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1 Introduction
Throughout this paper, we always assume that H is
a real Hilbert space with inner product ⟨·, ·⟩ and nor-
m ∥ · ∥. Let C be a nonempty closed convex subset
of H . Recall that a mapping T from C into itself is
nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

The set of fixed points of T is denoted by F (T ), that
is, F (T ) = {x ∈ D(T ) : Tx = x}; If C ⊂ H
is nonempty, bounded, closed and convex and T is
a nonexpansive self-mapping on C, then F (T ) is
nonempty.

Let A : C → C be an operator, the variational
inequality problem is to find x∗ ∈ C such that

V I : ⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C. (1)

The set of solutions of (1) is denoted by V I(C,A).
Multiple iterative schemes have been proposed to

approximating the fixed point of an operator, which
also is a solution of the variational inequality.

In 1953, Mann [1] proposed the following itera-
tive scheme:

xn+1 = αnxn + (1− αn)Txn, (2)

where x0 ∈ C is an initial guess arbitrarily. If
αn ∈ [0, 1] satisfying

∑∞
n=0 αn(1 − αn) = ∞, then

the sequence {xn} generated by (2) converges weakly
to a fixed point of T .

In 2000, Moudafi [3] introduced the viscosity ap-
proximation method for nonexpansive mappings. Let

f be a contraction on H , starting with an arbitrary ini-
tial x0 ∈ H , define a sequence {xn} recursively by

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (3)

where {αn} is a sequence in (0, 1). Xu [4] proved
that under certain appropriate conditions on {αn}, the
sequence {xn} generated by (3) strongly converges to
the unique solution x∗ ∈ C of the variational inequal-
ity

⟨(I − f)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ).

In 2001, Yamada [5] introduced the following hy-
brid iterative method:

xn+1 = Txn − µλnF (Txn), n ≥ 0, (4)

where F is a k-Lipschitzian and η-strongly monotone
operator with k > 0, η > 0, 0 < µ < 2η/k2, and then
he proved that if {λn} satisfies appropriate conditions,
the sequence {xn} generated by (4) converges strong-
ly to the unique solution x̃ ∈ F (T ) of the variational
inequality

⟨Fx̃, x− x̃⟩ ≥ 0,∀x ∈ F (T ).

In 2006, Marino and Xu [6] introduced the gener-
al iterative algorithm

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (5)

where T is a self-nonexpansive mapping on H , f is a
contraction of H into itself with coefficient ρ ∈ (0, 1)
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satisfies certain condition, and A is a strongly positive
bounded linear operator on H . He proved that {xn}
generated by (5) converges strongly to a fixed point
x∗ of T , which is the unique solution to the following
variational inequality:

⟨(γf −A)x∗, x− x∗⟩ ≤ 0, ∀x ∈ F (T ),

and is also the optimality condition for some mini-
mization problem.

In 2010, M. Tian [7] introduced the general itera-
tive algorithm

xn+1 = αnγf(xn) + (I − µαnF )Txn, n ≥ 0, (6)

where F : H → H is an L-Lipschitzian and η-
strongly monotone operator with L, η > 0. Under
some mild assumptions, he proved that {xn} gener-
ated by (6) converges strongly to a point x∗ ∈ F (T ),
which is also the unique solution of the following vari-
ational inequality:

⟨(µF − γf)x∗, x− x∗⟩ ≥ 0, ∀x ∈ F (T ).

Recently, many authors considered the iterative
schemes to approximating the fixed point of a strict-
ly pseudo-contraction. A mapping S : C → H is
said to be k-strictly pseudo-contractive if there exists
a constant k ∈ [0, 1) such that

∥Sx− Sy∥2 ≤ ∥x− y∥2 + k∥(I − S)x

−(I − S)y∥2, ∀x, y ∈ C.

Note that the class of k-strict pseudo-contraction
strictly includes the class of nonexpansive mapping,
that is, S is nonexpansive if and only if S is 0-
srtict pseudo-contractive; it is also said to be pseudo-
contractive if k = 1. Clearly, the class of k-strict
pseudo-contractions falls into the one between classes
of nonexoansive mappings and pseudo-contractions.

For finding an element of F (S) ∩ V I(C,A),
Takahashi and Toyoda [8] introduced the following it-
erative scheme: x1 ∈ C and

xn+1 = αnxn+(1−αn)SPC(xn−λnAxn), n ≥ 1,

and obtained a weak convergence theorem in a Hilbert
space, where {αn} and {λn} are sequences satisfied
certain conditions.

For finding an element of F (T ), Qin et al [9] in-
troduce a composite iterative scheme as follows with
x1 = x ∈ H:{

yn = PK [βnxn + (1− βn)Txn],
xn+1 = αnγf(xn) + (I − αnA)yn, n ≥ 1,

where T is a non-self k-strict pseudo-contraction, f is
a contraction andA is a strong positive linear bounded

operator. Under certain appropriate assumptions on
the sequence {αn} and {βn}, the iterative sequence
{xn} converges strongly to a fixed point of the k-strict
pseudo-contraction, which also solves some variation-
al inequality.

Let ϕ be a bifunction of C × C into R. The clas-
sical equilibrium problem for ϕ is to find x ∈ C such
that

EP : ϕ(x, y) ≥ 0, ∀y ∈ C, (7)

denoted the set of solutions by EP (ϕ). Given a map-
ping T : C → H , let

ϕ(x, y) = ⟨Tx, y − x⟩, ∀x, y ∈ C,

then z ∈ EP (ϕ) if and only if ⟨Tz, y − z⟩ ≥ 0 for
all y ∈ C, that is, z is a solution of the variational
inequality. Numerous problems in physics, optimiza-
tions and economics reduce to find a solution of (7).
Some methods have been proposed to solve the equi-
librium problem, see for instance, [2, 3] and the refer-
ences therein.

By using the general approximation method,
many authors constructed the compositive schemes to
obtained the common element of fixed points of non-
expansive mapping and solutions of equilibrium prob-
lem. Next, we list their main contributions.

For finding an element of EP (ϕ) ∩ F (S), Ceng
et al [10] established the following iterative scheme:{

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)Sun, ∀n ∈ N,

under certain conditions, the sequences {xn} and
{un} converge weakly to an element of EP (ϕ) ∩
F (S). Under the same conditions, the sequences
{xn} and {un} converge strongly to an element of
EP (ϕ) ∩ F (S) if and only if

lim inf
n→∞

d(xn, EP (ϕ) ∩ F (S)) = 0,

where d(xn, EP (ϕ) ∩ F (S)) denotes the metric dis-
tance from the point xn to EP (ϕ) ∩ F (S).

To find an element of EP (ϕ) ∩ F (S), Takahashi
and Takahashi [11] introduced the following iterative
scheme by the viscosity approximation method in a
Hilbert space: x1 ∈ H and{

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Sun, ∀n ∈ N.

Under suitable conditions, some strong convergence
theorems are obtained.
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For finding an element of EP (ϕ) ∩ V I(C,A) ∩
F (S), recently Su, Shang and Qin [12] introduced the
following iterative scheme: x1 ∈ H and

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0,∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)SPC(un − λnAun),
∀n ∈ N.

Under suitable conditions, some strong convergence
theorems are obtained, which are extend and improve
the results of Iiduka et al [13] and Takahashi et al [11].

To find an element ofEP (ϕ)∩V I(C,A)∩F (S),
Plubtieng and Punpaeng [14] also introduced the fol-
lowing iterative scheme: x1 = u ∈ C and

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0,∀y ∈ C,

yn = PC(un − λnAun),
xn+1 = αnu+ βnxn + γnSPC(yn − λnAyn),

∀n ∈ N.

Under suitable conditions, some strong convergence
theorems are obtained, which are extend some recent
result of Yao and Yao [15].

In 2009, Y. Liu [16] introduced two iterative
schemes by the general iterative method for finding a
common element of the set of solutions of an equilib-
rium problem and the set of fixed points of a k-strictly
pseudo-contractive non-self mapping in the setting of
a real Hilbert space.

ϕ(un, y) +
1
λn

⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = βnun + (1− βn)Sun,
xn = αnγf(xn) + (I − αnB)yn, ∀n ∈ N,

and x1 ∈ H arbitrarily,
ϕ(un, y) +

1
λn

⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = βnun + (1− βn)Sun,
xn+1 = αnγf(xn) + (I − αnB)yn, ∀n ∈ N

where B is a strong positive bounded linear operator
on H . Under some assumptions, the strong conver-
gence theorems are obtained.

In 2011, M. Tian [17] adopted the hybrid steepest
descent methods for finding a common element of the
set of solutions of an equilibrium problem and the set
of fixed points of a strict pseudo-contraction mapping
in the setting of real Hilbert spaces.

ϕ(un, y) +
1
λn

⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = βnun + (1− βn)Sun,
xn = (I − αnµF )yn, ∀n ∈ N,

and x1 ∈ H arbitrarily,
ϕ(un, y) +

1
λn

⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = βnun + (1− βn)Sun,
xn+1 = (I − αnµF )yn, ∀n ∈ N,

where F : H → H be an L-Lipschitzian continuous
and η-strongly monotone operator on H with L, η >
0. Under some assumptions, the strong convergence
theorems are obtained.

Motivated and inspired by these facts, in this pa-
per, we introduce two iteration methods, for finding an
element of EP (ϕ) ∩ F (S), where S : C → H is a k-
strictly pseudo-contractive non-self mapping, which is
also a solution of a variational inequality and then ob-
tained two strong convergence theorems. Our result-
s include Plubtieng and Punpaeng [18], S. Takahashi
and W.Takahashi [11], Tada and W.Takahashi [19], Y.
Liu [16] and M. Tian [17] as special cases. Further-
more, this paper will also be the development of the
results of Ceng et al [10] in different directions.

2 Preliminaries
Throughout this paper, we write xn ⇀ x to indicate
that the sequence {xn} converges weakly to x and
xn → x implies that {xn} converges strongly to x.
For any x ∈ H , there exists a unique nearest point in
C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C

Such a PCx is called the metric projection of H onto
C. It is known that PC is nonexpansive. Furthermore,
for x ∈ H and u ∈ C,

u = PCx⇔ ⟨x− u, u− y⟩ ≥ 0, ∀y ∈ C.

A mapping F : C → C is called L-Lipschitzian
if there exists a positive constant L, such that

∥Fx− Fy∥ ≤ L∥x− y∥, ∀x, y ∈ C.

Obviously, F is nonexpansive if and only if L = 1.
F is said to be η-strongly monotone if there exists a
positive constant η such that

⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥, ∀x, y ∈ C.

It is wildly known that H satisfies Opial’s condi-
tion [13], that is, for any sequence {xn} with xn ⇀ x,
the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,

holds for every y ∈ H with y ̸= x.
In order to solve the equilibrium problem for a

bifunction ϕ : C × C → R, let us assume that ϕ
satisfies the following conditions:

(A1) ϕ(x, x) = 0, for all x ∈ C;
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(A2) ϕ is monotone, that is, ϕ(x, y)+ϕ(y, x) ≤ 0, for
all x, y ∈ C;

(A3) For all x, y, z ∈ C, limt↓0 ϕ(tz + (1− t)x, y) ≤
ϕ(x, y);

(A4) For each fixed x ∈ C, the function y 7→ ϕ(x, y)
is convex and lower semicontinuous.

Let us recall the following lemmas which will be
useful for our paper.

Lemma 1 (see [20]).Let ϕ be a bifunction from C ×
C into R which satisfying (A1), (A2), (A3) and (A4),
then, for any r > 0 and x ∈ H , there exists a point
z ∈ C such that

ϕ(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C.

Further, if

Trx =
{
z ∈ C : ϕ(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0,

∀y ∈ C
}
,

then the followings hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is,

∥Trx−Try∥2 ≤ ⟨Trx−Try, x−y⟩, ∀x, y ∈ H;

(3) F (Tr) = EP (ϕ);

(9) EP (ϕ) is nonempty, closed and convex.

Lemma 2 (see [21]).If S : C → H is a k-strict
pseudo-contraction, then the fixed point set F (S) is
closed convex, so that the projection PF (S) is well de-
fined.

Lemma 3 (see [22]).Let S : C → H be a k-strict
pseudo-contraction. Define T : C → H by

Tx = λx+ (1− λ)Sx,

for each x ∈ C, then as λ ∈ [k, 1), T is a nonexpan-
sive mapping such that F (T ) = F (S).

Lemma 4 (see [23]).In a Hilbert space H, there hold-
s the inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

Lemma 5 (see [4]).Let {sn} be a sequence of non-
negative numbers satisfying the condition

sn+1 ≤ (1− γn)sn + γnδn, ∀n ≥ 0,

where {γn}, {δn} are sequences of real numbers such
that:
(i){γn} ⊂ [0, 1] and

∑∞
n=0 γn = ∞,

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0 γn|δn| <∞.
Then, limn→∞ sn = 0.

Lemma 6 (see [7]).Let H be a Hilbert space, f :
H → H is a contraction with coefficient 0 < ρ < 1,
and F : H → H is an L-Lipschitz continuous and η-
strongly monotone operator with L > 0, η > 0. Then
for 0 < γ < µη/ρ,

⟨x− y, (µF − γf)x− (µF − γf)y⟩
≥ (µη − γρ)∥x− y∥2, x, y ∈ H.

That is, (µF−γf) is strongly monotone operator with
coefficient µη − γρ.

3 Main Results
In the rest of this paper we always assume that F is an
L-Lipschitzian continuous and η-strongly monotone
operator with L, η >0 and assume that 0 < γ < τ

ρ ,
τ = µ(η − µL2/2). Let {Tλn} be mappings defined
as Lemma 1. Define a mapping Sn : C → H by

Snx = βnx+ (1− βn)Sx, ∀x ∈ C,

where βn ∈ [k, 1), then, by Lemma 3, Sn is a nonex-
pansive. We consider the mapping Gn on H defined
by

Gnx = [I − αn(µF − γf)]SnTλnx, x ∈ H,n ∈ N,

where αn ∈ (0, 1). By Lemma 1 and 3, we have

∥Gnx−Gny∥
≤ [1− αn(τ − γρ)]∥Tλnx− Tλny∥
≤ [1− αn(τ − γρ)]∥x− y∥.

It is easy to see that Gn is a contraction. There-
fore, by the Banach contraction principle, Gn has a
unique fixed point xFn ∈ H such that

xFn = [I − αn(µF − γf)]SnTλnx
F
n .

For simplicity, we will write xn for xFn provided
no confusion occurs. Next, we prove that the sequence
{xn} converges strongly to a point q ∈ F (S)∩EP (ϕ)
which solves the variational inequality

⟨(µF − γf)q, p− q⟩ ≥ 0, ∀p ∈ F (S) ∩ EP (ϕ). (8)

Equivalently, q = PF (S)∩EP (ϕ)[I − (µF − γf)]q.
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Theorem 7 Let C be a nonempty closed convex sub-
set of a real Hilbert space H and ϕ be a bifunction
fromC×C into R satisfying (A1), (A2), (A3) and (A4).
Let S : C → H be a k-strictly pseudo-contractive
nonself mapping such that F (S) ∩ EP (ϕ) ̸= ∅. Let
F : H → H be an L-Lipschitzian continuous and η-
strongly monotone operator on H with L, η > 0 and
0 < γ < τ

ρ , τ = µ(η − µL2/2). Let {xn} be a
sequence generated by

ϕ(un, y) +
1
λn

⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = βnun + (1− βn)Sun,
xn = [I − αn(µF − γf)]yn, ∀n ∈ N,

where un = Tλnxn, yn = Snun, and {λn} ⊂
(0,+∞) satisfy lim infn→∞ λn > 0, if {αn} and
{βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn=0;

(ii) 0 ≤ k ≤ βn ≤ λ < 1 and lim
n→∞

βn = λ,

then {xn} converges strongly to a point q ∈ F (S) ∩
EP (ϕ) which solves the variational inequality (8).

Proof: First, take p ∈ F (S) ∩ EP (ϕ). Since un =
Tλnxn and p = Tλnp, from Lemma 1, for any n ∈ N,
we have

∥un − p∥ = ∥Tλnxn − Tλnp∥ ≤ ∥xn − p∥. (9)

Then, since yn = Snun and Snp = p, we obtain that

∥yn − p∥ = ∥Snun − Snp∥
≤ ∥un − p∥ ≤ ∥xn − p∥. (10)

Further, we have

∥xn − p∥ = ∥[I − αn(µF − γf)]yn − p∥
= ∥(I − αnµF )yn − (I − αnµF )p

+αnγf(yn)− αnγf(p)

+αnγf(p)− αnµFp∥
≤ (1− αnτ)∥yn − p∥+ αnγρ∥yn − p∥

+αn∥(γf − µF )p∥
≤ (1− αnτ)∥xn − p∥+ αnγρ∥xn − p∥

+αn∥(γf − µF )p∥
≤ [1− αn(τ − γρ)]∥xn − p∥

+αn∥(γf − µF )p∥.

It follows that ∥xn−p∥ ≤ 1
τ−γρ∥(γf−µF )p∥. Hence,

{xn} is bounded, and we also obtain that {un} and
{yn} are bounded.

Notice that

∥un − yn∥ ≤ ∥un − xn∥+ ∥xn − yn∥
= ∥un − xn∥+

∥[I − αn(µF − γf)]yn − yn∥
= ∥un − xn∥+ αn∥ − (µF − γf)yn∥. (11)

By Lemma 1, we have

∥un − p∥2 ≤ ∥Tλnxn − Tλnp∥2

≤ ⟨xn − p, un − p⟩

=
1

2
(∥xn − p∥2 + ∥un − p∥2

−∥un − xn∥2).

It follows that

∥un − p∥2 ≤ ∥xn − p∥2 − ∥un − xn∥2. (12)

Thus, from Lemma 4, (10) and (12), we obtain

∥xn − p∥2 = ∥[I − αn(µF − γf)]yn − p∥2

= ∥[I − αn(µF − γf)]yn

−[I − αn(µF − γf)]p

−αn(µF − γf)p∥2

≤ ∥[I − αn(µF − γf)]yn

−[I − αn(µF − γf)]p∥2

+2αn⟨−(µF − γf)p, xn − p⟩
≤ [1− αn(τ − γρ)]2∥yn − p∥2

+2αn∥ − (µF − γf)p∥ · ∥xn − p∥
≤ [1− αn(τ − γρ)]2∥un − p∥2

+2αn∥ − (µF − γf)p∥ · ∥xn − p∥
≤ [1− αn(τ − γρ)]2(∥xn − p∥2

−∥xn − un∥2)
+2αn∥ − (µF − γf)p∥ · ∥xn − p∥

= [1− 2αn(τ − γρ) + α2
n(τ − γρ)2]

∥xn − p∥2 − [1− αn(τ − γρ)]2

∥xn − un∥2 + 2αn∥ − (µF − γf)p∥
·∥xn − p∥

≤ [1 + α2
n(τ − γρ)2]∥xn − p∥2

−[1− αn(τ − γρ)]2∥xn − un∥2

+2αn∥ − (µF − γf)p∥ · ∥xn − p∥.

It follows that

[1− αn(τ − γρ)]2∥xn − un∥2

≤ α2
n(τ − γρ)2]∥xn − p∥2

+2αn∥ − (µF − γf)p∥ · ∥xn − p∥.

Since αn → 0 as n→ ∞, we have

lim
n→∞

∥un − xn∥ = 0.
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From (11), we derive

lim
n→∞

∥un − yn∥ = 0. (13)

Define T : C → H by Tx = λx + (1 − λ)Sx.
Then T is nonexpansive with F (T ) = F (S) by Lem-
ma 3. Since

∥Tun − un∥ ≤ ∥Tun − yn∥+ ∥yn−un∥
≤ |λ−βn|∥un−Sun∥+∥yn − un∥,

by using (13) and βn → λ we obtain

lim
n→∞

∥Tun − un∥ = 0.

Since {un} is bounded, there exists a subsequence
{uni} which converges weakly to q. We shall show
that q ∈ F (S)∩EP (ϕ). In fact, C is closed and con-
vex, and hence C is weakly closed, we have q ∈ C.
Let us show that q ∈ F (S). Assume that q ̸∈ F (T ),
since uni ⇀ q and q ̸= Tq, it follows from the Opial’s
condition that

lim inf
n→∞

∥uni − q∥ < lim inf
n→∞

∥uni − Tq∥

≤ lim inf
n→∞

(∥uni − Tuni∥+ ∥Tuni − Tq∥)

≤ lim inf
n→∞

∥uni − q∥.

This is a contraction. So we get q ∈ F (T ) and hence
q ∈ F (S).

Next, we show that q ∈ EP (ϕ). Since un =
Tλnxn, for any y ∈ C we have

ϕ(un, y) +
1

λn
⟨y − un, un − xn⟩ ≥ 0.

From (A2), it holds that

1

λn
⟨y − un, un − xn⟩ ≥ ϕ(y, un).

Replacing n by ni, we have⟨
y − uni ,

uni − xni

λni

⟩
≥ ϕ(y, uni).

Since uni−xni
λni

→ 0 and uni ⇀ q, it follows from (A4)
that 0≥ ϕ(y, q) for all y ∈ C. Let

zt = ty + (1− t)q, ∀t ∈ (0, 1], y ∈ C.

Then we have zt ∈ C and hence ϕ(zt, q) ≤ 0. From
(A1) and (A4) we get

0 = ϕ(zt, zt)

≤ tϕ(zt, y) + (1− t)ϕ(zt, q)

≤ tϕ(zt, y),

and hence 0 ≤ ϕ(zt, y). From (A3) we get 0≤ ϕ(q, y)
for all y ∈ C and hence q ∈ EP (ϕ). Therefore,
q ∈ EP (ϕ) ∩ F (S).

On the other hand, since

xn − q
= −αn(µF − γf)q + [I − αn(µF − γf)]yn

−[I − αn(µF − γf)]q

we have

∥xn − q∥2
= ⟨−αn(µF−γf)q, xn−q⟩+ ⟨[I−αn(µF−γf)]yn

−[I − αn(µF − γf)]q, xn − q⟩
≤ αn⟨−(µF − γf)q, xn − q⟩

+[1− αn(τ − γρ)]∥xn − q∥2,

which follows that

∥xn − q∥2 ≤ 1

τ − γρ
⟨−(µF − γf)q, xn − q⟩,

in particular,

∥xni − q∥2 ≤ 1

τ − γρ
⟨−(µF − γf)q, xni − q⟩.

Since xni ⇀ q, it follows from above that xni → q as
i→ ∞.

Next, we show that q is a solution of the varia-
tional inequality (8).

Since

xn = [I − αn(µF − γf)]yn

= [I − αn(µF − γf)]SnTλnxn,

we have

(µF − γf)xn

= − 1

αn
[(I − SnTλn)xn

−αn(µF − γf)(I − SnTλn)xn].

For any p ∈ EP (ϕ) ∩ F (S),

⟨(µF − γf)xn, xn − p⟩

= − 1

αn
⟨(I − SnTλn)xn − αn(µF − γf) ·

(I − SnTλn)xn, xn − q⟩

= − 1

αn
⟨(I − SnTλn)xn − (I − SnTλn)q,

xn − q⟩+ ⟨(µF − γf)(I − SnTλn)xn,

xn − q⟩. (14)

Note that (I − SnTλn) is monotone (i.e.,⟨x− y, (I −
SnTλn)x− (I − SnTλn)y⟩ ≥ 0, for all x, y ∈ H , due
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to the nonexpansivity of SnTλn). Replacing n in (14)
by ni and letting i→ ∞, we obtain

⟨(µF − γf)q, q − p⟩
= lim

i→∞
⟨(µF − γf)xni , xni − p⟩

≤ lim
i→∞

⟨(µF − γf)(I − SniTλni
)xni , xni − p⟩

= 0. (15)

That is, q ∈ EP (ϕ) ∩ F (S) is a solution of (8).
To show that the sequence {xn} converges

strongly to q, we assume that xnk
→ x̂. Similar to the

proof above, we have x̂ ∈ EP (ϕ)∩F (S). Moveover,
it follows from the inequality (15) that

⟨(µF − γf)q, q − x̂⟩ ≤ 0. (16)

Interchange q and x̂ to obtain

⟨(µF − γf)x̂, x̂− q⟩ ≤ 0. (17)

From Lemma 6, adding up (16) and (17) yields

(µη − γρ)∥q − x̂∥2

≤ ⟨q − x̂, (µF − γf)q − (µF − γf)x̂⟩
≤ 0.

Hence, q = x̂, and therefore xn → q, as n→ ∞,

⟨[I − (µF − γf)]q − q, q − p⟩ ≥ 0

∀p ∈ EP (ϕ) ∩ F (S).

This is equivalent to the fixed point equation

PEP (ϕ)∩F (S)[I − (µF − γf)]q = q.

The desired result follows. ⊓⊔

Theorem 8 Let C be a nonempty closed convex sub-
set of a real Hilbert space H and ϕ be a bifunction
fromC×C into R satisfying (A1), (A2), (A3) and (A4).
Let S : C → H be a k-strictly pseudo-contractive
nonself mapping such that F (S) ∩ EP (ϕ) ̸= ∅. Let
F : H → H be an L-Lipschitzian continuous and η-
strongly monotone operator on H with L, η > 0 and
0 < γ < τ

ρ , τ = µ(η − µL2/2). Let {xn} be a
sequence generated by: x1 ∈ H arbitrarily,

ϕ(un, y) +
1
λn

⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = βnun + (1− βn)Sun,
xn+1 = [I − αn(µF − γf)]yn, ∀n ∈ N,

where un = Tλnxn, yn = Snun, if {αn}, {βn} and
{λn}satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn=0,
∑∞

n=1 αn =
∞,
∑∞

n=1 |αn+1 − αn| <∞;

(ii) 0 ≤ k ≤ βn ≤ λ < 1 and limn→∞ βn =
λ,
∑∞

n=1 |βn+1 − βn| <∞;

(iii) {λn} ⊂ (0,∞), limn→∞ λn > 0,∑∞
n=1 |λn+1 − λn| <∞;

then {xn} and {un} converges strongly to a point q ∈
F (S)∩EP (ϕ) which solves the variational inequality
(8).

Proof: We first show that {xn} is bounded. Indeed,
pick any p ∈ F (S) ∩ EP (ϕ) to derive that

∥xn+1 − p∥ = ∥[I − αn(µF − γf)]yn − p∥
= ∥(I − αnµF )yn − (I − αnµF )p

+αnγf(yn)−αnγf(p) + αnγf(p)−αnµFp∥
≤ (1− αnτ)∥yn − p∥

+αnγρ∥yn − p∥+ αn∥(γf − µF )p∥
≤ [1− αn(τ−γρ)]∥xn − p∥+ αn∥(γf−µF )p∥.

By induction, we have

∥xn − p∥ ≤ max
{
∥x1 − p∥, 1

τ−γρ
∥(γf−µF )p∥

}
,

and hence {xn} is bounded. From (9) and (10), we
also derive that {un} and {yn} are bounded. Next, we
show that ∥xn+1 − xn∥ → 0. We have

∥xn+1 − xn∥
= ∥[I−αn(µF−γf)]yn

−[I−αn−1(µF−γf)]yn−1∥
≤ [1− αn(τ − γρ)]∥yn − yn−1∥

+|αn − αn−1|∥(γf − µF )yn−1∥
≤ [1−αn(τ − γρ)]∥yn − yn−1∥+K|αn − αn−1|,

(18)

where

K = sup{∥(γf − µF )yn∥ : n ∈ N} <∞.

On the other hand, we have

∥yn − yn−1∥ = ∥Snun − Sn−1un−1∥
≤ ∥Snun − Snun−1∥+ ∥Snun−1 − Sn−1un−1∥
≤ ∥un − un−1∥+ ∥Snun−1 − Sn−1un−1∥.

(19)

From un+1 = Tλn+1xn+1 and un = Tλnxn , we get

ϕ(un+1, y) +
1

λn+1
⟨y − un+1, un+1 − xn+1⟩ ≥ 0

∀y ∈ C, (20)

ϕ(un, y) +
1
λn

⟨y − un, un − xn⟩ ≥ 0

∀y ∈ C. (21)
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Putting y = un in (20) and y = un+1 in (21), we have

ϕ(un+1, un) +
1

λn+1
⟨un − un+1, un+1 − xn+1⟩ ≥ 0

∀y ∈ C,

ϕ(un, un+1) +
1
λn

⟨un+1 − un, un − xn⟩ ≥ 0

∀y ∈ C.

From (A2) we get⟨
un+1 − un,

un − xn
λn

− un+1 − xn+1

λn+1

⟩
≥ 0,

and hence⟨
un+1 − un, un − un+1 + un+1 − xn

− λn
λn+1

(un+1 − xn+1)
⟩
≥ 0.

Since limn→∞ λn > 0, without loss of generality, we
can assume that there exists a real number a such that
λn > a > 0 for all n ∈ N. Thus, we have

∥un+1 − un∥2 ≤
⟨
un+1 − un, xn+1 − xn

+(1− λn
λn+1

)(un+1 − xn+1)
⟩

≤ ∥un+1 − un∥
{
∥xn+1 − xn∥

+
∣∣∣(1− λn

λn+1
)
∣∣∣∥un+1 − xn+1∥

}
,

and hence

∥un+1 − un∥ ≤ ∥xn+1−xn∥+
|λn+1−λn|

a
M0 (22)

where M0 = sup{∥un − xn∥ : n ∈ N}.
Now we estimate ∥Snun−1−Sn−1un−1∥. Notice

that

∥Snun−1 − Sn−1un−1∥
= ∥[βnun−1 + (1− βn)Sun−1]

−[βn−1un−1 + (1− βn−1)Sun−1]∥
≤ |βn − βn−1|∥un−1 − Sun−1∥. (23)

From (22), (23) and (19), we obtain

∥yn − yn−1∥

≤ ∥xn − xn−1∥+
M0

a
|λn − λn−1|

+|βn − βn−1|∥un−1 − Sun−1∥
≤ ∥xn − xn−1∥+ |λn − λn−1|M1

+|βn − βn−1|M1. (24)

where M1 is an appropriate constant such that

M1 ≥
M0

a
+ ∥un−1 − Sun−1∥, ∀n ∈ N.

From (18) and (24), we obtain

∥xn+1 − xn∥
≤ K|αn − αn−1|+ (1− αn(τ − γρ))

(∥xn − xn−1∥+ |λn − λn−1|M1

+|βn − βn−1|M1)

≤ (1− αn(τ − γρ))∥xn − xn−1∥
+M(|αn − αn−1|
+|λn − λn−1|+ |βn − βn−1|),

where M=max[K,M1]. By Lemma 5 we have

lim
n→∞

∥xn+1 − xn∥ = 0. (25)

Using (22) and (24) together with |λn − λn−1| → 0
and |βn − βn−1| → 0, we have

lim
n→∞

∥un+1 − un∥ = 0.

lim
n→∞

∥yn+1 − yn∥ = 0.

From the equality

xn+1 = [I − αn(µF − γf)]yn

it follows that

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥
= ∥xn − xn+1∥

+αn∥ − (γf − µF )yn∥.

From αn → 0 and (25) we get

lim
n→∞

∥xn − yn∥ = 0. (26)

For p ∈ F (S) ∩ EP (ϕ), we have

∥un − p∥2 = ∥Tλnxn − Tλnp∥2

≤ ⟨xn − p, un − p⟩

=
1

2
(∥xn − p∥2 + ∥un − p∥2

−∥un − xn∥2),

which implies that

∥un − p∥2 ≤ ∥xn − p∥2 − ∥un − xn∥2. (27)
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Thus from (10) and (27) we derive that

∥xn+1 − p∥2 = ∥[I−αn(µF−γf)]yn− p∥2

= ∥[I − αn(µF − γf)]yn

−[I − αn(µF − γf)]p− αn(µF − γf)p∥2

≤ [1− αn(τ − γρ)]2∥yn − p∥2

+2αn∥ − (µF − γf)p∥∥yn − p∥
+α2

n∥ − (µF − γf)p∥2

≤ ∥un − p∥2

+2αn∥ − (µF − γf)p∥∥xn − p∥
+α2

n∥ − (µF − γf)p∥2

≤ ∥xn − p∥2 − ∥un − xn∥2

+2αn∥ − (µF − γf)p∥∥xn − p∥
+α2

n∥ − (µF − γf)p∥2.

Since αn → 0, ∥xn − xn+1∥ → 0, we have

lim
n→∞

∥xn − un∥ = 0. (28)

From (26) and (28), we obtain

∥un − yn∥ ≤ ∥un − xn∥+ ∥xn − yn∥ → 0,

as n→ ∞. (29)

Define a mapping T : C → H by Tx = λx+(1−
λ)Sx. Then T is nonexpansive with F (T ) = F (S) by
Lemma 3. Since

∥Tun − un∥ ≤ ∥Tun − yn∥+ ∥yn − un∥
≤ |λ− βn|∥un − Sun∥+ ∥yn − un∥,

from (29) and βn → λ we obtain

lim
n→∞

∥Tun − un∥ = 0. (30)

Finally we show that

lim sup
n→∞

⟨(µF − γf)q, q − xn⟩ ≤ 0

where q = PF (S)∩EP (ϕ)[I − (µF − γf)]q is a unique
solution of the variational inequality (8). Indeed, take
a subsequence {xni} of {xn} such that

lim
i→∞

⟨(µF − γf)q, q − xni⟩

= lim sup
n→∞

⟨(µF − γf)q, q − xn⟩.

Due to {uni} is bounded, there exist a subsequence
{unij

} of {uni} which converges weakly to w. With-
out lose of generality, we can assume that uni ⇀
w. From (28) and (30), we obtain xni ⇀ w and
Tuni ⇀ w. By the same argument as in the proof

of Theorem 7, we have w ∈ EP (ϕ) ∩ F (S). Since
q = PF (S)∩EP (ϕ)[I − (µF − γf)]q, it follows that

lim sup
n→∞

⟨(µF − γf)q, q − xn⟩

= ⟨(µF − γf)q, q − w⟩ ≤ 0. (31)

From

xn+1 − q
= −αn(µF − γf)q + [I − αn(µF − γf)]yn

−[I − αn(µF − γf)]q

we get

∥xn+1 − q∥2

≤ ∥[I−αn(µF−γf)]yn − [I−αn(µF−γf)]q∥2

+2αn⟨−(µF − γf)q, xn+1 − q⟩
≤ [1− αn(τ − γρ)]2∥xn − q∥2

+2αn⟨−(µF − γf)q, xn+1 − q⟩.
This implies that

∥xn+1 − q∥2

≤ [1− 2αn(τ − γρ) + (αn(τ − γρ))2]

∥xn − q∥2 + 2αn⟨−(µF − γf)q, xn+1 − q⟩
= [1− 2αn(τ − γρ)]∥xn − q∥2

+(αn(τ − γρ))2∥xn − q∥2

+2αn⟨−(µF − γf)q, xn+1 − q⟩
= [1− 2αn(τ − γρ)]∥xn − q∥2

+2αn(τ − γρ)
[αn(τ − γρ)

2
M∗

+
1

τ − γρ
⟨−(µF − γf)q, xn+1 − q⟩

]
= (1− γn)∥xn − q∥2 + γnδn

where M∗ = sup{∥xn − q∥2 : n ∈ N}, γn =

2αn(τ −γρ) and δn = αn(τ−γρ)
2 M∗+ 1

τ−γρ⟨−(µF −
γf)q, xn+1 − q⟩.

It is easy to see that limn→∞ γn = 0,
∑∞

n=1 γn =
∞ and lim supn→∞ δn ≤ 0 by (31). By Lemma 5, the
sequence {xn} converges strongly to q. ⊓⊔

Remark 9 If C = H , S is a nonexpansive mapping,
{βn} = 0, ϕ(x, y) = 0 for all x, y ∈ C, λn = 1, µ =
1 and F = A, then Theorem 8 reduced to Theorem
3.4 of G. Marino and H. K. Xu [6].

Remark 10 If µ = 1 and F = B in Theorem 7 and
Theorem 8, we can obtain the corresponding results
in Y. Liu [16].
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