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1 Introduction
Cellular neural networks (CNNs) introduced by Chua
and Yang in [1, 2] have attracted considerable atten-
tion due to its potential applications in classification,
parallel computing, associative memory, signal and
image processing, especially in solving some diffi-
cult optimization problems. In such applications, it is
of prime importance to ensure that the designed neu-
ral networks are stable. In practice, due to the finite
speeds of the switching and transmission of signals,
time delays do exist in a working network and thus
should be incorporated into the model equation. Cel-
lular neural networks with delay (DCCNs) introduced
by Roska and Chua in [3], also proved to be impor-
tant in practical applications specially in motion relat-
ed applications, such as classification of pattern , pro-
cessing of moving images objects. Both CNNs and
DCNNs models have been studied by many authors
(see, for example [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15]).

Based on traditional CNNs, Yang and Yang [16,
17] proposed fuzzy cellular neural networks (FC-
NNs), which integrates fuzzy logic into the structure
of cellular neural networks. Unlike CNNs structure,
FCNNs has fuzzy logic between its template input
and/or output besides the sum of product operations.
Studies have shown that FCNNs has its potential in
image processing and pattern recognition. Like the
traditional CNNs, the stability of the system is very
important in the design of the FCNNs. In recent years

some results on stability for FCNNs have been de-
rived(see, for example [16, 17, 18, 19, 20, 21, 22]).
To a large extent, the existing literature on theoreti-
cal studies of DCNNs (or FCNNs) is predominantly
concerned with deterministic differential equation.

However, the literature dealing with the inherent
randomness associated with signal transmission seem-
s to be scarce, such studies are, however, important
for us to understand the dynamical characteristics of
neuron behavior in random environments for two rea-
sons: (i) in real nervous systems and in the implemen-
tation of artificial neural networks, synaptic transmis-
sion is noisy process brought on by random fluctua-
tions from the release of neurotransmitters and proba-
bilistic cause; hence, noise is unavoidable and should
be taken into consideration in modeling. (ii) it has
been realized that a neural network could be stabilized
or destabilized by certain stochastic effects. To date,
the stability analysis of stochastic cellular neural net-
works has been studied by some authors (see, for ex-
ample, [23, 24, 25, 26, 27, 30, 31]).

Dynamical systems are often classified into t-
wo categories of either continuous-time or discrete-
time systems. These two dynamic systems are wide-
ly studied in population models and neural network-
s, yet there is somewhat new category of dynamical
systems, which is neither continuous-time nor pure-
ly discrete-time; these are called dynamical systems
with impulses. A fundamental theory of impulsive d-
ifferential equations has been developed in [28]. For
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instance, in the implementation of neural networks,
the state of the networks is subject to instantaneous
perturbations and experiences abrupt changes at cer-
tain instants, which may be caused by switching phe-
nomenon, frequency change or other sudden noise
that it exhibits impulsive effects [28, 29, 30, 31, 32,
33]. Neural networks are often subject to impulsive
perturbations that in turn affect dynamical behaviors
of the systems. Therefore, it is necessary to consider
both the impulsive effect and delay effect when inves-
tigating the stability of fuzzy cellular neural networks.

Motivated by the above discussion, this paper
aims to develop the global exponential p−stability for
stochastic impulsive fuzzy cellular neural networks
with both time-varying and distributed delays. To the
best of our knowledge, few authors investigated the
stability of stochastic impulsive fuzzy cellular neural
networks with mixed delays. Therefore, it is neces-
sary to take both time delays and impulsive effects in
to account on the dynamical behavior of fuzzy cellular
neural networks.

2 Preliminaries
Consider the impulsive stochastic fuzzy cellular neu-
ral networks with time-varying and distributed delays
as follows.

dxi(t) =
[
−cixi(t) +

∑n
j=1 aijfj(xj(t))

+
∧n
j=1 αijgj(xj(t− τij(t)))

+
∧n
j=1 δij

∫ t
−∞Kij(t− s)

× hj(xj(s))ds+
∨n
j=1 βij

× gj(xj(t− τij(t))) + Ii

+
∨n
j=1 ηij

∫ t
−∞Kij(t− s)

× hj(xj(s))ds] dt+
∑n
j=1

× σij(xj(t), xj(t− τij(t))dωj(t),

t ̸= tk

∆xi(tk) = Jk(xi(t
−
k )), t = tk, k = 1, 2, · · ·

(1)
i = 1, 2, · · · , n. where n is the number of the neu-
rons in the neural networks, ci > 0 represents the
passive decay rates to the state of i-th unit at time
t. fj(·), gj(·), and hj(·) are the activation function.
Ii =

∑n
j=1 bijuj + Ĩi +

∧n
j=1 Tijuj +

∨n
j=1Hijuj .

aij and bij are elements of feedback and feed for-
ward template. αij , δij denote connection weight-
s of delay fuzzy feedback MIN template. βij , ηij
denote connection weights of delay fuzzy feedback
MAX template, Tij and Hij are elements of fuzzy
feed forward MIN template and fuzzy feed forward
MAX template.

∧
and

∨
denote the fuzzy AND and

fuzzy OR operation, respectively. xi, uj and Ĩi de-
note state, input and bias of the ith neurons, respec-
tively. τij(t) represents the transmission delay with
0 ≤ τij(t) ≤ τij(τij is a constant). Kij(·) is the delay
kernel function; ω(t) = (ω1(t), ω2(t), · · · , ωn(t))T is
an n-dimensional Brownian motion defined on a com-
plete probability space (Ω, F, P ) with a natural filtra-
tion {Ft}t≥0(i. e. Ft = σ{ω(s) : 0 ≤ s ≤ t}).
tk is called impulsive moment, and satisfies 0 < t1 <
t2 < · · · , limk→+∞ tk = +∞. and xi(t+k ), xi(t

−
k ) de-

note the left-hand and right-hand limts at tk. Suppose
that system (1) has initial condition with xi(t0 + s) =
ϕi(s), s ≤ 0 for all i ∈ {1, 2, · · · , n}.

Remark 1 If σij(xi(t)) = 0, then system (1) may
reduce to the following model:

dxi(t)
dt = −cixi(t) +

∑n
j=1 aijfj(xj(t))

+
∧n
j=1 αijgj(xj(t− τij(t))) + Ii

+
∧n
j=1 δij

∫ t
−∞Kij(t− s)hj(xj(s))ds

+
∨n
j=1 βijgj(xj(t− τij(t)))

+
∨n
j=1 ηij

∫ t
−∞Kij(t− s)hj(xj(s))ds,

t ̸= tk

∆xi(tk) = Jk(xi(t
−
k )), t = tk, k = 1, 2, · · ·

(2)
Since the solution x(t) = (x1(t), x2(t), · · · ,

xn(t))
T of model (2) is discontinuous at the point

tk , by theory of impulsive differential equations, we
assume that x(tk) = (x1(tk), x2(tk), · · · , xn(tk))T
= (x1(tk + 0), x2(tk + 0), · · · , xn(tk + 0))T . It is
clear that, in general, the derivatives dxi(tk)

dt don’t ex-
ist. On the other hand, we can see from the first e-
quation of model (2) that the limits dxi(tk∓0)

dt exist.
According to the above convention, we assume that
dxi(tk)
dt = dxi(tk+0)

dt .

Remark 2 If σij(xi(t)) = 0, Iik(xi(t)) = 0, then
system (1) may reduce to the following model:

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj(xj(t))

WSEAS TRANSACTIONS on MATHEMATICS Qianhong Zhang, Lihui Yang

ISSN: 1109-2769 491 Issue 12, Volume 10, December 2011



+
n∧
j=1

αijgj(xj(t− τij(t))) + Ii

+
n∧
j=1

δij

∫ t

−∞
Kij(t− s)hj(xj(s))ds

+
n∨
j=1

ηij

∫ t

−∞
Kij(t− s)hj(xj(s))ds

+
n∨
j=1

βijgj(xj(t− τij(t))) (3)

For convenience, we introduce several notations.
x = (x1, x2, · · · , xn)T ∈ Rn denotes a column
vector. ∥x∥ denotes a vector norm defined by
∥x∥ = (

∑n
i=1 |xi|p)1/p. C[X,Y ] denotes the space

of continuous mappings from topological space X to
topological space Y . Denoted by CbF0

[(−∞, 0), Rn]
the family of all bounded F0−measurable,
C[(−∞, 0), Rn]−valued random variables ϕ,
satisfying ∥ϕ∥LP = sup−∞≤θ≤0E∥ϕ(θ)∥ < +∞,
where E(·) denotes the expectation of stochastic
process. The initial condition ϕ ∈ CbF0

[(−∞, 0), Rn].
PC[I,R] = {ψ : I → Rn|ψ(t+) = ψ(t), t ∈
I, ψ(t−) exist for t ∈ (t0,+∞), ψ(t−) = ψ(t) for
all but points tk ∈ (t0,+∞)}, where I ⊂ R is
an interval, ψ(t+) and ψ(t−) denote the left-hand
limit and right-hand limit of the scalar function ψ(t),
respectively.

Throughout this paper, we make the following as-
sumptions:
(A1) fj(·) and gj(·)(j = 1, 2, . . . , n) are globally
Lipschitz continuous, i. e., there exist positive con-
stant µj and νj such that

|fj(x)−fj(y)| ≤ µj |x−y|, |gj(x)−gj(y)| ≤ νj |x−y|,

|hj(x)− hj(y)| ≤ ϑj |x− y|
and fj(0) = gj(0) = hj(0) = 0 for any x, y ∈ R and
j = 1, 2, . . . , n.
(A2) The delay kernel Kij : [0,+∞) → [0,+∞)
is a real-valued non-negative continuous function and
satisfies ∫ +∞

0
eρsKij(s)ds = rij(ρ).

where rij(ρ) is continuous function in [0, θ), θ > 0,
and rij(0) = 1, i, j = 1, 2, · · · , n.
(A3) There exist non-negative number sij , wij such
that

σi(u, v)σ
T
i (u, v) ≤

n∑
j=1

siju
2 +

n∑
j=1

wijv
2

for all u = (u1, u2, · · · , un)T ∈ Rn, v =
(v1, v2, · · · , vn)T ∈ Rn, i = 1, 2, · · · , n.

Definition 1 The equilibrium point x∗ =
(x∗1, x

∗
2, · · · , x∗n)

T of system (1) is said to be
globally exponentially p-stable(p ≥ 2), if there are
constants λ > 0 and M ≥ 1 such that

E(∥x(t)− x∗∥p) ≤ME∥ϕ− x∗∥pe−λ(t−t0)

for any t ≥ 0, where x(t) = (x1(t), x2(t), · · · ,
xn(t))

T is any solution of system (1) with initial val-
ue xi(t0 + s) = ϕi(s) ∈ PC((−∞, 0], R), i =
1, 2, · · · , n.

Definition 2 A real matrix A = (aij)n×n is said to
be an M−matrix if aij ≤ 0(i, j = 1, 2, · · · , n; i ̸= j)
and the diagonal entries aii of A are positive.

Lemma 3 LetQ be an n×nmatrix with non-positive
off-diagonal elements, then Q is an M -matrix if and
only if one of the following conditions holds:
(i) There exists a vector ξ > 0 such that ξTQ > 0;
(ii) There exists a vector ξ > 0 such that Qξ > 0.

Lemma 4 [16] Suppose x and y are two states of sys-
tem (1), then we have∣∣∣∣∣∣

n∧
j=1

αijgj(xj) −
n∧
j=1

αijgj(yj)

∣∣∣∣∣∣
≤

n∑
j=1

|αij ||gj(xj)− gj(yj)| (4)

and∣∣∣∣∣∣
n∨
j=1

βijgj(xj) −
n∨
j=1

βijgj(yj)

∣∣∣∣∣∣
≤

n∑
j=1

|βij ||gj(xj)− gj(yj)| (5)

Lemma 5 If H(x) ∈ C0(Rn, Rn) satisfies the fol-
lowing conditions:
(i) H(x) is injective on Rn;
(ii) ∥H(x)∥ → +∞ as n→ +∞,
then H(x) is homeomorphism of Rn onto itself.

Lemma 6 Let a, b ≥ 0, p ≥ i > 0, then

ap−ib ≤ p− i

p
ap +

i

p
bp.

3 Global exponential p−stability
In this section, we will discuss global exponential
p−stability of impulsive stochastic fuzzy cellular neu-
ral networks with time-varying delays and distributed
delays.
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Theorem 7 Assume that (A1) − (A3) hold, if there
exist a positive constant p ≥ 2 such that −(Q+ L) is
an M−matrix ,where

Q = (qij)n×n,

qij = |aij |µj + (p− 1)sij , i ̸= j,

qii = −pci + (p− 1)

 n∑
j=1

(|aij |µj + (|αij |

+|βij |)νj + (|δij |+ |ηij |)ϑj)

+
p− 2

2

n∑
j=1

(sij + wij)


+|aii|µi + (p− 1)sii,

and

L = (lij)n×n,

lij = (|αij |+ |βij |)νj + (p− 1)wij

+(|δij |+ |ηij |)ϑj

Then system (3) has a unique equilibrium point x∗ =
(x∗1, x

∗
2, · · · , x∗n)T .

Proof: Let H(x) = (H1(x),H2(x), · · · ,Hn(x))
T ,

where

Hi(x) = −cixi +
n∑
j=1

aijfj(xj) +
n∧
j=1

αijgj(xj)

+
n∨
j=1

βijgj(xj) +
n∧
j=1

δijhj(xj)

+
n∨
j=1

ηijhj(xj) + Ii, i = 1, 2, · · · , n.

In the following we will prove H(x) is a homeomor-
phism of Rn onto itself.

First, we prove that H(x) is an injective map on
Rn. In fact, if there exist x = (x1, x2, · · · , xn)T ∈ Rn

and y = (y1, y2, · · · , yn)T ∈ Rn, x ̸= y, such that
H(x) = H(y), then

cixi − ciyi

=
n∑
j=1

aij(fj(xj)− fj(yj)) +
n∧
j=1

αijgj(xj)

−
n∧
j=1

αijgj(yj) +
n∨
j=1

βijgj(xj)−
n∨
j=1

βijgj(yj)

+
n∧
j=1

δijhj(xj)−
n∧
j=1

δijhj(yj)

+
n∨
j=1

ηijhj(xj)−
n∨
j=1

ηijhj(yj) (6)

Multiply both side of (6) by |xi − yi|p−1, it follows
from assumptions (A1), Lemma 5 and Lemma 6 that

(pci − (p− 1)
n∑
j=1

[|aij |µj + (|αij |+ |βij |)νj

+ (|δij |+ |ηij |)ϑj ]) |xi − yi|p

≤
n∑
j=1

(|aij |µj + (|αij |+ |βij |)νj

+(|δij |+ |ηij |)ϑj) |xj − yj |p (7)

Let Υ = (ζij)n×n, where

ζii = pci − (p− 1)
n∑
j=1

(|aij |µj + (|αij |+ |βij |)νj

+(|δij |+ |ηij |)ϑj)− |aii|µi
−(|αij |+ |βij |)νi − (|δii|+ |ηii|)ϑi

ζij = −|aij |µj − (|αij |+ |βij |)νj
−(|δij |+ |ηij |)ϑj , i ̸= j, i, j = 1, 2, · · · , n

Then (7) transforms into the following inequality

Υ(|x1 − y1|p, |x2 − y2|p, · · · , |xn − yn|p)T ≤ 0 (8)

Set −(Q+L) = (κij)n×n, noting that sij > 0, wij >
0, we have

κij ≤ ζij , i, j = 1, 2, · · · , n.

Since −(Q + L) is an M−matrix, Hence Υ is also
an M−matrix. It follow from (8) that xi = yi, i =
1, 2, · · · , n. which is a contradiction. So H(x) is an
injective on Rn.

Next we prove that ∥H(x)∥ → +∞ as n→ +∞.
Since Υ is anM−matrix. From Lemma 3, there exists
a positive vector ξ = (ξ1, ξ2, · · · , ξn)T ∈ Rn such that

ξi

pci − (p− 1)
n∑
j=1

[|aij |µj + (|αij |+ |βij |)νj

+(|δij |+ |ηij |)ϑj ])−
n∑
j=1

ξj [|aji|µi

+(|αji|+ |βji|)νi + (|δji|+ |ηji|)ϑi] > 0

for i = 1, 2, · · · , n.We can choose a small ϱ > 0 such
that

ξi

pci − (p− 1)
n∑
j=1

[|aij |µj + (|αij |+ |βij |)νj

+(|δij |+ |ηij |)ϑj ])−
n∑
j=1

ξj [|aji|µi

+(|αji|+ |βji|)νi + (|δji|+ |ηji|)ϑi]
≥ ϱ > 0 (9)
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for i = 1, 2, · · · , n. Let H̃(x) =

(H̃1(x), H̃2(x), · · · , H̃n(x))
T , where

H̃i(x) = −cixi +
n∑
j=1

aij(fj(xj)− fj(0))

+
n∧
j=1

αijgj(xj)−
n∧
j=1

αijgj(0)

+
n∨
j=1

βijgj(xj)−
n∨
j=1

βijgj(0)

+
n∧
j=1

δijhj(xj)−
n∧
j=1

δijhj(0)

+
n∨
j=1

ηijhj(xj)−
n∨
j=1

ηijhj(0) (10)

From assumptions (A1) and Lemma 6, we can get∑n
i=1 pξi|xi|p−1sgn(xi)H̃i(x)

≤
n∑
i=1

ξi
−pci + (p− 1)

n∑
j=1

(|aij |µj

+(|αij |+ |βij |)νj + (|δij |+ |ηij |)ϑj))

+
n∑
j=1

ξj(|aji|µi + (|αji|+ |βji|)νi

+(|δji|+ |ηji|)ϑi)] |xi|p ≤ −ϱ∥x∥p

Hence

ϱ∥x∥p ≤
n∑
i=1

2ξi|xi|p−1|H̃i(x)|

≤ p max
1≤i≤n

{ξi}
n∑
i=1

|xi|p−1|H̃i(x)|

≤ p max
1≤i≤n

{ξi}∥xi∥p−1∥H̃i(x)∥

That is
ϱ∥x∥ ≤ p max

1≤i≤n
{ξi}∥H̃i(x)∥

Therefore ∥H̃(x)∥ → +∞ as ∥x∥ → +∞, which
directly implies that ∥H(x)∥ → +∞ as ∥x∥ → +∞.

By Lemma 5, we know thatH(x) is a homeomor-
phism on Rn, hence H(x) = 0 has a unique equilibri-
um point x∗ = (x∗1, x

∗
2, · · · , x∗n)T ∈ Rn. i. e., Model

(3) has a unique equilibrium point x∗. ⊓⊔

Theorem 8 Assume that all conditions of Theorem 7
hold. Furthermore, suppose that
(i) σij(x∗j , x

∗
j ) = 0, i, j = 1, 2, · · · , n;

(ii) Jk(xi(tk)) = −γik(xi(t−k ) − x∗i ), 0 < γik <
2, i = 1, 2, · · · , n; k = 1, 2, · · · .

Then x∗ = (x∗1, x
∗
2, · · · , x∗n)T is a unique equilib-

rium of system (1), which is globally exponentially
p−stable.

Proof: By virtue of Theorem 7, system (3) has a u-
nique equilibrium point x∗. From conditions (i) and
(ii), we know that x∗ is also a unique equilibrium point
of model (1).

Set yi(t) = xi(t)− x∗i , σ̃ij(yj(t)) = σij(yj(t) +
x∗j )−σij(x∗j ), then the first equation of system (1) can
be transformed into the following equation

dyi(t)

= [−(ci(yi(t) + x∗i )− cix
∗
i )

+
n∑
j=1

aij(fj(yj(t) + x∗j )− fj(x
∗
j ))

+

 n∧
j=1

αijgj(yj(t− τij(t)) + x∗j )

−
n∧
j=1

αijgj(x
∗
j )ds


+

 n∨
j=1

βijgj(yj(t− τij(t)) + x∗j )

−
n∨
j=1

βijgj(x
∗
j )


+

 n∧
j=1

δij

∫ t

−∞
Kij(t− s)hj(yj(s) + x∗j )ds

−
n∧
j=1

δij

∫ t

−∞
Kij(t− s)hj(x

∗
j )ds


+

 n∨
j=1

ηij

∫ t

−∞
Kij(t− s)hj(yj(s) + x∗j )ds

−
n∨
j=1

ηij

∫ t

−∞
Kij(t− s)hj(x

∗
j )ds

 dt
+

n∑
j=1

σ̃ij(yj(t), yj(t− τij(t)))dωj(t),

t ̸= tk, i = 1, 2, · · · , n; k = 1, 2, · · · (11)

Since −(Q + L) is an M -matrix, there exists ξ =
(ξ1, ξ2, · · · , ξn)T > 0 such that 0 < −(Q + L)ξ, that
is

0 <

pci − (p− 1)

 n∑
j=1

|aij |µj +
n∑
j=1

(|αij |+ |βij |)νj
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+
n∑
j=1

(|δij |+ |ηij |)ϑj +
p− 2

2

n∑
j=1

(sij + wij)

 ξi
−

n∑
j=1

[(|aij |µj + (p− 1)sij) + (|αij |+ |βij |)νj

+ (p− 1)wij + (|δij |+ |ηij |)ϑj ] ξj , i = 1, 2, · · · , n.

We can choose a small positive number ε > 0 such
that, for i = 1, 2, · · · , n

0 <

pci − ε− (p− 1)

 n∑
j=1

|aij |µj

+
n∑
j=1

(|αij |+ |βij |)νj +
n∑
j=1

(|δij |+ |ηij |)ϑj

+
p− 2

2

n∑
j=1

(sij + wij)

 ξi
−

n∑
j=1

[(|aij |µj + (p− 1)sij)

+eετ ((|αij |+ |βij |)νj + (p− 1)wij)

+(|δij |+ |ηij |)ϑjrij(ε)] ξj (12)

Let

ui(t) = eε(t−t0)|yi(t)|p, p ≥ 2, i = 1, 2, · · · , n.

By the Ito differential formula, the stochastic deriva-
tive of ui(t) along (11) can be obtained as follows:

L ui(t)

= εeε(t−t0)|yi(t)|p

+peε(t−t0)|yi(t)|p−1sgn(yi(t))
×{[−ci(yi(t) + x∗i )− cix

∗
i

+
n∑
j=1

aij(fj(yj(t) + x∗j )− fj(x
∗
j ))

+

 n∧
j=1

αijgj(yj(t− τij(t)) + x∗j )

−
n∧
j=1

αijgj(x
∗
j )


+

 n∨
j=1

βjigj(yj(t− τij(t)) + x∗j )

−
n∨
j=1

βjigj(x
∗
j )


+

 n∧
j=1

δij

∫ t

−∞
Kij(t− s)hj(yj(s) + x∗j )ds

−
n∧
j=1

δij

∫ t

−∞
Kij(t− s)hj(x

∗
j )ds


+

 n∨
j=1

ηij

∫ t

−∞
Kij(t− s)hj(yj(s) + x∗j )ds

−
n∨
j=1

ηij

∫ t

−∞
Kij(t− s)hj(x

∗
j )ds


+eε(t−t0)σ̃iσ̃i

T

for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · .
Applying assumptions (A1), (A3) and Lemma 4,

we can get

L ui(t) (13)

≤ εeε(t−t0)|yi(t)|p

+peε(t−t0)|yi(t)|p−1sgn(yi(t)) [−ci|yi(t)|

+
n∑
j=1

|aij |µj |yj(t)|

+
n∑
j=1

(|αij |+ |βij |)νj |yj(t− τij(t))|+ ai

×
n∑
j=1

(|δij |+ |ηij |)
∫ t

−∞
Kij(t− s)|yj(s)|ϑjds


+
1

2
p(p− 1)eε(t−t0)|yi(t)|p−2

×

 n∑
j=1

sijy
2
j (t) +

n∑
j=1

wijy
2
j (t− τij(t))

 (14)

By applying Lemma 6, it follows that

L ui(t) ≤ εui(t)− pciui(t)

+

(p− 1)
n∑
j=1

|aij |µjui(t) +
n∑
j=1

|aij |µjuj

+(p− 1)
n∑
j=1

(|αij |+ |βij |)νjui(t)

+
n∑
j=1

(|αij |+ |βij |)νjeετijuj(t− τij(t))

+(p− 1)
n∑
j=1

(|δij |+ |ηij |)ϑjui(t)

+
n∑
j=1

(|δij |+ |ηij |)ϑj

×
∫ t

−∞
eε(t−s)Kij(t− s)uj(s)ds

]
+
1

2
(p− 1)(p− 2)

n∑
j=1

sijui(t)
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+(p− 1)
n∑
j=1

sijuj(t)

+
1

2
(p− 1)(p− 2)

n∑
j=1

wijui(t)

+(p− 1)
n∑
j=1

wije
ετijuj(t− τij(t))

≤


−pci + ε+ (p− 1)

 n∑
j=1

|aij |µj

+
n∑
j=1

(|αij |+ |βij |)νj +
n∑
j=1

(|δij |+ |ηij |)ϑj

+
p− 2

2

n∑
j=1

(sij + wij)

ui(t)
+

n∑
j=1

(|aij |µj + (p− 1)sij)uj(t)

+eετ
n∑
j=1

((|αij |+ |βij |)νj

+(p− 1)wij)uj(t− τij(t))

+
n∑
j=1

(|δij |+ |ηij |)ϑj

×
∫ t

−∞
eε(t−s)Kij(t− s)uj(s)ds

}
for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · .
Furthermore, we have

D+ (Eui(t))

≤


−pci + ε+ (p− 1)

 n∑
j=1

|aij |µj

+
n∑
j=1

(|αij |+ |βij |)νj +
n∑
j=1

(|δij |+ |ηij |)ϑj

+
p− 2

2

n∑
j=1

(sij + wij)

Eui(t)
+

n∑
j=1

(|aij |µj + (p− 1)sij)Euj(t)

+eετ
n∑
j=1

((|αij |+ |βij |)νj

+(p− 1)wij)Euj(t− τij(t))

+
n∑
j=1

(|δij |+ |ηij |)ϑj

×
∫ t

−∞
eε(t−s)Kij(t− s)Euj(s)ds

}
(15)

Set

h0 =
∥ϕ− x∗∥pLp

min
1≤i≤n

{ξi}
.

then s ∈ (−∞, t0], we have

Eui(s) = eε(s−t0)E|yi(s)|p ≤ E|yi(s)|p

= E|ϕi(s− t0)− x∗i |p ≤ ∥ϕ− x∗∥pL2

≤ ξih0. (16)

In the following, we will use the mathematical induc-
tion to prove that, for i = 1, 2, · · · , n; k = 1, 2, · · · ,

Eui(t) ≤ ξih0, tk−1 ≤ t < tk. (17)

When k = 1, let us prove that

Eui(t) ≤ ξih0, t0 ≤ t < t1, i = 1, 2, · · · , n. (18)

In fact, if (17) is not true, then there exist some i0
and t∗ ∈ [t0, t1) such that, for t ∈ (−∞, t∗), j =
1, 2, · · · , n.

Eui0(t
∗) = ξi0h0, D

+Exi0(t
∗) ≥ 0, Euj(t) ≤ ξjh0.

(19)
From (14) and (18), we can get

D+ (Eui0(t
∗))

≤


−pci0 + ε+ (p− 1)

 n∑
j=1

|ai0j |µj

+
n∑
j=1

(|αi0j |+ |βi0j |)νj

+
n∑
j=1

(|δij |+ |ηij |)ϑj

+
p− 2

2

n∑
j=1

(si0j + wi0j)

 ξ0
+

n∑
j=1

[(|ai0j |µj + (p− 1)si0j)

+eετ ((|αi0j |+ |βi0j |)νj + (p− 1)wi0j)

+(|δi0j |+ |ηij |)ϑjri0j(ε)] ξj}h0 (20)

It follows from (12) and (19) that

D+(Eui0(t
∗)) < 0,

which is a contradiction. So (17) is true.
Suppose that the inequalities, for i = 1, 2, · · · , n,

Eui(t) ≤ ξih0, tk−1 ≤ t < tk, k = 1, 2, · · · , (21)
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hold for k = 1, 2, · · · ,m. From condition (ii) of this
theorem, we have

|xi(tk)− x∗i | = |xi(t−k ) + Jk(xi(t
−
k ))− x∗i |

= |1− γik||xi(t−k )− x∗i |
≤ |xi(t−k )− x∗i |

for i = 1, 2, · · · , n; k = 1, 2, · · · . Therefore

ui(tk) ≤ ui(t
−
k ), i = 1, 2, · · · , n; k = 1, 2, · · · .

Furthermore, we can get

Eui(tk) ≤ Eui(t
−
k ), i = 1, 2, · · · , n; k = 1, 2, · · · .

(22)
It follows from (20) and (21) that

Eui(tm) ≤ Eui(t
−
m) < ξih0, i = 1, 2, · · · , n. (23)

This, together with both (15), (20) and (22), leads to

Eui(t) ≤ ξih0, t ∈ (−∞, tm], i = 1, 2, · · · , n.
(24)

Similar to the proof of (16), we can prove that

Eui(t) ≤ ξih0, t ∈ [tm, tm+1), i = 1, 2, · · · , n.
(25)

By mathematical induction, we can conclude that (16)
holds. Hence

E|xi(t)−x∗i |p ≤ ξih0e
−ε(t−t0), t ≥ t0, i = 1, 2, · · · , n.

So E∥x(t) − x∗∥p ≤ M∥ϕ − x∗∥pLpe−ε(t−t0), t ≥
t0. This means that the unique equilibrium point x∗
of model (1) is globally exponentially p−stable. The
proof is completed. ⊓⊔

Remark 3 In Theorem 8, if we don’t consider fuzzy
AND and OR operation, it becomes traditional cellu-
lar neural networks. The results in [30] are the corol-
lary of theorem 2. Therefore the results of this paper
extend the previous known publication.

Remark 4 In this paper, we don’t assume that acti-
vation function is differentiable, bounded and mono-
tonically increasing. Clearly, these functions are more
general. For example, the Gaussian and inverse Gaus-
sian functions have been used in the circuit designs
and applications of cellular neural networks.

4 An example
In this section, we give an example to illustrate effec-
tiveness of our results.

Example 4.1 Consider the following impulsive s-
tochastic fuzzy neural networks with time-varying de-
lays and distributed delays

d x1(t)
= [−12x1(t) + 0.2f1(x1(t)) + 0.6f2(x2(t))

+
∧2
j=1 α1jgj(t− τ1j(t)) + I1

+
∨2
j=1 β1jgj(t− τ1j(t))

+
∧2
j=1 δ1j

∫ t
−∞K1j(t− s)hj(xj(s))ds

+
∨2
j=1 η1j

∫ t
−∞K1j(t− s)hj(xj(s))ds

+
∧2
j=1 T1juj +

∨2
j=1H1juj

]
dt

+σ11(x1(t), x1(t− τ11(t)))dω1

+σ12(x2(t), x2(t− τ12(t)))dω2, t ̸= tk

d x2(t)
= [−16x2(t) + 0.3f2(x1(t)) + 0.4f2(x2(t))

+
∧2
j=1 α2jgj(xj(t− τij(t))) + I2

+
∨2
j=1 β2jgj(xj(t− τij(t)))

+
∧2
j=1 δ2j

∫ t
−∞K2j(t− s)hj(xj(s))ds

+
∨2
j=1 η2j

∫ t
−∞K2j(t− s)hj(xj(s))ds

+
∧2
j=1 T2juj +

∨2
j=1H2juj

]
dt

+σ21(x1(t), x1(t− τ21(t)))dω1

+σ22(x2(t), x2(t− τ22(t)))dω2, t ̸= tk

∆ x1(tk)) = −(1 + 0.2 sin(1 + k2))x1(t
−
k )

∆ x2(tk)) = −(1 + 0.3 sin(1 + k))x2(t
−
k )

(26)
where t0 = 0, tk = tk−1 + 0.2k, k = 1, 2, · · · , Ii =∧2
j=1 Tijuj +

∨2
j=1Hijuj + Ĩi(i = 1, 2), and

α =

(
1
2 −1

2
1
2

1
2

)
, β =

(
1
4

1
4

−1
4

1
4

)
,

δ =

(
1
3 −1

3
1
3

1
3

)
, η =

(
1
4 −1

4
1
4

1
4

)

fi(x) = gi(x) = hi(x) = −|x|, i = 1, 2, Ĩ1 = Ĩ2 =
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4, u1 = u2 = 1, τij(t) = 0.3| sin t| + 0.1,Kij(t) =
te−t(i, j = 1, 2) and the matrices T = (Tij)2×2,H =
(Hij)2×2 are identity matrices. Clearly fi, gi, hi are
unbounded and Lipschitz continuous with the Lips-
chitz constants µi = νi = ϑi = 1.

Obviously, model (26) satisfies assumptions
(A1)− (A2).

Set

σ11(x, y) = 0.1x+ 0.3y, σ12(x, y) = 0.2x+ 0.1y,
σ21(x, y) = 0.1x+ 0.2y, σ22(x, y) = 0.2x+ 0.3y.

It can be easily checked that the assumption (A3) is
satisfied with

s11 = 0.06, s12 = 0.09, s21 = 0.09, s22 = 0.1,

w11 = 0.08, w12 = 0.12, w21 = 0.1, w22 = 0.15.

Taking p = 3. It is easy to compute

Q =

(
−28.571 0.78
0.48 −43.823

)
,

L =

(
1.493 1.573
1.533 1.633

)
and

−(Q+ L) =

(
27.078 −2.353
−2.013 42.19

)

is an M−matrix. Clearly, all conditions of Theorem 7
are satisfied. Thus model (26) has a unique equilibri-
um point x∗ which is globally exponentially 3-stable.

5 Conclusion
In this paper, the problem on stability analysis has
been investigated for a class of impulsive stochastic
fuzzy cellular neural networks with both time-varying
delays and infinite distributed delays. A sufficien-
t condition to ensure the existence, uniqueness, and
exponential p-stability of equilibrium point for the ad-
dressed neural network has been obtained by employ-
ing a combination of the M-matrix theory and stochas-
tic analysis technique. The proposed method has been
shown to be simple and effective for analyzing the sta-
bility of impulsive or stochastic fuzzy cellular neural
networks with variable and/or distributed delays. The
obtained criteria can be applied to design globally ex-
ponential p−stable fuzzy cellular neural networks.
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