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Abstract: - In this paper we study the continuity, momentum and coupled nonlinear energy and species 
convection-diffusion equations describing the in-situ combustion process in porous media. We assume the fuel 
depends on the space variable x . We examine the properties of solution under certain conditions. Using large 
activation energy asymptotics and shooting method we provide a numerical solution of the problem and 
obtained temperature and concentration profiles. 
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1 Introduction 

In-situ combustion is a method of thermal recovery 
in which fire is generated inside the reservoir by 
injecting a gas containing oxygen, such as air. A 
special heater in the well ignites the oil in the 
reservoir and starts a fire. The heat generated by 
burning the heavy hydrocarbons in place produces 
hydrocarbon cracking, vaporization of light 
hydrocarbons and reservoir water in addition to the 
deposition of heavier hydrocarbons known as coke. 
As the fire moves, the burning front pushes ahead a 
mixture of hot combustion gases, steam and hot 
water, which in turn reduces oil viscosity and 
displaces oil toward production wells. 

Many scientists have studied the oxidation of crude 
oil with air injected in porous media. These include 
Davies (1990) who tracked an in-situ combustion 
front using thin flame technique. Marchesin and 
Schecter (2003) constructed a two-phase model for 

oxidation, involving air or oxygen and oil that 
include heat loss to the rock formation. De Souza et 
al. (2006) studied the Riemann problem with 
forward combustion due to injection of air into a 
porous medium containing solid fuel. Buckmaster 
and Ludford (1992) showed that a reacting 
Arrhenius exothermic reaction has two solutions. 
Olayiwola and Ayeni (2007, 2009) presented a 
mathematical model of in-situ combustion using 
high activation energy asymptotics. The effects of 
Frank-Kamenetskii parameter and flame velocity on 
the temperature and concentration field were 
discussed. Redl (2002) considered multi channel 
geometry to show the ability of the Lattice 
Boltzmann method to deal with fluid flow and heat 
transfer problems occurring in combustion 
processes.  
In this paper we extend the model investigated by 
Redl in 2002 to include the continuity and 
momentum equations. We assume the fuel depends 
on the space variable x . We examine the properties 
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of solution. To simulate the flow, we assume that 
the other end of reservoir is at infinity. 
 
2 Mathematical Model 

We consider an underground reservoir contained 
heavy oil. We assume that air is injected at the 
leftmost part of the reservoir, so that all propagation 
is one dimensional. The fluid is assumed to be 
incompressible. One end of the reservoir is assumed 
kept at 0=x  while the other end is assumed far 
away (i.e at ∞=x ). We also assume the fuel 
depends on space variable x . Then the primary 
dependent variables are the temperature, ( )xT , the 
oxygen concentration, ( )xCox , the solid fuel 
concentration, ( )xC fuel , and the gas product 

concentration, ( )xC p . Under these assumptions, the 
steady equations that describe the in-situ 
combustion process are 

The continuity equation 

( ) 0=
dx

udρ                                                            (1) 

The momentum equation 

2

21
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dx
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The conservation equation for the oxidizer 
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The conservation equation for the solid fuel 
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The conservation equation for the gas product 
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satisfying the boundary conditions 
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A general form of the reaction rate is  

RT
E

fueloxov eCCkA
−

= βαω ,                                     (8)   

where A  is a pre exponential factor, ovk  is the 
overall reaction coefficient, C  are the 
concentrations, α  and β  are the orders of reaction, 
E  is the activation energy, R  is the ideal gas 
constant, T  is the local gas temperature, ρ  is the 
density, u  is the velocity along x  - axis, x  is the 
position, p  is the pressure, υ  is the kinematic 
viscosity, λ  is the thermal conductivity, pc  is the 
specific heat at constant pressure, Q  is the heat of 
reaction, D  are the diffusion coefficients, oxs  is the 
stoichiometric coefficient of oxidizer, sfs  is the 

stoichiometric coefficient of fuel, ps  is the 
stoichiometric coefficient of gas product.  

The source term represents the consumption of 
fuel during the combustion process. 
 
 
3 Method of Solution 

Let 
p

ox c
D

ρ
λ

= , pf DD = , 









+= ox

p
ox C

c
QTsφ ,    

( )( )psffuelfuelp CsCs ρρϕ −+= 1  

Then  (3)-(6) become 

02

2

=−
dx
dD

dx
du ox

φφ
                                            (9) 
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The boundary conditions are 

( ) ( ) 0,0 01 =∞+= φφ C
c
QTs

p
ox                     (11) 

( ) ( ) 0,0 0 =∞= ϕρϕ ffuelp Cs                         (12) 

From the continuity equation (1), we obtain 

=u constant                                                         (13) 

Here, we let 

0, 00 >−= vvu  

and we obtain solution for (9) as  
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and solution for (10) as 
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Also 

( ) ( ) ( ) ( )

( )
x

D
v

ffuelp

psffuelfuelp

peCs

xCsxCsx
0

0

1

−

=−+=

ρ

ρρϕ
 

gives 

( ) ( )
( ) ( ) 
















−

−=
−

xCs
eCs

s
xC

psf

x
D
v

ffuelp

fuelp
fuel

p

ρ

ρ
ρ 1

1
0

0        (18) 

( ) ( )
( )

( ) 














−

−
=

−

xCs
eCs

s
xC

fuelfuelp

x
D
v

ffuelp

sf
p

p

ρ

ρ
ρ

0

0
1

1
      (19) 

Using (17) and (18) in equations (3)-(6). Then, the 
steady equation for temperature becomes   
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( ) ( ) 0,0 1 =∞= TTT  

The steady equation for concentration of oxidizer 
becomes  
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( ) ( ) 0,0 0 =∞= oxox CCC  

The steady equation for concentration of solid fuel 
becomes  
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( ) ( ) 0,0 0 =∞= fuelffuel CCC  

The steady equation for concentration of gas 
product becomes  
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( ) ( ) 0,00 =∞= pp CC  

We make the variable dimensionless by introducing 
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θ  is a non-dimensional temperature. 

Then, equation (20) – (23) (after dropping prime) 
become 
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( ) ( ) 0,0 * =∞= θθθ  
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( ) ( ) 0,00 =∞= pp CC  
 
3.1 Properties of Solution 

In this section, we consider equation (30) when 
0* =θ  and transform the equation from infinite 

domain to finite domain, using the transformation 

xey −=  

We obtain 
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2
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( ) ( ) 01,00 == θθ  

Theorem 1  Let 0=== dcb  and 1== βα  in 

(34). Then  ( )yθ  is symmetric about 
2
1

=y . 

Proof: Let 0=== dcb  and 1== βα  in (34). 
We obtain 
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( ) ( ) 01,00 == θθ , 
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So the problem becomes 
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4
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Hence θ  is symmetric about 0=z  i.e. θ  is 

symmetric about 
2
1

=y . This completes the proof. 

Theorem 2  Let 0=== dcb  and 1== βα  in 

(34). Then  0
2
1

=





′θ . 

Proof: Let 0=== dcb  and 1== βα  in (34). 
We obtain 
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2
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( ) ( ) 01,00 == θθ , 

Since ( )yθ  is symmetric about 
2
1

=y . Then 

0
2
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




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Theorem 3  Let 0=== dcb  and 1== βα  in 

(34). Then  ( ) 0>′ yθ  for 





∈

2
1,0y . 

Proof: Let 0=== dcb  and 1== βα  in (34). 
We obtain 
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( ) ( )ye
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2
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Using Ayeni (1978), we obtain 
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1

01 , , 

where 

( )









≤≤

≤≤

=

2
1,

0,

,
ytt

tyy

tyk  

So 

( ) ( ) ( ) ( )








−+=′ ∫ y

y

ty eydteeyy θθθδθ 2
1

1  

         ( )∫= 2
1

1 y

t dteθδ  

Hence, ( )yθ  is strictly monotonically increasing for 







∈

2
1,0y . This completes the proof. 

Theorem 4   Let 2,0,0,0,1 ===== βα dca  
in (34). Then ( ) 0=yθ  is  the only non-negative 
solution. 

Proof: Let 2,0,0,0,1 ===== βα dca . 
Then (34) becomes 

            012

2

=− θθδθ e
dy
d

 

            ( ) ( ) 01,00 == θθ  

Clearly  ( ) 0=yθ  satisfies the equation and the 
boundary conditions. 

Next, we shall show that ( ) 0=yθ  is the only 
solution. 

Suppose ( )yθ  is another solution and 
( ) ( ) 0,0 >≠ yy θθ  for ( )1,0∈y . Then 

         012

2

=− θθδθ e
dy
d

 

and ( )yθ  has no maximum in ( )1,0  i.e. ( )yθ  
cannot be greater than zero. Hence ( ) 0=yθ  i.e. 
( ) 0≡yθ  is the only solution. This completes the 

proof. 

Theorem 5 Let 0=b  in (34) and assume α  and 
β  are even natural numbers. Then there exists 

( )1,00 ∈y  such that ( ) 00 =′ yθ . 

Proof: By theorem (3) 
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pf
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y

y

t
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Hence, ( )yθ  is strictly monotonically increasing for 
( )0,0 yy∈ . But ( ) 01 =θ . So there exists 
( )1,00 ∈y  such that ( ) 00 =′ yθ  and ( ) 00 <∈+′ yθ  

for 0∈> . This completes the proof.  
 
3.2 Numerical Solution 

Due to the nonlinear nature of the governing 
equations (30) – (33), it is convenient to solve the 
equations by the use of shooting method technique. 
Here we replace ∞  by 2  because the software used 
does not recognized ∞  and we need to see the 
effect of parameters on the solutions.  

We transform the differential equations (30) – (33) 
into a system of nine equations. To achieve the nine 
equations, let 
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Then equations (30) – (33) become 
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The initial conditions are 
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Here xx =1  and when 0,0 1 == xx . Also 
( ) ( ) ,0,0 2716 axax == ( ) ,0 38 ax = ( ) 49 0 ax =

are guessed and it is changed until 
( ) ( ) ,02,02 32 == xx ( ) ,024 =x  ( ) 025 =x  as 

given by equation (29). 

By Runge Kutta of four- order, we have 

( )43211 22
6
1 FFFFzz nn ++++=+ ,               (45) 

where 
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
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A computer program in Pascal codes was written to 
perform the iterative computations.  
 
3.3 Results and Discussion 

We have shown, under certain conditions, that (i) 

( )yθ  is symmetric about 
2
1

=y . (ii) 0
2
1

=





′θ . 

(iii) ( )yθ  is strictly monotonically increasing for 







∈

2
1,0y . (iv)  ( ) 0=yθ  is the only non-negative 

solution. (v) ( ) 00 =′ yθ .  

In Figures 1, 2, 3 and 4 we display the graphs of 
( )xθ , ( )xCox , ( )xC fuel and ( )xC p versus x  for  

WSEAS TRANSACTIONS on MATHEMATICS Rasaq O. Olayiwola, Reuben O. Ayeni

ISSN: 1109-2769 307 Issue 9, Volume 10, September 2011



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Fig. 1: Plots of ( )xθ  against x  for equations (30) and (31) at various   
              values of δ  when α =1, β =1. 
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             Fig. 2: Plots of ( )xCox  against x  for equations (30), (31) and (33) at  
             various values of δ  when α =1, β =1. 
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            Fig. 3: Plots of ( )xC fuel  against x  for equations (30), (32) and (33) at  
            Various values of δ  when α =1, β =1. 
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             Fig. 4: Plots of ( )xC p  against x  for equations (30) and (33) at various  
             values of δ   when α =1, β =1. 
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various values of  δ . It is easy to see that ( )xθ  
increases as δ  increases, ( )xCox and 

( )xC fuel does not change much with increase of 

δ and ( )xC p increases with decrease of δ . 

It is worth pointing out that the effect of δ  as seen 
in Figure 1 indicating that there is increase in heat of 
reaction Q . When the heat of reaction is high, the 
rate of conversion of heavy oils into light oils, water 
and gas is high and consequently, the recovery rate 
is boosted. This is of great economic importance.  
 
4 Conclusion 

The main goal of this simulation is, on one hand, 
to identify the condition under which a high 
temperature combustion front can propagate in a 
fractured system and, on the other hand, to 
determine the oil production mechanism(s) under a 
sustained combustion process. The equations of in-
situ combustion in porous media have been 
presented by mathematical point of view. The 
equations have been solved by shooting method 
techniques and the results and discussion for that 
have been described. The graphical summaries of 
the system responses were provided.  

It can be concluded from the simulations that 
chemical reactions occurring due to injection of air 
into a reservoir have considerable effects on the 
phenomena of flow in the medium. The presented 
analysis has also shown that the parameters 
involved in the in-situ combustion model have 
significant effects on temperature and concentration 
field of the system.  
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