
Positive solutions for singular third-order nonhomogeneous
boundary value problems with nonlocal boundary conditions

Ping Kang
Department of Mathematics

Tianjin Polytechnic University
No. 63 Chenglin Road,Hedong District, 300160 Tianjin

People’s Republic of China
jnkp1980@163.com

Abstract: Under various weaker conditions, we establish various results on the existence and nonexistence of
positive solutions for singular third-order nonhomogeneous boundary value problems with nonlocal boundary
conditions. The arguments are based upon the fixed point theorem of cone expansion and compression. Finally,
we give two examples to demonstrate our results.

Key–Words: Positive solutions, Fixed points, Boundary value problems, Nonhomogeneous, Ordinary differential
equations.

1 Introduction
The world is nonlinear in essence. Because nonlinear
phenomena is studied by nonlinear theories and meth-
ods, every field becomes nonlinear and then nonlinear
mechanics, nonlinear optics and nonlinear mathemat-
ics appear. Since the development of physics and ap-
plied mathematics calls for the global and high level
development of the mathematics ability of analyzing
and controlling objective phenomena, nonlinear func-
tional analysis which is one of the most important re-
search fields in modern mathematics is formed by the
continuously accumulation of nonlinear results. Un-
til 1950’s, nonlinear functional analysis has initially
formed a theory system. In recent years, because non-
linear functional analysis has been an important tool
for studying the nonlinear problem in mathematics,
physics, aerospace engineering, biology engineering,
it is greatly significant in the theory and application
to study nonlinear functional analysis and its applica-
tion.

Since the 20th century, the development of non-
linear functional analysis has achieved the great
breakthrough. L. E. J. Brouwer had established the
conception of topological degree for finite dimension-
al space in 1912. Then J. Leray and J. Schauder ex-
tended the conception to completely continuous field
of Banach space in 1934, afterward E. Rothe, M.
A. Krasnosel’skii, P. H. Rabinowitz, H. Amann, and
K. Deimling carried on embedded research on topo-
logical degree and cone theory. Many well known
mathematicians in China, for example, Guo Dajun,
Zhang Gongqing, Chen Wenyuan, Ding Guanggui,

Sun Jingxian etc., had proud works in various fields
of nonlinear functional analysis(See [1-12]).

The method to research nonlinear problems main-
ly has topological degree method, critical point the-
ory, partial order method, lower and upper solution
method, fixed point theory, coincidence degree theo-
ry, monotone iterative technique, topological transver-
sal degree and so on. The main questions to research
are the existence of solution for nonlinear operator e-
quation, uniqueness of solution, multi-solution, struc-
ture of solution, approximate solution, divergent the-
ory of solution, iteration arithmetic, nonlinear oper-
ator theory as well as the application for partial d-
ifferential equation, differential equation, integral e-
quation and differential-integral equation. All these
problems are among the most active domain in ana-
lyzing mathematics at present. Among them, firstly,
singular boundary value problem of nonlinear differ-
ential equations. It has resulted from the applied disci-
plines of nuclear physics, hydromechanics, boundary
layer theory, nonlinear optics and so on. It is an im-
portant research field of differential equations field-
s. Because it plays a very extensive and important
role in the fields of physics, mathematics, aerospace
engineering, biology engineering and so on, it has
received high attention of numerous mathematician-
s. By applying the theories and methods of nonlinear
functional analysis, the numerous famous mathemati-
cians in the world have deeply studied the existence,
uniqueness and multiplicity of solutions of singular
boundary value problems and obtained lots of new re-
sults. However, because there are lots of difficulties
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in studying singular ordinary differential equations,
at present it is still the advance orientation in the s-
tudy of nonlinear analysis. Secondly, nonlocal bound-
ary value problems for ordinary differential equation-
s. The meaning of the nonlocal problems is that the
definite condition of definite problem of ordinary dif-
ferential equations not only depends on the value of
solution in the end of interval, but also depends on
the value of solution in some points of the interior
of interval. Although lots of problems in theory and
application can be reduced to nonlocal boundary val-
ue problems for ordinary differential equations, peo-
ple started to fairly late study the nonlocal problems
for the difficulties of nonlocal problems itself. Kigu-
radze, Lomtatidze(1984), Il’in and Moiseev(1987) be-
gan to discuss the existence of solutions of nonlinear
multi-point boundary value problems for ordinary d-
ifferential equations. Within the following ten years,
the study on nonlocal boundary value problems for
ordinary differential equations has been made great
progress. However, it is not good enough and it is also
a research topic to have a strong interest and maybe
obtain some new significant achievements. Thirdly,
system of nonlinear ordinary differential equations. S-
ince lots of higher order differential-integral equations
and implicit form equations can be reduced to the sys-
tem of differential-integral equations by the appropri-
ate variable substitution, the research of the system
of equations plays a very important role in studying
those equations.

The purpose of this paper is to establish the
existence and nonexistence of positive solutions for
the following singular third-order nonhomogeneous
boundary value problems (BVPs for short ) with non-
local boundary conditions :

u′′′(t) + a(t)f(t, u(t), u′(t)) = 0,

u(0) = g1

(∫ 1
0 u(s)dα(s)

)
,

u′(0) = g2

(∫ 1
0 u

′(s)dβ(s)
)
,

u′(1) = λ,

(1)

where t ∈ (0, 1), λ ∈ (0,∞) is a parameter, a ∈
C((0, 1), [0,+∞)) and may be singular at t = 0
or t = 1; f : [0, 1] × [0,+∞) × [0,+∞) →
[0,+∞), g1, g2 : [0,+∞) → [0,+∞) are contin-
uous;

∫ 1
0 u(s)dα(s), and

∫ 1
0 u

′(s)dβ(s) denote the
Riemann-Stieltjes integrals, α, β are increasing non-
constant functions defined on [0,1] with α(0) =
β(0) = 0. Here, we call a function u∗ a positive solu-
tion of BVP(1) if u∗ satisfies BVP(1) and u∗(t) > 0,
for any t ∈ (0, 1).

In the last years, third-order ordinary differential
equations with a two-point or multi-point boundary
value problem have been studied widely in the liter-

ature(see [1-7] and [10-21]). For example, Guo et
al. in [1] discussed the following nonlinear third-order
three-point boundary value problem:{

u′′′(t) + a(t)f(t, u(t), u′(t)) = 0,
u(0) = u′(0) = 0, u′(1) = αu′(η),

(2)

where t ∈ (0, 1), 0 < η < 1 and 1 < α < 1
η . The

authors established the existence of at least a positive
solution for the above problem when f is superlinear
or sublinear. Zhang et al. in [6] studied the following
third-order eigenvalue problems:{

u′′′(t) = λf(t, u(t), u′(t)),
u(0) = u′(η) = u′′(0) = 0,

(3)

where t ∈ (0, 1), λ > 0 is a parameter and 1
2 ≤ η < 1

is a constant, f : [0, 1] × R × R → R is continuous,
R = (−∞,+∞). By using Leray-Schauder nonlin-
ear alternative, the authors obtain the existence and
uniqueness of nontrivial solution of (1.3) when λ in
some interval.

However, to our knowledge, the corresponding
results for third-order nonhomogeneous boundary val-
ue problems, especially in the case that the BVPs with
nonlocal boundary conditions , are rarely seen (see,
for example, [7-8] and references therein). Sun et
al. in [7] studied the existence and nonexistence of
positive solutions of nonhomogeneous BVPs of third-
order ordinary differential equations. Du et al. in [8]
consider the following third-order nonlocal BVPs:

u′′′(t) = f(t, u(t), u′(t), u′′(t)),
u(0) = 0, u′(0) = 0,

u′(1) =
∫ 1
0 u

′(s)dg(s),

(4)

where t ∈ (0, 1), f : [0, 1]× R× R → R is a contin-
uous function, g : [0, 1] → [0,∞) is a nondecreasing
function with g(0) = 0. Under the resonance condi-
tion g(1) = 1, an existence results is given by using
the coincidence degree theory.

Obviously, what we consider is more differen-
t from those in [1-8]. Firstly, we will consider the
boundary conditions which is nonlocal. Secondly, f
and gi(i = 1, 2) satisfy the limit conditions which are
more extensive than the superlinear and sublinear con-
ditions, and the nonexistence of positive solutions of
BVP (1) is also studied.

The paper is organized as follows. In Section 2,
we present some preliminaries and lemmas that will
be used to prove our main results. In Section 3, var-
ious conditions on the existence and nonexistence of
positive solutions for the BVP (1) are discussed. In
Section 4, we give two examples to demonstrate our
results.
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2 Preliminaries and Lemmas
In this Section, we present some lemmas that will be
used in the proof of our main results.

Throughout this paper, we assume that:
(H0) a ∈ C((0, 1), [0,+∞)) may be singular at t = 0
or t = 1 and a(t) does not vanish identically on any
subinterval of (0, 1) with

∫ 1
0 s(1− s)a(s)ds < +∞;

(H1) f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) and
gi(i = 1, 2) : [0,+∞) → [0,+∞) are continuous.

Lemma 1 Let h ∈ C((0, 1), [0,+∞)) with
∫ 1
0 s(1 −

s)h(s)ds < +∞, and u ∈ C1[0, 1] be the function
from the set {u : u(t) ≥ 0, u′(t) ≥ 0, 0 ≤ t ≤ 1} ,
with

u(t) = g1

(∫ 1
0 u(s)dα(s)

)
+
∫ 1
0 G(t, s)h(s)ds

+ t2

2 λ+
(
t− t2

2

)
g2

(∫ 1
0 u

′(s)dβ(s)
)
,

(5)
then u is the unique solution of the following bound-
ary value problem

u′′′(t) + h(t) = 0, 0 < t < 1,

u(0) = g1

(∫ 1
0 u(s)dα(s)

)
,

u′(0) = g2

(∫ 1
0 u

′(s)dβ(s)
)
,

u′(1) = λ,

(6)

where

G(t, s) =


s(2t−s−t2)

2 , 0 ≤ s ≤ t ≤ 1,

t2(1−s)
2 , 0 ≤ t ≤ s ≤ 1.

(7)

Proof: First suppose that u(t) is a solution of problem
(6). Then we may suppose that

u(t) = −1

2

∫ t

0
(t− s)2h(s)ds+At2 +Bt+C. (8)

By the boundary condition (6), we get

A = 1
2

(
λ− g2

(∫ 1
0 u

′(s)dβ(s)
))

−1
2

(∫ 1
0 (s− 1)h(s)ds

)
,

B = g2

(∫ 1
0 u

′(s)dβ(s)
)
,

C = g1

(∫ 1
0 u(s)dα(s)

)
.

(9)

Substituting (9) into (8), we obtain

u(t) = g2

(∫ 1
0 u

′(s)dβ(s)
)
t+ g1

(∫ 1
0 u(s)dα(s)

)
−1

2

∫ t
0 (t− s)2h(s)ds+ t2

2 λ

− t2

2 g2

(∫ 1
0 u

′(s)dβ(s)
)
− t2

2

∫ 1
0 (s− 1)h(s)ds

= g1

(∫ 1
0 u(s)dα(s)

)
+ tg2

(∫ 1
0 u

′(s)dβ(s)
)

− t2

2 g2

(∫ 1
0 u

′(s)dβ(s)
)
+ t2

2 λ

− t2

2

∫ 1
0 (s− 1)h(s)ds− 1

2

∫ t
0 (t− s)2h(s)ds

= g1

(∫ 1
0 u(s)dα(s)

)
+ (2t−t2)

2 g2

(∫ 1
0 u

′(s)dβ(s)
)

+ t2

2 λ+
∫ 1
0 G(t, s)h(s)ds.

Conversely, directing differentiation of (5), we can ob-
tain (6). This completes our proof. �

From (7), we can prove that G(t, s) have the fol-
lowing properties.

Lemma 2 For all (t, s) ∈ [0, 1]× [0, 1], we have

0 ≤ Gt(t, s) ≤ (1− s)s.

where

Gt(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Lemma 3 For all (t, s) ∈ [1/3, 2/3]× [0, 1], we have

1

18
s(1− s) ≤ G(t, s) ≤ 1

2
(1− s)s,

Gt(t, s) ≥
1

3
(1− s)s.

Proof: For ∀ 1
3 ≤ t ≤ 2

3 ,

Gt(t,s)
Gs(s,s)

= s(1−t)
s(1−s) =

1−t
1−s

≥ 1− t ≥ 1
3 , 0 ≤ s ≤ 1,

Gt(t,s)
Gs(s,s)

= t(1−s)
s(1−s) =

t
s

≥ t ≥ 1
3 , 0 ≤ s ≤ 1,

So,

Gt(t, s) ≥
1

3
Gs(s, s) =

1

3
s(1− s)

for 1
3 ≤ t ≤ 2

3 ,0 ≤ s ≤ 1. �

Lemma 4 In Lemma 1, the solution u(t) of bound-
ary value problem (6) and u′(t) are nonnegative and
satisfy

min
1
3
≤t≤ 2

3

u(t) ≥ 1

9
∥u∥, min

1
3
≤t≤ 2

3

u′(t) ≥ 1

3
∥u′∥.
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Proof: It is obvious that u(t) and u′(t) are nonnega-
tive.
Step 1. We will prove that

min
1
3
≤t≤ 2

3

u(t) ≥ 1

9
∥u∥.

For any t ∈ [0, 1], by (5) and Lemma 3, it follows
that

u(t) = g1

(∫ 1
0 u(s)dα(s)

)
+ (2t−t2)

2 g2

(∫ 1
0 u

′(s)dβ(s)
)

+ t2

2 λ+
∫ 1
0 G(t, s)h(s)ds

≤ g1

(∫ 1
0 u(s)dα(s)

)
+ 1

2g2

(∫ 1
0 u

′(s)dβ(s)
)

+λ
2 + 1

2

∫ 1
0 s(1− s)h(s)ds,

thus

∥u∥ ≤ g1

(∫ 1
0 u(s)dα(s)

)
+ 1

2g2

(∫ 1
0 u

′(s)dβ(s)
)

+λ
2 + 1

2

∫ 1
0 s(1− s)h(s)ds.

On the other hand, (5) and Lemma 3 imply that, for
any t ∈ [13 ,

2
3 ],

u(t) = g1

(∫ 1
0 u(s)dα(s)

)
+
∫ 1
0 G(t, s)h(s)ds

+
(
t− t2

2

)
g2

(∫ 1
0 u

′(s)dβ(s)
)
+ t2

2 λ

≥ g1

(∫ 1
0 u(s)dα(s)

)
+ 5

18g2

(∫ 1
0 u

′(s)dβ(s)
)

+ 1
18λ+ 1

18

∫ 1
0 s(1− s)h(s)ds

≥ 1
9

[
g1

(∫ 1
0 u(s)dα(s)

)
+1

2g2

(∫ 1
0 u

′(s)dβ(s)
)]

+1
9

[
λ
2 + 1

2

∫ 1
0 s(1− s)h(s)ds

]
≥ 1

9∥u∥.

Therefore,

min
1
3
≤t≤ 2

3

u(t) ≥ 1

9
∥u∥.

Step 2. We will prove that

min
1
3
≤t≤ 2

3

u′(t) ≥ 1

3
∥u′∥.

For any t ∈ [0, 1], by (5) and Lemma 3, it follows
that

u′(t) = (1− t) g2

(∫ 1
0 u

′(s)dβ(s)
)

+tλ+
∫ 1
0 Gt(t, s)h(s)ds

≤ g2

(∫ 1
0 u

′(s)dβ(s)
)

+λ+
∫ 1
0 s(1− s)h(s)ds,

thus
∥u′∥ ≤ g2

(∫ 1
0 u

′(s)dβ(s)
)

+λ+
∫ 1
0 s(1− s)h(s)ds.

On the other hand, (5) and Lemma 3 imply that, for
any t ∈ [13 ,

2
3 ],

u′(t) = (1− t) g2

(∫ 1

0
u′(s)dβ(s)

)
+tλ+

∫ 1
0 Gt(t, s)h(s)ds

≥ 1
3g2

(∫ 1
0 u

′(s)dβ(s)
)
+ 1

3λ

+1
3

∫ 1
0 s(1− s)h(s)ds

≥ 1
3∥u

′∥.

Therefore,

min
1
3
≤t≤ 2

3

u′(t) ≥ 1

3
∥u′∥.

This completes our proof. �
We shall discuss the existence of a positive solu-

tion of the BVP(1) by using the following fixed-point
theorem of cone expansion and compression.

Lemma 5 [9] Let K be a cone of the real Banach
space E, Ω1, Ω2 ⊂ E be bounded open sets of E.
θ ∈ Ω1,Ω1 ⊂ Ω2, A : K

∩
(Ω2\Ω1) → K is a

completely continuous mapping such that one of the
following two conditions is satisfied:

1) ∥Au∥ ≤ ∥u∥,∀ u ∈ K ∩ ∂Ω1; ∥Au∥ ≥
∥u∥,∀ u ∈ K ∩ ∂Ω2.

2) ∥Au∥ ≥ ∥u∥,∀ u ∈ K ∩ ∂Ω1; ∥Au∥ ≤
∥u∥,∀ u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2\Ω1).

We shall consider the Banach space C1[0, 1] e-
quipped with the standard norm

∥u∥1 = ∥u∥+ ∥u′∥

where||u|| = max
0≤t≤1

|u(t)|.
Define the cone P by

P =

u ∈ C1[0, 1]
∣∣ u(t) ≥ 0, u′(t) ≥ 0,

min
1
3
≤t≤ 2

3

u(t) ≥ 1
9∥u∥,

min
1
3
≤t≤ 2

3

u′(t) ≥ 1
3∥u

′∥

 .

Define an operator T by

(Tu)(t) = g1

(∫ 1
0 u(s)dα(s)

)
+ t2

2 λ

+
(
t− t2

2

)
g2

(∫ 1
0 u

′(s)dβ(s)
)

+
∫ 1
0 G(t, s)a(s)f(s, u(s), u

′(s))ds.
(10)
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By Lemma 1, it is clear that the existence of a pos-
itive solution of BVP (1) is equivalent to the existence
of a nontrivial fixed point of T .

Lemma 6 Assume that (H0), and (H1) hold. Then
T : P → P is completely continuous.

Proof: Since the proof of the completed continuity is
standard, we need only to prove T (P ) ⊂ P . In fact,
for (x, y) ∈ P, t ∈ J, by (H0), (H1) and (10), it is
obvious that (Tu)(t) and (Tu)′(t) are nonnegative.
Step 1. We will prove that

min
1
3
≤t≤ 2

3

(Tu)(t) ≥ 1

9
∥u∥.

For any t ∈ [0, 1], by (10) and Lemma 3, it fol-
lows that

(Tu)(t) = g1

(∫ 1
0 u(s)dα(s)

)
+
(
t− t2

2

)
g2

(∫ 1
0 u

′(s)dβ(s)
)

+ t2

2 λ+
∫ 1
0 G(t, s)h(s)ds

≤ g1

(∫ 1
0 u(s)dα(s)

)
+1

2g2

(∫ 1
0 u

′(s)dβ(s)
)

+λ
2 + 1

2

∫ 1
0 s(1− s)h(s)ds,

thus

∥u∥ ≤ g1

(∫ 1
0 u(s)dα(s)

)
+ 1

2g2

(∫ 1
0 u

′(s)dβ(s)
)

+
λ

2
+

1

2

∫ 1

0
s(1− s)h(s)ds.

On the other hand, (10) and Lemma 3 imply that, for
any t ∈ [13 ,

2
3 ],

(Tu)(t)

= g1

(∫ 1
0 u(s)dα(s)

)
+ (2t−t2)

2 g2

(∫ 1
0 u

′(s)dβ(s)
)

+ t2

2 λ+
∫ 1
0 G(t, s)h(s)ds

≥ g1

(∫ 1
0 u(s)dα(s)

)
+ 5

18g2

(∫ 1
0 u

′(s)dβ(s)
)

+ 1
18λ+ 1

18

∫ 1
0 s(1− s)h(s)ds

≥ 1
9

[
g1

(∫ 1
0 u(s)dα(s)

)
+ 1

2g2

(∫ 1
0 u

′(s)dβ(s)
)]

+1
9

[
λ
2 + 1

2

∫ 1
0 s(1− s)h(s)ds

]
≥ 1

9∥Tu∥.

Therefore,

min
1
3
≤t≤ 2

3

(Tu)(t) ≥ 1

9
∥Tu∥.

Step 2. We will prove that

min
1
3
≤t≤ 2

3

(Tu)′(t) ≥ 1

3
∥(Tu)′∥.

For any t ∈ [0, 1], by (10) and Lemma 3, it fol-
lows that

(Tu)′(t) = (1− t) g2

(∫ 1
0 u

′(s)dβ(s)
)

+tλ+
∫ 1
0 Gt(t, s)h(s)ds

≤ g2

(∫ 1
0 u

′(s)dβ(s)
)
+ λ+

∫ 1
0 s(1− s)h(s)ds,

thus

∥u′∥ ≤ g2

(∫ 1
0 u

′(s)dβ(s)
)
+λ+

∫ 1
0 s(1− s)h(s)ds.

On the other hand, (10) and Lemma 3 imply that, for
any t ∈ [13 ,

2
3 ],

(Tu)′(t) = (1− t) g2

(∫ 1
0 u

′(s)dβ(s)
)

+tλ+
∫ 1
0 Gt(t, s)h(s)ds

≥ 1
3

[
g2

(∫ 1
0 u

′(s)dβ(s)
)
+ λ+

∫ 1
0 s(1− s)h(s)ds

]
≥ 1

3∥(Tu)
′∥.

Therefore,

min
1
3
≤t≤ 2

3

(Tu)′(t) ≥ 1

3
∥(Tu)′∥.

From the above discussion, we assert that
T (x, y) ∈ P. Therefore, T : P → P is completely
continuous. This completes our proof. �

3 Main results
In the following, for convenience, we denote J =
[0, 1], J0 = [13 ,

2
3 ] and set

fα = lim sup
x+y→α

max
t∈J

f(t, x, y)

x+ y
,

fα = lim inf
x+y→α

min
t∈J0

f(t, x, y)

x+ y
,

gαi = lim sup
x→α

gi(x)

x
,

where α is 0+ or +∞, i = 1, 2.
Throughout this section, we assume that pi, i =

1, 2, 3, 4, are four positive numbers satisfying 1
p1

+
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1
p2

+ 1
p3

+ 1
p4

≤ 1. And

A =

(
3p3
2

∫ 1

0
s(1− s)a(s)ds

)−1

,

B =

(
1

162

∫ 2
3

1
3

s(1− s)a(s)ds

)−1

.

In this section, we are concerned with the exis-
tence and nonexistence of positive solutions of BVP
(1). We obtain the following theorems.

Theorem 7 Assume that (H0) and (H1) hold. In ad-
dition, assume that f, g1, g2 satisfy:

(1) 0 ≤ f0 < A, f∞ > B,

(2) 0 ≤ g01 <
1

p1α(1)
, 0 ≤ g02 <

2

3p2β(1)
.

Then BVP (1) has at least one positive solution
for λ small enough and has no positive solution for λ
large enough.

Proof: Take a sufficiently small positive number ϵ :
0 < ϵ < min{ 1

p1α(1)
, 2
3p2β(1)

} such that g01 <
1

p1α(1)
−

ϵ, g02 <
2

3p2β(1)
− ϵ. Then there exists an 0 < η1 < 1

such that

g1(x) ≤
(

1

p1α(1)
− ϵ

)
(x),

g2(x) ≤
(

2

3p2β(1)
− ϵ

)
(x), 0 < x ≤ η1.

By 0 ≤ f0 < A, we have that there exists η2 > 0
such that

f(t, x, y) ≤ A(x+ y), t ∈ J, x+ y ≤ η2. (11)

Let r1 = min
{
η2,

η1
α(1) ,

η1
β(1)

}
, and Ω1 = {u ∈

P : ∥u∥1 < r1}. Then for any u ∈ ∂Ω1 ∩ P ,

g1

(∫ 1
0 u(s)dα(s)

)
≤
(

1
p1α(1)

− ϵ
) ∫ 1

0 u(s)dα(s)

≤ 1
p1α(1)

α(1)r1 =
r1
p1
,

g2

(∫ 1
0 u

′(s)dβ(s)
)
≤
(

2
3p2β(1)

− ϵ
) ∫ 1

0 u
′(s)dβ(s)

≤ 2
3p2β(1)

β(1)r1 =
2r1
3p2
.

(12)
Therefore, for any u ∈ ∂Ω1 ∩ P , let 0 < λ ≤ 2r1

3p4
, we

have

∥Tu∥+ ∥(Tu)′∥

≤ g1

(∫ 1
0 u(s)dα(s)

)
+ 3

2λ+
3
2g2

(∫ 1
0 u

′(s)dβ(s)
)

+ 3
2

∫ 1
0 s(1− s)a(s)f(s, u(s), u′(s))ds

≤ r1
p1

+ r1
p2

+ 3λ
2 + 3

2

∫ 1
0 s(1− s)a(s)Adsr1

≤ ( 1
p1

+ 1
p2

+ 1
p3

+
1

p4
)r1 ≤ r1,

Consequently,

∥Tu∥1 ≤ ∥u∥1, ∀ u ∈ ∂Ω1 ∩ P. (13)

On the other hand, by f∞ > B, there exists r2 >
r1 such that

f(t, x, y) ≥ B(x+ y), t ∈ J0, x+ y ≥ 1

9
r2. (14)

Let Ω2 = {u ∈ P : ∥u∥1 < r2}. Then for any
u ∈ ∂Ω2 ∩ P , we have

(Tu)(13) = g1

(∫ 1
0 u(s)dα(s)

)
+ 5

18g2

(∫ 1
0 u

′(s)dβ(s)
)
+ 1

18λ

+
∫ 1
0 G(

1
3 , s)a(s)f(s, u(s), u

′(s))ds

≥ 1
18

∫ 2
3
1
3

s(1− s))a(s)f(s, u(s), u′(s))ds

≥ 1
18

∫ 2
3
1
3

s(1− s))a(s)B(u(s) + u′(s))ds

≥ 1
18

∫ 2
3
1
3

s(1− s))a(s)B
1

9
r2ds

≥ 1
162

∫ 2
3
1
3

s(1− s))a(s)Br2ds = r2,

Consequently,

∥Tu∥1 ≥ ∥u∥1, ∀ u ∈ ∂Ω2 ∩ P. (15)

Thus, (13), (15) and Lemma 5 imply T has a fixed
point u∗ ∈ P such that 0 < r1 < ∥u∗∥1 < r2 and
hence u∗ is a positive solution of the BVP (1).

Next, we prove that problem (1) has no posi-
tive solution for λ large enough. Otherwise, there
exist 0 < λ1 < λ2 < · · · < λn < · · · , with
lim
n→∞

λn = +∞, such that for any positive integer n,
the BVP(0 < t < 1)

u′′′(t) + a(t)f(t, u(t), u′(t)) = 0,

u(0) = g1

(∫ 1
0 u(s)dα(s)

)
,

u′(0) = g2

(∫ 1
0 u

′(s)dβ(s)
)
,

u′(1) = λn,

(16)
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has a positive solution un(t). By (10), we have

un(1)

= g1

(∫ 1
0 un(s)dα(s)

)
+ 1

2λn

+ 1
2g2

(∫ 1
0 u

′
n(s)dβ(s)

)
+

∫ 1
0 G(1, s)a(s)f(s, un(s), u

′
n(s))ds

≥ 1
2λn → ∞, (n→ ∞).

(17)

Thus,
∥un∥ → ∞, (n→ ∞).

By f∞ > B, there exists R > 0 such that

f(t, x, y) ≥ B(x+ y), t ∈ J0, x+ y ≥ 1

9
R. (18)

Let n large enough such that ∥un∥ ≥ R. Then

∥un∥1 >
∫ 1
0 G(

1
3 , s)a(s)f(s, un(s), u

′
n(s))ds

≥ B
18

∫ 2
3
1
3

s(1− s))a(s)(un(s) + u′n(s))ds

≥ B
18

∫ 2
3
1
3

s(1− s))a(s)
1

9
∥un∥1ds

≥ B
162

∫ 2
3
1
3

s(1− s))a(s)∥un∥1ds

= ∥un∥1,

which is a contradiction. The proof of Theorem 7 is
completed. �

Similar to the proof of Theorem 7, we can also
prove the following results.

Corollary 8 Assume that (H0) and (H1) hold. In ad-
dition, assume that f, g1, g2 satisfy:

(1) f0 = 0, f∞ = ∞,

(2) g01 = 0, g02 = 0.

Then BVP (1) has at least one positive solution
for λ small enough and has no positive solution for λ
large enough.

Theorem 9 Assume that (H0) and (H1) hold. In ad-
dition, assume that f, g1, g2 satisfy:

(1) f0 > B, 0 ≤ f∞ < A,
(2) 0 ≤ g∞1 < 1

p1α(1)
, 0 ≤ g∞2 < 2

3p2β(1)
.

Then BVP (1) has at least one positive solution
for any λ ∈ (0,∞).

Proof: By f0 > B, there exists R1 > 0, such that

f(t, x, y) ≥ B(x+ y), t ∈ J0, x+ y ≤ R1. (19)

Let Ω3 = {u ∈ P : ∥u∥1 < R1}. Then for any
u ∈ ∂Ω3 ∩ P , we have

(Tu)(13) = g1

(∫ 1
0 u(s)dα(s)

)
+ 1

18λ

+ 5
18g2

(∫ 1
0 u

′(s)dβ(s)
)

+
∫ 1
0 G(

1
3 , s)a(s)f(s, u(s), u

′(s))ds

≥ 1
18

∫ 2
3
1
3

s(1− s))a(s)f(s, u(s), u′(s))ds

≥ B
18

∫ 2
3
1
3

s(1− s))a(s)(u(s) + u′(s))ds

≥ B
18

∫ 2
3
1
3

s(1− s))a(s)
1

9
R1ds

≥ B
162

∫ 2
3
1
3

s(1− s))a(s)R1ds

≥ R1,

Consequently,

∥Tu∥1 ≥ ∥u∥1, ∀ u ∈ ∂Ω3 ∩ P. (20)

Take a sufficiently small positive numberϵ :

0 < ϵ < min{ 1

p1α(1)
,

2

3p2β(1)
}

such that

g∞1 <
1

p1α(1)
− ϵ, g∞2 <

2

3p2β(1)
− ϵ.

This together with 0 ≤ f∞ < A implies that there
exists an C > 0 such that for ∀ x, y ∈ [0,+∞),

f(t, x, y) ≤ A(x+ y) + C, t ∈ J,

g1(x) ≤
(

1
p1α(1)

− ϵ
)
(x) + C,

g2(x) ≤
(

2
3p2β(1)

− ϵ
)
(x) + C.

(21)

Let
R2 > max

{
R1,

(
5C
2 + 3λ

2

+3C
2

∫ 1
0 s(1− s)a(s)ds

)
p4

}
,

and Ω4 = {u ∈ P : ∥u∥1 < R2}. Then for any
u ∈ ∂Ω4 ∩ P ,

g1

(∫ 1
0 u(s)dα(s)

)
≤
(

1
p1α(1)

− ϵ
) ∫ 1

0 u(s)dα(s) + C

≤ 1
p1α(1)

α(1)R2 + C

= R2
p1

+ C,

(22)
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g2

(∫ 1
0 u

′(s)dβ(s)
)

≤
(

2
3p2β(1)

− ϵ
) ∫ 1

0 u
′(s)dβ(s) + C

≤ 2
3p2β(1)

β(1)R2 + C

= 2R2
3p2

+ C.

(22)

Therefore, for any u ∈ ∂Ω4 ∩ P , we have

∥Tu∥+ ∥(Tu)′∥

≤ g1

(∫ 1
0 u(s)dα(s)

)
+3

2g2

(∫ 1
0 u

′(s)dβ(s)
)
+ 3

2λ

+3
2

∫ 1
0 s(1− s)a(s)f(s, u(s), u′(s))ds

≤ R2
p1

+ R2
p2

+ 3λ
2 + 5

2C

+3
2

∫ 1
0 s(1− s)a(s)(AR2 + C)ds

≤ ( 1
p1

+ 1
p2

+ 1
p3

+ 1
p4
)R2 ≤ R2,

Consequently,

∥Tu∥1 ≤ ∥u∥1, ∀ u ∈ ∂Ω4 ∩ P. (23)

Thus, (20), (23) and Lemma 5 imply T has a fixed
point u∗ ∈ P such that 0 < R1 < ∥u∗∥1 < R2 and
hence u∗ is a positive solution of BVP (1). The proof
of Theorem 9 is completed. �

Similar to the proof of Theorem 3.1, we can also
prove the following results.

Corollary 10 Assume that (H0) and (H1) hold. In
addition, assume that f, g1, g2 satisfy:

(1) f0 = ∞, f∞ = 0,

(2) g∞1 = 0, g∞2 = 0.

Then BVP (1) has at least one positive solution
for any λ ∈ (0,∞).

4 Example
Example 11 Consider the following singular third-
order nonhomogeneous boundary value problems:

u′′′(t) + a(t)f(t, u(t), u′(t)) = 0,

u(0) = g1

(∫ 1

0
u(s)dα(s)

)
,

u′(0) = g2

(∫ 1

0
u′(s)dβ(s)

)
,

u′(1) = λ,

(24)

where t ∈ (0, 1), a(t) =
1

t
, α(s) = s, β(s) =

2s, g1(t) = t2, g2(t) = t3, and f(t, x, y) = t(x +
y)2, x, y ≥ 0, 0 ≤ t ≤ 1.

Then BVP (24) has at least one positive solution
for λ small enough and has no positive solution for λ
large enough.

It is easy to check that (H0) and (H1) hold. In ad-
dition, assume that f, g1, g2 satisfy: f0 = 0, f∞ =
∞, and g01 = 0, g02 = 0, By Corollary 8, our conclu-
sion follows.

Example 12 Consider the following singular third-
order nonhomogeneous boundary value problems:

u′′′(t) + a(t)f(t, u(t), u′(t)) = 0,

u(0) = g1

(∫ 1

0
u(s)dα(s)

)
,

u′(0) = g2

(∫ 1

0
u′(s)dβ(s)

)
,

u′(1) = λ,

(25)

where 0 < t < 1, a(t) = 1
1−t , α(s) = s− s2

2 , β(s) =

s, g1(t) = t
1
2 , g2(t) = t

1
3 , and f(t, x, y) = (x +

y)
1
2 + t2(x+ y)

1
3 , x, y ≥ 0, 0 ≤ t ≤ 1.

Then BVP (25) has at least one positive solution
for any λ ∈ (0,∞).

It is easy to check that (H0) and (H1) hold. In addi-
tion, assume that f, g1, g2 satisfy: f0 = ∞, f∞ = 0,
and g∞1 = 0, g∞2 = 0. By Corollary 10, our conclu-
sion follows.
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