2( ) , 2

1 0.6
xf x

x
θ= =

+
. 

0.1λ = . System (21) has a stable positive 
equilibrium point (0.73, 0.19).  Set 0.73h ≤ . In the 
case of 0τ = , system (21) has a stable semi-trivial 
periodic solution and an unstable semi-trivial 
periodic solution. The solution from the initial point 
(0.03, 0.04) of system (21) with 2q = and 0.2h =  
tends to the stable semi-trivial periodic solution 
when t increases (Fig.3 (a)). Note that 2 1µ > is 
always true for any 0q > , and then the periodic 

semi-trivial solution is unstable (Fig.3 (b)). In the 
case of 0.1τ = , Fig.4 (a) and Fig.5 (a) illustrate a 
stable period-1 solution with 4q =  and a stable 
period-2 solution with 17q = , respectively. Fig.4 (b) 
and Fig.5 (b) are time-series of corresponding 
natural enemy y , respectively. 

 
                                       (3-a) 

 
                                          (3-b) 
Figure 3: Dynamical behavior of the system (21) in 
the case of 0τ = with p  = 0.4, h  = 0.6 and the 
initial point (0.03, 0.04). (3-a) the semi-trivial 
periodic solution is stable when q= 1.5. (3-b) The 
semi-trivial periodic solution is unstable when q = 3. 

 
                                       (4-a) 
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                                        (4-b) 
Figure 4: 1−P  periodic solution of system (21) in 
the case of 0τ = with the initial point (0.03, 0.04), 
h  = 0.6, p  = 0.4, q = 4. (4-a) Phase portrait. (4-b) 
Time-series. 

 
                                        ( 5-a ) 

 
                                           ( 5-b ) 

Figure 5: P-2 periodic solution of system (21) in the 
case of  0τ =   with the initial point (0.03, 0.04), h 
= 0.6, p = 0.4, q = 17. (5-a) Phase portrait. (5-b) 
Time-series. 

 
                                          (6-a) 

 
                                          (6-b) 
Figure 6: A strange attractor of system (21) in the 
case of 0τ =  with the initial  point  (0.03, 0.04),       
h  = 0.6, p  = 0.4, q  = 35. (6-a) Phase portrait. (6-b) 
Time-series . 

 
                                            (7-a) 
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                                             (7-b) 
Figure 7: (7-a) Bifurcation diagrams of populations 
y with respect to parameter q with h  = 0.6, p  = 0.4, 
and 0τ = for ∈q (0, 36). (7-b) Bifurcation 
diagrams of populations y with respect to parameter 
τ  with h = 0.6, p  = 0.4, and q  = 36 for τ ∈ (0, 
0.4). 

In numerical simulation, let
2( )

1 0.6
xf x

x
=

+
, 

2θ = , 0.1λ = . System (21) has a stable positive 
equilibrium point (0.73, 0.19). Set 0.73h ≤ . In the 
case of 0τ = , system (21) has a stable semi-trivial 
periodic solution and a unstable semi-trivial periodic 
solution. The solution from the initial point (0.03, 
0.04) of system (21) with 2q =  and 0.2h =  tends 
to the stable semi-trivial periodic solution when t 
increases (Fig.3(a)). Note that 2 1µ > is always true 
for any 0q > , and then the periodic semi-trivial 
solution is unstable (Fig.3(b)). In the case 0.1τ = , 
Fig.4 (a) and Fig.5 (a) illustrate a stable period-1 
solution with 4q = and a stable period-2 solution 
with 17q = , respectively. Fig.4 (b) and Fig.5 (b) 
are time-series of corresponding natural enemy y , 
respectively. 

As q increases, it can be observed that chaotic 
solutions appear. The phase portrait and time-series 
y  of a chaotic solution with 36q =  are shown in 

Fig.6. 
          From Remark 5, we have 

( )*

0

1 (1 ) exp ( ( )) 1
(1 )(1 )

Tp hq f t dt
h p

θ

θ ξ
 − −

= − − − − 
∫  

     0.62≈   
with 0.6h = . If we consider q as a parameter, the 
bifurcation diagram of the periodic solution of 

system (21)with 0τ =  is presented in Fig. 7(a). It is 
seen from the bifurcation diagram that the semi-
trivial periodic solution is stable for 

(0,0.62)q∈ and unstable for (0.62, )q∈ +∞ . A 
positive period-1 solution bifurcates from the semi-
trivial periodic solution at 0.62q ≈ through a 
transcritical bifurcation. A positive period-2 solution 
bifurcates from the positive period-1 solution via a 
flip bifurcation at q q=  . It is seen from the 
bifurcation diagram that the stable positive period-2 
solution of the system may also lose its stability 
when q  increases in Fig.7(a). The period doubling 
bifurcation leads to chaos. On the other hand, if we 
take 36q =  and view τ  as a bifurcation parameter 
in system (21), there is a route from chaos to stable 
periodic solutions via a cascade of reverse period-
doubling bifurcation (see Fig. 7(b)). A positive 
period-4 solution bifurcates from chaos behavior via 
a flip bifurcation at 0.06τ ≈ . A positive period-2 
solution bifurcates from the positive period-4 
solution via a flip bifurcation at 0.13τ ≈ . 

In order to find out the positive periodic 
solution, we transformed the problem into a fixed 
point problem. Theorem 3.2 was proved by using 
the bifurcation theory of dynamical systems. It was 
revealed that the positive periodic solution 
bifurcated from the trivial periodic solution through 
a transcritical bifurcation. As for other relationship 
between two species, analogous problems can be 
treated by using the same technique described 
herein. 
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