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Abstract: Linear discriminant analysis (LDA) is a classical approach for dimensionality reduction. However, LDA
has limitations in that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered struc-
ture is not easily captured. In order to overcome these problems, in this paper, we present several generalizations
of kernel fuzzy discriminant analysis (KFDA) which include KFDA based on generalized singular value decompo-
sition (KFDA/GSVD), pseudo-inverse KFDA (PIKFDA) and range space KFDA (RSKFDA). These KFDA-based
algorithms adopts kernel methods to accommodate nonlinearly separable cases. In order to remedy the problem
that KFDA-based algorithms fail to consider that different contribution of each pair of class to the discrimination,
weighted schemes are incorporated into KFDA extensions in this paper and called them weighted generalized KF-
DA algorithms. Experiments on three real-world data sets are performed to test and evaluate the effectiveness of
the proposed algorithms and the effect of weights on classification accuracy. The results show that the effect of
weighted schemes is very significantly.

Key–Words: Kernel fuzzy discriminant analysis; fuzzy membership; undersampled problem; weighting function;
classification accuracy

1 Introduction
Feature extraction process is an important part of pat-
tern recognition and machine learning, which can re-
sults in computation cost decreasing and classification
performance increasing. An appropriate representa-
tion of data from all features is an important problem
in machine learning and data mining problems. All
original features can not always beneficial for classi-
fication or regression tasks. Some features are irrel-
evant or redundant in distribution of data set. These
features can decrease the classification performance.
In order to increase the classification performance and
to reduce computation cost of classifier, the feature s-
election process should be used in classification or re-
gression problems [1].

Linear discriminant analysis (LDA) [2] is one of
the most popular linear projection techniques for fea-
ture extraction, it aims to maximize between-class s-
catter and minimize within-class scatter, thus maxi-
mize the class discriminant. But due to its limitation
of linearly, LDA is difficult to capture nonlinear re-
lationships with a linear mapping. To overcome this
problem of LDA, the methods which based on the so-
called kernel trick have been proposed over the last
few years. The essence of kernel discriminant anal-

ysis (KDA) is to perform LDA in an implicit high-
dimensional feature space[3-4]. In this paper, we ex-
tend fuzzy discriminant analysis (FDA) to a nonlinear
model, called kernel fuzzy discriminant analysis (KF-
DA), to deal with nonlinear separable problem. How-
ever, similar to the KDA-based methods, the KFDA
usually encounters two problems. One is the singu-
larity problem caused by the undersampled problems.
We briefly present several KFDA extensions to deal
with this problem, such as, KFDA/GSVD, pseudo-
inverse KFDA (PIKFDA), range space KFDA (RSKF-
DA). KFDA/GSVD is one of generalizations of FDA
based on kernel functions and GSVD, it overcomes
the singularity of the scatter matrices by applying the
GSVD to solve the generalized eigenvalue problem in
the feature space. The KFDA solution is a special case
of KFDA/GSVD method. In PIKFDA, the inverse of
the kernel scatter matrix is replaced by the pseudo-
inverse. The range space KFDA is a method based
on the transformation by a basis of the range space of
the within-class scatter matrix of the kernel matrix to
handle undersampled problems.

Another drawback of the KFDA method is that
it fails to consider that different contribution of each
pair of class to the discrimination. A promising solu-
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tion to this problem is to introduce weighted schemes
into the criteria. Motivated by the form of the weight-
ed between-class scatter matrix proposed by Loog et
al. [5]. In this paper, we reformulate the KFDA-based
methods in the weighted forms, we call them weight-
ed generalized KFDA algorithms, where the weight
aims to emphasize the different roles of the individ-
ual class pairs in the discrimination. By using the
weighted form of the between-class scatter matrix,
we can make use of the advantage of the class mem-
bership. Moreover, we present weighted versions of
KFDA/GSVD, PIKFDA and range space KFDA with
five weighting functions for each weighted scheme,
where the K-Nearest neighbors (KNN) method [6] is
used for a classifier. We apply the Euclidean dis-
tance dil = ∥mi −ml∥ between the means of class-
es i and l in weighting function w(dil). A weight-
ing function is generally a monotonically decreasing
function because classes that are closer to one another
are likely to have a greater confusion and should be
given a greater weightage. For weighting functions,
we first apply two special cases of the weighting func-
tion w(dil) = (dil)

−p proposed by Lotlikar et al. [7]
with p = 1 and p = 3, and then an improved version
of weighting function w(dil) =

1
2d2

il
erf( dil

2
√
2
) is pre-

sented by Loog [5] where the Mahanalobis distance
is replaced by the Euclidean distance. In addition,
according to the feature of weighting functions, we
present two new weighting functions. In this paper,
we focus on study the effectiveness of the proposed al-
gorithms and the effect of weights on the dimensional
algorithms. From recent research in weighted meth-
ods, we can see an appropriate choice of the weight
on the criterion plays a crucial role in the performance
delivered. To further study the effect of weighting
functions, we choice three different kernel functions
and three real-world data sets in our experiments. Ex-
tensive comparisons of different weighting functions
on KFDA methods are conducted.

The rest of the paper is organized as follows. In
Section 2, we briefly review FDA algorithm. The KF-
DA and generalized KFDA algorithms are presented
in Section 3. Weighted versions of generalized KFDA
algorithms and weighting functions are introduced in
Section 4. Extensive experiments with proposed algo-
rithms have been performed in Section 5, the results
demonstrate the effectiveness of the proposed algo-
rithms. Conclusion follows in Section 6.

2 Related works
2.1 LDA
In this section, we brief review the classical LDA.
Given a data matrix X = [x1, · · · , xN ] ∈ RL×N ,

where xi ∈ RL, i = 1, · · ·N . Assume the original
data is already clustered and partitioned into r classes.
Let X = [X1, · · · , Xr], where Xi ∈ RL×Ni is the da-
ta matrix belonged to the i-th class and

∑r
i=1Ni = N .

Let Ni be the set of indices of i-th class, i.e., xj be-
longs to the i-th class for j ∈ Ni.

The aim of LDA is to find a linear transforma-
tion G ∈ RL×m that maps each xi to yi ∈ Rm

by yi = GTxi and optimally preserves the cluster
structure in the reduced-dimensional space. Let the
between-class, within-class and total scatter matrices
are defined as

Sb =
r∑

i=1
ni(ci − c)(ci − c)T ,

Sw =
r∑

i=1

∑
j∈Ni

(xj − ci)(xj − ci)
T ,

St =
n∑

j=1
(xj − c)(xj − c)T ,

where ci = (1/Ni)
∑

j∈Ni
xj and c =

(1/N)
∑N

j=1 xj are class means and the global
mean, respectively. We can easily see that the trace
of Sw measures the within-class closeness and the
trace of Sb measures the between-class separation. In
the lower-dimensional space obtained from the trans-
formation G, three scatter matrices above become
SL
w = GTSwG,SL

b = GTSbG and SL
t = GTStG.

An optimal transformation G would maximize trace
(SL

b ) and minimize trace (SL
w), simultaneously. In

classical LDA which requires Sw or Sb is nonsingular,
common optimizations include

max
G

{trace((SL
w)

−1SL
b )}

and
min
G

{trace((SL
b )

−1SL
w)}.

The problems above are equivalent to finding the
eigenvectors corresponding to the r− 1 largest eigen-
vectors for the generalized eigenvalue problem

Sbx = λSwx, λ ̸= 0.

2.2 Fuzzy discriminant analysis
Fuzzy discriminant analysis (FDA) [8-9] is an exten-
sion of LDA using fuzzy memberships. Let X =
{x1, · · · , xN} be a set of samples with fuzzy member-
ships U = {uij |i = 1, · · · , r, j = 1, · · · , N}, where
r is the number of classes and N is the number of
samples. With the FKNN algorithm [8], the computa-
tions of the fuzzy membership degrees can be realized
through a sequence of steps:

• Step 1: compute the Euclidean distance matrix
between pairs of features vectors in the training
set.
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• Step 2: set diagonal elements of this matrix to
infinity (practically place large numeric values
there).

• Step 3: sort the distance matrix (treat each of its
columns separately) in an ascending order. Col-
lect the corresponding class labels of the pattern
located in the closest neighborhood of the pattern
under consideration (as we are concerned with
’k’ neighbors, this returns a list of ’k’ integers).

• Step 4: Compute the membership degree to class
’i’ for jth pattern using the expression proposed
in the literature [10]:

uij =


γ + (1− γ)(nij/k), i, j belong to the

same class,
(1− γ)(nij/k), otherwise,

where γ = N−r
2hN

, nij stands for the number of the
neighbors of the jth pattern that belongs to the ith
class, h and γ are constants that ultimately control the
value of uij and satisfy the constrains h ∈ (0, 1) and
γ ∈ (0, 1).

The membership degrees should satisfy

0 ≤ uij ≤ 1,

0 <
r∑

i=1
uij ≤ r,

0 <
N∑
j=1

uij ≤ N,

which are relaxed constrains of the ones generally re-
quired for fuzzy methods having the sum-to-one con-
straint:

r∑
i=1

uij = 1 (1)

The relaxed constrains make it possible for FDA to
accommodate measures that do not satisfy the sum-
to-one constrain in Eq. (1). The fuzzy number of ele-
ments in class i and in the total data set can be defined
as:

Ni =
N∑
j=1

ugij ,

NF =
r∑

i=1

N∑
j=1

ugij =
r∑

i=1
Ni

It should be noted that NF is not equal to N due to
the fuzzifier constant and relaxed constraints. Taking
into account the fuzzy membership degree, the mean
vectors of class i and the total data set are

µi =
1
Ni

N∑
j=1

ugijxj

µ = 1
NF

r∑
i=1

N∑
j=1

ugijxj =
1

NF

r∑
i=1

Niµi.

Using the definitions above, the fuzzy between-class,
fuzzy within-class and fuzzy total scatter matrices can
be defined as

Sfb =
r∑

i=1

N∑
j=1

ugij(µi − µ)(µi − µ)T ,

Sfw =
r∑

i=1

N∑
j=1

ugij(xj − µi)(xj − µi)
T ,

Sft =
r∑

i=1

N∑
j=1

ugij(xj − µ)(xj − µ)T ,

and we can easily show Sft = Sfb + Sfw. The dis-
criminant vector can be obtained by solving either of
the following generalized eigen-problems:

Sfbv = λSfwv,
Sfbv = λSftv.

3 Kernel fuzzy discriminant analysis
FDA is linear learning algorithm and it cannot deal
with nonlinear problem. In real world, the nonlin-
ear problem always exists. To solve this problem,
we introduce kernel methods into FDA to obtain k-
ernel fuzzy discriminant analysis (KFDA). Let k :
RL × RL → R be a kernel function, F be the re-
producing kernel Hilbert space of the kernel k and
Φ : RL → F be the corresponding feature mapping.
Let XΦ = {Φ(x1), · · · ,Φ(xN )} be a set of mapped
samples in F . Kernel fuzzy between-class, within-
class and total scatter matrices can be respectively de-
fined as

SΦ
fb =

r∑
i=1

N∑
j=1

ugij(µ
Φ
i − µΦ)(µΦ

i − µΦ)T ,

SΦ
fw =

r∑
i=1

N∑
j=1

ugij(Φ(xj)− µΦ
i )(Φ(xj)− µΦ

i )
T ,

SΦ
ft =

r∑
i=1

N∑
j=1

ugij(Φ(xj)− µΦ)(Φ(xj)− µΦ)T ,

where

µΦ
i = 1

Ni

N∑
j=1

ugijΦ(xj),

µΦ = 1
NF

r∑
i=1

N∑
j=1

ugijΦ(xj) =
1

NF

r∑
i=1

Niµ
Φ
i .

We can see that kernel fuzzy scatter matrices also sat-
isfy the relationship SΦ

ft = SΦ
fb + SΦ

fw. The optimal
projection directions for KFDA can be obtained by
maximizing either of the two criterions in F :

J1(v) =
vTSΦ

fbv

vTSΦ
fw

v
, (2)
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J2(v) =
vTSΦ

fbv

vTSΦ
ft
v
. (3)

We do not solve this optimization problem directly
due to the high or even infinite dimensionality of F .
Fortunately, we can show that the eigenvector v must
lie in a space spanned by {Φ(xj)}Nj=1 in F and thus
it can be expressed in the form of the following linear
expansion :

v =
N∑
j=1

wjΦ(xj). (4)

Substituting Eq. (4) into the numerators and denomi-
nators of Eq. (2) and (3), we obtain

vTSΦ
fbv = wTKfbw,

vTSΦ
fwv = wTKfww,

vTSΦ
ftv = wTKftw,

then we can rewrite the criterions in Eq. (2) and (3)
as:

J
′
1(w) =

wTKfbw

wTKfww
. (5)

J
′
2(w) =

wTKfbw

wTKftw
. (6)

where

w = (w1, w2, · · · , wN )T ,

Kfb =
r∑

i=1

N∑
j=1

ugij(mi −m)(mi −m)T ,

Kfw =
r∑

i=1

N∑
j=1

ugij(kj −mi)(kj −mi)
T ,

Kft =
r∑

i=1

N∑
j=1

ugij(kj −m)(kj −m)T ,

with

m = ( 1
NF

r∑
i=1

N∑
j=1

ugijk(xj , x1),
1

NF

r∑
i=1

N∑
j=1

ugijk(xj ,

x2), · · · , 1
NF

r∑
i=1

N∑
j=1

ugijk(xj , xN ))T ,

mi = ( 1
Ni

N∑
j=1

ugijk(xj , x1),
1
Ni

N∑
j=1

ugijk(xj , x2), · · · ,

1
Ni

N∑
j=1

ugijk(xj , xN ))T ,

kj = (k(xj , x1), k(xj , x2), · · · , k(xj , xN ))T .

Kfb, Kfw and Kft can be seen the scatter matrices
of the kernel matrix K = [k(xi, xj)]N×N when each
column in K is considered as a point in the N dimen-
sional space, we can easily show that the total scatter
matrix Kft = Kfb + Kfw. As a result, the solu-
tion to Eq. (2) and can be the m leading eigenvectors
w1, · · · , wm of the matrix K−1

fwKfb.

For any input vector x, its low-dimensional fea-
ture representation y = (y1, · · · , ym)T can then be
obtained as

y = (w1, · · · , wm)T (k(x1, x), · · · , k(xN , x))T .

Note that the solution above is based on the assump-
tion that the scatter matrix Kfw or Kft is invertible.
However, for many real-world applications, this as-
sumption is almost always invalid due to the under-
sampled problems as discussed above. In order to
solve this problem, we can apply several generaliza-
tions of FDA algorithms, obtaining nonlinear discrim-
inant analysis methods.

3.1 KFDA based on GSVD
Howland et al.[11] proposed LDA/GSVD, which is
an extension of LDA based on GSVD. It overcomes
the singularity of the scatter matrices by applying the
GSVD to solve the generalized eigenvalue problem.
An efficient algorithm for LDA/GSVD was presented
in [12]. Note that Kfb, Kfw and Kft are both sin-
gular and KFDA cannot be applied, so as in [13], we
can present a generalization of KFDA based on the
GSVD, denoted KFDA/GSVD. Similarly to the effi-
cient algorithm for LDA/GSVD, we can present an
efficient algorithm for KFDA/GSVD as follows.

Algorithm 3.1. KFDA/GSVD

1. Compute the EVD of Kft:

Kft = [ U1 U2 ]

[
Σ1 0
0 0

] [
UT
1

UT
2

]
.

2. Put K̃fb = Σ
−1/2
1 UT

1 KfbU1Σ
−1/2
1 and compute

V from the EVD of K̃fb : K̃fb = V ΓT
b ΓbV

T .

3. Assign the first r − 1 columns of U1Σ
−1/2
1 V to

Gh.

4. For any input vector x, its low-dimensional fea-
ture representation z can thus be given by z =
GT

h (k(x1, x), · · · , k(xN , x))T .

3.2 Pseudo-inverse KFDA
As discussed the KFDA, we know that Kfb and Kfw

are both singular and the KFDA cannot be applied.
One simple method for solving this problem is to use
the pseudo-inverse of Kfw instead, let us call this
method as pseudo-inverse KFDA (PIKFDA).

We can see from [14] that in pseudo-inverse L-
DA the inverse of a scatter matrix is replaced by the
pseudo-inverse, and LDA/GSVD is a special case of
pseudo-inverse LDA. So, similar to Algorithm 3.1,
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we can derive an efficient algorithm for the pseudo-
inverse KFDA as follows.

Algorithm 3.2. Pseudo-inverse KFDA

1. Compute the EVD of Kft:

Kft = [ U1 U2 ]

[
Σ1 0
0 0

] [
UT
1

UT
2

]
.

2. Put K̃fb = Σ
−1/2
1 UT

1 KfbU1Σ
−1/2
1 and compute

V from the EVD of K̃fb : K̃fb = V ΓT
b ΓbV

T .

3. Assign the first r − 1 columns of U1Σ
−1/2
1 V to

Xδ.

4. Put G = XδM , where M is any nonsingular ma-
trix.

5. For any input vector x, its low-dimensional fea-
ture representation z can thus be given by z =
GT (k(x1, x), · · · , k(xN , x))T .

3.3 Range space KFDA
In this subsection, we present a method, in which the
kernel trick is incorporated into FDA in the range s-
pace of fuzzy within-class scatter matrix, and denote
it by RSKFDA for short. This method transforms the
feature space by using a basis of range(Kfw). Let the
EVD of Kfw ∈ RN×N be

Kfw = [ Uw1 Uw2 ]

[
Σw1 0
0 0

] [
UT
w1

UT
w2

]
,

where s1 = rank(Kfw), Uw1 ∈ RN×s1 and Σw1 is a
diagonal matrix. We can easily show that

range(Kfw) = span(Uw1)

and the transformation by Vy = Uw1Σ
−1/2
w1 projects

the data in the feature space F to range(Kfw). The
within-class scatter matrix K̃fw in the transformed s-
pace is K̃fw = V T

y KfwVy = Is1 . Let the EVD of
K̃fb ≡ V T

y KfbVy be

K̃fb = [ Ũb1 Ũb2 ]

[
Σ̃b1 0
0 0

] [
ŨT
b1

ŨT
b2

]
,

where s3 = rank(K̃fb), Ũb1 ∈ Rs1×s3 and Σ̃b1 is a
diagonal matrix. In RSKFDA, the optimal transfor-
mation matrix Gy is obtained by

Gy = VyŨb1 = Uw1Σ
−1/2
w1 Ũb1.

Hence, for any input vector x, its low-dimensional
feature representation z can be obtained by z =
GT

y (k(x1, x), · · · , k(xN , x))T .

4 Weighted versions and weighting
functions

Similar to the case of LDA-based methods, KFDA-
based algorithms also fail to consider that different
contribution of each pair of class to the discrimina-
tion. If two of the class means are far away from each
other, which means that they are well separated, then
their contributions to the discrimination task is minor.
However, if two of the class means are close togeth-
er, which means that they are not well separated, then
finding the discriminant vectors that can better sep-
arate them is important to improve the discriminant
performance. So in order to control the contribution
of each pair of class to the discrimination, a common-
ly method is to incorporate a weighting function into
the criterion by using a weighted between-class scatter
matrix in place of the ordinary between-class scatter
matrix. We can rewrite the kernel fuzzy between-class
scatter matrix as

SΦ
fb =

r∑
i=1

Ni(µ
Φ
i − µΦ)(µΦ

i − µΦ)T .

We define weighted between-class scatter matrix
in F as follows (see [15-17]):

SΦ
FB=

r−1∑
i=1

r∑
l=i+1

NiNl
NF

w(dil)(µ
Φ
i − µΦ

l )(µ
Φ
i − µΦ

l )
T ,

(7)
where NF is same as in Section 2 and w(dil) is
a weighting function, which is a monotonically de-
creasing function of the Euclidean distance dil =
∥µΦ

i − µΦ
l ∥. Apparently, the weighted kernel fuzzy

between-class scatter matrix SΦ
FB degenerates to the

kernel fuzzy between-class scatter matrix SΦ
fb if the

weighting function in (7) gives a constant weight val-
ue. In addition, it is clear that dij in F can be calcu-
lated by the kernel trick as follows:

dil =
∥∥∥µΦ

i − µΦ
l

∥∥∥ =
√
d1 − d2 − d3 + d4,

where

µΦ
i = 1

Ni

N∑
j=1

ugijΦ(xj),

µΦ
l = 1

Nl

N∑
j=1

ugljΦ(xj),

d1 =
1
N2

i

N∑
j1=1

N∑
j2=1

ugij1u
g
ij2

k(xj1 , xj2),

d2 =
1

NiNl

N∑
j1=1

N∑
j2=1

ugij1u
g
lj2
k(xj1 , xj2),

d3 =
1

NlNi

N∑
j1=1

N∑
j2=1

uglj1u
g
ij2

k(xj1 , xj2),

d4 =
1
N2

l

N∑
j1=1

N∑
j2=1

uglj1u
g
lj2
k(xj1 , xj2).
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Consequently, we have the following generalized
eigen-problem:

SΦ
FBv = λSΦ

fwv. (8)

By the theory of reproducing kernel, we can express
the solution v of Eq. (8) as v =

∑N
i=1wiΦ(xi) and

then rewrite Eq. (8) as (see [18]):

KFBw = λKfww, (9)

where w = (w1, · · · , wN )T , Kfw is same as in Sec-
tion 3 and

KFB =
r−1∑
i=1

r∑
l=i+1

NiNl
NF

w(dil)(mi −ml)(mi −ml)
T ,

with

mi = ( 1
Ni

N∑
j=1

ugijk(xj , x1),
1
Ni

N∑
j=1

ugijk(xj , x2), · · · ,

1
Ni

N∑
j=1

ugijk(xj , xN ))T ,

ml = ( 1
Nl

N∑
j=1

ugljk(xj , x1),
1
Nl

N∑
j=1

ugljk(xj , x2), · · · ,

1
Nl

N∑
j=1

ugljk(xj , xN ))T .

By solving Eq. (9), we can get m eigenvectors
w1, · · · , wm. Consequently, for any input vector x, its
low-dimensional feature representation z can be ob-
tained by

z = (w1, · · · , wm)T (k(x1, x), · · · , k(xN , x))T .

If the kernel fuzzy between-class scatter matrix
SΦ
fb is replaced by the weighted kernel fuzzy between-

class scatter matrix SΦ
FB , by means of the algorithms

obtained in Section 3, we can get three weighted gen-
eralized KFDA methods.

4.1 Weighted generalized KFDA
Similar to Algorithms 3.1 and 3.2, we can derive
weighted KFDA/GSVD and weighted PIKFDA algo-
rithms.

Algorithm 4.1. Weighted KFDA/GSVD

1. Compute the EVD of Kft :

Kft = [ Ut1 Ut2 ]

[
Σt1 0
0 0

] [
UT
t1

UT
t2

]
;

2. Compute the weighted between-class scatter ma-
trix KFB;

3. Put ǨFB = Σ
−1/2
t1 UT

t1KFBUt1Σ
−1/2
t1 and com-

pute V from the EVD of ǨFB :
ǨFB = V ΓT

b ΓbV
T ;

4. Assign the first r − 1 columns of Ut1Σ
−1/2
t1 V to

Ĝh;

5. For any input vector x, its low-dimensional fea-
ture representation z can thus be given by z =

ĜT
h (k(x1, x), · · · , k(xN , x))T .

Algorithm 4.2. Weighted PIKFDA
1. Compute the EVD of Kft :

Kft = [ Ut1 Ut2 ]

[
Σt1 0
0 0

] [
UT
t1

UT
t2

]
;

2. Compute the weighted between-class scatter ma-
trix KFB;

3. Put ǨFB = Σ
−1/2
t1 UT

t1KFBUt1Σ
−1/2
t1 and com-

pute V from the EVD of ǨFB :
ǨFB = V ΓT

b ΓbV
T ;

4. Assign the first r − 1 columns of Ut1Σ
−1/2
t1 V to

X̂δ;

5. Ĝ = X̂δM , where M is any nonsingular matrix;

6. For any input vector x, its low-dimensional fea-
ture representation z can thus be given by z =

ĜT (k(x1, x), · · · , k(xN , x))T .

From Algorithms 4.1 and 4.2, we can see that
weighted KFDA/GSVD is a special case of weighted
PIKFDA with M being the identity matrix.

In addition, we can also obtain weighted RSKF-
DA.

Algorithm 4.3. Weighted RSKFDA
1. Compute the EVD of Kfw :

Kfw = [ Uw1 Uw2 ]

[
Σw1 0
0 0

] [
UT
w1

UT
w2

]
;

2. Compute the weighted between-class scatter ma-
trix KFB;

3. Put K̃FB = Σ
−1/2
w1 UT

w1KFBUw1Σ
−1/2
w1 and com-

pute the EVD of K̃FB :

K̃FB = [ Ũb1 Ũb2 ]

[
Σ̃b1 0
0 0

] [
ŨT
b1

ŨT
b2

]
;

4. Put Ĝy = Uw1Σ
−1/2
w1 Ũb1;

5. For any input vector x, its low-dimensional fea-
ture representation z can thus be given by z =

ĜT
y (k(x1, x), · · · , k(xN , x))T .
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4.2 Weighting functions
We can see from [5,7,19] that weighting function-
s have close relationships with classification accu-
racy. Different weighting functions can product d-
ifferent classification error for weighted generalized
KFDA methods. Selecting suitable weighting func-
tion can increase classification accuracy. In this pa-
per, we consider three weighted schemes Algorithm-
s 4.1 - 4.3 with five weighting functions for each
weighted scheme. We apply the Euclidean distance
dil = ∥µi − µl∥ between the means of classes i and
l in weighting functions w(dil). A weighting func-
tion is generally a monotonically decreasing function
because classes that are closer to one another are like-
ly to have a greater confusion and should be given a
greater weightage.

According to the fractional-step LDA procedure
in [7], the weighting function should drop faster than
the Euclidean distance between the class means for
Xi and Xl in F . We first apply two special cas-
es of the weighting function w(dil) = (dil)

−p pro-
posed by Lotlikar et al. [7] with p = 1 and p = 3,
and then an improved version of weighting function
w(dil) =

1
2d2

il
erf( dil

2
√
2
) presented by Loog [5], where

the Mahanalobis distance is replaced by the Euclidean
distance. In addition, according to the feature of
weighting functions mentioned above, we present two
new weighting functions. They are listed below:

w1 : w(dil) = (dil)
−3,

w2 : w(dil) =
1

2d2
il
erf( dil

2
√
2
),

w3 : w(dil) = (dil)
−1,

w4 : w(dil) = e
1
dil ,

w5 : w(dil) =
1

edil
.

5 Experiments and analysis
In this section, in order to explain the effective of the
proposed methods and illustrate the effect of weight-
ing functions, we conduct a series of experiments with
3 different data sets and 3 kernel functions. The 3 da-
ta sets are respectively Dermatology and Irrs databas-
es taken from the UCI Machine Learning Repository
[20] and the Yale database [21]. The kernel function-
s are respectively Gaussian RBF kernel, non-normal
Gaussian RBF kernel and polynomial kernel [6]:

kRBF (x, y) = exp(−∥x− y∥2/σ2), σ ∈ R,
kNN−RBF (x, y) = exp(−∥x−y∥d/σ2), d ≥ 0, d ̸= 2,
kpoly(x, y) = (r1x

T · y − r2)
d, d ∈ N, d ≥ 1,

In our experiments, the KNN classifier with k =
5 is used for the classification. For simplicity, the pa-
rameter of fuzzy scatter matrices and kernel fuzzy s-

catter matrices is fixed as g = 1. Moreover, we ran-
domly generate 5 matrices for M and compute the
misclassification rates by using the optimal transfor-
mation matrices produced in PIKFDA for each data
set. For each method, we randomly split the data to the
training and test set of equal size and repeat it 10 times
to obtain mean prediction misclassification rates.

5.1 Experiments on Dermatology database
This data set contains 34 attributes, 33 of which
are linear valued and one of them is nominal, it
includes six classes: psoriasis, seboreic dermatitis,
ichen planus, pityriasis rosea , cronic dermatitis, pityr-
iasis rubra pilaris, there are 366 instances and we
choose 358 samples which not include ”?” for our ex-
periments.

In our experiment, the Gaussian RBF kernel

k(x, y) = exp(−∥x− y∥2/102),
non-normal Gaussian RBF kernel

k(x, y) = exp(−∥x− y∥/102)
and polynomial kernel

k(x, y) = 10(−8)xT · y + 1

are used, respectively. The FKNN parameter k is set
as k = 5. The parameter of kernel fuzzy scatter ma-
trices is fixed as h = 0.3. The average misclassifica-
tion rates are listed in Table 1, where w0 indicates no
weighting function is introduced.

Table 1 shows that w4 and w5 produce good over-
all results on the Gaussian RBF kernel, they are bet-
ter than other weighting functions. From Figure 1,
we can see expect for a case, the weighting function
w2 and w3 produce the same results, they produce the
classification accuracy 2.5% higher than w0 for M4,
but they produce the classification accuracy 3.3889%
lower than w0 for M3. For the non-normal Gaus-
sian RBF, the five weighting functions produce sim-
ilar overall results, however, they can not improve the
performance of the weighted generalized methods as
shown in Figure 2. The results of the polynomial k-
ernel are shown in Figure 3, the weighting function
w5 produces the results are near to w0. The weight-
ing functions w2 and w3 produce the same results, the
misclassification rates are lower than w0 for M2 and
M4. The weighting function w4 can not be applied
on the polynomial kernel. The weighting function
w1 produces the classification accuracy 96.0556% for
M4, the result is 0.9445% higher than w0. From Ta-
ble 1, we can see the five weighting functions im-
prove the performance of the weighted generalized
methods rather limit, but the 1% difference still makes
the weighted KFDA algorithms outperform the KFDA
methods.
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Table 1: Misclassification rate (%) on data set Dermatology

W-PIKFDA
kernel w(dij) W-KFDA/GSVD

M1 M2 M3 M4 M5

W-RSKFDA

w0 4.6667 7.0556 6.5000 5.3889 8.3889 6.0000 10.8889

w1 4.6111 5.4444 5.6667 7.3333 8.4444 6.2778 12.4444

RBF w2 4.8333 5.2222 6.1667 8.7778 5.8889 6.6111 10.3333

w3 4.8333 5.2222 6.1667 8.7778 5.8889 6.6111 12.3333

w4 4.6111 5.2778 6.1667 7.3889 7.7222 5.9444 11.5556

w5 4.8889 5.7222 6.3889 6.6667 6.0000 6.9444 10.8333

w0 2.7222 2.6667 2.6667 2.6667 2.7222 2.8333 2.7222

w1 2.8889 2.9444 2.8333 2.7222 2.7222 2.8333 2.8333

NN-RBF w2 2.8889 3.2222 2.8333 2.7222 2.8333 2.8889 2.6111

w3 2.8889 3.2222 2.8333 2.7222 2.8333 2.8889 2.6111

w4 2.7778 2.8333 2.7778 2.8333 2.7778 2.7778 3.3333

w5 2.8333 2.6111 2.6667 2.7778 2.7778 2.7222 2.7222

w0 4.4444 4.3889 5.0556 3.8889 4.8889 3.9444 4.6111

w1 4.1667 4.3889 5.3333 4.4444 3.9444 4.3889 4.6111

Poly w2 4.5556 4.4444 4.6667 5.3889 4.3333 4.5000 4.6667

w3 4.5556 4.4444 4.6667 5.3889 4.3333 4.5000 4.6667

w4 - - - - - - -

w5 4.4444 4.3889 5.1111 3.8889 4.8889 3.9444 4.5556

Table 2: Misclassification rate (%) on data set Irrs

W-PIKFDA
kernel w(dij) W-KFDA/GSVD

M1 M2 M3 M4 M5

W-RSKFDA

w0 3.7333 4.1333 4.6667 4.4000 4.5333 4.2667 4.0000

w1 4.5333 4.8000 4.5333 4.2667 4.4000 4.2667 3.8667

RBF w2 4.6667 4.6667 4.1333 3.8667 4.4000 4.2667 3.4667

w3 4.6667 4.6667 4.1333 3.8667 4.4000 4.2667 3.7333

w4 - - - - - - -

w5 3.7333 4.1333 4.6667 4.4000 4.5333 4.2667 3.7333

w0 4.4000 4.4000 4.4000 4.2667 4.2667 4.5333 4.5333

w1 4.4000 4.4000 4.1333 4.1333 4.4000 4.2667 4.5333

NN-RBF w2 4.4000 4.4000 4.2667 4.1333 4.4000 4.1333 4.5333

w3 4.4000 4.4000 4.2667 4.1333 4.4000 4.1333 4.5333

w4 - - - - - - -

w5 4.4000 4.4000 4.4000 4.2667 4.2667 4.5333 4.5333

w0 8.6667 7.4667 8.6667 10.4000 7.6000 9.4667 9.4667

w1 9.4667 9.8667 10.0000 8.0000 11.3333 8.4000 8.5333

Poly w2 5.7333 8.0000 9.7333 9.7333 9.7333 9.7333 10.9333

w3 5.4667 8.1333 8.8000 10.0000 9.7333 9.7333 9.6000

w4 6.1333 8.1333 8.8000 9.8667 9.6000 9.7333 8.8000

w5 5.6000 8.2667 9.4667 9.4667 9.7333 9.7333 9.2000
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Table 3: Misclassification rate (%) on data set Yale

W-PIKFDA
kernel w(dij) W-KFDA/GSVD

M1 M2 M3 M4 M5

W-RSKFDA

w0 10.3333 11.1111 10.8889 10.2222 11.3333 11.1111 24.3333

w1 10.4444 10.6667 11.7778 11.2222 10.4444 10.8889 22.1111

RBF w2 10.7778 10.6667 11.3333 10.8889 10.6667 10.5556 25.2222

w3 10.8889 10.6667 10.3333 11.4444 10.5556 10.7778 21.3333

w4 12.1111 10.3333 11.1111 11.4444 10.6667 10.3333 20.5556

w5 10.1111 11.7778 10.4444 9.0000 10.2222 11.0000 23.3333

w0 12.6667 11.4444 10.4444 11.2222 11.2222 12.3333 22.7778

w1 10.6667 11.2222 12.3333 12.6667 11.7778 11.6667 22.0000

NN-RBF w2 11.7778 12.4444 11.7778 11.8889 12.4444 12.7778 24.3333

w3 11.7778 12.8889 12.0000 11.7778 12.1111 12.1111 20.1111

w4 11.2222 11.1111 11.6667 12.2222 11.3333 10.7778 16.7778

w5 11.7778 11.0000 10.7778 10.8889 12.2222 10.8889 23.8889

w0 10.3333 9.0000 9.5556 9.6667 10.2222 10.4444 21.1111

w1 11.8889 9.6667 11.5556 10.2222 9.8889 9.3333 23.2222

Poly w2 9.7778 9.6667 9.5556 10.5556 10.8889 10.6667 23.6667

w3 10.2222 11.2222 10.2222 9.0000 10.8889 10.1111 21.1111

w4 10.2222 9.2222 9.3333 9.5556 10.5556 9.3333 21.1111

w5 24.8889 31.6667 29.6667 34.4444 31.0000 27.2222 17.0000
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Figure 1: The misclassification rates (%) for the Der-
matology and Gaussian RBF kernel

5.2 Experiments on Irrs database
The data set includes three classes: Setosa, Versi-
colour and Virginica, each class is in possession of
four features: sepal length, sepal width, petal length,
petal width, there are 50 instances in each class.

In this experiment, the Gaussian RBF kernel

k(x, y) = exp(−∥x− y∥2/108),
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Figure 2: The misclassification rates (%) for the Der-
matology and non-normal Gaussian RBF kernel

non-normal Gaussian RBF kernel

k(x, y) = exp(−∥x− y∥0.9/108)

and polynomial kernel

k(x, y) = xT · y − 0.51

are used, respectively. The FKNN parameter k is set
as k = 3. The parameter of kernel fuzzy scatter ma-
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Figure 3: The misclassification rates (%) for the Der-
matology and polynomial kernel

trices is fixed as h = 0.6. The average misclassifica-
tion rates are listed in Table 2, where w0 indicates no
weighting function is introduced.

From Table 2, we can see that the weighting func-
tions w2, w3 produce similar overall results on the
Gaussian RBF kernel, they can improve the perfor-
mance of the weighted generalized methods but the
effects are not obvious, moreover, the weighting func-
tion w4 can not be applied. Expect for a case, the
weighting function w5 produces the results are same
to w0. For the non-normal Gaussian RBF, the weight-
ing function w4 also can not be applied, the other
four weighting functions produce similar overall re-
sults, but they can not improve the performance of the
weighted generalized methods. The weighting func-
tion w1 produces good overall results on the poly-
nomial kernel, it is better than other weighting func-
tions, however, it produces the classification accura-
cy 3.7333% lower than w0 for M4. The weighting
function w5 produces the best classification accura-
cy 94.4% for weighted KFDA/GSVD, the result is
3.0667% higher than w0. Therefore, from Table 2,
we find that our weighted dimensional methods can
outperform KFDA algorithms.

5.3 Experiments on Yale database
The Yale face database [22] contains 165 face im-
ages of 15 individuals. There are 11 images per sub-
ject, and these 11 images are respectively under the
following different facial expression or configuration:
center-light, wearing glasses, happy, left-light, wear-
ing no glasses, normal, right-light, sad, sleepy, sur-
prised, and wink. In our experiment, the images are
cropped to a size of 32x32, and the gray level values
of all images are rescaled to [0 1].

In this experiment, the Gaussian RBF kernel

k(x, y) = exp(−∥x− y∥2/104),

non-normal Gaussian RBF kernel

k(x, y) = exp(−∥x− y∥1.9/104)

and polynomial kernel

k(x, y) = 10xT · y − 0.51

are used, respectively. The FKNN parameter k is set
as k = 5, moreover, the optimal parameter of kernel
fuzzy scatter matrices is fixed as h = 0.3. The average
misclassification rates are listed in Table 3, where w0

indicates no weighting function is introduced.
From Table 3, it is interesting to note that the

weighting function w5 produces good overall results
on Gaussian RBF kernel, it is better than other weight-
ing functions and it can improve the face recognition
accuracy, especially, we get the classification accuracy
1.2222% higher than that of w0 for M3. The weight-
ing function of w4 produces the classification accu-
racy 3.7777% higher than w0 for weighted RSKF-
DA, however, it produces the classification accuracy
1.7778% lower than w0 for weighted KFDA/GSVD.
The weighting function w4 produces good overall re-
sults on the non-normal Gaussian RBF kernel, it is the
best one among the five weighting functions, we get
the classification accuracy 6% higher than that of w0

for weighted RSKFDA, w1 produces the worst clas-
sification accuracy 1.8889% lower than w0 for M2.
For the polynomial kernel, the weighting function w4

produces good overall results, it can improve the per-
formance of the weighted generalized KFDA methods
but the effects are not obvious. Weighting function w5

is the worst one among the five weighting function-
s, we get the classification accuracy 24.7777% low-
er than that of w0 for M3, however, it produces the
misclassification rate 4.1111% lower than that of w0

for weighted RSKFDA. Therefore, from Table 3, we
can see that the weighted KFDA methods can outper-
form KFDA algorithms if we choose the appropriate
weighting function.

In general, we can see the results that the weight-
ed schemes in weighted generalized KFDA can bring
about performance improvement over generalized
KFDA.

6 Conclusion
In this paper, based on pseudo-inverse KFDA, KF-
DA/GSVD and range space KFDA, we propose
weighted KFDA/GSVD, weighted pseudo-inverse
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KFDA, and weighted range space KFDA. Not only
can these methods deal with the singularity problem
caused by the undersampled problems, they can al-
so improves the KFDA methods by taking full advan-
tage of the fuzzy membership of the training samples
and the different contributions of the class means to
the discrimination. In order to explain the effective
of the proposed methods, we conduct a series of ex-
periments on 3 different data sets from the UCI Ma-
chine Learning Repository and the Yale face database.
Results show that different kernel functions and dif-
ferent weighting functions affect the classification ac-
curacy of the proposed methods. Also the misclas-
sification rates produced by each of the weighted di-
mension reduction methods for three kernel function
on the five weighting functions are different. The d-
ifferences show that not any weighting function may
improve the performance of the weighted generalized
KFDA. Hence, for the different weighted dimension-
al methods and the different kernel functions we must
choose different weighting functions.
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