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Abstract: We study, from the ergodic viewpoint, the asymptotic dynamics in the future of a full Lebesgue set of
initial states. The dynamical systems under research are deterministic and evolving with discrete time n ∈ N by the
forward iterations of any continuous map f : M 7→ M acting on a finite-dimensional, compact and Riemannian
manifold M . First, we revisit the classic definition of physical or SRB probability measures, and its generalized
notion of weak physical probabilities. Then, inspired in the statistical meaning of the ergodic attractors defined
by Pugh and Schub, which support ergodic physical measures, we define the more general concept of ergodic-like
attractor. We prove that any such generalized attractor is the support of weak physical probabilities and conversely.
Then, we revisit the proof of existence of weak physical probabilities and conclude that any continuous dynamics
exhibits at least one ergodic-like attractor.
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1 Introduction
We consider, as the phase space where a dynamical
system evolves, any finite dimensional, compact and
Riemannian manifold M . We investigate the dynam-
ics, evolving on M deterministically in the future,
with discrete time n ∈ N. Precisely, the system is
obtained by iteration fn := f ◦ f ◦ . . . ◦ f, for all
n ≥ 0, of a continuous map f : M 7→ M . In the se-
quel we refer to it, as a continuous dynamical system,
and denote it in brief, with f . We will focus in the ab-
stract general scenario of all the continuous dynami-
cal systems, from the viewpoint of the Ergodic Theory
[2, 9, 14, 20, 31]. Namely, we will search for theoreti-
cal probability measures, determined by the dynamics
in regime, i.e. f -invariant, that are representative of
the asymptotic behavior of the orbits, for a Lebesgue-
positive set of initial states in M .

We assume that the compact space M is provided
with a reference Borel probability measure m, which
is given independently of the dynamics. So, m is not
necessarily f -invariant, or in other words, we do not
restrict the theory to the so called conservative sys-
tems. The role of the given reference measure m is to
describe how the initial states that define the different
orbits of the system, are physically chosen.

Precisely, the probability distribution that m pro-
vides, states a criteria to measure all the borelian sub-
sets B ⊂ M of the space, according to the larger or
smaller chance in which the initial state drops in B.

But notice that m does not usually describe which
portions of the space are more or less visited by the
future states of the dynamical system, computed on
times n ≥ 1, i.e. after the deterministic dynamics f
is acting. It is just a given initial distribution of the
points of the space, before the dynamical system f s-
tarts its action.

One of the major problems of the modern Ergod-
ic Theory is the existence of the so called physical or
SRB (Sinai–Ruelle–Bowen) measures. Historically,
these probability measures were defined forty years a-
go in [5, 28, 30], to describe the asymptotical statistics
of deterministic dynamical systems exhibiting unifor-
m hyperbolicity. Nevertheless, the general problem of
existence of SRB measures is still open for most de-
terministic chaotic dynamical systems. Its relevance,
from the theoretical viewpoint as well as for its ap-
plications, is exposed in [35]. First, let us recall the
relevance of this subject in the recent research of the-
oretical mathematics. On the one hand, the observer
may focus on the non singular properties of the SRB
probabilities with respect to the Lebesgue measure. In
this case, the study of the SRB measures is restricted
to systems that are more than C1-regular [12]. They
exist for hyperbolic non invertible endomorphisms
[33], for expansive (i.e. topologically hyperbolic) C2-
diffeomorphisms [19], and also for piecewise expand-
ing maps [16]. In most of such cases they are stochas-
tically stable, namely, they persist under the addition
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of noise [7]. On the other hand, one may focus on the
asymptotical and statistical behaviour (called physical
properties) of Lebesgue almost all the orbits, disre-
garding the non singular characteristics of the prob-
ability measure under research. In this latter case,
recent results have proved the existence and unique-
ness of an SRB probability with such physical proper-
ties, for C1 generic dynamics with hyperbolic attrac-
tors [25]. Also from this viewpoint, generalized SRB
measures have been found for a wider class of diffeo-
morphisms [34], and even the existence of SRB-like,
physical-like or observable probability measures for
the family of all the C0 endomorphisms on a com-
pact manifold [6]. Second, but not less important, let
us summarize the relevance of the existence of such
probability measures from the viewpoint of its appli-
cations. Historically, the problem of their existence
was born in the theoretical physics to study the ther-
modynamical properties and the mechanical statistics
of dynamical systems with very large number of par-
ticles. The existence of a good macroscopic proba-
bility measure that describes the distribution on the
space of the attractors, provides a strong theoretical
tool to study the dynamical statistics of almost all the
orbits, particularly if the system is chaotic and diffi-
cult to predict from numerical experimentation. On
the one hand, the theoretical general tools that we de-
velop along this paper are new results obtained from
the abstract analysis of general continuous dynami-
cal systems, of any finite (arbitrarily large) dimension.
Thus, they are particularly applicable to chaotic com-
plex systems. On the other hand, the mathematical
abstract modeling of applied systems in many field-
s of science and technology, make the general results
on dynamical systems potentially applicable to them.
For instance, recent research have modeled as dynam-
ical systems the complexity of Internet networks [22],
the problem of avoiding obstacles in the robotics with
artificial sight [29], dynamical problems of control en-
gineering [10], the evolution of populations [21] and
also dynamics of models in psychological and other
human sciences [32].

To construct the SRB measures, the given refer-
ence probability m in the space M is assumed to be
the Lebesgue measure, or equivalent to it in the theo-
retical measure sense, and after a re-scaling to make
m(M) = 1. In the sequel, we will denote m to such
re-scaled measure, and still call it Lebesgue. We agree
to say that a property or conclusion about the dynam-
ics in the future, and in particular about the attractors
of the system, is relevant or observable, if and only if
it holds for all the initial states belonging to a borelian
set B ⊂ M satisfying m(B) > 0, namely, for a m-
positive probable set of initial conditions. Besides, we
say that the property or conclusion is full probable, or

globally observable, if and only if m(B) = 1. Thus,
even being usually B ̸= M (i.e. B is properly con-
tained in M ), if m(B) = 1 then a dynamical property
P satisfied by the orbits with initial state in B, is al-
most always observed. The property P is full probable
in this case. On the contrary, ifm(B) = 0 then the or-
bits that satisfy P come from initial conditions in a set
of zero m-probability. In this case the property P is
zero-probable or non observable.

The purpose of the Ergodic Theory is to study the
properties of the system in relation with the f - invari-
ant probabilities µ. All the continuous dynamical sys-
tems on a compact metric space M do exhibit invari-
ant probabilities (see for instance [2, 12, 14, 31]), and
the large majority of such systems exhibit non count-
ably many invariant probabilities. But at the same
time, most continuous dynamical systems are not con-
servative, i.e. the reference Lebesgue measure m ac-
cording to which the initial state distribute in the space
M , is not invariant by f .

Any invariant measure µ describes a spacial dis-
tribution of the states, after the system has evolved in
time asymptotically to the future, i.e. taking medi-
a temporal sequences depending on time n, and then
n → +∞. This latter is the main consequence of
the Ergodic Decomposition Theorem (see for instance
[2, 12, 14, 31]). But only a few dynamical systems,
even if one restricts the analysis to the C1 differen-
tiable dynamical systems, possess relevant invariant
measures µ, so called physical or SRB measures. (See
for instance [4, 18] to find the open questions about
the existence and the properties of the SRB measures.)
These latter measures describe the asymptotical spa-
cial distribution of the orbits with their initial states
that belong to some m-positive portion of the space.
Precisely, if an invariant measure µ is supported in an
attractor A whose basin includes a m-positive proba-
ble set B, then µ is called a physical measure.

One of the major subjects of research in the mod-
ern Differentiable Ergodic Theory, is to find sufficien-
t conditions (if possible generic conditions) of a dy-
namical system to allow the existence of physical in-
variant measures. The global conjecture for generic
differentiable dynamical systems in [23], the result-
s posed in the book [4], and the state of the art, fo-
cused from the Ergodic Theory viewpoint as stated in
[35], show the relevance of the problems in this sub-
ject. Particularly, for systems that are not sufficiently
differentiable, most questions about the existence of
SRB or physical measures remain open.

For most C0 systems (i.e. continuous dynami-
cal systems), even for those that are C1 (differentiable
ones), a single f -invariant measure is not in gener-
al enough to describe probabilistically the asymptotic
dynamics of some relevant (or observable) portion B
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of the space M (i.e. satisfying m(B) > 0). In fac-
t, some continuous dynamical systems may need in-
finitely many of its f -invariant measures µ to describe
the asymptotic behavior from initial states in a subset
B ⊂ M , such that m(B) > 0. As a consequence,
there is no hope to find physical or SRB measures,
nor ergodic attractors as defined in [24], for gener-
ic C0 dynamical systems. That is why in this paper
we revisit the weaker definition of observable weak
physical or SRB-like measures that was introduced in
[6] (see Definition 3.8). We construct generalized at-
tractors that support those measures, which we call
ergodic-like attractors.

The first purpose of this paper is to prove that the
ergodic-like attractors have the same properties of at-
traction in mean as the egodic attractors, even if phys-
ical or SRB measures do not exist. (Theorems 27 and
29). The second purpose is to prove that any continu-
ous dynamical system exhibits ergodic-like attractors
(Corollary 30). To prove those theorems we will revis-
it the result of existence of observable or weak phys-
ical probabilities (Theorem 17), taken from [6]. We
call all those new results Ergodic Theorems with re-
spect to Lebesgue because they relate the asymptot-
ic time averages of the orbits of a full Lebesgue set
of initial states, with the probability distributions in
the ambient manifoldM , which are spatial f -invariant
measures.

The methodology of research along this paper is
that of pure mathematics: the theorems are rigorously
proved under the rules of the classic logic, based on
the basic and advanced results of the general topology
theory [8, 17, 18, 27], of the measure and probabili-
ty theory [1, 3] and particularly, the use of the Riesz
Representation Theorem [26] to identify the space of
probability measures with the dual space of the con-
tinuous real functions in the ambient manifold.

2 Revisiting basic notions
For a seek of self completeness of this paper, in this
section we revisit some known definitions and result-
s of the Functional Analysis, the Topology and the
Probability Theory, that are in the foundation of the
Ergodic Theory of deterministic dynamical systems.

2.1 The space of observable functions
Denote C0(M, [0, 1]) to the space of all continuous
real functions ψ : M 7→ [0, 1], i.e. the value ψ(x)
satisfies 0 ≤ ψ(x) ≤ 1 for all x ∈ M . We en-
dow C0(M, [0, 1]) with the strong topology of the sup
norm. Precisely, we define the following distance be-
tween two functions ψ1, ψ2 ∈ C0(M, [0, 1]):

∥ψ1 − ψ2∥ := max
x∈M

|ψ1(x)− ψ2(x)|.

The real functions ψ as above are called observ-
able. Physically each of those functions represents the
real values that the observer looks from outside of the
system. For instance an electronic circuit may be a
discrete dynamical system, since it may evolve with
time n ≥ 1 (if the set of observation times is discrete
instead of continuous). The state x of the system at
each fixed time n, is not the current observed at the
output branch, nor the voltage at the outpoint point
of the circuit, but the vector of all the currents and
voltages in all the branches and points, at each fixed
instant n. So, the space M will be the set of all pos-
sible such vectors. Nevertheless, when one observes
the output, only one of the coordinates of this vector,
say the current x0 along the single branch at the out-
put, one obtains a function ψ0(x) = x0. It depends
continuously on the state x. So ψ0 is an observable.

The following result is obtained from the separa-
ble topology of the manifold M , since it is a compact
metric space:

Theorem 1. If M is a compact metric space, then
there exists a countable family Ψ := {ψn}n≥0 of con-
tinuous real functions ψn :M 7→ [0, 1] such that Ψ is
dense in C0(M, [0, 1]).

Proof: See for instance [1, 3].
This theorem ensures that:

∀ ψ ∈ C0(M, [0, 1] ∀ϵ > 0 ∃ ψn ∈ Ψ such that

ψ(x)− ϵ < ψn(x) < ψ(x) + ϵ ∀ x ∈M.

The inequalities above admit take a real function from
the countable family Ψ ensuring an error no greater
than ϵ and, as usual, this ϵ > 0 can be arbitrarily given
by the customer. So, one must design the theoretical
results to hold for any possible ϵ > 0. Summarizing,
if one accepts an eventual error of the observations no
greater than ϵ > 0, then one may consider only the
countable family Ψ ⊂ C0(M, [0, 1]), instead of all
the possible observable functions.

In the sequel we will fix a dense countable family
Ψ of observable functions as above. This is equivalent
to discretize the topology in the compact given space
M of all the possible states of the system.

2.2 The space M of probabilities
We denote M to the space of all the probability Borel
measures in the compact spaceM . Recall that a Borel
probability establishes a criteria to measure all the
open sets of the space, and also all the Borel sets
B ⊂ M (i.e. the subsets of the σ- algebra generated
by all the open subsets of M ). Recall that a proba-
bility µ is, by definition, an assignment to each Borel
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subset B ⊂ M of a real number µ(B) ∈ [0, 1] such
that

µ(∅) = 0, µ(M) = 1, µ(

+∞⊎
n=0

(Bm) =

∞∑
n=0

µ(Bn),

where
⊎

denotes that the union is composed by all
pairwise disjoint sets.

Up to the moment we have not introduced the dy-
namics f : M 7→ M in the definitions. Let us now
consider how f acts in the space M:

We say that a probability measure µ is f -
invariant, if µ(f−1(B)) = µ(B) for all Borel set
B ⊂ M . We denote Mf ⊂ M to the set of al-
l f -invariant probability measures. In particular the
Lebesgue probability measure m in the compact man-
ifold M belongs to M, but we are not assuming that
it belongs to Mf . The following result is well known,
and starting the Ergodic Theory of deterministic Dy-
namical Systems:

Theorem 2. For all compact metric space M and for
all continuous f :M 7→M the set Mf of f -invariant
probability measures is not empty: Mf ̸= ∅.

Proof: See for instance [20, 31].
In the space M, we define the following opera-

tor f∗, which is called the pull back in the space of
probabilities of the dynamical system f in M :

f∗ : M 7→ M : ∀ µ ∈ M f∗µ ∈ M is defined by:

f∗µ(B) := µ(f−1(B)) ∀ Borel set B ⊂M . (1)

The following assertions are immediate:

(1) µ ∈ Mf ⇔ f∗µ = µ,

(2) ∃ µ ∈ M such that f∗µ = µ.

In other words, the f -invariant measures are the fixed
points of f∗ : M 7→ M. and the set of those measures
is not empty.

2.3 The weak∗ topology in the space M
If we fix µ ∈ M and take ψ1 ∈ C0(M, [0, 1]), then
the expected value of the observableψ1 with respect to
the probability µ is

∫
ψ1 dµ. If ψ2 is other observable

function ϵ-near ψ1 (namely, ∥ψ2 − ψ1∥ < ϵ), then it
is easy to check that the expected values of ψ1 and ψ2

are also ϵ-near, i.e.∣∣∣∣∫ ψ2 dµ−
∫
ψ1 dµ

∣∣∣∣ < ϵ.

Now, instead of fixing µ ∈ M we will fix ψ ∈
C0(M, [0, 1] and take two probabilities measures

µ1, µ2 so we can compare the expected values of the
observable function ψ with respect to the two proba-
bilities. Precisely, we define below the real applica-
tion ρψ(µ1, µ2). It is positive, symmetric and satisfies
the triangular inequality, but it is not a distance be-
tween measures in M since it is not necessarily strict-
ly positive for all pair of probabilities µ1, µ2 such that
µ1 ̸= µ2.

ρψ(µ1, µ2) :=

∣∣∣∣∫ ψ dµ1 −
∫
ψ dµ2

∣∣∣∣ .
Nevertheless when we compare as above the expected
values of all the observable functions ψ, with respec-
t to the probability µ1 and µ2, we can define a dis-
tance between these two probabilities, and so a topol-
ogy in the space M of all probability measures, which
is called the weak∗ topology. Even more, since the
family Ψ is dense in C0(M, [0, 1]), to decide when t-
wo measures µ1, µ2 ∈ M are ϵ−near, we can restrict
to take into account the values ρψ(µ1, µ2) for the ob-
servable functions ψ ∈ Ψ. As a consequence we de-
fine in the next paragraph, a metric structure inducing
the weak∗ topology in the space M of all the Borel
probabilities on the manifold M :

Definition 3. In the sequel, we endow M with the so
called weak∗ topology. This is the structure of open
subsets in M that can be defined from the following
metric (i.e. from the following definition of distance
between two measures µ, ν ∈ M):

dist(µ, ν) :=
∞∑
n=0

|
∫
M ψn dµ−

∫
M ψn dν|

2n
(2)

where Ψ := {ψn}n≥0 is a fixed countable family of
continuous real functions ψn ∈ C0(M, [0, 1]) such
that Ψ is dense in C0(M, [0, 1]).

In particular, as usual in metric spaces, we define
the distance between a probability measure µ ∈ M
and any non empty subset L∗ ⊂ M, as follows:

dist(µ,L∗) := inf
ν∈L∗

dist(µ, ν). (3)

Also we define the distance between two subsets L∗
1

and L∗
2 of M:

dist(L∗
1,L∗

2) := inf
µ∈L∗

1

inf
ν∈L∗

2

dist(µ, ν). (4)

The two infima in Equalities (3 ) and (4) exist, because
any set of real numbers {dist(µ, ν) : ν ∈ L∗} is lower
bounded by 0.

It is easy to check the following characterization
of the weak∗ topology, from the definition of limit
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in the space M of probabilities, using the distance
between two measures as defined above, and apply-
ing the denseness condition of the countable family
Ψ ⊂ C0(M, [0, 1]) of observable functions in M :

∀ sequence {µn}n≥0 ⊂ M :

lim
n→+∞

µn = µ ∈ M if and only if

lim
n→+∞

∫
ψ dµn =

∫
ψ dµ ∀ ψ ∈ C0(M, [0, 1]).

(5)
The following is a classic result of the basic Prob-

ability Theory, in which the Ergodic Theory of deter-
ministic Dynamical Systems is founded:

Theorem 4. The space M of all the probability Borel
measures on M , endowed with the weak∗ topology, is
compact and sequently compact.

Explicitly, the sequently compactness of M has
the following meaning:

For all sequence {µn}n≥0 of probabilities, there
exists a subsequence {µni}i≥0 (ni is strictly increas-
ing with i), such that

∃ lim
i→+∞

µni = µ ∈ M ,

where the limit in M is taken with the weak∗ topolo-
gy.
Proof: See for instance [1, 3].

The following statement is a known basic result
from the Functional Analysis, which is also in the ba-
sis of the Ergodic Theory:

Theorem 5. If f : M 7→ M is continuous, then the
pull back operator f∗ : M 7→ M defined in Equality
(1), acting in the space M of probability measures of
M , is continuous with the weak∗ topology.

Proof: We must prove that if limn→+∞ µn = µ in the
space P of all the Borel probability measures on the
compact manifold M , and if f : M 7→ M is continu-
ous, then limn→+∞ f∗µn = f∗µ in P . After Equality
(5) we have

lim
n→+∞

∫
ψ dµn =

∫
ψ dµ ∀ ψ ∈ C0(M, [0, 1]).

(6)
Since f is continuous, we have that ψ ◦ f ∈
C0(M, [0, 1]) for all ψ ∈ C0(M, [0, 1]. Then Equality
(6) implies that

lim
n→+∞

∫
ψ ◦ f dµn =

∫
ψ ◦ f dµ (7)

∀ ψ ∈ C0(M, [0, 1]).

After the definition of the operator f∗ : P 7→ P
the following assertion is satisfied by the character-
istic function χB of any Borel set B ⊂ M and any
probability measure ν ∈ P:∫

χB d f
∗ν = (f∗ν)(B) = ν(f−1(B)) =∫
χf−1(B) dν =

∫
χB ◦ f dν.

Therefore, after the abstract definition of the integral
respect to ν, the following equality is satisfied by all
ψ ∈ L1(ν), in particular for all ψ ∈ C0(M, [0, 1]):∫

ψ df∗ν =

∫
ψ ◦ f dν ∀ ν ∈ P.

Joining the last equality with (7) we obtain:

lim
n→+∞

∫
ψ d f∗µn =

∫
ψ d f∗µ

∀ ψ ∈ C0(M, [0, 1]).

After Equality (5), the last assertion is equivalent to
limn→+∞ f∗µn = f∗µ, as wanted. �
Remark 6. As a consequence of the continuity of
the operator f∗, the subset of f -invariant probabili-
ty measures, which is characterized by Mf := {µ ∈
M : f∗µ = µ}, is a closed subset of M. Since M
is a compact metric space, we conclude that Mf is
compact.

2.4 Weak physical measures
We start defining the object of research when the ob-
server analyzes the asymptotic statistics of any deter-
ministic dynamical system:

Definition 7. (Empiric probabilistic distributions)
Let x ∈ M be a fixed initial state. We define the em-
piric probability distribution of the orbit of x up to
time n− 1 ≥ 0 to the probability

νn(x) :=
1

n

n−1∑
j=0

δfj(x) , (8)

where δy is the Dirac delta probability supported in
the point y ∈M . Precisely, for all Borel set B ⊂M :

δy(B) = 1 if y ∈ B, δy(B) = 0 if y ̸∈ B.

In other words, the empiric probability distribution
νn(x) is supported in the finite piece of the orbit of
x from time 0 up to time n − 1, and assigns to each
singleton of this finite piece of orbit, the same prob-
ability 1/n. Physically, νn(x) measures the relative
number of visits to the different pieces of the space, of
the future orbit with initial state x, up to time n− 1.
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Note that unless x ∈ M is a fixed point by f ,
the empiric distributions µn(x) are not f -invariant for
all n > 1. To define and study the ergodic-like at-
tractors, i.e. the statistics of the asymptotic behavior
of the orbits, the purpose is to study the limit in the
weak∗ topology of the measures νn(x) if it exists, or
at least its limit set in the space M of probabilities
which is composed by the limits of all the convergent
subsequences of {νn(x)}n≥0 ⊂ M. This family of
convergent subsequences is not empty, after the The-
orem of sequential compactness of M (see Section 2)
endowed with the weak∗ topology. So, for all x ∈M ,
we can define the non empty limit set L∗(x) in the
space of probabilities M, as follows:

Definition 8. For any given initial state x ∈ M , we
call limit set in the space of probabilities M of the
orbit of x, to:

L∗(x) := {µ ∈ M : ∃ a convergent subsequence ...

...{νni(x)}i≥0 such that lim
i→+∞

νni(x) = µ} (9)

where the sequence {νn}n≥0 is defined in Equality
(10) and the limit is taken in the weak∗ topology of
M.

In particular, if νn(x) is convergent to a probabil-
ity measure µ, then the limit set is the singleton con-
taining µ. Namely:

L∗(x) = {µ} if and only if

∃ lim
n→+∞

νn(x) = µ ∈ M in the weak∗ topology .

The following result is standard in the Ergodic
Theory. For a seek of completeness we include here
its proof:

Proposition 9. For all x ∈ M , L∗(x) ̸= ∅ and
L∗(x) ⊂ Mf .

Proof: Let us first prove that L∗(x) ̸= ∅. In fac-
t, the sequence {νn(x)}n≥0 of empiric probabilities,
is contained in M, which is sequentially compact af-
ter endowed with the weak∗ topology (see Theorem 4.
Therefore, it has convergent subsequences. So, after
Definition 8, the set L∗(x) is non empty, because it
is the set of the limits of all those convergent subse-
quences.

Let us prove now that L∗ ⊂ Mf . Consider the
following sums of measures in the space M of prob-
abilities:

n · νn(x) =
n−1∑
j=0

δfj(x) = δx − δfn(x) +
n∑
j=1

δfj(x)

n · f∗νn(x) =
n−1∑
j=0

f∗δfj(x) =

n−1∑
j=0

δfj+1(x) =

n∑
k=1

δfk(x) =

n−1∑
k=1

δfk(x) + δfn(x)

Therefore, after the substraction of the first sum from
the second one:

n · (f∗νn(x)− νn(x)) = δfn(x) − δx

Take a convergent subsequence {νni(x)}i≥0 in the
weak∗ topology of the space M of probabilities:

lim
i→+∞

νni(x) = µ ,

and compute the following limit (also in the weak∗
topology):

lim
i→+∞

f∗νni(x)−νni(x) = lim
i→+∞

1

ni
(δfni (x)−δx) = 0.

The weak∗-limit above is zero since ni → +∞ and
the measures δx δfni (x) are probabilities, so upper
bounded by 1. Thus, they define bounded operator
ψ ∈ C0(M, [0, 1]) 7→

∫
ψ dδfni (x) ∈ [0, 1] ⊂ R,

and so, divided by ni → +∞, they both converge to
zero in the weak∗ topology.

Therefore, limi→+∞ f∗νni(x) =
limi→+∞ νni(x), and using Theorem 5, we con-
clude:

f∗µ = f∗( lim
i→+∞

νni(x)) =

lim
i→+∞

f∗νni(x) = lim
i→+∞

νni(x) = µ.

The equality above f∗µ = µ is equivalent to the f -
invariance of the probability µ. So, we have proved
that µ ∈ Mf for all probability measure µ that is the
limit of a convergent subsequence of {νn(x)}, i.e. for
all µ ∈ L∗(x). Therefore L∗(x) ⊂ Mf , ending the
proof. �

Remark 10. From the proposition above, the mea-
sures in the non empty set L∗(x) are all f -invariant.
But nevertheless they are not necessarily ergodic.
Even if L∗(x) were a singleton, the example of Bowen,
restated in [11], shows a case (that is besides much
more than a continuous dynamical system, since it can
be constructed of C∞ class), for which for all x in an
open set U ⊂ M , the limit set L∗(x) = {µ}, but µ is
not ergodic.

Up to now, with fixed x ∈ M , we look at all the
measures µ ∈ M that are limits when time n→ +∞,
of the convergent subsequences of the empiric prob-
ability distributions νn(x) supported on finite pieces
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of orbit with initial state x, from time 0 and up to
time n − 1. Namely, we defined L∗(x) choosing any
fixed x ∈M , and searching all the adequate measures
µ ∈ M that represent the statistics of the asymptotic
behavior of the orbit in M with initial state x.

Dually, we will fix now any µ ∈ M and look the
set B = B(µ) of all the points x ∈ M such that µ
represents the statistics of the asymptotic behavior of
some of the orbits in B. If this set B(µ) ⊂ M is non
empty, it will be called basin of attraction of µ in M,
as we state in the following definition:

Definition 11. Let µ ∈ M. Denote B(µ) to the fol-
lowing subset of the ambient manifold M :

B(µ) := {x ∈M : L∗(x) = {µ}} .

If B(µ) ̸= ∅ we call it basin of attraction of µ. After
Proposition 9, if B(µ) is not empty then µ ∈ Mf . i.e.
µ is f -invariant.

Remark 12. Note that the basin of attractionB(µ) of
a probability measure µ ∈ M, lays in the ambient s-
pace M (the compact manifold where f acts) and not
in M (the space of the Borel probability measures on
M ). Thus, the basin of attraction of a measure µ is not
defined as the basin of any attractor of the operator f∗

in the space of probabilities. In general, most mea-
sures in M, precisely most measures in Mf ⊂ M,
define sets B(µ) that are empty, so they are not rep-
resentative of the statistic of the asymptotic behavior
of any orbit in M . It is folkloric believed, but wrong,
that the measures that have non empty basin of attrac-
tions are only the ergodic ones. It is true the converse
statement, if µ is ergodic respect to f , then its basin
B(µ) ⊂ M includes µ-almost all points in M , and
so, it is not empty. But it is false the necessary er-
godicity of µ to have a nonempty basin B(µ). In fact,
the Bowen example, restated in [11] as we recalled
in Remark 10, exhibits a measure µ whose basin of
attraction B(µ) is open and not empty, and µ is not
ergodic.

Let us define an ϵ-weak basin of attraction of a
probability measure µ, taken from [6]:

Definition 13. Let µ ∈ M. For all ϵ > 0 we define
the set:

Bϵ(µ) = {x ∈M : dist(µ, L∗(x)) < ϵ} ,

where the distance dist in the space M of probabilities
is defined by Formulae (2) and (3).

If Bϵ(µ) ̸= ∅ we call it ϵ-weak basin of attraction
of µ.

Remark 14. Note that in the definition of weak basin
of attraction Bϵ(µ), we are not assuming that L∗ is
a singleton. In other words, we do not impose that
for all x in the weak basin of attraction of µ, the se-
quence of empiric probabilities is convergent. On the
contrary, in Definition 11 of (strong) basin of attrac-
tion B(µ) of a measure, we assume the convergence
to µ of the empiric sequences of probabilities for all
x ∈ B(µ).

We also notice, from Definition 13, that if x ∈
Bϵ(µ), then L∗(x) intersects, in the space M, the ball
of center µ and radius ϵ, but is not necessarily includ-
ed in that ball.

Let us first revisit the classic definition of physical
measure, and second, let us define the weak physical
measures.

Definition 15. (Physical measures) A probability
measure µ ∈ M is called physical or SRB if its basin
of attraction B(µ) (defined in Definition 11) has pos-
itive Lebesgue measure.

Physical measures µ, if they exist for some non
conservative system (i.e. when the Lebesgue measure
is not invariant), are in general supported on attrac-
tors of null Lebesgue measure. Even more, in most of
those cases, µ is mutually singular with Lebesgue. We
recall that this is also the situation in the paradigmatic
non conservative example, when µ is the ergodic S-
RB measure of a transitive Anosov diffeormorphism
which is C1 plus Hölder. In this well known example,
µ has conditional measures along the local unstable
manifolds that are absolute continuous with respect
to the internal Lebesgue measures of those manifold-
s, but it is mutually singular respect to the Lebesgue
measure m in the ambient manifold M .

From Definition 15, if there exists a physical mea-
sure µ, then for any finite time n large enough and for
a Lebesgue-positive set of points x ∈ M , the future
orbit with initial state x will exhibit a empiric prob-
ability distribution νn(x) approaching µ. But νn(x)
does not equal the probability measure µ, except, at
most, for the Lebesgue-zero set of initial states in a
periodic orbit on which µ could be supported. Indeed,
we will always see, for a Lebesgue-positive set of or-
bits, an ϵ-approach to µ, with ϵ ̸= 0. In other words,
there exists a not null error, as small as wanted if the
time of experimentation is long enough, but nonze-
ro. This ϵ−approximation of the empiric probability
to the physical measure is observed in the space M,
with any metrization inducing the weak∗-topology on
M.

In brief, the conclusions, when using the theory
of physical measures, do not hold with error ϵ = 0
if time of experimentation is finite. One could better
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assert that the physical measure µ is the distribution
in regime. But this assertion does not hold usually
for a Lebesgue-positive set of initial states. In fact,
for most non conservative systems that exhibit physi-
cal or SRB measures, the attractor has zero Lebesgue
measure. On the other hand, the modern ergodic the-
ory of physical and SRB measures, is based from the
very beginning, in the hypothesis or exclusion of the
initial states in a zero Lebesgue-measure set. So, un-
der this hypothesis, one will never arrive exactly to
the attractor, if the map f is one-to-one and such that
f∗(m) ≪ m, where m is the Lebesgue measure, and
if the attractor has zero Lebesgue measure. Therefore,
the exact evolution in regime is not exactly observed.

Inspired in the argument above, one does not
loose the physical empiric meaning of a measure µ,
if it approximates the empiric distributions νn(x) by
2ϵ instead of ϵ, and if this happens for all ϵ > 0 when
choosing adequate stop times n that are large enough
(but finite) and adequate initial states x in a positive
Lebesgue-measure set. In other words, we can ap-
proximate the empiric distribution νn(x) up to time n,
for n large enough, with measures µ ∈ M that are not
exactly the limits of the convergent subsequences of
{νn(x)}n≥0, but that are ϵ-near to those limits. Name-
ly, we can consider the ϵ-weak basins of attraction-
s Bϵ(µ), as defined in Definition 13 (instead of the
strong basin B(µ) defined in Definition 11), provided
that m(Bϵ(µ)) > 0 for all ϵ > 0.

With the weak concept of attraction described
above, we are not loosing the desired physical em-
pirical sense of the searched probability measures µ.
In fact, from the considerations above, that weaker
definition (which we formulate precisely in Definition
Definition 16) will be still strong enough to describe,
like physical measures do, the asymptotic statistics of
a Lebesgue positive set of orbits.

We revisit now the definitions in [6], which are
generalizations of the observability notion for mea-
sures introduced in [15], and of the physical statistical
properties of the SRB measures. We call this general-
ized notion as weak physical. It is indeed an ϵ-weak
physical property of the measures µ, for all ϵ > 0:

Definition 16. (Weak physical measures) We say that
a probability measure µ ∈ M is weak physical or
observable if its ϵ-weak basin of attraction Bϵ(µ) (see
Definition 13) has positive Lebesgue measure for all
ϵ > 0. We denote Wf ⊂ M to the set of all weak
physical measures for f .

We have the following properties of weak phys-
ical measures, first stated and proved in [6]. For a
seek of completeness of this paper, we reformulate
here their proofs.

Theorem 17. (Existence of weak physical measures)
For all continuous map f : M 7→ M on a compact
manifold M :
(i) ∅ ̸= Wf ⊂ Mf

(ii) Wf is a compact set in the weak∗ topology of the
space M of all probability measures.

Proof: Let us first prove that Wf ̸= ∅. Assume by
contradiction that for all µ ∈ M there exists ϵµ > 0
such that m(Bϵµ(µ)) = 0. Fix any µ ∈ M. Af-
ter Definition 13 of the weak basin Bϵ(ν) of a prob-
ability measure ν, we conclude that m(Bϵµ/2(ν)) =
0 ∀ν ∈ M such that dist(µ, ν) < ϵµ/2. So, each
fixed µ ∈ M has a neighborhood of radius ϵµ/2 such
that all the other measures ν in that neighborhood al-
so have an (ϵµ/2)-weak basin of attraction with ze-
ro Lebesgue measure (if non empty). Since M is
compact, we can cover the whole space of probabil-
ities with a finite number of such neighborhoods, and
choose the smallest radius of them, say ϵ1 > 0. We
conclude that

m(Bϵ1(ν)) = 0 ∀ ν ∈ M ⇒

dist(L∗(x),M) ≥ ϵ1 > 0 for m− a.e. x ∈M (10)

where m is the Lebesgue measure (see Definition 13
of the weak basin Bϵ(µ)). But the non empty set
L∗(x) is contained in Mf ⊂ M for all x ∈ M (see
Proposition 9), and thus dist(L∗(x),M) = 0 for al-
l x ∈ M , contradicting (10). We have proved that
Wf ̸= ∅.

Now let us end the proof of statement (i). We
must prove that Wf ⊂ Mf . Fix µ ∈ Wf . Since
m(Bϵ(µ)) > 0 for all ϵ > 0 (see Definition 15),
there exists a sequence of points xn ∈ B1/n(µ) for
all n ≥ 1. After Definition 13 of weak basin of attrac-
tion, there exists a sequence of measures νn ∈ L∗(xn)
such that dist(νn, µ) < 1/n for all n ≥ 0. There-
fore limn→+∞ νn = µ. From Proposition 9 and since
νn ∈ L∗(xn), we deduce that νn ∈ Mf for all n ≥ 0.
Finally, as Mf is a closed subset of M (see the Re-
mark after Theorem 5), and since Mf ∋ νn → µ, we
conclude that µ ∈ Mf , as wanted.

Finally, let us prove the statement (ii). Since
Wf ⊂ M, and M is a compact metric space in the
weak∗ topology (see Section 2), it is enough to prove
that Wf is closed. Take µn → µ ∈ M, such that
µn ∈ Wf for all n ≥ 0. We must prove that µ ∈ Wf ,
or in other words, we shall prove that m(Bϵ(µ)) > 0
for all ϵ > 0 (see Definition 16). Fix ϵ > 0. Since
µn → µ, then dist(µn, µ) < ϵ/2 for all n large e-
nough. Fix one of such values of n. As µn ∈ Wf , we
havem(Bϵ/2(µn)) > 0. But from the triangular prop-
erty, for all x ∈ Bϵ/2(µn) we have dist(L∗(x), µ) ≤
dist(L∗(x), µn) + dist(µn, µ) < (ϵ/2) + (ϵ/2) = ϵ.
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We conclude that Bϵ/2(µn) ⊂ Bϵ(µ) and therefore
m(Bϵ(µ) ≥ m(Bϵ/2(µn) > 0. So we have proved
that the ϵ-weak basin of attraction Bϵ(µ) of µ, has
positivem-measure (Lebesgue measure) for all ϵ > 0,
as wanted. �

Let us consider a restriction of f to a forward in-
variant portion of the space that has positive Lebesgue
measure.

Definition 18. (Restricted weak physical measures)
Let B ⊂ M a Borel subset such that m(B) > 0
and f(B) ⊂ B. Then f |B : B 7→ B defines a
dynamical subsystem. We say that a Borel proba-
bility measure µ (not necessarily supported on B) is
observable or weak physical for f restricted to B if
m(Bϵ(µ)

∩
B) > 0 for all ϵ > 0, where Bϵ(µ) is

defined in 3.8. We denote with Wf |B to the set of all
weak physical measures restricted to B.

Corollary 19. For all continuous f : M 7→ M on
a compact manifold M and for all forward invariant
Borel set B with positive Lebesgue-measure:
(1) ∅ ̸= Wf |B ⊂ Mf and
(2) Wf |B is weak∗ compact.

Proof: Apply the proof of Theorem 3.9 to f |B : B 7→
B in the role of f :M 7→M . �

After Theorem 17 and its Corollary 19, weak
physical measures do always exist for any continuous
dynamics, including in particularC1 diffeomorphism-
s. This is the large difference with the observable mea-
sures defined in [15], and also with the classical def-
inition of physical measures (see Definition 15). One
of the major problems of the differentiable Ergodic
Theory is to find probability measures that have good
ergodic properties for Lebesgue almost all orbits. That
is why physical or SRB measures raised in the litera-
ture of the modern Ergodic Theory. But on the other
hand, it is well known that the ergodic theory of S-
RB or physical measures, at least from the viewpoint
in which it was developed up to now, does not work
for C1 systems that are not C1 plus Hölder. The ma-
jor obstruction resides in the frequent non existence
of such mild measures. On the other hand, he have
proved here that weak physical measures as defined in
3.8 do exist for all continuous systems, so in particu-
lar for all C1 systems, and as we will see in the next
section, they describe a class of weak attractors from
the ergodic viewpoint, for Lebesgue almost all orbits.
So they can substitute the physical or SRB measure if
these last probabilities do not exist. And they coincide
with the physical or SRB measures in the case when
they last exist. As the great advantage, the weak phys-
ical measures do exist, and describe the ergodic-like
attractors, for all the continuous dynamics.

3 Ergodic-like attractors

In the sequel we will agree to say that a nonempty set
K ⊂ M is f -invariant if f−1(K) = K. We recall
that the continuous map f : M 7→ M is not neces-
sarily invertible. We will agree to say that a set B
is f -forward invariant if f(B) ⊂ B, or equivalently
B ⊂ f−1(B).

Definition 20. If K ⊂ M is not empty, compact and
f -invariant, we define the following subset Vϵ,n(K) ⊂
M for any fixed ϵ > 0 and for any fixed n ≥ 0:

Vϵ,n(K) = f−n(Vϵ(K)) =

{y ∈M : dist(fn(y),K) < ϵ}
where Vϵ(K) := {x ∈M : dist(x,K) < ϵ} is called
the open ϵ-neighborhood of K.

Note that Vϵ,0(K) = Vϵ(K). It is immediate from
the f−invariance of K that K ⊂ Vϵ,n(K) for all n ≥
0 and for all ϵ > 0.

For a fixed point y ∈ M , and for a fixed natu-
ral number N ≥ 1 we denote ωϵ,N (y,K) to the fre-
quency with which the finite piece of orbit with ini-
tial state y, from time 0 and up to time N , visits the
ϵ-neighborhood of K. Precisely, if #A denotes the
cardinality (i.e. the number of elements) of a finite set
A, we have:

ωϵ,N (y,K) :=
#{0 ≤ n < N : y ∈ Vϵ,n(K)}

N
=

#{0 ≤ n < N : dist(fn(y),K) < ϵ}
N

(11)

From the definition above 0 ≤ ωϵ,N (y,K) ≤ 1 for
all y ∈ M , for all N ≥ 1 and for all ϵ > 0. Note,
from the f -invariance of K, that ωϵ,N (y,K) = 1 for
all y ∈ K, for all N ≥ 1 and for all ϵ > 0.

For a given non empty, compact and f -invariant
set K we construct the set

Bϵ(K) = {y ∈M : lim inf
N→+∞

ωϵ,N (y,K) > 1− ϵ}
(12)

where the frequency ωϵ,N (y,K) is defined by Equal-
ity (11). We call ωϵ,N (y,K) the frequency of visits
of the orbit of y, from time 0 up to time N , to the ϵ-
neighborhood of K. So, if y ∈ Bϵ(K) and ϵ > 0 is
small enough, we say that the frequency of visits of
the orbit of y to the ϵ-neighborhood of K is asymp-
totically near 1. If a point y belongs to Bϵ(K) for
all ϵ > 0, we say that it is probabilistically attract-
ed by the set K. In fact, the frequency of its visits to
the open sets at arbitrarily small distance from K is
asymptotically 1. So, with increasing probability con-
verging to 1, in the mean times, we will find the future
orbit of all the points y ∈

∪
ϵ>0Bϵ(K) (for time large

enough) as near K as wanted.
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Remark 21. Note that K ⊂ Bϵ(K), so for all ϵ > 0
this latter set is not empty and K ⊂

∪
ϵ>0Bϵ(K).

From the definition above Bϵ(K) is the set of all
the points y ∈ M such that are, in the temporal aver-
ages, ϵ-attracted to K. The approximation ϵ > 0 has
a doubling meaning:

First, it is an spacial approximation, since the fu-
ture orbit with initial state y drops in Vϵ(K) (the ϵ-
neighborhood of K) for infinitely many iterates.

Second, it is a temporal probabilistic approxima-
tion but not a topological approximation. In fact, we
are not assuming that after some time N large enough
all the iterates of the orbit with initial state y drop in
Vϵ(K). Nevertheless, we are assuming that a propor-
tion near 100% of these iterates (if ϵ > 0 is small
enough) do drop in Vϵ(K). In other words, the fre-
quency according to which they approach K is larger
than 1 − ϵ. So, the orbit of y, after an iterate N large
enough, has a relatively very small freedom, if ϵ is s-
mall enough, to “take a short vacation tour” far from
K.

The same ϵ approximation in time-mean appears
when the classical ergodic attractors, (defined as the
support of physical measures) are considered. For in-
stance the example of Bowen restated in [11], the ex-
ample of Hu-Young in [13], and the C1-generic ex-
ample of Campbell and Quas, restated in [6], exhibit
this weak attraction in temporal mean to the support
to a physical measure, and the attraction is not topo-
logical. In those three examples there exist physical
measures attracting Lebesgue almost all the points of
an open set, and supported on hyperbolic fixed point
of saddle type. Therefore, the attractors are not topo-
logical, but just probabilistic. Precisely, the attraction
is observed in time-mean, with a frequency of visits
arbitrarily near the attractor that is not exactly 1, but
near 1 (namely, converging to 1 when the number N
of observed iterates goes to +∞). Inspired in those
examples, we introduce the following Definitions 22
and 24:

Definition 22. For a non empty compact f -invariant
set K ⊂ M the set Bϵ(K) constructed in Equality
(12), if nonempty, is called basin of ϵ-weak ergodic
attraction to K, or simply basin of ϵ-attraction to the
set K.

Remark 23. We notice, from Equality (12), that
the basin Bϵ(K) is f -invariant, i.e. f−1(Bϵ(K) =
Bϵ(K) for all ϵ > 0. We remark that it is not neces-
sarily an open set.

Definition 24. (Ergodic-like attractor) Let K ⊂ M
be not empty, compact and f -invariant. Let B ⊂ M
be a Borel set with Lebesgue measurem(B) = α > 0.

We say that K is an B-observable ergodic-like attrac-
tor, if:
(1) For all ϵ > 0 the basin of ϵ-attraction Bϵ(K) of K
contains Lebesgue almost all points of B. (Therefore
m(Bϵ(K)) ≥ α ∀ ϵ > 0).
(2)K does not contain proper, compact and nonempty
subsets K ′ ⊂ K that satisfy (1).

We say that a nonempty compact set K ⊂ M is
an ergodic-like attractor if it isB-observable ergodic-
like attractor for some Borel set B ⊂M with positive
Lebesgue measure.

We notice that the condition

Bϵ(K) ⊃ B ∀ ϵ > 0

is trivially satisfied taking K =M for any dynamical
system and any subset B. So, no information would
be obtained about the statistics of the asymptotic dy-
namics if only condition (1) were assumed. To be an
interesting definition, one adds the condition (2) stat-
ing the minimality of K attracting the observable set
B.

In Theorem 29 and its Corollary 30 we will
prove that, for all forward invariant set B with pos-
itive Lebesgue measure, there exists a B-observable
ergodic-like attractor.

Now we define the exact basin of attraction of a
B-observable ergodic-like attractor, and prove that it
always contains B, and so it has Lebesgue measure
which is not smaller than α = m(B) > 0.

Definition 25. Let K ⊂ M be a B-observable
ergodic-like attractor according to Definition 24. Its
exact basin of attraction, or in brief, the basin of at-
traction of K, is the following set B(K):

B(K) := {x ∈M : lim
ϵ→0+

lim inf
N→+∞

ωϵ,N (x,K) = 1},

where the frequency ωϵ,N (x,K) is defined in Equality
(11).

After Remark 23, note that the exact basin of at-
traction does not necessarily contain a neighborhood
of K. Nevertheless, it intersects arbitrarily smal-
l neighborhoods of K (see Definition 20). Besides,
it has non zero Lebesgue measure, as stated in the fol-
lowing theorem:

Theorem 26. For all Borel set B ⊂ M such that
m(B) = α > 0, and for all B-observable ergodic-
like attractor K ⊂ M (as defined in Definition 24),
its exact basin of attraction B(K) ⊃ K (as defined in
Definition 25) contains m-a.e. point of B and there-
fore, it has Lebesgue measure larger or equal than α.
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Besides

B(K) =
∩
ϵ>0

Bϵ(K) and f−1(B(K)) = B(K),

where Bϵ(K) is the basin of ϵ-attraction to K (as de-
fined in Definition 22).

Proof: From Definition 22:

0 < ϵ′ < ϵ ⇒ Bϵ′(K) ⊂ Bϵ(K).

Therefore, applying Definition 24 and denoting m to
the Lebesgue measure:

m

(∩
ϵ>0

Bϵ(K)

)
= m

(
+∞∩
n=1

B1/n(K)

)
=

lim
n→+∞

m(B1/n(K)) ≥ m(B) = α > 0.

We assert that it is enough to prove that the exact basin
of attractionB(K) coincides with the following set S:

S =

+∞∩
n=1

B1/n(K) =
∩
ϵ>0

Bϵ(K).

In fact, if B(K) = S then

m(B \B(K)) = m(

+∞∪
n=1

(B \B1/n(K)) ≤

+∞∑
n=1

m(B \B1/n(K)) = 0.

The sum at right is zero, because by Definition 24, for
all ϵ > 0 the basin of ϵ-attraction Bϵ(K) contains m-
almost all points of B. Then m(B \B(K)) = 0 or, in
other words, B(K) also contains m-almost all points
of B. Besides, if we prove that B(K) = S then

f−1(B(K)) = f−1(S) = f−1(
+∞∩
n=1

B1/n(K) ) =

+∞∩
n=1

f−1(B1/n(K)) =

+∞∩
n=1

B1/n(K) = S = B(K).

So, let us prove that B(K) = S. Let us first show
that S ⊂ B(K). Fix a point x ∈ S. After Definition
22 the point x satisfies the following equalities:

1 ≥ lim inf
N→+∞

ωϵ,N (x) > 1− ϵ ∀ ϵ > 0.

Taking ϵ→ 0+, we deduce

lim
ϵ→0+

lim inf
N→+∞

ωϵ,N (x) = 1.

Finally, recalling Definition 11, the equality above
implies that x ∈ B(K). This latter assertion was
proved for a arbitrary point x ∈ S. Thus, we de-
duce S ⊂ B(K) as wanted. The opposite inclusion
B(K) ⊂ S is immediate after Definition 25 and E-
quality (12). �

One of the reasons for searching the physical
probability measures, if they exist, is that their sup-
ports are ergodic-like attractors. Precisely, we state
the following result:

Theorem 27. If K is the compact support of a phys-
ical probability measure µ ∈ Mf (i.e. K is the min-
imum compact set in M such that µ(K) = 1), and
if B(µ) denotes the basin of attraction of µ (as de-
fined in Definition 15), then K is a B(µ)−observable
ergodic-like attractor (according with Definition 24).
Besides

B(K) = B(µ).

Proof: Since µ is physical, its basin of attraction
B(µ) ⊂ M has positive Lebesgue measure, say α >
0. Denote K ⊂ M to the compact support of µ.
Fix ϵ > 0 and choose ψ ∈ C0(M, [0, 1]) such that
ψ|K = 1, and ψ(y) = 0 if and only if dist(y,K) ≥ ϵ.
Therefore∫

ψ dµ =

∫
K
ψ dµ = µ(K) = 1.

Take x ∈ B(µ) and compute the following limit

lim
N→+∞

1

N

N−1∑
n=0

ψ(fn(x)) =

lim
N→+∞

∫
ψ d

(
1

N

∞∑
n=0

δfn(x)

)
=

∫
ψ dµ = 1.

In the equalities above we have use the characteriza-
tion of the weak∗ limit of probabilities, Definition 15
of physical measure and Definition 11 of B(µ) which
state that L∗(x) = {µ} for all x ∈ B(µ). Thus, for
the same previously fixed value of ϵ > 0, and for all
x ∈ B(µ) there exists N0(x) such that

1

N

N−1∑
n=0

ψ(fn(x)) > 1− ϵ ∀ N ≥ N0(x),

and therefore

1

N
#{0 ≤ n ≤ N − 1 : ψ(fn(x)) > 0} >

> 1− ϵ ∀ N ≥ N0(x).
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Then, for all x ∈ B(µ) and for all N ≥ 1 the frequen-
cy ωϵ,N (x), as defined in Definition20, satisfies:

ωϵ,N (x,K) =

1

N
#{0 ≤ n ≤ N − 1 : dist(fn(x),K) < ϵ} =

1

N
#{0 ≤ n ≤ N − 1 : ψ(fn(x)) > 0} > 1− ϵ.

After Definition 13, the inequality above implies
that

B(µ) ⊂ Bϵ(K).

Since ϵ > 0 was arbitrary, we deduce that

B(µ) ⊂
∩
ϵ>0

Bϵ(K) = B(K).

It is left to prove that K is minimal satisfying the con-
dition above and that B(K) = B(µ). Let us first
prove the minimality condition. Take a nonempty
compact subset K ′ ⊂ K such that B(K ′) ⊃ B(µ).
We must prove that K ′ = K. It is enough to show
that µ(K ′) = 1, because by hypothesis K is the min-
imal compact set that satisfies that condition. Take a
sequence of continuous functions ψi : M 7→ [0, 1]
such that ψi|K′ = 1 and limi→+∞

∫
ψi(x) = χK′(x)

for all x ∈ M , where χK′(x) is 1 if x ∈ K ′ and is
0 if x ̸∈ K ′. Then, by the dominated convergence
theorem:

lim
i→+∞

∫
ψi dµ =

∫
χK′(x) dµ = µ(K ′). (13)

Fix x ∈ B(µ) ⊂ B(K ′). After the definition of
B(µ) we have fix 0 < ϵ < 1 and i ∈ N. As
ψi is continuous and ψi|K′ = 1, there exist 0 <
δ < ϵ such that ψi(y) > 1 − ϵ if dist(y,K ′) <

δ. ve limn→+∞
1
n

∑n−1
j=0 δfj(x) = µ in the weak∗

topology of M. After Theorem 4.6 and the def-
inition of Bδ(K ′) we have x ∈ Bδ(K

′) and so,
lim infn→+∞ ωδ,n(x,K

′) > 1 − δ for all n large e-
nough. Then:∫

ψi dµ = lim
n→+∞

∫
ψi d

1

n

n−1∑
j=0

δfj(x) =

lim
n→+∞

1

n

n−1∑
j=0

ψi(f
j(x)) ≥

lim inf
n→+∞

(1−ϵ)ωδ,n(x,K ′) > (1−ϵ)(1−δ) ≥ (1−ϵ)2.

The inequality above holds for all i. Joining with In-
equality (13), we deduce that µ(K ′) > (1−ϵ)2. Since

ϵ is arbitrary, and µ is a probability measure, we con-
clude that µ(K ′) = 1 as wanted. Therefore K ′ = K
and so K is a B(µ)-observable ergodic-like attractor
according with Definition 24.

Finally, let us prove that B(K) ⊂ B(µ). Take
x ∈ B(K) and consider its sequence of empiric prob-
abilities νN (x) = 1

N

∑N−1
n=0 δfn(x). We must prove

that it is convergent in the weak∗ topology, to µ. As-
sume by contradiction that there exists a subsequence
{νNj (x)}j≥1 such that

lim
j→+∞

νNj (x) = ν ̸= µ,

where the limit is taken in the weak∗ topology of the
space M of probabilities. Then, there exists a contin-
uous function ψ ∈ C0(M, [0, 1]) such that∫

ψ dν = 0,

∫
ψ dµ = 1.

As µ is a positive measure, and ψ is a continuous real
function with sup value 1, the equality

∫
ψ dµ = 1

implies that ψ(x) = 1 for µ-a.e. x ∈ M . Therefore
ψ|K = 1, recalling that K is the minimum compact
set such that µ(K) = 1.

After the uniform continuity of ψ in the compact
manifold M , there exists 0 < ϵ ≤ 1/2 such that
ψ(y) > 1/2 if dist(y,K) < ϵ. From the assumption
x ∈

∩
ϵ>0Bϵ(K), there exists N0(x) such that:

1

N
#{0 ≤ n ≤ N − 1 : dist(fn(x),K) < ϵ} >

> 1− ϵ ∀ N ≥ N0(x).

Therefore

1

N
#{0 ≤ n ≤ N − 1 : ψ(fn(x)) >

1

2
} >

> 1− ϵ ∀ N ≥ N0(x),

and thus

lim inf
N→+∞

1

N

N−1∑
n=0

ψ(fn(x)) > (1− ϵ)/2 ≥ 1/4.

We conclude that

1

4
< lim inf

N→+∞

∫
ψ d

(
1

N

N−1∑
n=0

δfn(x)

)

≤ lim
j→+∞

∫
ψ d
(
νNj (x)

)
=

∫
ψ dν,

contradicting the fact that
∫
ψ dν = 0. �

WSEAS TRANSACTIONS on MATHEMATICS Eleonora Catsigeras

ISSN: 1109-2769 474 Issue 12, Volume 10, December 2011



Definition 28. (Ergodic attractors, see [24]) If an B-
observable ergodic-like attractor K is the compact
support of a physical measure µ (see Theorem 27),
and if µ is ergodic, then K is called ergodic attractor.

It is unknown how abundant are the differentiable
systems that exhibit ergodic attractors, but there are
well known examples that exhibit none, since they
have not physical measures or have a unique phys-
ical measure which is not ergodic (see for instance
Bowen’s example, cited in [11]). Nevertheless a sim-
ilar result to Theorem 27 can be obtained using the
physical-like measures defined in Definition16, and
these lasts always exist for any continuous system (see
Theorem 17 and its Corollary 19) So, the following
result implies that any continuous system necessarily
exhibits at least one ergodic-like attractor.

Theorem 29. Construction of Ergodic-like Attractors
LetB ⊂M be a forward invariant Borel set with pos-
itive Lebesgue measure. Let W|f |B ⊂ M be the set
of physical-like measures restricted to B, as defined
in 3.10. Then, the common compact support K ⊂ M
of all the probabilities in Wf |B (i.e. the minimal com-
pact set K such that µ(K) = 1 for all µ ∈ Wf |B) is a
B-observable ergodic-like attractor.

Before proving Theorem 29 let us state its Corol-
lary and a Lemma:

Corollary 30. (Existence of ergodic-like attractors)
Any continuous system exhibits ergodic-like attrac-
tors.

We prove this Corollary at the end of this section.

Lemma 31. If B is a forward invariant Borel set with
positive Lebesgue measure and if W|f |B is the set of
the physical-like measures of f restricted to B, then
for Lebesgue almost all x ∈ B the limit set L∗(x)
(defined in Definition 8) is contained in W|f |B .

Proof: For all ϵ > 0 denote Vϵ = {µ ∈ M :
dist(µ,Wf |B) < ϵ}, where the distance in the space
M of probability measures is taken according to E-
quality (2). After Corollary 19, the set Wf |B is weak∗
compact. So

Wf |B =
∩
ϵ>0

Vϵ =
+∞∩
N=1

V1/N .

Therefore, it is enough to prove that for all ϵ > 0 the
set of points x ∈ B such that

L∗x
∩

(M\ Vϵ) ̸= ∅

has m-measure zero, where m denotes the Lebesgue
measure in the ambient manifold M .

In fact, for all ϵ > 0 any measure µ ∈ M \ Vϵ
is not in Wf |C , namely µ is not physical-like for f re-
stricted to B. Therefore, applying Definition 18, there
exists δµ > 0 such that m(Bδ(µ)) = 0 ∀ 0 < δ ≤ δµ.
Thus, for m-a.e. point x ∈ C the set L∗x does not
intersect Bδµ(µ), denoting with Bδµ(µ) the open bal-
l with center at µ and radius δµ in the metric space
M of probabilities. Now let us cover the compact set
M \ Vϵ with a finite number of such balls. We con-
clude that form-a.e. point x ∈ C the set L∗x does not
intersect any of such balls. This implies that it does
not intersect M\Vϵ, or, in other words L∗x ⊂ Vϵ for
Lebesgue almost all x ∈ B, ending the proof. �
Proof of Theorem 29: To prove that K is a B-
observable ergodic-like attractor, we must prove that
m(B\Bϵ(K)) = 0 for all ϵ > 0 and thatK is the min-
imal compact set in the manifold M with such a prop-
erty. After Corollary 19 the set Wf |B of physical-like
measures restricted to B is not empty. By hypothesis
K ⊂ M is compact and supports µ, i.e. µ(K) = 1,
for all µ ∈ Wf |B (So, K is not empty).

Let us first prove that m(B \ Bϵ(K)) = 0 for all
ϵ > 0.

Fix ϵ > 0 and choose ψ ∈ C0(M, [0, 1]) such that
ψ|K = 1, and ψ(y) > ϵ if dist(y,K) ≥ δ. Therefore∫

ψ dµ =

∫
K
ψ dµ = µ(K) = 1 ∀ µ ∈ Wf |B.

(14)
After Lemma 31 for Lebesgue almost all point in

B: L∗x ⊂ Wf |B . So, to prove thatm(B\B(K)) = 0
it is enough to prove that all points x ∈ B such that
L∗x ⊂ Wf |B belong to B(K). To do that is it enough
that they belong to Bϵ(K) for all ϵ > 0. Fix such a
point x and fix ϵ > 0. Choose ψ ∈ C0(M, [0, 1]) such
that ψ|K = 1, and find 0 < δ < ϵ such that ψ(y) = 0
if dist(y,K) ≥ ϵ. Therefore∫

ψ dµ =

∫
K
ψ dµ = µ(K) = 1 ∀ µ ∈ Wf |B.

(15)
Consider an increasing sequence ni → +∞ of

natural numbers such that

lim
i→+∞

ωϵ,ni(x,K) = lim inf
n→+∞

ωϵ,n(x,K),

where ωϵ,n(x,K) is the frequency in which the future
orbit of x from time 0 to time n ϵ-approaches the com-
pact set K, as defined in (11).

Taking a subsequence of {ni}i≥1 if necessary, it
is not restrictive to assume that the sequence of em-
piric probabilities of x, defined in (10), is weak∗-
convergent to a probability, say µ. (In fact, recall that
the space M of probabilities is sequentially compact
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endowed with the weak∗ topology). So,

lim
i→+∞

1

ni

ni−1∑
j=0

δfj(x) = µ ∈ L∗(x) ⊂ Wf |B.

Therefore, applying the characterization of the
weak∗ limit given in Equality (5):

1 =

∫
ψ dµ = lim

i→+∞

∫
ψ d

1

ni

ni−1∑
j=0

δfj(xN ) =

lim
i→+∞

1

ni

ni−1∑
j=0

ψ(f j(xN )) ≤

lim
i→+∞

1

ni
#{0 ≤ j ≤ ni − 1 : dist(f j(x),K) < ϵ}

= lim
i→+∞

ωϵ,ni(x,K) ≤ 1.

To obtain the inequality above recall that

ψ(y) = 0 if dist(y,K) ≥ ϵ

and ψ(y) ≤ 1 otherwise. So:

1− ϵ < 1 = lim
i→+∞

ωϵ,ni(x,K) = lim inf
n→+∞

ωϵ,n(x,K).

Therefore we conclude that x ∈ Bϵ(K), for all x ∈ B
such that L∗x ⊂ Wf |B . As we proved this assertion
for all ϵ > 0, we joint it with Theorem 26 and Lemma
31, to conclude that Lebesgue almost all points of B
belong to B(K), as wanted.

Now, let us prove that K ⊂ M is minimal com-
pact satisfying the condition

m(B \B(K)) = 0.

Take a nonempty compact subset K ′ ⊂ K such that
m(B \ B(K ′)) = 0. We must prove that K ′ = K.
Assume by contradiction thatK ′ ̸= K. By hypothesis
K is the minimal compact set such that µ(K) = 1 for
all µ ∈ Wf |B . Then, there exists ν ∈ Wf |B such that
ν(K ′) < 1.

Fix a neighborhood V of K ′ such that

ν(V ) < 1.

Fix ϵ > 0 such that ϵ < 1−ν(V ) and choose a contin-
uous function ψ :M 7→ [0, 1] such that ψ|K′ = 1 and
ψ(y) = 0 if y ̸∈ V . Choose 0 < δ < ϵ/4 such that
ψ(y) > (1−ϵ/4) if dist(y,K ′) < δ. We are assuming
that B(K ′) contains Lebesgue almost all x ∈ B. Fix
any such a point x and consider:(

1− ϵ

4

)
ωδ,n(x,K

′) ≤

1

n

n−1∑
j=0

ψ(f j(x)) ≤ ωϵ,n(x,K
′) ≤ 1.

Recall that

1

n

n−1∑
j=0

ψ(f j(x)) =

∫
ψ d

1

n

n−1∑
j=0

δfj(x).

So, for any sequence ni → +∞ such that the empiric
probabilities νni(x) of x converge to a measure µ ∈
L∗(x), we have(

1− ϵ

4

)
lim inf
n→+∞

ωδ,n(x,K
′) ≤

∫
ψdµ∗ ≤ 1.

Since x ∈ B(K ′) ⊂ Bδ(K
′), we deduce that the lim-

inf above is greater or equal than (1−δ) (recall Equal-
ity (12)). So, we conclude that∫

ψ dµ∗ ≥ (1− ϵ/4)(1− δ) >

(1− ϵ/4)2 > 1− ϵ/2 > ν(V ) + ϵ/2 >∫
ψ dν + ϵ/2

∀ µ ∈ L∗(x) for m− a.e. x ∈ B.

From Equality (2) defining the distance in the s-
pace of probabilities and from the denseness of the
family Ψ = {ψi}i≥1 ⊂ C0(M, [0, 1]), we conclude
that there exists a continuous real function ψi0 ∈ Ψ
such that ∥ψi0 − ψ∥sup ≤ ϵ/8. Therefore, for all
µ ∈ L∗(x), for m-a.e. x ∈M :

ϵ

2
≤
∣∣∣∣∫ ψ dµ−

∫
ψ dν

∣∣∣∣ ⇒

⇒ ϵ

2
≤
∣∣∣∣∫ ψ dµ−

∫
ψi0 dµ

∣∣∣∣+
+

∣∣∣∣∫ ψi0 dµ−
∫
ψi0 dν

∣∣∣∣+ ∣∣∣∣∫ ψi0 dν −
∫
ψ dν

∣∣∣∣
⇒ ϵ

2
≤
∣∣∣∣∫ ψi0 dµ−

∫
ψi0 dν

∣∣∣∣+ 2ϵ

8
.

Then: ∣∣∣∣∫ ψi0 dµ−
∫
ψi0 dν

∣∣∣∣ ≥ ϵ

2
− ϵ

4
=
ϵ

4
.

So

dist(µ, ν) :=
∞∑
i=1

1

2i
·
∣∣∣∣∫ ψi dµ−

∫
ψi dν

∣∣∣∣ ≥
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≥ 1

2i0
· ϵ
4
= ρ > 0 ∀µ ∈ L∗(x) for m− a.e. x ∈ B.

The last inequality can be restated as follows:
m(Bρ(ν)) = 0, where Bρ(ν) is the basin of ρ-weak
attraction of ν, as defined in Definition 13. Then, tak-
ing into account Definition 18, we conclude that ν is
not weak physical for f |B , namely ν ̸∈ Wf |B , con-
tradicting its construction at the beginning. This ends
the proof that K is minimal compact with the prop-
erty m(B \ B(K)) = 0. Thus K is a B-observable
ergodic-like attractor, and the proof of Theorem 29 is
ended. �
Proof of Corollary 30: Take any forward invari-
ant Borel set B ⊂ M with positive Lebesgue mea-
sure. Such sets always exist, since one can take for
instance B = M . After Theorem 17 and its Corol-
lary 19, there exists a nonempty weak∗-compact set
W|f |B of physical-like probabilities of f restricted
to B. Since µ(M) = 1 for all µ ∈ Wf |B , the
family Γ of all the compact sets K ⊂ M that sup-
port all the measures µ ∈ Wf |B is not empty. De-
fine in Γ the partial order K1 ≤ K2 if and only if
K1 ⊂ K2. Any chain {Kn}n≥0 (i.e. Kn+1 ≤ Kn for
all n ≥ 0), defines a minimal element (respect to the
chain) K∞ =

∩
n≥0Kn ∈ Γ. In fact K∞ is compact

and µ(K∞) limn→+∞ µ(Kn) = 1 for all µ ∈ Wf |B .
So K∞ is not empty and supports all the measures of
Wf |B . Thus K∞ ∈ Γ. Zorn Lemma states that in any
partially ordered set Γ, if all chains define a minimal
element (respect to the chain) in Γ, then there exist
minimal elements of the whole set Γ, namely some
element K ∈ Γ such that all K ′ ≤ K in Γ must co-
incide with K. Therefore, after Zorn Lemma, there
exists at least one nonempty compact set K ∈ Γ such
that µ(K) = 1 for all µ ∈ Wf |B and such that K has
no proper nonempty compact subsets with that prop-
erty. (Besides K is unique, as minimal element of Γ,
because if there existed two of them K1 ̸= K2, then
K3 = K1

∩
K2 would satisfy K3 ⊂ K1, K3 ̸= K1

and K3 ∈ Γ, contradicting the minimality of K1).
We have proved that the minimal common com-

pact support K of all the probabilities µ ∈ Wf |B ex-
ists (and is nonempty). After Theorem 29 this com-
pact set K is a B-observable ergodic-like attractor. �

4 Conclusions

We have defined the weak physical probability mea-
sures for all continuous dynamical system. We have
proved that any such system possesses weakly physi-
cal measures (Theorem 17). This result is significant
because, on one hand strong physical measures most-
ly do not exist, and on the other hand the statistical

description that physical provide, when they exist, is
preserved by weakly physical probabilities. Precisely,
the set W|f of all weakly physical measures is a set
of f -invariant probabilities that describes completely
the asymptotic statistics of Lebesgue almost all orbits
attracted to an ergodic-like attractor K (Theorem 29).
Besides this attractor K, joint the the weak physical
measures supported on K, have the following proper-
ties:

(1) After Lemma 31, the set W|f of invariant
probabilities contains all the limit measures of all the
convergent subsequences of the empiric distributions
νn(x) := (1/n)

∑n−1
j=0 δfj(x) for Lebesgue almost all

x in the basin of attraction of K. In brief, the set W|f
gives a complete statistical description of the asymp-
totic time mean of the orbits of a full Lebesgue mea-
sure set of initial states. We have proved this ergodic-
like result in a so general scenario that includes also
all those continuous systems that do not preserve the
Lebesgue measure.

(2) The description is spacial, since the measures
in Wf are probability distributions in the ambien-
t manifold M where the dynamics evolves, but is also
temporal, since they describe the limits of the means
in time.

(3) The attractorK that supports all the probabili-
ty measures of the set Wf is minimal among the com-
pact sets of the ambient manifold that attract weakly
all the orbits of its basin. (Condition (2) of Definition
24). In fact, in Theorem 29 we have proved that the
compact supportK satisfies both conditions of Defini-
tion 24. This minimality property of the ergodic-like
attractor ensures an optimality condition of our result-
s: the Lebesgue-full attraction property of the orbits
can not be obtained trying to reduce the attractor to a
proper subset of K.

Summarizing, the results of this paper hold as an
application of Measure Theory, to the abstract theory
of continuous Dynamical Systems and Ergodic Theo-
ries. They hold for all C0 mappings on compact man-
ifolds. So, they include the known results about the
ergodic attractors (Definition 28) as supports of phys-
ical measures, and the known Ergodic Theory of D-
ifferentiable Dynamics. But, on the other hands the
results in this paper wide this theory, since they are
not restricted to the condition of differentiability.
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