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Abstract: Kernel discriminant analysis (KDA) is a widely used approach in feature extraction problems. However,
for high-dimensional multi-class tasks, such as faces recognition, traditional KDA algorithms have a limitation
that the Fisher criterion is non-optimal with respect to classification rate. Moreover, they suffer from the small
sample size problem. This paper presents two variants of KDA called based on QR decomposition weighted
kernel discriminant analysis (WKDA/QR), which can effectively deal with the above two problems, and based on
singular value decomposition weighted kernel discriminant analysis (WKDA/SVD). Since the QR decomposition
on a small size matrix is adopted, the superiority of the proposed method is its computational efficiency and can
avoid the singularity problem. In addition, we compare WKDA/QR with WKDA/SVD under the parameters of
weighted function and kernel function. Experimental results on face recognition show that the WKDA/QR and
WKDA/SVD are more effective than KDA, and WKDA/QR is more effective and feasible than WKDA/SVD.

Key–Words: QR decomposition, Kernel discriminant analysis (KDA), Feature extraction, Face recognition, small
sample size (SSS)

1 Introduction
Linear discriminant analysis (LDA), seeking optimal
linear projections such that the Fisher criterion of the
between-class scatter versus the within-class scatter is
maximized, is one of the most well-known statistical
technique for feature extraction and dimension reduc-
tion [1-4]. Recently, several extensions of LDA [5-8]
have been developed concerning robustness issue. Al-
though LDA is an effective method for feature extrac-
tion, it is still a linear technique in nature. Hence, it is
not sufficient to deal with some features which have
nonlinear relationships. To overcome the problem,
the kernel trick is applied to effectively describe non-
linear relationships of input data. Recently, kernel-
based learning methods have attracted much attention
in the areas of pattern recognition and machine learn-
ing. Scholkopf et al. [9] applied the kernel trick to
principal component analysis (KPCA), which can ef-
fectively compute principal components in the high-
dimensional feature space. Mika et al. [10] proposed
kernel discriminant analysis (KDA) for two-class cas-
es. Baudat and Anouar [11] developed a generalized
kernel discriminant analysis (GKDA) for multiclass
problems. Because of its ability to extract discrimi-
nant nonlinear features, KDA has been used widely in
many real-world applications such as document anal-

ysis, face recognition and image retrieval [12-16].

Yang et al. [16] further discussed kernel Fish-
er discriminant analysis and pointed out that kernel
Fisher discriminant analysis is equivalent to kernel
principal component analysis plus Fisher linear dis-
criminant analysis. Therefore, for high-dimensional
multi-class tasks such as faces recognition, the origi-
nal KDA-based algorithms usually encounter three d-
ifficulties: the first is the singularity problem caused
by the small sample size (SSS) problem [11-13], in
which the number of training samples is far small-
er than the dimension of the sample. Moreover, be-
cause KDA uses an implicit nonlinear mapping to
project low-dimensional input patterns into a high-
dimensional feature space, many large sample size
problem in input space maybe changed into SSS prob-
lems in the feature space. The second is that the Fisher
separability criterion is not directly related to classi-
fication rate, that is, the classes with larger distance
to each other in feature space are more emphasized
when the Fisher criterion is optimized, which leads
that the resulting projection preserves the distance of
already well-separated classes, causing a large over-
lap of neighboring classes [17-20]. The third is that
these algorithms still face the computational difficulty
of the eigen-decomposition of matrices in the high-
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dimensional space. Because the three problems are
common in many applications, it is necessary to de-
velop new and more effective KDA algorithms to deal
with them.

In fact, the same three problems are also appeared
in LDA-based methods. fortunately, LDA has been
well studied and many LDA extension algorithms
have been proposed to deal with the problems. Lot-
likar and Kothari [17] and Loog et al. [18] present-
ed weighted versions of LDA for high-dimensional
multi-class problem. Mika et al. [10,13] used a regu-
larization technique that makes the inner product ma-
trix be nonsingular by adding a scalar matrix. Bau-
dat and Anouar [11] employed the QR decomposition
technique to eliminate the singularity by removing the
zero eigenvalues. Lu et al. [14] presented kernel di-
rect discriminant analysis, which is a generalization
of the direct-LDA [21]. Recently, Dai et al. [19,22],
Zhou and Tang [23], and Zhou and Tang [24] pre-
sented kernel-weighted discriminant analysis by gen-
eralizing the fractional LDA [17]. The main methods
in [23-24] are the simultaneous diagonalization tech-
nique for tackling the SSS problem.

Motivated by shortcomings of KIDA method in
[23-24], this paper presents two new kernel-weighted
discriminant analysis (WKDA) for feature extraction:
WKDA with QR decomposition (WKDA/QR) and
WKDA with SVD decomposition (WKDA/SVD). Ex-
periments on face recognition task show that WK-
DA/QR and WKDA/SVD are more effective than K-
DA, and WKDA/QR is better than WKDA/SVD to
nonlinear feature extraction.

The rest of this paper is organized as follows. The
KDA method is briefly introduced and discussed in
Section 2. The detailed descriptions of WKDA/QR
and WKDA/SVD are presented in Section 3. In Sec-
tion 4, the feature extraction performances of WK-
DA/QR and WKDA/SVD on face recognition task are
reported by comparing them with typical KDA algo-
rithm. Section 5 concludes the paper.

2 Review of KDA
Kernel discriminant analysis (KDA) is a kernel ver-
sion of LDA to deal with the feature extraction and
classification of nonlinear characteristics. The basic
idea of KDA is to firstly project original patterns in-
to a high-dimensional feature space F by an implicit
nonlinear mapping ϕ : Rn → F : x → Φ(x) and then
to use LDA in feature space F .

Let us consider a set of m training samples
{x1, x2, · · · , xm} taking values in an n dimensional s-
pace. Let L be the number of classes and mi the num-
ber of training samples in the i-th class, i = 1, · · · , L.

Obviously, m =
∑L

i=1mi. In general, the Fisher cri-
terion [16,25] can be defined as

max
v

J(v) =
vTSϕ

b v

vTSϕ
t v

, (1)

where Sϕ
b = 1

m

∑L
i=1mi(m

ϕ
i −mϕ

0 )(m
ϕ
i −mϕ

0 )
T and

Sϕ
t = 1

m

∑m
i=1(ϕ(xi) − mϕ

0 )(ϕ(xi) − mϕ
0 )

T are the
between-class and total scatter matrixes defined in the
feature space F , respectively, where mϕ

i is the mean
vector of the mapped training samples in the i-th class
and mϕ

0 is the mean vector of all mapped training
samples. The optimization problem (1) can be trans-
formed into the following eigenvalue problem:

Sϕ
b v = λSϕ

t v. (2)

Let Φ(X) = [ϕ(x1), · · · , ϕ(xm)] and k : Rn ×
Rn → R be a kernel function. The kernel matrix
K = (kij) ∈ Rm×m corresponded to the kernel k can
be defined by kij = k(xi, xj) =< ϕ(xi), ϕ(xj) >,
where ϕ : Rn → F is a feature map and F is
a feature space of the kernel k. It is evident that
K = Φ(X)TΦ(X). For any j ∈ {1, · · · ,m}, let
ϕ̃(xj) = ϕ(xj) − 1

m

∑m
i=1 ϕ(xi) be the centered

mapped data and Φ̃(X) = [ϕ̃(x1), · · · , ϕ̃(xm)] =
Φ(X)(I − 1m×m/m), where I is a m × m identity
matrix and 1m×m is a m×m matrix of all ones. The
inner product matrix K̃ for the centered mapped data
can be obtained by

K̃ = Φ̃(X)T Φ̃(X)
= (I − 1m×m/m)TK(I − 1m×m/m).

(3)

According to the reproducing kernel theo-
ry [26], the eigenvector v lies in the span of
{ϕ̃(x1), · · · , ϕ̃(xm)} and then there exist coefficients
ai, i = 1, 2, · · · ,m such that

v =
∑m

i=1 aiϕ̃(xi) = Φ̃(X)a, (4)

where a = (a1, · · · , am)T . Let W =
diag(s1, · · · , sj , · · · , sL), where sj is a mj×mj ma-
trix whose elements are 1/mj . Substituting (4) into
(1), we can obtain the following equation:

max
a

J(a) =
aT K̃WK̃a

aT K̃K̃a
. (5)

In general, the vector a1 corresponding to the
maximal value of J(a) is the optimal discriminant di-
rection. However, in some cases, it is not enough to
only use one optimal discriminant direction to feature
extraction. Hence, it is often necessary to obtain t
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(t > 1) optimal discriminant directions. Assume that
a1, · · · , at are t optimal discriminant directions and
A = [a1, a2, · · · , at]. Then A should satisfy

A = argmax
A

tr(
ATS′

bA

ATS′
tA

), (6)

where S′
b = K̃WK̃, S′

t = K̃K̃, and tr(·) denotes the
trace of matrices. The optimization problem (6) can
be transformed into the following generalized eigen-
value problems:

S′
ba = λS′

ta. (7)

The solution of the problem (7) can be obtained by
solving the generalized eigenvalue problem. Suppose
that λ1, λ2, · · · , λt are the t largest eigenvalues of the
problem (7) sorted in descending order and a1, · · · , at
are the corresponding eigenvectors. We can obtain the
KDA transform matrix by

V = [v1, · · · , vt] = Φ̃(X)[a1, · · · , at]
= Φ̃(X)A.

(8)

For any input vector x, its low-dimension feature
representation yx can be defined by

yx = V T ϕ̃(x)

= AT Φ̃(X)T ϕ̃(x)

= AT (k̃(x1, x), k̃(x2, x), · · · , k̃(xm, x))T .
(9)

3 WKDA/QR and WKDA/SVD algo-
rithms

In this section, two efficient and effective algorithm-
s are proposed to solve kernel discriminant analysis,
which are called WKDA/QR and WKDA/SVD for
short. The main idea of WKDA/QR and WKDA/SVD
is that original samples are projected firstly into a fea-
ture space of a kernel function by an implicit fea-
ture mapping and then use weighted LDA, where the
between-class scatter matrix in the feature space is de-
fined by pairwise weighted functions. In weighted L-
DA, the QR and SVD decomposition are employed
to find low-dimensional nonlinear feature with signif-
icant discrimination power, respectively.

3.1. Pairwise weighted schemes
To obtain a modified criterion that it is more

closely related to classification error, weighted
schemes can be introduced into the traditional Fish-
er criterion to penalize the classes that are close in
the feature space and then lead to potential misclas-
sifications in the output space. However, we would

like to keep the general form of Eq.(6), because in
such form the following optimization can then be car-
ried out by solving a generalized eigenvalue problem
without having to resort to complex iterative optimiza-
tion schemes. Therefore, pairwise weighted schemes,
that pairs of classes with smaller distance, are intro-
duced into the reconstruction of the between-class s-
catter matrix in the feature space.

Let dϕ(mϕ
i ,m

ϕ
0 ) be distance between the mean of

class i and the mean of total and w(·) be a weighted
function which is usually a monotonically decreasing
function. We define the weighted between-class scat-
ter of the centered samples in the feature space F by

Sϕw
b = 1

m

∑L
i=1miw(d

ϕ(m̃ϕ
i , m̃

ϕ
0 ))

(m̃ϕ
i − m̃ϕ

0 )(m̃
ϕ
i − m̃ϕ

0 )
T ,

where w(dϕ(m̃ϕ
i , m̃

ϕ
0 )) = (dϕ(m̃ϕ

i , m̃
ϕ
0 ))

−q and q ≥
2. If w(·) = 1, the matrix Sϕw

b will degen-
erate to the matrix Sϕ

b defined in the KDA. In
this paper, we use the Euclidean distance. Since
m̃ϕ

0 = 0 and m̃ϕ
i = Φ̃(X)Ui, where Ui =

1
mi

( 0, · · · , 0︸ ︷︷ ︸
m1+···+mi−1

, 1, · · · , 1︸ ︷︷ ︸
mi

, 0, · · · , 0︸ ︷︷ ︸
mi+1···+mL

)T , we have

dϕ(m̃ϕ
i , m̃

ϕ
0 ) =

√
(m̃ϕ

i )
T (m̃ϕ

i )

=

√
Ui

T Φ̃(X)T Φ̃(X)Ui

=

√
Ui

T K̃Ui.

Putting ∆i =

√
Ui

T K̃Ui, we can deduce that

Sϕw
b = 1

m

∑L
i=1miw(d

ϕ(m̃ϕ
i , m̃

ϕ
0 ))(m̃

ϕ
i )(m̃

ϕ
i )

T

=
1

m

L∑
i=1

mi∆
−q
i Φ̃(X)UiU

T
i Φ̃(X)T

=
1

m
Φ̃(X)

L∑
i=1

mi∆
−q
i UiU

T
i Φ̃(X)T

=
1

m
Φ̃(X)

L∑
i=1

mi(∆
−q/2
i Ui)(∆

−q/2
i Ui)

T

Φ̃(X)T

=
1

m
Φ̃(X)W̃ Φ̃(X)T ,

where W̃ =
∑L

i=1mi(∆
−q/2
i Ui)(∆

−q/2
i Ui)

T . There-
fore, the optimal transform matrix V ϕ can be obtained
by maximizing the following Fisher criterion:

V ϕ = argmax
V ϕ

tr(
V ϕTSϕw

b V ϕ

V ϕTSϕ
t V

ϕ
). (11)
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3.2. WKDA/QR algorithm
By means of the kernel trick, the optimization

problem (11) can be transformed to the following op-
timization problem:

Ã = argmax
Ã

tr(
ÃTSBÃ

ÃTSTÃ
), (12)

where V ϕ = Φ̃(X)Ã, SB = K̃W̃ K̃ ∈ Rm×m and
ST = K̃K̃ ∈ Rm×m. In order to solve the prob-
lem (12), we considered two stages: the first stage is
to maximize the pseudo between-class scatter matrix
SB by QR method and the second stage is to solve a
generalized eigenvalue problem. The key problem of
the first stage is to deal with the following optimiza-
tion problem:

Â = arg max
ÂT Â=I

tr(ÂTSBÂ). (13)

Since W̃ is an m × m block diagonal symmet-
ric matrix, it is easy to decompose W̃ into the form
W̃ = w̃w̃T , where w̃ = diag(w̃1, · · · , w̃j , · · · , w̃L)
is an m× L matrix and w̃j is a mj × 1 matrix whose
elements are ∆

−q/2
i /

√
nj . Consequently, SB =

K̃w̃(K̃w̃)T = K1(K1)
T , where K1 is an m× L ma-

trix.
In general, the number of classes is smaller than

the number of training samples. In this case, we can
easily prove that rank(SB) ≤ L−1. When L is much
smaller than the number of training samples, we can
apply QR technique to decompose K1 and obtain an
efficient method for solving kernel discriminant anal-
ysis. In fact, if K1 = (Q1 Q2)

(
R
0

)
is the QR de-

composition of K1, where R ∈ Rr×L is a row full
rank matrix, r = rank(SB) and Q1 ∈ Rm×r and
Q2 ∈ Rm×(m−r) are volumn orthogonal matrix, we
can verify that Q1 is a solution of the problem (13).

Theorem 1 For any orthogonal matrix G ∈ Rr×r,
Â = Q1G is a solution of the problem (13).

Proof: Since GTG = GGT = Ir and QT
1 Q1 = Ir,

we have (Q1G)T (Q1G) = Ir and

tr((Q1G)TSB(Q1G)) = tr(QT
1 SBQ1GGT )

= tr(QT
1 SBQ1),

which indicates that the conclusion is true.

Theorem 2 Let r = rank(SB) and K1 = Q1R

be the QR decomposition of K1. Let S̃T =

QT
1 STQ1, S̃B = QT

1 SBQ1 and G be a matrix whose
columns are the eigenvectors of (S̃B)−1S̃T corre-
sponding to the t largest eigenvalues. Then Q1G is
an optimal solution of the problem (12).

Proof: By the QR decomposition of K1, we know
that S̃B = QT

1 SBQ1 = R1R
T
1 is nonsingular matrix.

According to the definition of the pseudo-inverse of a
matrix, we can deduce that

(SB)+ = (K1(K1)
T )+

= (
[
Q1 Q2

] [ RRT 0
0 0

] [
Q1 Q2

]T
)+

=
[
Q1 Q2

] [ (RRT )−1 0
0 0

] [
Q1 Q2

]T
and then

(SB)+STg = (
[
Q1 Q2

] [ (RRT )−1 0
0 0

]
[
Q1 Q2

]T
)STg = λg,

which is equivalent to[
(RRT )−1

0

]
QT

1 ST
[
Q1 Q2

] [ QT
1

QT
2

]
g = λ[

QT
1

QT
2

]
g.

Hence,

(RRT )−1QT
1 STQ1Q

T
1 g = (S̃B)−1S̃TQT

1 g
= λQT

1 g,

which implies that QT
1 g, is a eigenvector of

(S̃B)−1S̃T corresponding to the eigenvalue λ. There-
fore, the conclusion of the theorem id true.

By Theorem 2, we can propose the following al-
gorithm.

Algorithm 3.1. WKDA/QR
(1) Select a kernel type and compute the kernel

matrix K and K̃;
(2) Calculate matrixes SB = K̃W̃ K̃ and ST =

K̃K̃;
(3) Let SB = K1K

T
1 and Compute the QR de-

composition of K1: K1 = Q1R;
(4) Let S̃T = QT

1 STQ1 and S̃B = QT
1 SBQ1;

(5) Compute the eigenvectors, denoted by G, of
the matrix (S̃B)−1S̃T corresponding to the t largest
eigenvalues;

(6) LetÃ = Q1G;
(7) For any input vector x, its low dimensional

feature representation by WKDA/QR is

yx = ÃT Φ̃(X)Tϕ(x)
= GTQT

1 (I − 1m×m/m)T (k(x1, x), · · · ,
k(xm, x))T .

3.3. WKDA/SVD algorithm
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We know that the problem (11) is equivalent to
the following optimization problem (see [16]):

W ϕ = argmax
Wϕ

tr(
WϕTSϕw

b W ϕ

W ϕTSϕ
wW ϕ

). (14)

With the help of the kernel trick, we can consider the
optimization problem:

B̃ = argmax
B̃

tr(
B̃TSBB̃

B̃TSWB̃
) (15)

and obtain an optimal solution of the problem (14) by
W ϕ = Φ̃(X)B̃, where B̃ is an optimal solution of the
problem (15), SB = K̃W̃ K̃ ∈ Rm×m and SW =

K̃(I − W̃ )K̃ ∈ Rm×m.
Consider the SVD of the matrix SB: SB =[

Ub1 Ub2

] [ Σb1 0
0 0

] [
UT
b1

UT
b2

]
, where Ub1 ∈

Rm×r and Ub2 ∈ Rm×(m−r) are column orthog-
onal matrixes, Σb1 ∈ Rr×r is a diagonal matrix
with non-increasing positive diagonal components
and rank(SB) = r. It is obvious that the ma-
trix S̃b = UT

b1SBUb1 = Σb1 is nonsingular. Let
S̃w = UT

b1SWUb1. In most applications, rank(SW )
is greater than rank(SB), since rank(UT

b1SWUb1) =

rank(SW ) ≥ rank(SB) = rank(UT
b1SBUb1) = r.

So S̃w is nonsingular (see [28]). We have the follow-
ing algorithm.

Algorithm 3.2. WKDA/SVD
(1) Select a kernel and compute the kernel matrix

K and K̃;
(2) Let SB = K̃W̃ K̃ and SW = K̃(I − W̃ )K̃;
(3) Calculate the SVD of SB:

SB =
[
Ub1 Ub2

] [ Σb1 0
0 0

] [
UT
b1

UT
b2

]
;

(4) Let S̃w = UT
b1SWUb1 and S̃b = UT

b1SBUb1;
(5) Compute the eigenvectors of the matrix

(S̃w)
−1S̃b, denoted by G̃, corresponding to the t

largest eigenvalues;
(6) Let B̃ = Ub1G̃;
(7) For any input vector x, its low dimensional

feature representation by WKDA/SVD is

yx = B̃T Φ̃(X)Tϕ(x)

= G̃TUT
b1(I − 1m×m/m)T (k(x1, x), · · · ,

k(xm, x))T .

4 Experiments and analysis
we evaluate the performance of WKDA/QR and
WKDA/SVD algorithms on face recognition task.

The publicly available face databases, namely ORL
database is used for experiments.
The ORL database contains 40 persons, each having
10 different images. The images of the same per-
son are taken at different times under slightly vary-
ing lighting conditions and with various facial ex-
periments. Some people are captured with or with-
out glasses. The heads in images are slightly titled
or rotated. The images in the database are manually
cropped and recalled to 112 × 92. In order to reduce
the size of the image, we obtain the size of 28 × 23
pixels. So, the number of features of each character
is 644. In the experiments, 8 images are randomly
taken from 10 images as training samples sets and
the rest are used testing sets. Because training sets
are obtained randomly in experiments, there may exist
some fluctuation among experiment results. To reduce
the fluctuation, we performed each experiment thirty
times and all results are an average of them.

All experiments are performed on a PC (2.40
GHZ CPU, 2G RAM) with MATLAB 7.1. Three
nonlinear discriminant analysis-based feature extrac-
tion methods, namely the proposed WKDA/QR, WK-
DA/SVD and KDA [11] are tested and compared. For
each of the three methods, the face recognition proce-
dure consists of: (1) a feature extraction step where
three kinds of feature representation of each train-
ing or test sample are extracted by WKDA/QR, WK-
DA/SVD and KDA [11], respectively, and (2) the n-
earest neighbor classifier is used.

It is known that proper selection of kernel func-
tion is important to achieve better performance in
kernel-based learning methods. Generally speaking,
there are three classes of widely used kernel function-
s: polynomial kernels, Gaussian kernels, and sigmoid
kernels. To evaluate the effect and stable QR decom-
position in WKDA/QR algorithm, we take into con-
sideration polynomial kernels (16) and Gaussian ker-
nels (17):

k(x, y) = (x · y + 1)p. (16)

k(x, y) = exp(−∥x− y∥2/2σ2). (17)

The parameter p is set as 2, · · · , 6, respectively, and
the parameter σ is set as 5. we then tested the
proposed WKDA/QR, WKDA/SVD and KDA [11]
with different parameter p. The weighting function
used in WKDA/QR and WKDA/SVD is w(dϕ) =
(dϕ)−q(q ≥ 2). The experiments results are shown
in Table 1 and Table 2, respectively.

Table 1: Accuracy rate versus polynomial kernels
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P 2 3 4 5 6
WKDA/QR(%) 94.87 94.12 93.21 92.79 92

WKDA/SVD(%) 94.46 93.83 92.17 91.38 90.04
KDA(%) 78.29 77.92 77.75 77 75.75
Feature 39 39 39 39 39

Table 2: Average accuracy rate with p = 2, 3, 4, 5, 6
vs. weighted function

q 2 4 6 8
WKDA/QR(%) 95.23 93.50 93.40 93.19

WKDA/SVD(%) 92.60 92.31 92.38 92.42
Feature 39 39 39 39

We can see from Table 1 that WKDA/QR and
WKDA/SVD outperform KDA and WKDA/QR out-
performs WKDA/SVD based on classification rate un-
der parameter p = 2, 3, 4, 5, 6. In addition, the three
methods are insensitive to the parameter p of the poly-
nomial kernel function and achieve the best classifica-
tion with the parameter p = 2.

We can see from Table 2 that the weighted func-
tion w(dϕ) = (dϕ)−q, (q ≥ 2) influences the classifi-
cation accuracy rate of WKDA/QR and WKDA/SVD.
To weighted exponent q, WKDA/QR is more insen-
sitive than WKDA/SVD. For different feature extrac-
tion tasks, appropriate values of the weighted expo-
nent q should be determined by an experiment with
available training set. We examined the classification
accuracy rate of WKDA/QR and WKDA/SVD meth-
ods with q = 2, 4, 6, 8, respectively. In addition, to
average classification accuracy rate, WKDA/QR out-
performs WKDA/SVD with polynomial kernels.
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Fig.1(a) accuracy rate curves with 2-polynomial kernel

In order to evaluate QR decomposition in WK-
DA/QR outperforms SVD in WKDA/SVD on clas-
sification accuracy rate, we further compare the two
methods on the ORL database. The 2-polynomial k-
ernel (that is q = 2) and weighted function w(dϕ) =
(dϕ)−6 are used in the experiments. The experiment
results are shown in Fig.1 (a) and Fig.1 (b). Fig.1(a)
shows the accuracy rate curves of WKDA/QR, WK-
DA/SVD and KDA with respect to the feature dimen-
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Fig.1(b) time-consuming curves with 2-polynomial kernel

sionality. We can see from Fig.1(a) that, to classifi-
cation accuracy rate, WKDA/QR and WKDA/SVD
are better than KDA, and WKDA/QR is better than
WKDA/SVD when feature dimensionality is larger
than 10. Fig.1(b) shows the time-consuming curves
of WKDA/QR, WKDA/SVD and KDA methods with
respect to the feature dimensionality. We can see
from Fig.1(b) that, time-consuming, WKDA/QR is
more stable than WKDA/SVD and WKDA/QR is bet-
ter than KDA for high-dimension data.
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Fig.1(c) accuracy rate curves with 3-polynomial kernel
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Fig.1(d)) accuracy rate curves with 4-polynomial kernel

In order to evaluate QR decomposition in WK-
DA/QR outperforms SVD in WKDA/SVD on the in-
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Fig.1(e) accuracy rate curves with 5-polynomial kernel
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Fig.1(f) accuracy rate curves with 6-polynomial kernel

fluence of the parameters p of polynomial kernels
function, we compare the two methods on the OR-
L database. The parameter p is taken as 3,4,5 and
6, respectively, and the weighted function w(dϕ) =
(dϕ)−6 is used in the experiments. The experiments
results are shown in Fig.1(c), Fig.1(d), Fig.1(e), and
Fig.1(f), respectively. We can see from Fig.1(c),
Fig.1(d), Fig.1(e) and Fig.1(f) that, under different
polynomial kernels function, WKDA/QR outperforms
WKDA/SVD when the number of feature dimension-
ality is more than 10.
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Fig.2(a) accuracy rate curves with σ = 5 and q = 6

In order to improve the classification accuracy
rate and evaluate the effective of QR decomposition,
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Fig.2(b) time-consuming versus with σ = 5 and q = 6

we use Gaussian kernel with σ = 5 and the weight-
ed function w(dϕ) = (dϕ)−6 in experiments. Fig.2(a)
and Fig.2(b) show the accuracy rate curves and time-
consuming curves of WKDA/QR, WKDA/SVD and
KDA with respect to the feature dimensionality, re-
spectively. We can see from Fig.2(a) that, on classi-
fication accuracy rate, WKDA/QR and WKDA/SVD
outperform KDA, and WKDA/QR is more effective
and stable than WKDA/SVD when the feature dimen-
sionality is larger than 25. We can see from Fig.2(b)
that, to time-consuming, WKDA/QR is more stable
than WKDA/SVD, and WKDA/QR is better than K-
DA for high-dimension data.
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Fig.2(c) accuracy rate curves with σ = 5 and q = 2

In the following, we consider the influence of the
weighted exponent q and the parameter σ of the Gaus-
sian kernel function. We first consider the influence
of the weighted exponent q. We compare the classifi-
cation accuracy rate of WKDA/QR and WKDA/SVD
on the ORL database with q = 2, 3, 4, 8, respective-
ly, in which Gaussian kernel function with σ = 5 is
used. The experiment results are shown in Fig.2(c),
Fig.2(d), Fig.2(e) and Fig.2(f), respectively. From
them, we can see that WKDA/SVD outperforms WK-
DA/QR, which indicates that the selection of the pa-
rameter q of weighted function w(dϕ) = (dϕ)−q is
very important for classification accuracy rate.
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Fig.2(d) accuracy rate curves with σ = 5 and q = 3
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Fig.2(e) accuracy rate curves with σ = 5 and q = 4

Next, we consider the influence of the parameter
σ of the Gaussian kernel function. We compare the
classification accuracy rate of WKDA/QR and WK-
DA/SVD on the ORL database with σ = 3.5, 4 and
4.5, respectively, in which weighted function with
q = 6 is used. The experiment results are shown
in Fig.3(a), Fig.3(b) and Fig.3(c), respectively. From
them, we can see that WKDA/SVD outperforms WK-
DA/QR, which indicates that the selection of the pa-
rameter σ of the Gaussian kernel function also is very
important for classification accuracy rate. However,
with the feature dimensionality is 39, WKDA/QR and
WKDA/SVD are the same.

5 Conclusion
In this paper, we present two kinds of kernel-based
weighted discriminant analysis (WKDA) methods,
WKDA/QR and WKDA/SVD methods, for feature
extraction with combination of a weighted scheme
and QR decomposition and singular value decompo-
sition technique. The two methods can find lower-
dimensional nonlinear features with significant dis-
criminant power and can be viewed as a generaliza-
tion of KDA. Experiments show that QR decomposi-
tion is an efficient and effective step which can save
much time for high-dimensional database, and then
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Fig.2(f) accuracy rate curves with σ = 5 and q = 8
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Fig.3(a) accuracy rate curves with q = 6 and σ = 3.5

WKDA/QR algorithm is effective and feasible in real
world application.

In order to compare WKDA/SVD and WK-
DA/QR methods, we select different parameters of k-
ernel functions and weighted function. Experiments
results show that the selection of parameters is very
important for classification accuracy rate. For Gaus-
sian kernel function, WKDA/QR is more sensitive
than WKDA/SVD on classification accuracy rate.
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