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1 Introduction
In the present paper, we give an investigate on the
learning rates of the coefficient regularized classifica-
tion algorithm with differentiable convex loss.

Let (X, d) be a compact metric space, W =
{−1, 1}, ρ(x,w) = ρ(w|x)ρX(x) be a unknown
probability distribution on Z := X × W, where
ρ(w|x) is the conditional probability distribution of
w for a given x and ρX(x) is the marginal probability
distribution of x. It is known that a binary classifier
is a function f(x) : X → W which divides X into
two classes, its prediction ability is measured by the
misclassification error (see [6, 34, 36, 37])

ℜ(f) = Prob{f(x) ̸= w}

=

∫
X
P (w ̸= f(x)|x)dρX(x).

By [13] we know the classifier which minimizes
the misclassification error is the Bayes rule fc :=
sgn(fρ) with fρ being the regression function of
ρ,i.e.,

fρ(x) =

∫
W
wdρ(w|x)

= P (w = 1|x)− P (w = −1|x),

where for a function f : X → R the sign func-
tion is defined as sgn(f)(x) = 1 if f(x) ≥ 0 and
sgn(f)(x) = −1 if f(x) < 0. However, in many
practical applications, neither ρ nor fρ are known,
what we have in hand are samples z = {(wi, wi)}mi=1

drawn independently according to ρ. The task of clas-
sification learning is to find, through the samples z, a
good approximation fz of the regression function fρ
from a hypothesis space and show the excess misclas-
sification error (see e.g. [6, 11, 30, 37])

ℜ(sgn(fz))−ℜ(fc). (1)

The hypothesis space are usually taken to be the re-
producing kernel Hilbert spaces.

Let K(x, y) : X ×X → R be continuous, sym-
metric and positive semi-definite, i.e., for any finite
set of distinct points X = {x1, x2, · · · , xl} ⊂ X ,
the matrixKX,X = (K(xi, xj))

l
i,j=1 is positive semi-

definite. Such functions are called Mercer kernels.
The reproducing kernel Hilbert space(RKHS)(see

e.g.[10, 11]) HK associated with a Mercer kernel
K(x, y) is defined to be the closure of the linear s-
pan of the set of functions {Kx := K(x, ·) : x ∈ X}
with an inner product ⟨·, ·⟩K satisfying

⟨Kx,Ky⟩K = K(x, y), x, y ∈ X.

The reproducing property takes the form

f(x) = ⟨f,Kx⟩K , x ∈ X.

A method of finding the binary classifier fc(x)
through the samples z is the SVM Tikhonov regular-
ization classification algorithm.

Let V (t) : R → [0,+∞) be a given normalized
loss function for classification which will be defined
afterwards. Then, the Tikhonov regularized support
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vector machine classification learning algorithms as-
sociated with the reproducing kernel Hilbert spaces
(RKHS) (HK , ∥·∥K) are defined by (see e.g. [11, 15])

fz := arg min
f∈HK

(
1

m

m∑
i=1

V (wif(xi)) + λ∥f∥K), (2)

where 1 > λ > 0 are given regularization param-
eters which are commonly used to overcome the ill-
posedness.

By [2] we know the unique solutions fz(x) of (2)
takes the form

fz(x) =
m∑
j=1

αjK(x, xj), x ∈ X,

where α = (α1, α2, · · · , αm)⊤ ∈ Rm. Scheme (2)
then can be simplified. In fact, [35] defined the fol-
lowing general coefficient regularized scheme

fz = fαz ,

αz = arg min
α∈Rm

[
1

m

m∑
i=1

V (wifα(xi))

+λΩ(α)], (3)

where Ω(α) : Rm → R is a non-negative function
satisfying Ω(0) = 0, and

HK,X = {fα(x) =
m∑
j=1

αj K(x, xj) :

α = (α1, α2, · · · , αm)⊤ ∈ Rm}

are kernel function spaces produced by the samples
X = {x1, x2, · · · , xm} and the kernels K(x, y).
The studies given in [28, 35, 38] show that the er-
ror analysis for (3) is not easy since the kernel s-
paces are dependent upon the samples. On the oth-
er hand, we notice that in many cases, for example,in
the function reconstruction and variable selection(see
[14, 16, 17, 19, 22, 29, 31]), one often takes the data
dependent kernel space

HK,Y = {fα(x) =
m∑
j=1

αj K(x, yj) :

α = (α1, α2, · · · , αm)⊤ ∈ Rm}

as the hypothesis space, where Y = {y1, y2, · · · , ym}
is a given data in X . It can be equipped with some
properties according to our needs. For example, we
can choose Y ⊂ X such that HK,Y is density in the
measurable functions space which makes it possible
for us to construct the kernel approximating opera-

tors (see [23]). When Ω(α) = m
m∑
i=1

|αi|2, we have

the following coefficient regularized scheme with l2-
penalization (see also [28, 35])

αz : = arg min
α∈Rm

[
1

m

m∑
i=1

V (wifα(xi))

+λm
m∑
i=1

α2
i ], (4)

where fα ∈ HK,Y .

Equation (4) is a finite dimensional optimization
problem on Rm and its optimal solutions may be ob-
tained by optimal computation algorithm.

To show the performance of the algorithm (4), we
need to estimate the error (1). For these purposes we
need to study the mean error between fαz(x) and the
ideal estimator f∗(x) defined by (see 10)

f∗ = argmin
f

Eρ,V (f),

where Eρ,V (f) =
∫
ZV (wf(x))dρ. The minimum is

taken over all the functions which are measurable with
respect to ρX . If V (t) = t2 is the least square loss,
then,f∗ is exactly the regression function

fρ(x) = E(w|x) =
∫
Y
wdρ(w|x)

and if V (t) is the hinge loss

Vh(t) = (1− t)+ = max{1− t, 0},

then, f∗ = fc (see [37]).
(4) may be interpreted as a stochastic approxima-

tion of the following regularized risk minimization

α(ρ) := α
(ρ)
λ,V = arg min

α∈Rm
[Eρ,V (fα) + λm∥α∥22]. (5)

We now define the empirical distribution µz(x,w) on
Z by

Eµz [f(x,w)] =

∫
Z
f(x,w)dµz

=
1

m

m∑
i=1

f(xi, wi) (6)

for any bounded ρ−measurable function f(x,w) on
Z.

The normalized loss functions for classification
are defined as follows:

Definition 1 (see [30]). A function V : R →
[0,+∞) is called a normalized loss function for clas-
sification if it is convex, V ′(0) < 0, 1 is the minimal
zero of V (t).
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Examples of such normalized loss functions in-
clude the hinge loss Vh(t) = (1 − t)+ for classical
SVM classifier and the q−norm Vq(t) = (1− t)q+ for
SVM q−norm(q > 1) soft margin classifier(see, e.g.
[6]), the least square loss Vls(t) = (1 − t)2(see [39])
and other loss functions (see [20]).

Basing on above notations we give the main result
of the present paper.

Theorem 1.1. Let ρ(x,w) be a (joint) finite distri-
bution on Z, z = {(xi, wi)}mi=1 be samples drawn
randomly according to ρ(x,w) independently. V (t)
is a given normalized loss functions on R and satis-
fies V ′′(0) ≥ 0.K(x, y) is a given kernel on X × X
and satisfies k = sup

(x,y)∈X×X
|K(x, y)| < +∞. Y =

{y1, y2, · · · , ym} is a given discrete set in X. αz is the
uniquely minimizer of scheme (4). Then, there is a
constant CV depending upon V (t) such that, for any
0 < δ < 1, with confidence 1− δ, there holds

0 ≤ ℜ(sgn(fz))−ℜ(fc)

≤ CV
[4k2(4log 2

δ +
√
m) log 2

δ

λm

× ∥V ′∥2
[−k
√

V (0)
λ
,k

√
V (0)
λ

]
+K

(Y )
V (f∗, λ)

] 1
2 ,(7)

where ∥V ∥[a,b] = ess sup
t∈[a,b]

|V (t)| and the

K−functional

K
(Y )
V (f∗, λ) = inf

α∈Rm
(Eρ,V (fα)− Eρ,V (f∗)

+mλ ∥α∥22).

(7) shows that, to give the learning rates,we
need to show the explicit convergence rates for the

K−functionalK(Y )
V (f∗, λ).When Vls(t) = (1−t)2 is

the least square loss, we have the following estimate.

Theorem 1.2. Let ρ be a (joint) finite nonnega-
tive distribution on Z, z = {(xi, wi)}mi=1 be sam-
ples drawn randomly and independently according to
ρ(x,w). K(x, y) is a given kernel on X × X and
satisfies k = sup

(x,y)∈X×X
|K(x, y)| < +∞. Y =

{y1, y2, · · · , ym} is a given discrete set in X. αz is the
uniquely minimizer of scheme (4) for the least square
loss Vls(t) = (1−t)2. Then, there is a constantC > 0
such that, for any 0 < δ < 1, with confidence 1 − δ,
there holds

ℜ(sgn(fz))−ℜ(fc)

≤ C[
6k2 log 2

δ

λ
√
m

+

√
K

(Y ),∗
Vls

(fρ, λ)], (8)

where

K
(Y ),∗
Vls

(fρ, λ) = inf
α∈Rm

(∥fρ − fα∥22,ρX + λm∥α∥22).

When the loss V is the hinge loss Vh, we have the
following Theorem 1.3.

Theorem 1.3. Let ρ be a (joint) finite nonnega-
tive distribution on Z, z = {(xi, wi)}mi=1 be sam-
ples drawn randomly and independently according to
ρ(x,w). K(x, y) is a given kernel on X × X and
satisfies k = sup

(x,y)∈X×X
|K(x, y)| < +∞. Y =

{y1, y2, · · · , ym} is a given discrete set of X. αz is the
uniquely minimizer of scheme (4) for the hinge loss
Vh(t) = (1 − t)+. Then, for any 0 < δ < 1, with
confidence 1− δ, there holds

ℜ(sgn(fz))−ℜ(fc)

≤
4k2(4log 2

δ +
√
m) log 2

δ

λm
+K

(Y )
Vh

(fc, λ).(9)

After giving the explicit rates for K(Y ),∗
Vls

(fρ, λ)

and K(Y )
Vh

(fc, λ) respectively, we give the explicit ex-
cess estimates for (8) and (9) in Corollary 4.1 and
Corollary 4.2, respectively.

2 The Sample Error
By [6, 37, 39] we know for a normalized loss V (t)
and a distribution ρ on Z there is a positive constant
depending only upon V such that

ℜ(sgn(f))−ℜ(fc)

≤



Eρ,V (f)− Eρ,V (fc),
if V (t) = (1− t)+;

CV
√
Eρ,V (f)− Eρ,V (f∗),

if V ′′(0) ≥ 0,

(10)

if ∥f∥∞ = sup
x∈X

|f(x)| < +∞.

Eq.(10) shows that, to give the excess misclassifi-
cation error (1), we need to bound the error

Eρ,V (fαz)− Eρ,V (f∗).

Since

Eρ,V (fαz)− Eρ,V (f∗)
≤ |Eρ,V (fαz)− Eρ,V (fα(ρ))|

+Eρ,V (fα(ρ))− Eρ,V (f∗), (11)
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we need to estimate the sample error

|Eρ,V (fαz)− Eρ,V (fα(ρ))|

and the approximation error

Eρ,V (fα(ρ))− Eρ,V (f∗)

respectively. The approximation error can be estimat-
ed with approximation theory(see [26]). The sam-
ple error, nevertheless, is the main part of the w-
hole estimate. The capacity-based approaches (see
e.g.[1, 3, 5, 32, 33, 40]) and the capacity independent
approaches (see e.g.[4, 8, 7, 9, 12, 21, 27]) are devel-
oped for these purposes.

In the present paper, we shall give an estimate for
the sample error with convex analysis, the parallel-
ogram identity and the large number law in Hilbert
spaces. We first give the representations of the solu-
tions of (4) and (5) with the derivatives of the loss,
with which show the robustness of the solutions on
the distributions. The sample error is then obtained.

Let q ≥ 1 be a given positive integer and Rq be
the q-dimensional Euclidean space. Then, for any α =
(α1, α2, · · · , αq) ∈ Rq and β = (β1, β2, · · · , βq) ∈

Rq we can define inRq the norm ∥α∥2 = (
q∑
i=1

|αi|2)
1
2

and the inner product

(α, β)2 =
q∑
i=1

αiβi.

It is well known that if f(x) is a convex differen-
tiable function on X , one has(see [18])

f(x′) ≥ f(x) + (∇f(x), x′ − x)2, x, x
′ ∈ Rm, (12)

where ∇f(x) is the gradient of f(x) at x.

Theorem 2.1. If the conditions of Theorem 1.1 holds,
then,for any 0 < δ < 1, with confidence 1 − δ, there
is

|Eρ,V (fαz)− Eρ,V (fα(ρ))|

≤
4k2(4log 2

δ +
√
m) log 2

δ

λm
×∥V ′∥2

[−k
√

V (0)
λ
,k

√
V (0)
λ

]
. (13)

In particular, when V = Vh is the hinge loss,there
holds

|Eρ,Vh(fαz)− Eρ,Vh(fα(ρ))|

≤
4k2(4log 2

δ +
√
m) log 2

δ

λm
. (14)

To show (13) we need some lemmas.

Lemma 2.1. Let V be a given normalized loss, ρ be
a distribution on Z. Then, there exists uniquely one
minimizer of α(ρ) of the problem (5) and

∥α(ρ)∥2 ≤

√
V (0)

mλ
. (15)

Proof. The uniqueness of the minimizer can be ob-

tained by the fact that V (t) is a convex function and
λ > 0. Since α(ρ) is the minimizer of (5), we have

Eρ,V (fα(ρ)) + λm∥α(ρ)∥22 ≤ Eρ,V (f0) = V (0)

which gives (15).
We now give the representation of α(ρ) with

V ′(t).

Lemma 2.2. Let V be a given normalized loss func-
tion, ρ be a distribution on Z.α(ρ) is the solution of
(5) for the given ρ. Define vector functions

KY (x) = (K(x, y1),K(x, y2), · · · ,K(x, ym))
⊤

for given discrete sets Y ⊂ Y and any x ∈ X . Then,
there are the following results:

(i). Let ∇α be the gradient of V (wfα(x)) about
α. Then,

∇α(V (wfα(x)))

= KY (x)
⊤wV ′(wfα(x)), (x,w) ∈ Z. (16)

(ii). The unique solution α(ρ) of (5) has the fol-
lowing explicit expression

α(ρ) = − 1

2λm

∫
Z
KY (x)

⊤wV ′(wfα(ρ)(x))dρ, (17)

where, for a vector function

f(x,w) = (f1(x,w), · · · , fm(x,w))⊤

and a function α(x), we define

f(x,w)α(x) = (f1(x,w)α(x), · · · , fm(x,w)α(x))⊤

and ∫
Z
f(x,w)α(x) dρ

= (

∫
Z
f1(x,w)α(x)dρ, · · · ,

∫
Z
fm(x,w)α(x) dρ)

⊤.

Proof. (16) can be obtained by direct computations.

By the definition of α(ρ) we have

0 = ∇α(

∫
Z
V (wfα(x))dρ+ λmα⊤α)|α=α(ρ)

=

∫
Z
KY (x)

⊤wV ′(wfα(ρ)(x)) dρ+ 2λ m α(ρ).
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(17) then holds.

Following Lemma 2.3 provides the connections
among the solutions of (5) with respect to the distri-
bution ρ.

Lemma 2.3. Let V be a given normalized loss func-
tion, ρ and µ be distributions onZ = X×W,α(ρ) and
α(µ) be the solutions of (5) for ρ and µ respectively.
Then,

∥α(ρ) − α(µ)∥2
≤ 1

λm
∥
∫
Z
KY (x)

⊤wV ′(wfα(ρ)(x))dρ

−
∫
Z
KY (x)

⊤wV ′(wfα(ρ)(x))dµ∥2. (18)

In particular, if µ is the empirical distribution
µz(x,w) in (6), then, there is the following inequal-
ity

∥α(ρ) − αz∥2
≤ 1

λm
∥
∫
Z
KY (x)

⊤wV ′(wfα(ρ)(x))dρ

− 1

m

m∑
i=1

KY (xi)
⊤wiV

′(wifα(ρ)(xi))∥2. (19)

Proof of (18). By the convexity of V (t) and (12) we
have

V (wfα(µ)(x))− V (wfα(ρ)(x))

≥ wV ′(wfα(ρ)(x))KY (x)
⊤(α(µ) − α(ρ))

= (α(µ) − α(ρ), wV ′(wfα(ρ)(x))KY (x)
⊤)2.

It follows∫
Z
V (wfα(µ)(x))dµ−

∫
Z
V (wfα(ρ)(x))dµ

≥ (α(µ) − α(ρ),

∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤dµ)2.

Since α(µ), α(ρ) ∈ Rm, then, the reformed parallelo-
gram equality gives

∥α(µ)∥22 − ∥α(ρ)∥22 = 2(α(µ) − α(ρ), α(ρ))2

+∥α(ρ) − α(µ)∥22. (20)

It follows by (20) that

(Eµ,V (fα(µ)) + λm∥α(µ)∥22)
−(Eµ,V (fα(ρ)) + λm∥α(ρ)∥22)

≥ (α(µ) − α(ρ),

∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤dµ)2

+2λm(α(µ) − α(ρ), α(ρ))2

+λm∥α(ρ) − α(µ)∥22.

≥ (α(µ) − α(ρ),

∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤dµ

−
∫
Z
wV ′(wfα(ρ)(x)) KY (x)

⊤dρ)2

+λm∥α(ρ) − α(µ)∥22.

Since

(Eµ,V (fα(µ)) + λm∥α(µ)∥22)− (Eµ,V (fα(ρ))

+λm∥α(ρ)∥22) ≤ 0,

we have by the Cauchy inequality that

λm∥α(ρ) − α(µ)∥22
≤ (α(ρ) − α(µ),

∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤ dµ

−
∫
Z
wV ′(wfα(ρ)(x)) KY (x)

⊤dρ)2

≤ ∥α(ρ) − α(µ)∥2 × ∥
∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤ dµ

−
∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤ dρ∥2.

Consequently, (18) holds. (19) can be followed by
taking µ = µz.

Following large number law will play a vital role
in proving Theorem 2.1.

Lemma 2.4. (See [21]). Let H be a Hilbert space
and ξ be a random variable on (Z, ρ) with values in
H . Assume ∥ξ∥H ≤ M̃ < +∞ almost surely. De-
note σ2(ξ) = E(∥ξ∥2H) and let {ξi}mi=1 be indepen-
dent random drawers of ρ. Then, for any 0 < δ < 1,
with confidence 1− δ, there holds

∥ 1

m

m∑
i=1

(ξi − E(ξi))∥H

≤ 2M̃log(2/δ)

m
+

√
2σ2(ξ)log(2/δ)

m
. (21)

Proof of (13). By the definition of α(ρ) we have

|Eρ,V (fαz)− Eρ,V (fα(ρ))|
≤ (Eρ,V (fαz) + λm∥αz∥22)− (Eρ,V (fα(ρ))

+λm∥α(ρ)∥22) + λm|∥αz∥22 − ∥α(ρ)∥22|
= A+ λm|∥αz∥22 − ∥α(ρ)∥22|, (22)

where

A = Eρ,V (fαz)− Eρ,V (fα(ρ))

+λm(∥αz∥22)− ∥α(ρ)∥22).
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Rewrite (12) by

f(x)− f(x′) ≤ (∇f(x), x− x′)2, x, x′ ∈ Rm.

Then,

Eρ,V (fαz)− Eρ,V (fα(ρ))

=

∫
Z
V (wfαz(x))dρ−

∫
Z
V (wfα(ρ)(x))dρ

≤ (

∫
Z
∇αV (wfα(x))|α=αz

dρ, αz − α(ρ))2.

On the other hand, by (20) we have

∥αz∥22 − ∥α(ρ)∥22
= 2(αz − α(ρ), αz)2 − ∥α(ρ) − α(µ)∥22. (23)

It follows

A ≤ (

∫
Z
∇αV (wfα(x))|α=αz

dρ, αz − α(ρ))2

+2λm(αz, αz − α(ρ))2

−λm∥αz − α(ρ)∥22
= (

∫
Z
wV ′(wfαz(x))K

⊤
Y
(x) dρ+ 2λmαz,

αz − α(ρ))2 − λm∥αz − α(ρ)∥22
≤ (

∫
Z
wV ′(wfαz(x))K

⊤
Y
(x) dρ

− 1

m

m∑
i=1

wiV
′(wifαz(xi))K

⊤
Y
(xi),

αz − α(ρ))2 − λm∥α(ρ) − αz∥22. (24)

(23),(22) and (24) gives

|Eρ,V (fαz)− Eρ,V (fα(ρ))|

≤ (

∫
Z
wV ′(wfαz(x))K

⊤
Y
(x) dρ

− 1

m

m∑
i=1

wiV
′(wifαz(xi))K

⊤
Y
(xi), αz − α(ρ))2

−λm∥α(ρ) − αz∥22 + λm|∥αz∥22 − ∥α(ρ)∥22|

≤ (

∫
Z
wV ′(wfαz(x))K

⊤
Y
(x) dρ

− 1

m

m∑
i=1

wiV
′(wifαz(xi))K

⊤
Y
(xi), αz − α(ρ))2

−λm∥α(ρ) − αz∥22 + 2λm|(αz, α(ρ) − αz)2|
+λm∥α(ρ) − αz∥22

≤ (

∫
Z
wV ′(wfαz(x))KY (x)

⊤ dρ

− 1

m

m∑
i=1

wiV
′(wifαz(xi))K

⊤
Y
(xi), αz − α(ρ))2

+ 2λm∥αz∥2 × ∥α(ρ) − αz∥2
≤ (∥

∫
Z
wV ′(wfαz(x))KY (x)

⊤ dρ

− 1

m

m∑
i=1

wiV
′(wifαz(xi))KY (xi)

⊤∥2

+∥ 1

m

m∑
i=1

wiV
′(wifαz(xi))KY (xi)

⊤∥2)

×∥αz − α(ρ)∥2. (25)

Since (15), we have

∥fα(ρ)∥∞ ≤
√
mk × ∥α(ρ)∥2 ≤ k

√
V (0)

λ
,

and

∥fαz∥∞ ≤
√
mk × ∥αz∥2 ≤ k

√
V (0)

λ
.

Then, for any x ∈ X there holds

∥wV ′(wfαz(x)) K
⊤
Y
(x)∥2

≤ k
√
m× ∥V ′(wfαz)∥∞

≤ k
√
m× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]
, (26)

and

∥wV ′(wfα(ρ)(x))K⊤
Y
(x)∥2

≤ k
√
m× ∥V ′(wfα(ρ))∥∞

≤ k
√
m× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]
. (27)

Therefore,by (26)

∥
∫
Z
wV ′(wfαz(x))KY (x)

⊤ dρ

− 1

m

m∑
i=1

wiV
′(wifαz(xi)) KY (xi)

⊤∥2

≤ sup
∥h(x,w)∥

2
≤k

√
m×∥V ′∥

[−k

√
V (0)
λ

,k

√
V (0)
λ

]

∥
∫
Z
h(x,w) dρ− 1

m

m∑
i=1

h(xi, wi)∥2 (28)

and by (27) we have

∥
∫
Z
wV ′(wfα(ρ)(x))KY (x)

⊤ dρ

− 1

m

m∑
i=1

wiV
′(wifα(ρ)(xi)) KY (xi)

⊤∥2
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≤ sup
∥h(x,w)∥

2
≤k

√
m×∥V ′∥

[−k

√
V (0)
λ

,k

√
V (0)
λ

]

×∥
∫
Z
h(x,w) dρ− 1

m

m∑
i=1

h(xi, wi)∥2.(29)

On the other hand, by (26) we have

∥ 1

m

m∑
i=1

wiV
′(wifαz(xi))KY (xi)

⊤∥2

≤ k
√
m× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]
. (30)

(19), (29), (30),(21) and (25) give

|Eρ,V (fαz)− Eρ,V (fα(ρ))|

≤ 1

λm
×
(

sup
∥h(x,w)∥

2
≤k

√
m×∥V ′∥

[−k

√
V (0)
λ

,k

√
V (0)
λ

]

×∥
∫
Z
h(x,w) dρ− 1

m

m∑
i=1

h(xi, wi)∥2

+k
√
m× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]

)
× sup
∥h(x,w)∥

2
≤k

√
m×∥V ′∥

[−k

√
V (0)
λ

,k

√
V (0)
λ

]

×∥
∫
Z
h(x,w) dρ− 1

m

m∑
i=1

h(xi, wi)∥2. (31)

By (21) we know, with confidence 1 − δ, there
holds

sup
∥h(x,w)∥

2
≤k

√
m×∥V ′∥

[−k

√
V (0)
λ

,k

√
V (0)
λ

]

×∥
∫
Z
h(x,w) dρ− 1

m

m∑
i=1

h(xi, wi)∥2

≤ k
√
m× (

2log(2/δ)

m
+

√
2log(2/δ)

m
)

×∥V ′∥
[−k
√

V (0)
λ
,k

√
V (0)
λ

]

≤ 4klog(2/δ)× ∥V ′∥
[−k
√

V (0)
λ
,k

√
V (0)
λ

]
. (32)

(32) and (31) give

|Eρ,V (fαz)− Eρ,V (fα(ρ))|

≤ 1

λm
×
(
4klog(2/δ)× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]

+k
√
m× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]

)
×4klog(2/δ)× ∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]
.

(13) then holds.

Proof of (14). Simple computations give V ′
h(t) =

−1 if t ≤ 1 and 0 if t > 0. We then have
∥V ′∥

[−k
√

V (0)
λ
,k

√
V (0)
λ

]
= 1. (14) follows from (13).

3 The Approximation Error
We now show the approximation error.

Theorem 3.1. Let V be a given normalized loss func-
tion, ρ be a distribution on Z = X ×W,α(ρ) be the
solutions of (5) for ρ. Then,

Eρ,V (fα(ρ))− Eρ,V (f∗) ≤ K
(Y )
V (f∗, λ). (33)

(33) shows that the approximation error is bound-

ed by the K-functional K(Y )
V (f∗, λ).

Proof. By the definitions of α(ρ) and f∗ we have

0 ≤ Eρ,V (fα(α))− Eρ,V (f∗)
≤ Eρ,V (fα(ρ))− Eρ,V (f∗) + λm∥α(α)∥22
= inf

α∈Rm
(Eρ,V (fα) + λm∥α∥22 − Eρ,V (f∗))

= K
(Y )
V (f∗, λ).

(33) then holds. If Vh is the hinge loss, then,
f∗ = fc. In this case, we may give an estimate for

K
(Y )
Vh

(f∗, λ).

Theorem 3.2. Let φ ∈ L2(ρX) satisfy

f∗(x) =

∫
X
K(x, y)φ(y)dρX(y), x ∈ X. (34)

Then, there is a discrete Y ⊂ X such that

K
(Y )
Vh

(f∗, λ) ≤

√
A− ∥fρ∥22,ρX

m
+ λ∥φ∥22,ρX . (35)

To show (35) we need a lemma.

Lemma 3.1.(see [24]) Let f∗ satisfy (34). Then, there
is a discrete set Y ⊂ X and an α∗ ∈ Rm such that

∥f∗ − fα∗∥2,ρX ≤

√
A− ∥fρ∥22,ρX

m
(36)

WSEAS TRANSACTIONS on MATHEMATICS Sheng Baohuai, Xiang Daohong

ISSN: 1109-2769 297 Issue 9, Volume 10, September 2011



and m∥α∗∥22 ≤ ∥φ∥22,ρX .
Proof of Theorem 3.2. Since Vh is a Lipschitz func-
tion with Lipschitz constant 1, i.e.,

|Vh(t)− Vh(t
′)| ≤ |t− t′|, t, t′ ∈ R,

we have by Lemma 3.1 that there is an α∗ ∈ Rm and
a discrete set Y ⊂ X that

K
(Y )
Vh

(fc, λ)

= inf
α∈Rm

(|Eρ,Vh(fα)− Eρ,Vh(fc)|+ λm∥α∥22)

≤ inf
α∈Rm

(

∫
Z
|Vh(wfα(x))− Vh(wfc(x))|dρ

+λm∥α∥22)

≤ inf
α∈Rm

(

∫
X
|fα(x)− fc(x)|dρ+ λm∥α∥22)

≤ inf
α∈Rm

(∥fα − fc∥2,ρX + λm∥α∥22)

≤ ∥fc − fα∗∥2,ρX + λm∥α∗∥22

≤

√
A− ∥fc∥22,ρX

m
+ λ∥φ∥22,ρX .

4 Proof of the Results

Proof of Theorem 1.1. By (10),(11),(13)and (33) we
have (7).

Proof of Theorem 1.3. By (10),(11),(14) and (33) we
have (9).

Proof of Theorem 1.2. Since V ′′
ls(t) = 2 > 0, we

know by (10) that

ℜ(sgn(fz))−ℜ(fc)

≤ CV

√
Eρ,Vls(fz)− Eρ,Vls(fρ). (37)

Since

Eρ,Vls(fz) =

∫
Z
(1− wfz(x))

2dρ

=

∫
Z
(w − fz(x))

2dρ,

we have by [10] the equality

Eρ,Vls(fz)− Eρ,Vls(fρ) = ∥fz − fρ∥22,ρ,

which and (37) give

ℜ(sgn(fz))−ℜ(fc) ≤ CV ∥fz − fρ∥2,ρ. (38)

On the other hand, by Theorem 2 of [25] we know

∥fz − fρ∥2,ρ ≤
6k2 log 2

δ

λ
√
m

+

√
K

(Y ),∗
Vls

(fρ, λ). (39)

(38) and (39) give (8).

Corollary 4.1. Under the conditions of Theorem 1.3,
if fc satisfies (34), then, there is a discrete set Y ⊂ X
such that, for any 0 < δ < 1, with confidence 1 − δ,
there holds

ℜ(sgn(fz))−ℜ(fc)

≤
4k2(4log 2

δ +
√
m) log 2

δ

λm

+

√
A− ∥fc∥22,ρX

m
+ λ∥φ∥22,ρX . (40)

Proof. (40) can be obtained by (9) and (35).

Corollary 4.2. Under the conditions of Theorem 1.2,
if fρ satisfies (34), then, there is a constant C > 0
such that, for any 0 < δ < 1, with confidence 1 − δ,
there holds

ℜ(sgn(fz))−ℜ(fc)

≤
6k2 log 2

δ

λ
√
m

+

√
A− ∥fc∥22,ρX

m

+
√
λ∥φ∥2,ρX . (41)

Proof. (41) can be obtained by Lemma 3.1 and (8).
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