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1 Introduction
In this study, we are going to describe a specific
susceptive-infective (SI)-model of epidemics [1] us-
ing Antonelli’s approach of describing two species in
ecology geometrically [2]. This approach has been
successfully used in case of wild rabbit disease as
well as coral-starfish equilibrium[5]. Also, allomet-
ric relationship between net production biomass and
the amount of secondary compound plants produced
to defend against herbivores can be geometrized as
well as corresponding interaction condiments are tak-
en to be constant. The aim of this work is to apply An-
tonelli’s idea of imposing geometrical paths defined
in metric spaces extracted from stochastic allometry
space in Riemannian geometry to obtain a better non-
linear regression formula with geometrical origin [2] .
The importance of allometry space, due to Antonelli’s
approach, is to obtain a space having a positive defi-
nite metric with negative curvature acting as a tool to
examine the behavior of growth curves. Thus, any ad-
ditive terms associated with geometrical structures are
useful for adjusting a proper path describing the be-
havior of any epidemic curve. Since 1990s Antonel-
li’s approach has been extended to include other type-
s of geometries such as Finsler geometry rather than
Riemannian[3]. Consequently, Antonelli and Brad-
bury (1997) have used Gompertz growth and allomet-
ric relationships to build a dynamical theory of ecolo-
gy, evolution and development in colonial organisms
using Finslerian Geometry. Accordingly, geometriza-
tion of SI-model can be considered as an introductory
step to the geometric version of SIR-model and others.
Moreover, this approach has been extended to include

Finslerian Geometry due to its richness of imposing
many interacting factors geometrically rather than the
Riemannian one [5]. The importance of geometrizing
such a model is to construct the path equations and
their corresponding path deviation equations to know
the behavior of the growth curves and their effect af-
ter a slight perturbation on them. This can be seen
by studying the stability conditions from examining
the motion of path deviation equations. In the present
work, we are going to utilize the nonlinear version of
allometry for obtaining the relevant equations of epi-
demics in SI-models using different types of geome-
tries with some details on its extension to include SIR
models and others by increasing the dimension of the
manifold. This type of extending dimensions to ex-
amine various epidemic models will be examined in
our future work.

2 Historical Background

2.1 SI-Model of Epidemics

It is well known that the simplest model of describ-
ing population growth stems from the famous Lotka-
Volterra model which can be expressed as follows [6]:

dS(t)

dt
= −α1S(t)I(t), (1)

and
dI(t)

dt
= α1S(t)I(t), (2)

where S(t) the susceptive class I(t), the infected class
and α1 is a parameter. Equations (1) and (2) can be
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related together using the following condition:

S(t) + I(t) = 1. (3)

The above model has been modified, to accommodate
some other factors based on some oscillations either
internally or externally. In this study, it is sufficient to
display the amended version owing to this extra factor
to take the following form [7]

dS(t)

dt
= −α1S(t)I(t) + α2S(t) (4)

and
dI(t)

dt
= α1S(t)I(t) + α2I(t) (5)

where α2 is another a parameter with a constant coef-
ficient. This model has been applied using determin-
istic and stochastic approaches in the following sub-
sections.

2.2 Deterministic Approach of Epidemics

SI-Model of Epidemics:

The concept of deterministic models is essentially
depending on the concept of threshold of an epidemic,
may be expressed in the following way

dS(t)

dt
= −λS(t)I(t)− δS(t) + γI(t) + δ (6)

and
dI(t)

dt
= λS(t)I(t) + (γ + δ)I(t) (7)

where λ , 1
δ , and 1

γ stand for average number of con-
tacts per infective per day, and average period of in-
fectivity respectively.

Substituting (2) into equations (6) and (7) one
obtains

dI(t)

dt
= λI(t)2 + (λ− γ − δ)I(t). (8)

The above set of equations can be applied to de-
scribe the evolution of some epidemics such as plague,
malaria, meningitis. The significance of expressing
any epidemic model in terms of differential equations
is due to large number of the population size.

Accordingly, the continuous variables play for
this task. From the above description, it is possible to
consider an example for some fatal diseases by sug-
gesting the following set of equations

dS(t)

dt
= −λS(t)I(t) + (γ + δ)I(t) (9)

and

dI(t)

dt
= λS(t)I(t)− (γ + δ + η)I(t), (10)

where 1
(γ+δ) and η denote the death-adjusted period of

infectivity and the rate of daily death respectively.
If one takes λ = 1,γ = 0.2, δ = 0.0001, η = 0.2

[8], then equations (9) and (10) become

dS(t)

dt
= − S(t)I(t) + (0.2001)I (11)

and
dI(t)

dt
= S(t)I(t)− 0.4001I(t). (12)

SIR-Model of Epidemics:

If there is a chance of recovery or removal
by death, another model can be expressed such as
the susceptive-infective-recovered (SIR) model as de-
scribed in the following set of equations

dS(t)

dt
= −λS(t)I(t)− δS(t) + γI(t) + δ, (13)

dI(t)

dt
= λS(t)I(t) + (γ + δ)I(t) (14)

and
dR(t)

dt
= γI(t) (15)

provided that:

S(t) + I(t) +R(t) = 1, (16)

where R(t) is the removed class of susceptible-
infection caused by isolation, immunity or even death.
The above set of equations can be expressed only
(S(t) and I(t),

dI(t)

dS(t)
= −1 +

γ

λS(t)
. (17)

It is well known that γλ represents the infectious con-
tact number.

In case of SIR model having a temporary immu-
nity without changing the threshold phenomenon. E-
quation (13) can be modified by imposing such a pa-
rameter to express the daily loss immunity rate (α), to
become

dS(t)

dt
= −λS(t)I(t)− δS(t) + γI(t) + δ + αR(t).

(18)
Thus, for two practical examples of SIR models can
be obtained if one can substitute (i) α = 0.02, δ =
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0.0001, λ = 0.1 with taking into consideration that
the infectious contact number = 0.2

dS(t)

dt
= −0.1S(t)I(t)−0.0001S(t)+γI(t)+δ+αR(t).

(ii) α = 0.02, δ = 0.0001 , λ = 0.4 with taking
into consideration that the infectious contact number
= 2(see, [8]).

2.3 Stochastic Approach of Epidemic Model

A simple example of a stochastic version of epidemic
model can be described in the following way

dN(t)

dt
= −mN(t), (19)

where m is a positive rate constant and N(t) denotes
the size of a population whose rate constant is based
on a specific type of probability distribution defined
by a bivariate gamma distribution [9]. Accordingly,
SI-model, can be expressed stochastically as follows

dS(t)

dt
= −mS(t) (20)

and
dI(t)

dt
= mI(t). (21)

2.4 The Concept of Allometry

In 1936, Sir Julian Huxley introduced the concept of
allometry, or the experimental study of relative growth
of parts of animals, via log -log plots of measurements
of morphological characteristics of individuals in a
Euclidean geometry. In these plots resulted straight
lines via statistical method of least squares. Around
the same time Sir Joseph Needham made some exper-
imental work to show that straight lines allometries.

In 1944, J. Kittredge used the same concept to
estimate the crown biomass of trees in forest stand by
measuring the trunk girth, or diameter at breast height.
Again some experiments of botanist J. Harper in 1962
who found Gompertz curves the best ones to fit for
describing the growth of simple aquatic plants.

By 1965 Laird studied on vertebrate growth using
Huxlely’s allometric law as well. Several applications
of concept of allometry have been discussed in detail.
Recently, Karl Niklas (1994) has recorded a variety
growing plants and flowers satisfying the allometric
concept as well [10].

It is well known that, Antonelli and Voorhees
(1974) have suggested the following metric in order

to define geometrically the behavior of growth curves
using allometric space [4].

gij = e−2αkx
k
δij , (22)

and its affine connection is given by

Γi.jk =
1

2
gil(glk,j + gjl,k − gjk,l), (23)

where gij is the the matrix inverse of gij . Suppose αi
is a constant vector to define the Christoffel symbol in
the following way:

Γi.ii = −αi = constant (24)

Γi.jj = αi = constant, i ̸= j (25)

Γi.ji = 0, i ̸= j. (26)

Thus the metric condition

gij;k = 0 (27)

becomes

e−2αmxmδijk−e
−2αmxmδinΓ

nj
k −e−2αmxmδnjΓ

n
ki = 0,

(28)

−2αkδij − e−2αmxmδinΓ
nj
k − e−2αmxmδnjΓ

n
ki = 0,

(29)
and

γkδij = δinΓ
n
kj + δjnΓ

n
ik. (30)

We can find out that the Riemann-Christoffel Curva-
ture

Rcabd = Γcad,b − Γcab,d + ΓmadΓ
c
mb − ΓmabΓ

c
md, (31)

has reduced to

Rcabd = ΓmadΓ
c
mb − ΓmabΓ

c
md. (32)

Substituting (25) and (26) into equations (31) and
(32), one obtains the non vanishing components of the
curvature tensor,

Rijij =
∑
k ̸=i,j

(αk)
2, i ̸= j (33)

Rijjl = αiαj , i ̸= j ̸= l. (34)
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3 Geometerization of Epidemics

3.1 Equations of Epidemics in Riemannian
version of SI-Model

It is well known that path equations of any growth
curves can be obtained if the variation principle is ap-
plied on Lagrangian functions. This trend of imposing
biological action principle has been established prior
to Euler by Mauphritis cf.[10]

L = gabU
aU b[10] (35)

However, in this approach, we are going to obtain
path and path deviation equations from one single la-
grangian using the Bazanski Lagrangian [13]:

L = g
ab
Ua

DΨb

Dt
(36)

where a, b = 1, 2, 3, ..n and DΨα

Dt is the covariant
derivative with respect to a parameter t.

Taking the variation with respect to the deviation
vector Ψc and the tangent vector U c respectively one
obtains path equation

dU c

dt
+ ΓcabU

aU b = 0 (37)

and path deviation equation

D2Ψc

Dt2
= RcabdU

aU bΨd (38)

Thus, the path and path deviation equations of the SI-
model can be obtained from the following Bazanski
Lagrangian [13]

L = gµνU
µ
SI

DΨν
SI

Dt
(39)

where UµSI = (S, I) and Ψν
SI = (ΨS ,ΨI).

Accordingly, if we take the variation with respect
to the deviation vector Ψσto get the following compo-
nents of path equation

dS

dt
+ Γ1

11S
2 + Γ1

22I
2 + 2Γ1

12SI = 0 (40)

and

dI

dt
+ Γ2

11S
2 + Γ2

22I
2 + 2Γ2

12SI = 0. (41)

And taking the variation with respect to velocity vec-
tor Uσ to get the corresponding components of path
deviation equation [14] :

D2ΨS
Dt2

= R1
112S

2ΨI +R1
121SIΨS

+R1
212SIΨI +R1

221I
2ΨS

(42)

and

D2ΨI
Dt2

= R2
112S

2ΨI +R2
121SIΨS

+R2
212SIΨI +R2

221I
2ΨS .

(43)

Consequently, we can suggest the path and path de-
viation equations of a modified SI model can be fol-
lowing Lagrangian:

L = gµνU
µ
SI

DΨν
SI

Dt
+ λΨµU

µ (44)

to give,

dUaSI
dt

+ ΓabcU
b
SIU

c
SI = λaU

a
SI , (45)

which can be expressed by components as follows

dS

dt
+ Γ1

11S
2 + 2Γ1

12SI + Γ1
22I

2 = λ̄S (46)

and

dI

dt
+ Γ2

11S
2 + 2Γ2

12SI + Γ2
22I

2 = λ̄I, (47)

i.e.
dS

dt
+ 2β̄SI − ᾱI2 + ᾱS2 = λ̄S (48)

and

dI

dt
+2(ᾱ− β̄L)SI−(β̄+ ᾱL)S+(ᾱ− β̄L)I2 = λ̄I.

(49)
And their corresponding path deviation equations be-
come as follows:

D2Ψa
SI

Dt2
+ λ̄

DΨa
SI

Dt
= RabcdU

b
SIU

c
SIΨ

d
SI (50)

i.e.

D2ΨS
Dt2

+λ̄DΨS
Dt = R1

112S
2ΨI+R

1
121SIΨS

+ R1
212SIΨI+R

1
221S

2ΨS

(51)
and

D2ΨI
Dt2

+ λ̄DΨI
Dt = R2

112S
2ΨI +R2

121SIΨS

+R2
212SIΨI +R2

221I
2ΨS .

(52)

3.2 Berwald type

The metric tensor of Berwald type in Finslerian ge-
ometry can be described as follows [12]

gy = ∂̇i∂̇j(
1

2
F 2) (53)
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such a metric tensor is called a Minkowoski space
with Finslerian norm ds = f(dx1, dx2). Thus, its
corresponding geodesic can be described as

d2xi

dt2
+ Γ̂ijk(x, y)

dxj

dt

dxk

dt
= 0, (54)

such that

Γ̂ijh =
1

2
gim(δhgjm + δjgmh − δmgjh), (55)

where δh is a partial derivative with respect to non-
linear connection.

δh = ∂h − Γijh(x)
∂

∂yh
, (56)

Ĉi.jk =
1

2
gil(

∂glk
∂yj

+
∂gjl
∂yk

− ∂gjk
∂yl

) (57)

The Berwald type has some associated curvatures
are defined in the following way [11]:

Bi
kjh = Rikjh +GrjD

i
rhk −GrkD

i
rhj (58)

where

Gij = Γ̂ijky
j − 1

2
gimΓ̂ljk

∂gml
∂yl

yjyk (59)

and

Di
kjh =

∂3H i
2

∂yj∂yk∂yl
, (60)

such that

Γ̂iα1α2α3....αm
=

1

m!

∂mH(m)

∂yα1∂yα2∂yα3 .....∂yαm
(61)

3.3 SI-Model in Finsler Geometry

In 1991 Antonelli developed such a metric for 2-
dimensional Berwald space with locally constant co-
efficients to become [3]

F 2 = e2αiX
i(L2+1)((Ẋ1)2 + (Ẋ2)2), i = 1, 2 (62)

where X1 and X2 are Cartesian coordinates on R2

and L acts as a perturbation parameter. The above
relation can be related to Riemananian geometry by
relaxing the term L

ḡij(X, Ẋ) = e2αiX
i(L2+1)gij (63)

The above system of equations together with their cor-
responding deviation vector equations can be obtained

from taking the action principle to the following La-
grangian.

LBF = gij(x, y)Ẋ
i D̂Ψ̂j

D̂t
(64)

such that

D̂Ψ̂i

D̂t
=
dΨ̂i

dt
+ Γ̂ijhΨ̂

jUh + CijhΨ̂
jV h, (65)

where V h = δy
δt .

Accordingly, the geodesic equation may be as fol-
lows

d2xi

dt2
+ Γ̂ijh(x, y)y

jyh = 0, (66)

i.e.

dS

dt
+2(β̄+ ᾱL)SI+(β̄L− ᾱ)I2+(ᾱ− β̄L)S2 = 0

(67)
and

dI

dt
+2(ᾱ− β̄L)SI− (β̄+ ᾱL)S2+(ᾱ− β̄L)I2 = 0

(68)
and its deviation equation

D̂2Ψ̂a

D̂t2
= Ba

bcdU
bU cΨ̂d (69)

become

D̂2Ψ̂S

D̂t2
= B1

112S
2Ψ̂I +B1

121SIΨ̂S

+B1
212SIΨ̂I +B1

221I
2Ψ̂S ,

(70)

and

D̂2Ψ̂I

D̂t2
= B2

112S
2Ψ̂I +B2

121tSIΨ̂S

+B2
212SIΨ̂I +B2

221I
2Ψ̂S .

(71)

Similarly, applying Antonelli’s method to define
Volterra’s equation in ecology [3] , we obtain the its
corresponding part of the SI-model in Berwald space

dS

dt
+ Γ̂1

11S
2 + 2Γ̂1

12SI + Γ̂1
22I

2 = λ̄S (72)

and

dI

dt
+ Γ̂2

11S
2 + 2Γ̂2

12SI + Γ̂2
22I

2 = λ̄I. (73)

The coefficients of its affine connection become:

Γ̂1
11 = α1 − α2L, (74)

Γ̂1
22 = −(α1 − α2L), (75)
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Γ̂1
12 = Γ̂1

21 = −(α2 + α1L), (76)

Γ̂2
12 = Γ̂1

21 = −(α1 − α2L), (77)

Γ̂2
11 = −(α2 + α1L) (78)

Γ̂2
22 = −(α2 + α1L). (79)

Thus, the components of path equations are expressed
as follows:

dS

dt
+2(β̄+ᾱL)SI+(β̄L−ᾱ)(I)2+(ᾱ−β̄L)(S)2 = λ̄S

(80)
and

dI

dt
+2(ᾱ−β̄L)SI−(β̄+ᾱL)S2+(ᾱ−β̄L)I2 = λ̄I.

(81)
Equations (80) and (81) are obtained by taking the
variation with respect the corresponding deviation
vector of the following modified Bazanski Lagrangian

L = ḡabẊ
a D̂Ψ̂b

D̂t
+ λ̄ΨaẊ

a. (82)

Also, after some multiplications, we can find their cor-
responding deviation equations by taking the variation
with respect to Ẋc to become:

D̂2ΨS

D̂t2
+ λ D̂Ψ̂S

Dt = B1
112S

2Ψ̂I +B1
121SIΨ̂S

+B1
212SIΨ̂I +B1

221I
2Ψ̂S

(83)
and

D̂2Ψ̂I

D̂t2
+ λ D̂Ψ̂I

Dt = B2
112S

2Ψ̂I +B2
121SIΨ̂S

+B2
212SIΨ̂I +B2

221I
2Ψ̂S .

(84)

3.4 Antonelli-Finsler Metric Function

In order to generalize the previous metric in (63) An-
tonelli has modified Finsler metric to become [12]:

F = eϕ(̇
n∑
i=1

(ẋi)m)
1
m , (85)

where m ≥ 2 and n = 2 . Thus their corresponding
components of its affine connection are given as :

Γ̂1
11 = σ1 −

1

9
β1(

I

S
)
4
3 , (86)

Γ̂1
21 =

4

9
β1(

I

S
)
4
3 +

1

2
γ12, (87)

Γ̂1
22 =

2

9
β1(

S

I
)
2
3 , (88)

Γ̂2
22 = σ2 −

1

9
β2(

S

I
)
4
3 . (89)

Consequently, the Bazanski method of obtaining path
and path deviation equations becomes in the following
way:

[i] The components of Path Equations:

dS

dt
+σ1S

2+σ2(
m

m− 1
)SI+

σ1
m− 1

(
I

S
)m−2I2 = λ1S

(90)
and

dI

dt
+σ2I

2+σ1(
m

m− 1
)SI+

σ2
m− 1

(
İ

Ṡ
)m−2I2 = λ2I.

(91)
[ii] The components of Path Deviation Equations:

D̂2ΨS

D̂t2
+ λ D̂Ψ̂S

Dt = B̄1
112S

2ΨI + B̄1
121SIΨS

+B̄1
212SIΨI + B̄1

221S ∗ 2ΨS

(92)
and

D̂2Ψ̂I

D̂t2
+ λ D̂Ψ̂I

Dt = B̄2
112S

2ΨI + B̄2
121SIΨS

+B̄2
212SIΨI + B̄2

221S ∗ 2ΨS ,
(93)

where B̄a
bcd = Γ̂cad,b − Γ̂cab,d + Γ̂madΓ̂

c
mb − Γ̂mabΓ̂

c
md.

Thus, it is well known to find from Antonelli-
Finsler SI-model the appearance of an interaction be-
tween S&I which is vitally important when m > 2 as
well as for cases of increasing dimensions to examine
the possibility to geometrize SIR models.

4 Geomertization of SIR Model

In a similar way, we can extend our study to examine
SIR model using the Bazanski method in each Rie-
mannian and Finslerian to become:

(i) For Riemannian Geometry

DS

Dt
= 0, (94)

DI

Dt
= αI, (95)

and
DR

Dt
= 0. (96)

The above equation can easily be obtained by assum-
ing the following Lagrangian:

L = gµνUSIR
µDΨSIR

ν

Dt + α(µ)ΨSIRνUSIR
ν ,

µν = 1, 2, 3
(97)

where α(µ) is an arbitrary constant.

WSEAS TRANSACTIONS on MATHEMATICS M. E. Kahil

ISSN: 1109-2769 459 Issue 12, Volume 10, December 2011



From this perspective, we can develop the SIR
model in its geometric version as follows

DUµSIR
Dt

= α(µ)U
µ
SIR, (98)

and their corresponding deviation equations become:

D2Ψµ
SIR

Dt2
+ α(µ)

DΨµ
SIR
Dt

= RµνρσU
ν
SIRU

ρ
SIRΨ

σ
SIR.

(99)

(ii) For Finslerian Geometry (Berwald Type):
In a similar way to equations [94-98] , we can

obtain the following equations:

D̂S

D̂t
= 0, (100)

D̂I

D̂t
= ᾱI, (101)

and
D̂R

D̂t
= 0. (102)

Equations [100-102] are obtained by taking the
action of the following Largangian:

L = gµνÛ
µ
SIR

D̂Ψ̂ν
SIR

D̂t
+ α(µ)Ψ̂νSIRÛ

ν
SIR,

µ, ν = 1, 2, 3.
(103)

We also can find the corresponding deviation equa-
tions to become:

D̂2Ψ̂µ
SIR

D̂t2
+ α(µ)

D̂Ψ̂µ
SIR

D̂t

= Bµ
νρσU

ν
SIRU

ρ
SIRΨ̂

σ
SIR.

(104)

For a complete description of this model will be ex-
amined in our future work.

5 Discussion and Concluding Re-
marks

The paper deals with geometrizing some epidemic
models using their corresponding path equations. Al-
so, we have obtained their corresponding path devia-
tion equations from one single Lagrangian for differ-
ent types of geometries based under a positive definite
metric with constant affine connections and a nega-
tive curvature. In this study we have begun with a ge-
ometrized version of the concept of allometry, to ex-
amine epidemic curves by finding their path and path
deviation equations . The paper has also opened the

window to impose non conventional types of geome-
tries in future work to describe more complex ver-
sion of SI or SIR models . One of good results is
increasing the dimensions may describe other addi-
tive factors different from SIR-model to be geomet-
rically expressed e.g. susceptive-exposed-infective-
recovered model (SEIR) which can be expressed in
4-dimensional manifold with negative curvature .

This study can be extended to obtain such an ap-
propriate version of epidemic curves functioning on
long time periods without imposing too many param-
eters as in case of the traditional regression analysis.
It is not the optimal case to get an exact form of epi-
demic curve, but it is a trend to apply such a concept
of geometrization to understand nature.

Finally, in our future work we will be in need to
develop these geometries to include some new param-
eters affecting the SI-model such as transmission rate
[15]. Also, SIR model can also be extended to include
some interactions like population fertility or immigra-
tion parameters to be considered in demographic us-
ing partial differential equations of McKendrick- von
Forester [16]. Accordingly, the above mentioned new
parameters in both SI and SIR models, may be de-
fined geometrically in terms of non linear connections
of the Finslerian approach .

Appendix

Derivation of Geodesic and geodesic deviation us-
ing the Bazanski Lagrangian

Let
L = gµνU

αDΨν

Dt
(A.1)

i.e.
L = gµνU

α(
dΨν

dt
+ ΓαµνU

µΨν)

where Uα = dxα

dτ is defined to a tangent vector of a
curve whose parameter is τ .

(i) Geodesic Equation
Applying the action principle by taking the varia-

tion on (A.1) with respect to Ψ̇σ to get

∂L

∂Ψ̇σ
= gµνδ

ν
σU

µ,

∂L

∂Ψ̇σ
= Uσ, (A.2)

d

dτ

∂L

∂Ψ̇σ
= U̇σ.

Also, one obtains
∂L
∂Ψσ = gµνΓ

ν
αβδ

α
σU

βUµ

= gµνΓ
ν
σβU

βUν .
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Thus the Euler-Lagrange equation becomes

d

dτ

∂L

∂Ψ̇σ
− ∂L

∂Ψσ
= 0, (A.3)

which can be written in the following form

dUσ
dτ

− ΓνσβU
βUν = 0

i.e.
DUσ
Dτ

= 0,

which becomes

DgσµU
µ

Dτ
= 0,

Uµ
Dgµν
Dτ

+ gσµ
DUµ

Dτ
= 0.

It is well known that in Riemannian geometry, the co-
variant derivative of gµν vanishes identically.

Thus, one obtains

gσµ
DUµ

Dτ
= 0. (A.4)

Multiplying both sides by gϵσ, one can find

gϵσgσµ
DUµ

Dτ
= 0,

δϵmu
DUµ

Dτ
= 0,

DUµ

Dτ
= 0, (A.5)

which is the well known equation of geodesic.

(ii) Geodesic Deviation Equation
The Lagrangian (A.1) can be written as

L = Uµ
DgµνΨ

ν

Dτ

Consequently, by taking the variation on (A.1) with
respect to Uσ to get

∂L
∂Uσ = Ψ̇σ − ΓρσλΨρU

λ − ΓρµσU
µΨρ

= DΨσ
Dτ − ΓρµσU

µΨρ,
(A.6)

d
dτ

∂L
∂Uσ = d

dτ
DΨσ
Dτ − Γρµσ,νΨρU

νUµ

−Γρµσ
dUµ

dτ Ψρ − Γρµσ
dΨσ
dτ U

µ.
(A.7)

Also, it is well known that

DΨρ

Dτ
=
dΨρ

dτ
− ΓλρδU

δΨρ,

and from geodesic equation

dUµ

dτ
= −ΓµρδU

ρU δ

(A.7) becomes

d
dτ

∂L
∂Uσ = d

dτ
DΨσ
Dτ − Γρµσ,νU

νUµΨρ

−Γρµσ(dU
µ

dτ ΓµλδU
λU δ)Ψρ

−Γρµσ(
DΨρ

Dτ + ΓλρδΨλU
δ)Uµ

and
∂L

∂xσ
= −Γρµλ,σU

µUλΨρ.

Thus, the Euler-Lagrange equation becomes

d

dτ

∂L

∂Uσ
− ∂L

∂xσ
= 0, (A.8)

which gives

d
dτ

DΨσ
Dτ − Γρµσ

DΨρ

Dτ U
µ − Γρµσ,νΨρU

µUν

−ΓρµσΓ
λ
ρδΨλU

µU δΨλU
µU δ

+ ΓρµσΓ
µ
λδΨρU

λU δΨλU
µU δ − ΓρµσDU

µ

Dτ Ψρ

+Γρµλ,σΨρU
λUµ = 0.

Consequently, the above equation reduces to

d
dτ

DΨσ
Dτ − Γρµσ

DΨρ

Dτ U
µ − Γρµσ,νΨρU

µUν

+ Γρµλ,σΨρU
λUµ + ΓρµσΓ

µ
λδΨρU

λU δΨλU
µU δ

−Γρµσ,νΨρU
µUν − ΓρµσΓ

λ
ρδΨλU

µU δΨλU
µU δ = 0.

Thus, after some manipulations, one obtains the
geodesic deviation equations in following way

D2Ψα

Dτ2
= RανρµU

µUνΨρ. (A.9)
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