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Abstract: In this paper, by constructing suitable Lyapunov functional, using differential mean value theorem
and homeomorphism, we analyze the global exponential stability of high-order bi-directional associative mem-
ory (BAM) neural networks with reaction-diffusion terms and S-type distributed delays. Some sufficient theorems
have been derived under different conditions to guarantee the global exponential stability of the networks. More-
over, two numerical examples are presented to illustrate the feasibility and effectiveness of the results.
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1

The dynamical behavior of bi-directional associative
memory (BAM) neural networks introduced by Kosko
[1] has played an important role in some applications
such as image and signal processing, pattern recogni-
tion, optimization and automatic control. It is recog-
nized that such applications of the BAM neural net-
work depends heavily on the stability of the equilib-
rium point of BAM neural networks. The problem
of stability analysis of first- order BAM neural net-
works has received much attention in recent years, and
many results have been reported (see [2]-[7]). How-
ever, such neural networks are shown to have limita-
tions such as limited capacity when used in pattern
recognition problems (see [8]). Also, the dilemmas of
optimization problems that can be solved using neural
networks are limited. This led many investigators to
use neural networks with high-order connections. The
usage of high-order connections in neural networks
improves dramatically their storage capacity (see [8])
and convergence rate, and increases the class of opti-
mization problems (see [9]-[10]). Therefore, the sta-
bility of high-order BAM neural network is of great
importance and applications, and has been widely in-
vestigated. For instance, by employing the linear ma-
trix inequality (LMI) and the Lyapunov functional
methods, Cao, Liang and Lam [11] obtained several
sufficient conditions for ensuring the system to be
globally exponentially stable. In paper [12], the exis-
tence and global exponential stability of periodic solu-
tion is studied for high-order bidirectional associative

Introduction

ISSN: 1109-2769 333

memory (BAM) neural networks with and without im-
pulses based on coincidence degree theory as well as
a priori estimates and Lyapunov functional. There are
other results about the stability of high-order BAM
neural network (see,[13]-[19]).

It is well known that time delays can't be avoided
in interactions between neurons due to the finite trans-
mission speed of signals among neurons, and will
cause instability, divergence and oscillations in neural
networks. So it is necessary to introduce time delays
in the neural network models. In practice, the delays
in artificial neural networks usually continuous dis-
tributed, because neural networks usually has a spa-
tial extent due to the presence of an amount of paral-
lel pathways with a variety of axon sizes and lengths.
Besides, diffusion effects cannot be avoided in the
neural network models when electrons are moving
in asymmetric electromagnetic fields. To overcome
this situation, we must consider that the activations
vary in space as well as in time. In [19]-[31],[32]-
[38] and [39]-[40] authors have considered the stabil-
ity of reaction-diffusion neural networks with discrete
delays, continuous distributed delays and S-type dis-
tributed delays (which is more general than continu-
ous distributed delays), respectively.

Motivated by the discussions above, a class of
high-order BAM neural networks wittb-type dis-
tributed delays and reaction—diffusion terms is consid-
ered in this paper. To the best of our knowledge, there
have been very few results on analysis for this type
of BAM neural networks. In this paper, we will de-
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rive some sufficient conditions of existence, unique-
ness and global exponential stability of equilibrium
points for high-order BAM neutral networks with S-
type distributed delays and reaction—diffusion terms
by applying some analysis techniques, constructing
suitable Lyapunov functional, using differential mean
value theorem and homeomorphism. The remainder
of the paper is organized as follows: In Sec. 2, the
model formulation and some preliminaries are given.
The main results are stated in Sec. 3. Finally, two il-
lustrative example and simulation are given to show
the effectiveness of the proposed theory.

2 Model formulation and prelimi-
naries

Consider the following high-order BAM neutral net-
works with S-type distributed delays and reaction—
diffusion terms
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where i 1,2,---,n,7 1,2,--- ,m,x
(z1,29, --,2,)T € Q; C R" and(; is a bounded
compact set with smooth boundad{); and me§); >
0 in spaceR’,;

u(t, z) (t,z))"

v(t,z) = (v1(t, ), v2(t, ), - o (t,2))T € R™,

ui(t,x) and v (t, ) are the state of theé-th neurons
from the neural field,and thej-th neurons from the
neural fieldF,, at timet and in space:, respectively;
D, > 0 and E;;, > 0 correspond to the transmission
reaction-diffusion operator along tli¢h neurons and
the j-th neurons, respectivelyy; > 0 andc; > 0
denote the rate with witch théth neurons and thg-

th neurons will reset its potential to the resting state

:(ul(t,ﬂi‘),’LLg(t,ﬂj‘),"',un GR”,

ISSN: 1109-2769 334

Chengrong Ma, Fengyan Zhou

in isolation when disconnected from the networks and
external inputs, respectivelyy;;, dji,eiji, Sjip are
constants and denote the first-and second-and connec-
tion weights of the neural networks respectively;

fi, h; denote the activation functions of thi¢h
neurons, and thg;, w; the jth neurons at timeard in

spacez, respectively; [°__w; (v;(t 4 6, x)) dn;(6)
and (% h; (ui(t +6,2))do;;(9) are Lebesgue-
Stielties integrable, 7;;(#) and o;(§) are non-
decreasing bounded variation functions which

satisfy
f_ dn”( ) kij >0, 2)
1=1,2,---.n,5=1,2,--- 'm,
f— dajl( )_TJZ >07
j=12--- mi=1,2,--- n, 3)

I; and J; are thei-th andj-th component of an exter-
nal inputs source introduced from outside the network
to the celli andy, respectively.

The boundary conditions and initial conditions of
system (1) are given by

Ou,(t,z)
Oxr

Qui(tyx) _ (Oui(t,x) Oui(t,x)
on - dzx1 ' Oza 5

t>0,x €00;,i=1,2,---,n

)=

ovj(t,e) _ (0Ovi(t,x) Ovj(t,x) Ov; (t,x) T_
Jﬁn _( czkcl ’ CZ%CQ T éxr ) _0’
t>0,x€00,1=1,2,---,m,
(4)
and
u;i(s,x) = ¢y, (s,x),s € (—o0,0], (5)
’Uj(S,m) = ¢v.(37$),3 € (_0070]7
forz € Qi =1,2,---,n,j = 1,2,--- ,m,where

bu, (s, ) and ¢, (s, ) are bounder orf—oo, 0].
In order to establish the stability conditions for
system (1), we first give some usual assumptions
(H1): The activation funcUong"Z, hi, g¢; and
w; (i =1,2,---,n,j = 1,2,---,m) satisfy Lip-
schitz condition, that is, there exist constarit >
0, H; >0, Gj >0, W; > 0, such that

|fi(&1) — fi(§2)| < Fi |1 — &af,
|hi(€1) — hi(&2)] < Hil& — &2f,
l9;(&1) — gi(§2)| < Gy &1 — &,

[w;(€1) —w; (&) < Wjl& — &2l

foranyé;, & € R.
(H2) :There exist numbersV; > 0 and M; >
0,such that| f;(z)| < N;, |g;(2)| < Mj,forall z € R.
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(H3) :The activation functiong;(z),h;(2),9;(2) forall t > 0, where
ard w;(z2),(i =1,2,---,n,j =1,2,---,m) are con- T
tinuously differentiable on € R. (u(t, ), v(t,2))" = (ui(t, z),uz(t, @), -, un(t, ),
(Hy) : The activation functiong;(z),h;(2),9;(2) T
and w;(z) are continuously differentiable on and vi(t, @), va(t, ), -+, um (L, )
there exist4; > 0 andB; > 0, such that is any solution of system (1) with boundary condition
(4) and initial condition (5).
‘dfl_(z) < A ‘dgﬂ_(z) < B.. Lemma 2.1[32] If H(u) € C°and it satisfies the
dz |~ 7 dz | =77 following conditions

1) H(u)is injective onR",

Let
2) ||H ()| — +oo,as|ull — +oo,
ut = (UT,US,"',’U]:)T,U* _ (UT,U;,”’,U;)T. ThenH(u) ISahomeomorphlsm aR™. .
Lemma 2.719] If f;(x;) are continuously differen-
Definition 2.1 The point(u*T, v*T) is called anequi-  table onz;(i =1,2,---,n),
librium point of system (1), if it satisfies the following 2(t) = (z1(t), z2(t) '-'xn(t))T c R"

equations
() = (90),28(0).---250) " € R,

n m m
—a;ul + Z bijgi(v;) + > > eigi(vi)ai(vy)
Jj=1i=1 then we have

+ E pwkwwy( )+ 1; =0, (A1)
=

e+ S0+ 35 5 s () S0 s [l fy(ap) — Fie)fy(a2)]
n = =tr= i=1p=1

+ X gjirjihi(uy) +J; =0 n n 51’ i

fori=1,2,---,n,j=1,2-,m
Definition 2.2 Let (u*T,v*T) be the equilibrium  Of,

paint of system (1), we define the norm (A2)
Juitt) = wf 3 = [ (i) — up)? do S0 siin [filei) Fyley) = file) fola?)
Q i=1p=1
2 n n
o) = v3||, = /Q (vj(t, ) — v})* da, =33 (sjip + i) (i) = fi(a?))
i=1p=1
n 0
60 —u'ly = sup S [0u,(0) il Ty (s + (2 = 2)0)
—00<¢<0, 4
" where¢, lies between, andxg,p =1,2,---,n,0 <
s — v, = su (¢ | o<1
o I —oo<It)<0j§ ‘ P (8) =]l Lemma 2.3[19] For any
n m o . T n
Jull = - st ) ol = 3 foy b, ) o) = (0, w2 {0), ()7 € 1
i=1 j=1 T .
., () = (23(0),28(0), - 25 (1)) € B,
where Gy = (¢u1 5 ¢u27 e y@bun) and Gy = h
(Goys Bugs -+ v, )L are initial values. wehave
Definition 2.3 The equilibrium point(u*T v*T) of G 0 0
system (1) is said to be globally exponentially stable, ; Zl Sjip [f’ ) Ip (2p) = fi (xl) Fo (xp)}
if there exist constant > 0 andM > 1 such that B Z_ n
0
n m = Z Z Sjipfp Lp + Sjpifp (xp)
% fuilt) = il + Zluvj(t) — v, i:lpzl{ (1) |
i= j= 0
< Me= [llgy — ull, + 6 — v*ll) (fi o) = £ (a7))
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Lemma 2.4 [41] If f(t,0) is continuous on

[a, b; —o0,0],and 7(f)is a nondecreasing bounded

variation function or{—oo,0] and [°__ dn(0) = k <
0o, then

0

0
S seoae = [ Lo amo.

Lemma 2.5Assume that

m
—a;+ >
j=1

|lqji| 7jiH;

m

+ >
j=1

i=1,

n

|dji| + Zl |8jip + Sjpil Nple‘ <0
p:

2, ceeun,
and
n
—¢+ 2 [Pl ki W
1=

n m
+ 21 [|bij| + lzl leiji + €] Ml]Gj <0,
1= =

j:1727"'7m7

then there existg > 0 such that

m n
(7 —a;) + ) |dji| + ) |Sjip + Sjpil Np] £
j= p=

+ 2 |gjil Hi [°o e ™ doi(0) < 0,
i=1

1= 1,2,"',71,
(7)
(T —cj) + ; Dbij‘ + 121 lesji + eiljl Ml]Gj
+ ; \qji| W; [0 e P dn;;(8) <0,
j pr— 1’2’...,/””1/‘
(8)
Proof: Let
W(#z‘) =

m n
(i = ai) + 3 Vsl + X Isjip + sjpil NP]F,-
i= p=

m
+ _Zl \qjil Hi [° e #%doi(6), i =1,2,---,n,
j:

Then,

W (0)

Chengrong Ma, Fengyan Zhou
by Lemma 2.4, we have

m
Wipi) =1 - '21 \qjil Hi [0, 0e"0do;i(60) > 0,
]:
1=1,2,---,n.
Since liril W (p;) = 400, there existg:,; > 0 such
Hi—+00
thatW(uf) =0,i =1,2, ---,n. Let

¢ = min {uf,u3, - i3}, then we havaV (m,) < 0
1<i<n

form, € (0,¢), i.e. ., satisfies (7).
Similarly, let

Z(nj) =
(1j —¢j) + é:l [‘bij’ + é €3t + € Ml} G,
+Z§:1 lg;s| W ffoo e Hi%dn;(0), §=1,2,---,m.
Then
Z(0)
—cj + iZZjl [|bij| + éﬁl leiji + e Ml} G

n
+ 21|jS|ijij <0,j=1,2,---,m.
=

By Lemma 24, we haveZ'(p;) > 0.

Since lim Z(u;) = +oo, so there exists
1 —F00
67 > 0 such thatZ(67) = 0,5 = 1,2, ---,m.

Setd = min {47,605, -- 65}, we haveZ(,) < 0
1<j<m

for 7z, € (0, 6), i.e. , satisfies (8).
Let 7 = min{F,,%,}. ThenW(z) < 0 and
Z (@) < 0, which means that

m n
(7 — a;) + '21 |dji| + Zl|5jip+3jpi|Np] F
= p=

+ 2 |gjil Hi [° e "doi(6) < 0,
i=1

i:1727"'7n7

n m
(It — ¢j) + Zl {!bij\ + 121 |€iji + € Ml]Gj
1= =
n —
+ Zl lg;il W; f_ooo e Mdn;;(0) <0,
1=
j=1,2,---,m.
This completes the proof.

3 Main results

3.1 Existence and uniqueness of the equilib-
rium point

In this section, we will derive some sufficient condi-

tions which ensure the existence, uniqueness and the

m n
—a; + Zl |dji| + Zl |5jip + Sjpil Np] F;
j= p=

m
+ 3 gl Hirji <0, i=1,2,---,n,
j=1
336
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exponential stability of the equilibrium point for sys-

tem (1).
Theorem 3.1under hypothesedi;) — (Hs), then the
system (1) has a unigue equilibrium point if

m m
—a; +% Z {|bji| + Z leiji + el Mz] G

|dji| + Z ’SJ1P+SJPZ’N] 9)

J=1
m

+3 Z |pij| kijo + '21 |qji| TjiH; <0
7j=1 j=

n m
—¢ + 21 {|bji| + 121 leiji + el Ml] G
1= =
1 I
T2 ‘21 |dji| + 21 |Sjip + Sjpil Np| Fi (10)
1= p=
n n
+ 22 Ipigl kigWj + 3 3 lagil st <0
1= 1=

fori=1,2,--,
Proof: Let

n,j:1,2,---,m

H(u,v) = (Hy(u,v), Ha(u,v), -, Hy(u,v),

Hyq(w,v),- -+ Hygo (u, U))T

where

’LL,U) —au; + Z bljg] (U])

||M3 =

Z: €ij19j (Uj)gl(vl) + Z pzykm w; (v]) + Ii7
1 2,.

—cjvj + Z dji fi(usi)

+ Z Z SﬁpJCZ(UZ)fp(up) + Z qjirji h

i=1p=1
7=12,-

Hpyj(u,v) =
( z) + Ji7

It is known that the solutions @ (u, v) = 0 are equi-
libriums of system (1). If the mapping/ (u,v) is a

homeomorphism o™, then there exists a unique

pant (u*,v*), such thatd (u*,v*) = 0, i.e., Sys-
tem (1) has a unique equilibrium poifit*, v*). In the
following, we shall prove thal (u, v) is an injective
mapping onR"™+™,

In fact, if there exist

(u’ U) =

T
(Ul,’LLQ,"',’LLn,Ul,UQ,"',Um) 5

(ﬂuﬁ) - (17’17@27’ o 77171717171727 T 7®m)T € Rn+m7

ISSN: 1109-2769

Chengrong Ma, Fengyan Zhou

swh thatH (u,v) = H(a,v) for (u,v) # (@, v), then
by using (A2) of Lemma 2.2, we have

—a;(u; — ;) + gﬁl bij (95(v;) — 9(v5))
+j§ én:l (eiji + ea) (95 (vs) — 9;(v5))
g1 (0 + (v — 17)0) + Z ng ij [wj(vj) wj(@j)]
=
—0,i=1,2,---,n, 0<0<1.
(11)
—cj(vj —v5) + ;::1 dji (fi(us) — fi(w))
éééwm+%wmmn—Mm»
Fo iy oty =~ T)0) + 32 g i) — ()]
=0,j=12,---.m, 0< 6 <1
(12)

Multiplying both sides of (11) byu; — ;) we have

—ai(u; — @)% + (wi — ;) Y bij (95(vs) — 9(7;))

INNgE!

=) 35 8 e+ ey) (93(05) — 9471)
g1 (0 + (v — ’Ul) )

+(ui — ;) lem ij [wj(v;) — w;(;)] = 0.
j:
(13)
fori=1,2,---,n,0 < # < 1, which means
—a;i(u; — 0;)* + |u; — 2 1ij] 19;(v5) = 95(0;)]
‘7:

m m
+ |ui — ] ) 121 leiju + eijl 195 (v;) — g;(05)| M;
‘]: =

m
+ u; — _Zl pij| Kij lw;(vj) — w;(v;)] = 0,
j:
i=1,2,-,n
(14)

Since|g;(v;) — g;(v;)| < Gy |v; — 4,

lwj(v;) —w;(v;)] < W |v; — 5],

from (14) we have

m
—ai(u; — @;)? + Z [bij| Gj lui — ] [v; — ;]
m

+ Z Z ‘ezﬂ +621]’G M, ’uz

j=1ll=1
m

+ Zl |pij| Kij Wi i
]:

i=1,2,--,n

;| |v; — v
— Uil [v; — 751 =0,

(15)
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Applying the inequality:a® + b* > 2|al |b] to (15), it
follows that

u;)? + 1 '21 (\bij! + lzl lesjt + eyl Ml)
j: =
'Gj (77(1UZ — ﬂi)2 + (’Uj — 53')2)
+3 2 Ipig! i Wi (i = @) + (v; — 7;)%) = 0.
‘]:
(16)

Similarly, from (10) we derive

—cj(vj —1;)* + 3 Z <]dj,-\ +p§i:118jz‘p+3jpz‘!Np>
((n — ;)% + (UJ - Uj)2)
% z:: | J2| 7yl ((u; — ;)% + (v — T’j)2) =0,
=1,2,-
(17)

Plus the left hand sides of (16)-(17), and merge the

similar items, we can obtain

>

i=1

{—ai +3 i (Ibz‘jl + gﬁ |€iji +%|Mz> G
(‘dﬂ’ + Z |$jip + 5jpil Np )F

|pm| ki;W; + 3 Z |QJ2| Tji Z} (u; —ﬂi)Z
—cj+1 Z (\bﬁy + Z leiji + el M,) G,
<|dﬂ| + Z |Sjip + Sipil Np )F

z} (vj — 7))

s

+% Z |p2]| ka + Z |qj2| T]Z
=1
>0

(18)

According to (9) and (10), from (18) it is easy to see

thatul = u;, v; = v, fori = 1,2,
1,2,--+,m. which contradlct(u v) 7é (a 17)
H(u, 1)) is an inject mapping o+,
Secondly, we prove thaf|H (u,v)|| — +oo as
a1, o) = +oc.
Let H (u,v) = H(u,v) — H(0,0)

(Hv(u,v), Ha(u,v), Hy(u,v),

~ T
Hn+1(ua ’U), Hn+2(uy U), ) Hn—l—m(ua 'U))

So

where
Hi(u, ) = —azu; + gﬁl bij (9;(vs) — 95(0))
+§1 lgil (eiji + €az) (95(v5) — 5(0)) g1 (Ovi)
+ 5 pigki (03(23) — 3(0))
(19)
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and
By (,0) = g0y + 3 dyi (filw) = £(0)
353 (i + i) () = F1(O) ()
+ 32 s (i) = ha(0))
B (20)
fori=1,2,---,n, j=1,2,---,m, 0 <6 < 1.
By (19) and (20), we can find
(u,v)T]fI(u,v) = En: U ]fli(u,v)—i—ﬁn: vjﬁn+j(u,v)
2- =

- 9;(0))

—9(0)) gi(8 1)

It-
——

m
—au? + ‘21 bijui (gj(vj)
‘]:

M
3

<

I
—_
—

Il
—_

_|_

(eiji + eirj) (95 (v5)

+
’6

ijuikig (wj(v;) — wj(O))}
cjvy + E djiv; (fi(ui) — fi(0))
fi(0)) fp (0 up)

<
Il
-

_|_
M3/—/Q\

<
Il
-

+

@
Il

—
=
I

—_

(sjip + 8jpi) (filui) —
i057 50 (i (uq) — hz(o))}

2"‘2 |bij| G |uil vy

5}

@
Il
—_

_l’_

IN
-
NMS/—H

_|_

Cijl T €ty )G VAL | Ui | |V
(g+ 3)G M |ui] |vj]

<
Il
-

+

|pw| kigWj |uil |UJ|}
{—cjvj + 351l £l 1]
1=

(84ip + Sjpt) Fi Np [ui| |vj]

+
NENINGE

<.
Il
—

92 s
itk

@
Il
—

+

qji| i H Jug |Uj|}

—a,-u?—k( A (‘bl] H‘Z Z (ezyl‘i’ezly)M>
j: : :

IN

@
Il
—

G+ 5 f: pijl k?ijo> (u? + vjz»)}
{_cjvj2'+< =1 <’dﬂ‘+z Z (SJZP+SJPZ)N>
+ %é |jil TjiHi) (uf + %2)}
{—aﬁ% gb:l <’bij’ + gn:l > (ein’eilj)Ml)
% g |p2]|k2]W ‘1'5 §31|qu|7"]@ 2}

{—Cj +3 ;1 <!dj,-\ + Zn: > (sjip + Sjpz')Np>

i=1p=1
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Fy+ 35 iy ki Wy + 35 lagal vyl b o2 3.2 (;Iqbal exponentlal stability of the equi-
librium point
< —min {ai—% > <|bij|+z > leijiteis] M1>Gj Theorem 3.2 Under hypothese$H1) — (H3), the
=n j=1 J=11 unigue equilibrium point of system (1) is global ex-
1 ponentially stable if (9) and (10) in Theorem 3.1 hold.

1 < 14 2
_1 R 7 P A
2 ; Ipis] kg Wi = 2 -221’%‘ st llul Proof: By using Theorem 3.1, system (1) has a

) L& n n unique equilibrium point. In the following we
iy 2 |djil E 2_:1 |sjiptsipil Np | Fi will prove the unique equilibrium pointu* =
T - 0 (ul,ug, - ul, v, vl -+, 05)T is globally expo-

. ) ) 15 U2 n V15 V2 m
-3 21 pij| kijWj — 5 Z: |qji TjiHi} [v]” nentially stable.

Using the Schwartz inequality yi(t,x) = wilt, ) —uf, z(t,x) = vj(t, x) = vj

fiyi(t, ) = fi (gt @) + i) — fi (u]),
xTy < ‘XTY‘ < HXTH Y, @) GG =g (25t 2) +v7) = g5 (v}),

hi (yi(t +0,2)) = hi ((yi(t + 0,2) + ui))—hi (u])

where | X|, |Y||are the norm of vectorst andY’, w;(z;(t +0, x)) = wj(z](tJrH x)+v ) — w;(v5),

respectively, from (18) and (19) we get fori=1,2,---,n, j=1,2,-
From (1) (4) an A2) of Lemma2 2 we derive

m
> min {a; — % 3 <]b”] + Z lesji + ej| M,
=t = ‘7: :

N———

ayl(m ET: ai ( ik 8%;“”) — a;yi(t, )
(2 (t, @)

L m = ) n + Z blj.gj )+ lez (ezﬂ + ezl])gj (zj(t l’))
G, — L il kW — L o H S . j=1l=
J 2j§1|p]| VA 27,§ |g5i| 75 | H gl(vl + (v — v})0)
n n o n mn 0 —
Ii—<r_rlin G —3 (\dﬂ] > 3 Isjip + Sipil N, ) +j§1pij (f_oo w; (z(t+0,x)) dTh’j(Q))
sjsm i=1 zlp: I e Qi,
T — 3 Z pij| kW5 — Z |g53| 7ji Z} ||U||2 (23)
=1 9zj(tx) <~ 9 0z (t,x)
> Ml +lo]?) = M [[w,0)?, 5 = 3 ot (B - em(ta)
where + Z djifi (yi(t, x)) + Zl ) (sjip + sjpi) fi (vi(t, @)
1=1p=
fp (u + (up — uy)
M = min
432 g (S B (0t +6,2)) dory 6)).
. 1 m m m
min {a; — s b;i + eiil + eii| M, ; 3369@,
lgign{ 2 j2=:1 < J ]2::1 l; | gl l]| l) J (24)
m n forir=1,2,---,n, j=1,2,--- 0<f<l.
_1 .. 1. 1 2 ) &y y 1] ) &y , M,
3 2 el kWi = 5 2 gl v } el Multiply both side of (23) byyi(t, z) and inte-
Lo n o n grate with respect, we get
+minc; § —3 , |dji| + Z > I8jip + 8jpil Np
1<j<m i=1 i=1p=1 ( )
m n (L, x dr = i Dz 8yzt:c dx
B =4 3 ol kW5 = 4 5l z}uvuz}- 2 Jo, it Zf“@wk( )
j=1 i=1

—ai Jo, 7 (t, v)dz + ,Zl bij Jo, vigj (2(t,x)) dx
~ ‘]:

When |(u,v)]| # 0, we havel| i (u,v)|| > M(u,v). £33 (e +ewy)

Therefore,HH(u,v)H — +oo as||(u,v)]| — +oo, j=11=1

which implies that”ﬁ( )H oo as||( 1l ) fQZ Yigj (Zj(t7 z)) g ('U;k + (v — ’U;k)e) dz

u,v)|| — +0oo u,v)|| — m 0 —
+oo. From Lemma 2.1 we know thatH (u, v)|| is +j§::1p]fgly (f oo 0 (2 (L +0,.2) g )) v
a homeomorphism o™, Thus, system (1) has a (25)
unique equilibrium point. This completes the proof. fori=1,2,---.,n
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It follows from the boundary condition that
LA y; (t,
3 Jo, iz (Dir 2482 da
_ dyi(ta) )"
= Jo, 4:V (Da yax,{” ))kzrl dx
y; (¢,
:fQ V yz( z)yamkm )k 1d$
Oy; (t,x
- fQ ( ik 8xk( ))k—
_ .. ayz tx
- fQ ( kT Oy, )k:lds
_ Z fQ (ayz(t r))zdx

T 1;::1 fQi ik (%Zm)f dz,

~Oyi(tx) ) r
where (le e

(A Oyitz) o Oyi(t,x) 'ayi(t,:n)>
- (Dzl 61171 7D22 8!172 ) y L4l 8:177"

By (9),(10), assumption&H 1), (H2
equality, from (25) we obtain

) and Holder in-

dlilly < QZI Dir (aym))?dx

+2 '21 1bi5] Jo, |yil
]:

—2a; |lyil5

-195(2(t, 2))| dz

+2 30 3 [(eiji + eug)l - Mi fq, |yil - 19;(25(t, @) | dx

S0 (25t + 0, )) digig (6)| dv,

j=11=1

m
+2 5 1ol o, lud
]:

2 m
< —2a; [lyill; + 2 E 1bij| G llyilla - 11255

+2Z z:l|(ewl+ezlj)| M,G; ||y2H2 HZ]HQ
=102

HZ%WJM%U
(26)
By Holder inequality, we have
23 sl Wy Jo, Il |/
]:
<23 i Wi [2o U, 125(8 + 0, 2)] yi(t, )] da]
J:
i (9)
<2 Z |pm| W fo

25(t + 0, )dn;; (0)| da

|Z] t‘|’9)H2 ||Z/Z||2 dmg(G)

(27)
By (27), from (26) we obtain

dllyill,
—g > < —a;|lyilly + '21 |bij| + lzl lesjt + eaj| M
J: =

Gy il + Zl il Wi 20 1125 ( + 0) i (6)
J:

(28)
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fori=1,2,---,n

Multiply both sides of (24) by; (¢, z), similarly,
we also get

d .
Ttz < <l

n
|dji| + Zl |Sjip + 8jpil N,,)F,- il
p:

+ 21 \gjil Hi [ [|yi(t + 0)||ydoji(6).

(29)
Consider the following Lyapunov functional
V(t) = 1‘3’” yilly + 21 Z pij| W
1= 1 7j=1
0 o (s—0) .
(oo Beo 70 s (5)y dsdns (6)

+ Z et ”Zj”z + Z Z ’CJJZ‘H
j=1li=

(limjgﬂe“@ ) lyi(s Hbdswnﬂﬁﬂ,

whereji > 0 is given by Lemma 2.5.

DYV (t) = Z D* |lyilly " + Z lyilly 72 €™

+zszU WaMWW@
=1 ]_

= Lo 25+ 0) s 0)]
+ Z D+ H%Hzeut + Z ”Z]HQIU’eu
P2

£33l B[ 0. Wﬂmwmm

j=1i=
<wawwmmwk

< ety {—aillyill,
m o=l
' <|bij| + Z |€iji + €l Ml) Gjllzlly
m
+ Zl |pw| W; f_ ||Z] t+9)||2d77w( )+ ||yz||2
J
m
+ Z i) Wi [0 o €770 12511, i (0)

- Z |pZJ|W fo |zJ t+0)” dnlj( )}
+€‘” Z {=¢ill%ll,
7=1
+ Zl <\dj,-\ + Zl |Sjip + Sijpil Np) Fi llyill,
i= p=
+ 32 lagil H [ Nt + 0)llyderji(8) + 7 |1,
+ Z \qjil H; [° o €7 ||yillo doji(6)

—ZMMULMM+WM%U}
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Tt n _ m
<elt Y q(m—ai)+ X [1djil
=1 7j=1

n
+ 21 |Sjip + Sjpi| N; | F;
p:

S G H [0 e Odo(0) % - ||y
+j§1‘QJ ‘ f—ooe U] ( )} ”y ”2 (31)

s B )+

J=1

10|

||M:

m
+lZ lesji + el Mz}
-1

+ 5 g W 0 P 0)] - ],

By Lemma 2.5, from (31) we can finBtV (t) <

and soV (t) < V(0), forallt > 0.
From (30) it is easy to find that

V()= e lyilly + > e Izl t >0 (32)

i=1 j=1
and

V(0) = lllyz( )l + Z pis| W

=

o bwsﬂmmm@w%@

+J§1 “Zj(0)|’2+i;’qji’Hj

S (15 i)l ds )| dor 0)

= Z l[ow; (0,2) — uilly + ) [pij| W;
f_ (fa ers=0) )dni; (6)

+ 5 }%j(O) — v
7=1

O <f€o oHi(s=0)

j
Pv;(8) — v} )
n
o+ 2 lasil H;

i=1

lus(s) = ully ds ) dors;(9),

321+zﬁﬁwkéﬁ“ﬂﬂwm]
= =1 M
lpu — u|
+ 3 |14 Bl 0 (70 1) dm-j(@)}
=1L = *
o — o™l
Therefore,

[Z lyilla + ||Zj||2] e < V() < V(0),
i=1 j=1

n

szbf;ﬁ#%;@ﬁﬂﬂw%w]

Hlspw — ]

+ Z |:1+ Z ‘sz‘W] f (
7=1

Nlpw — 0™,

< M{lleu —u*lly + oo —v*[ly], =20

mo—1) dn,-j(e)}
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Therefore,

n m
3 llus = willy + 32 [|og — v
=1 j=1
< Me [[lgy — ully + llgo — v¥lly] £ 20

By Definition 2.3, the equilibrium poinfu*, v*) of
system (1) is globally exponentially stable.

On the other hand, by usingll) of Lemma 2.2
and Lemma 2.3 respectively, the proof is similar to
that proving Theorem 3.1 and Theorem 3.2, we may
obtain the following two results (Theorem 3.3 and
Theorem 3.4).

Theorem 3.3 Under hypothesifH1) — (H2) and
(H4), the equilibrium point of system (1) is unique
and globally exponentially stable if

—a; + % Z (’bﬂ‘ Gj + Z ]eiﬂ + eilj’ MlBj)
+ X ) <|dJ2|F + Z |Sjip + Sjpil Np A)
j:
+3 2 Ipis ki Wi + le%z'l?“jz‘Hi <0,
: ‘7:
(33)
—Cj + Z:l (‘bﬂ’ Gj + 12:1 ]eijl + eilj’ MlBj)
+3 > (\dji! Fit 3 Isjip + sjpil NpAz‘>
1= p=
+ 2 Pl ki Wi + 2 2 lajil rjiHli < 0
(34)
fori=1,2,---,n, j=1,2,---,m.
Theorem 3.4 Under hypothese$H1) — (H2), the

equilibrium point of system (1) is unique and globally
exponential stable if

1 m m
—a; + 3 Z (‘bji’ + Z ‘61'3'1 + 61'13" Ml) G
+ 2 <|dﬂ| + Z |SJZP+SJPZ|N>

7j=1
+3 ) |pij| ki W + -21 |qjil rjiHi <0,
: ‘]:
(35)
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—ej+ z": (ijil n f: lesit + e Ml> G and S-type distributed delays
" Oui(t,w) 8 8ul(t x) o
Ti_ + > bijgj (vi(t,
+¥1\pij]kijo+§Z:llqj,-]rjiHi<0 jzl 2] J( ]( ))
+ 20 X eigs (vi(t, @) gi (wi(t, @)
fori=1,2,---,n, j=1,2,---,m g;ll:l
Remark 1. WhenD;;, = Ej, = 0, ey = sijp = 0, + 3 i [0 wj (it +6,x)) dni;(0) + I,

T
Il
-

Uj(t 33‘) _u](t x)1m_nandcj _dl = iy = v, (t,x v, (t,x
J; = 0in (2), then system ((1)) is greatly similar to L2 (E gafre) )) = ¢jv;(t, )
the system (1) in [41]. On the other hand, whep = 22: (it 7))
sijp = 0, vj(z,t) = uj(z,t), m =nandc; = dj; = = djifi
g;; = J; = 0in (1), then system (1) is greatly similar 2 2
Qi fz)llowing System + ; pZ_:l sjipfi (wi(t, @) fp (up(t, x))
2
, + 2 gji [0 ha (wi(t+0,2)) doji(0) + J;
Ou; (t,x) _ Z 8 (D Buz(t,m)) ~awu (t 33‘) i=1
ot h—1 aLBk ? aLBk (el ? (38)
m Fori=1,2, j=12 let
+ 2 bijgs (uj(t, ) /

+]§1p” (f_ i (6 )Uj(t+97x))+[i f1(r) = fa(r) = g1(r) = ga(r) = sin 2r,

(37) hi(r) = ha(r) = wi(r) = wa(r) =r.
which has been considered in [39]-[40]. From this _
point, our model and results are more general. Since
Remark 2. Introduce high order term into sys- _ _ _
tem (1), the study of global exponential stability glﬁi) _{ 2|(T|2}\'(T)|\gi(|7“1‘)(r)|92<(7;2) | ,
becomes difficult for reaction-diffusion cellular net- == =020 e — 19 -
works with S-type distributed time delays. Lemma
2.2 and Lemma 2.3 are greatly useful to resolve the |h1(r1) — ha(re)| = |wi(r1) — wa(ra)|
difficulty. |T‘1 — T'2| ,
Remark 3. Because of the infiniteness of S-type dis- ’M - ‘d‘”

tributed delays, it is difficult to consider the global
exponential stability for system (1). In this paper , we selectF; = G; = 4, N; = M; = 1,A; = B; =
Lemma 2.5 is very useful . 2,H;=W;=1,i=1,2. Take

Remark 4. Theorem 3.1-3.2, Theorem 3.3 and The-

orem 3.4 are developed under different assumptions @1 =23  ax =17 b =2  bip=
and use of various lemmas. They provide different  ba1 = —2 baa=—-1 ¢ =26 cy =24

sufficient conditions ensuring the equilibrium point of din=1 dia= —% do1 = % dog =
system (1) to be unique and globally exponentially el =1  ejp = % e1o1 = —% €199 =
stable. Therefore, we can select suitable theorems for  ¢;; = 1 eso =1 e =—1 e = %
a h_|gh—order BAM neural ngtw_orks with reaction dif- s111 = _% S119 =% s191 = —%  s190 = :
fusion terms and S-type distributed delays to deter- So11 = % Solg = % Sog1 = _% Sog9 = _%
mine its globally exponential stability. P = Py =1 Py = % Pog = %
q11 = q12 = —% qz21 —% q22 = %
=0 I, =0 J1=0 Jo =0

4 Examples
P nij(0),05(0) (i,j = 1,2) are non-decreasing func-

In this section, we give two examples for showing our  1ONS wi;[)h bounded that satisfy

results. ki = JZodmi(0) = 477612 = [0 dma(6)
0

Example 4.1 Consider the following second-order k21 = [ 2o dno1(0) = 3, ka2 = [2__ dnas(0)

BAM neural networks with reaction-diffusion terms r; = ffoo doy1(0) = %,Tlg = ffoo do12(6)

([
,J>|r—-cn|)—ll\3|)—n
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ror = [0 doa1(0) = 3,10 = [0 doa(6) = 1
By calculation, we have the following results

2 2
mai 3 35 (1 G+ 3 e+ eayl MiB,

N—

2 2
+ 20 | Idjil Fi + Zl |Sjip + Sjpil NpAi>
p:

J=1
2 2
+3 > [pij| ki Wi + ) |qjil rjiHi <0,
‘]: ‘7:

2 2
—Cj + 221 (‘bﬂ’ Gj + lz \eijl + eilj\ MlBj>
= =1

[\

2
+3 -21 <\djz'! Fi + Zl |Sjip + Sipil NpAi>
1= p=
2 2
+ [pij| kijW; + 5 > |gjil rjiHi <0
1= 1=

fori=1,2, j =1,2.

It follows from Theorem 3.3 that this system (37)
in Example 4.1 has one equilibrium point, which is
globally exponentially stable.

Example 4.2 For the network described by system
(37), let

r

f1(r) = fa(r) = g1(r) = ga(r) = sin 3

hi(r) = ha(r) = wi(r) = wa(r) = r,

since [ f1(r1) — fa(r2)| = [g1(r1) — g2(r2)]

< 4fry —rof, | fi(r)| = lgi(r)] <17
hi(r1) — hi(r2)| = |wi(r1) — wi(r2)| = [r1 — 7raf,
‘dfi(r) _ ‘dgi(r) 1 1

dr dr 2[“®3 2

r

<

2 2
We selectF; = G; =%, N;=M; =1, A; = B; =
S H =W, =1, i=12 Takea; = 3, az = 2,
c1 = 3,co = 4, the other parameters are the same as
that in Example 4.1,

By calculation, it is easy to find that the parame-
ters in Example 4.2 satisfy (9) and (10), therefore, by
Theorem 3.1-3.2, the system of Example 4.2 has one
equilibrium point, which is globally exponentially sta-
ble. Simulation results with 100 random initial points
are depicted in Fig.4.1- 4.2.

Remarks 5By simple calculation, it follows that the

conditions (9) and(10) of Theorem 3.1-3.2 don't sat-
isfy for the system in Example 4.1, while for the sys-
tem in Example 4.2, conditions (33) and (34) of Theo-
rem 3.3 don't satisfy. Therefore, Theorem 3.3 is suit-
able for the globally exponential stability of system
in Example 4.1, but Theorem 3.1-3.2 aren’t. Theo-
rem 3.1-3.2 are suitable for the globally exponential
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1: view of

Three-dimensional
(t,z,u;),(t,x,v;) in Example 4.2 wheh) = J; =
)

Figure

0 (i=1,

<o
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a0
20
o
20
a0
-e0
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¥

80 ‘
-100;

uty)
uta)

Figure 2: Transient response of state variable
ui(t,z),vi(t,x) in Example 4.2 whehh = J;
0 (1=1,2)

stability of system in Example 4.2, but Theorem 3.3

isn't. The above two examples show that all the Theo-
rem 3.1-3.4 in this paper have advantages in different
problems and applications.

5 Conclusion

Under different assumption conditions, four theorems
are given to ensure the existence, uniqueness and the
global exponential stability of the high-order BAM
neural networks with reaction—diffusion terms and S-
type distributed delays by constructing a suitable Lya-
punov functional, utilizing differential mean value
theorem and some analytical techniques. The given
algebra conditions are easily verifiable and useful in
theories and applications. Finally, two examples and
simulation are given to show the effectiveness of the
results.
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