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Abstract: A generalized trigonometric-quadratic functional equation of the form

F(x+ y) + G(x− y) = 2H(x)K(y) + L(x) +M(y)

over the domain of an abelian group and the range of the complex field is considered. Its stability
is established based on the assumption that the function K is unbounded. Subject to certain nat-
ural conditions, explicit shapes of the functions H and K are determined. Several existing related
results are derived as direct consequences.
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1 Introduction

In 1940, Ulam, [1], raised the following question:
Under what conditions does there exist an ad-
ditive mapping near an approximately additive
mapping?

In 1941, Hyers, [2], proved that if f : E1 → E2

is a mapping satisfying

∥f(x+ y)− f(x)− f(y)∥ 6 δ

for all x, y ∈ E1, where E1 and E2 are Banach
spaces and δ is a given positive number, then there
exists a unique additive mapping T : E1 → E2

such that
∥f(x)− T (x)∥ 6 δ

for all x ∈ E1. If f(x) is a real continuous function
of x over R, and

|f(x+ y)− f(x)− f(y)| 6 δ,

it was showed by Hyers and Ulam, [3], that there
exists a constant k such that

|f(x)− kx| ≤ 2δ.

A (generalized) quadratic functional equation
is a functional equation of the form

f1(x+ y) + f2(x− y) = f3(x) + f4(y), (1)

which is so named because the quadratic function
x2 is a solution of a particular case, viz.,

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (2)
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and any solution of (2) is referred to as a quadratic
function. It is well known (cf. [4]) that a function
f : E1 → E2 between vector spaces is quadrat-
ic if and only if there exists a unique symmetric
function B : E1×E2 → E2, which is additive in x
for each fixed y, such that f(x) = B(x, x) for any
x ∈ E1.

The (Hyers-Ulam) stability of the quadratic
functional equation was first proved by Skof (cf.
[5]) in 1983 for functions from a normed space to a
Banach space. In 1984, Cholewa (cf. [5]) showed
that Skof’s theorem is also valid if the normed
space is replaced by an abelian group. His result
says that: let (G,+) be an abelian group and E
a Banach space. If f : G → E satisfies

∥f(x+ y) + f(x− y)− 2f(x) + 2f(y)∥ ≤ δ

(x, y ∈ G)

for some δ ≥ 0, then there exists a unique
quadratic function Q : G → E such that

∥f(x)−Q(x)∥ ≤ δ

2
(x ∈ G).

Later in [6] (see also [7]), Czerwik extended C-
holewa’s theorem by relaxing the control function
and by considering functions from a normed space
to a Banach space. His result reads: let E1 be a
normed space and E2 a Banach space.

I. If f : E1 → E2 satisfies

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥
≤ δ + θ (∥x∥p + ∥y∥p) (x, y ∈ E1 \ {0})

for some nonnegative real numbers δ, θ, p < 2,
then there exists a unique quadratic function
Q : E1 → E2 such that

∥f(x)−Q(x)∥ ≤ δ + c

3
+

2θ

4− 2p
∥x∥p

(x ∈ E1 \ {0}).

II. If f : E1 → E2 satisfies

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥
≤ θ (∥x∥p + ∥y∥p) (x, y ∈ E1)

for some θ ≥ 0, p > 2, then there exists a
unique quadratic function Q : E1 → E2 such
that

∥f(x)−Q(x)∥ ≤ 2θ

2p − 4
∥x∥p (x ∈ E1).

If p = 2, then the result is no longer valid.

In another paper [8], Czerwik investigated
the stability problem of the ‘partially pexider-
ized’quadratic functional equation

f1(x+ y) + f1(x− y) = f2(x) + f2(y).

In 2000, Jung, [9], generalized the result of
Czerwik [6] using ideas from [10] and [11]. As
an application, he used this result together with
a theorem from [12] to determine the stability of
the quadratic equation of pexider type.

Theorem 1.1. Let E1 be a normed space, E2 a
Banach space, and let φ : E1 × E2 → [0,∞) be a
given function with the properties

(i) φ(y, x) = φ(x, y);

(ii) φ(x,−y) = φ(x, y);

(iii) there is an integer k ≥ 2 such that

∞∑
i=0

1

ki
φ
(
kix, kiy

)
<∞

or

∞∑
i=0

k2iφ
( x
ki
,
y

ki

)
<∞ (x, y ∈ E1).

If f1, f2, f3 and f4 are functions from E1 to E2

and satisfy

∥f1(x+ y) + f2(x− y)− f3(x) −f4(y)∥ ≤ φ(x, y)

(x, y ∈ E1), (3)

then there exist a quadratic function Q : E1 → E2

and additive functions A1, A2 : E1 → E2 such
that, for all x ∈ E1, we have

∥f1(x)−Q(x)−A1(x)−A2(x)− f1(0)∥

≤ 1

2k2
Φk(x, x) +

1

2k
Φ′
k(x, x) +

1

2k
Φ′′
k(x, x)

+ 3φ
(x
2
,
x

2

)
+

5

2
φ(x, 0) +

11

2
φ(0, 0),

∥f2(x)−Q(x)−A1(x)−A2(x)− f2(0)∥

≤ 1

2k2
Φk(x, x) +

1

2k
Φ′
k(x, x) +

1

2k
Φ′′
k(x, x)

+ 3φ
(x
2
,
x

2

)
+

5

2
φ(x, 0) +

7

2
φ(0, 0),

∥f3(x)− 2Q(x)− 2A1(x)− f3(0)∥

≤ 1

k2
Φk(x, x) +

1

k
Φ′
k(x, x) + 2φ(x, 0) + 2φ(0, 0),

∥f4(x)− 2Q(x)− 2A2(x)− f4(0)∥

≤ 1

k2
Φk(x, x) +

1

k
Φ′′
k(x, x),
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where Φk(x, y), Φ′
k(x, y), Φ′′

k(x, y) are well-
determined functions depending on φ(x, y).

Moreover, if f3(tx) and f4(tx) are continuous
in t ∈ R for each x ∈ E1, then the function Q
satisfies

Q(tx) = t2Q(x) (x ∈ E1)

and A1, A2 are linear.

In the next year, Jung and Sahoo, [13], used
ideas from [9] and [14] to prove a similar stability
result of a quadratic functional equation:

Theorem 1.2. If functions f1, f2, f3, f4 : E1 →
E2 satisfy the inequality

∥f1(x+ y) + f2(x− y)− f3(x)− f4(y)∥ ≤ ε

for some ϵ ≥ 0 and for all x, y ∈ E1 then there
exists a unique quadratic function Q : E1 → E2

and exactly two addition functions A1, A2 : E1 →
E2 such that

∥f1(x)−Q(x)−A1(x)−A2(x)− f1(0)∥ ≤ 137

3
ε

∥f2(x)−Q(x)−A1(x)−A2(x)− f2(0)∥ ≤ 125

3
ε

∥f3(x)− 2Q(x)− 2A1(x)− f3(0)∥ ≤ 136

3
ε

∥f4(x)− 2Q(x)− 2A2(x)− f4(0)∥ ≤ 124

3
ε

for all x ∈ E1. Moreover, if f3(tx) and f4(tx) are
continuous in t ∈ R for each x ∈ E1, then the
function Q satisfies

Q(tx) = t2Q(x) (x ∈ E1)

and A1, A2 are linear.

A (generalized) trigonometric functional e-
quation is a functional equation of the form

F (x+ y)−G(x− y) = 2H(x)K(y), (4)

which is so named because the two best known
trigonometric functions, sine and cosine, are solu-
tions of two special cases of this equation. In [15],
the authors investigated the stability of (4) where
F,G,H,K are nonzero functions from an abelian
group (G,+) to the complex field C. To state this
result, recall that by an additive (respectively, ex-
ponential) function A (respectively, E) we refer to
a function A (respectively, E) satisfying the addi-
tive (respectively, exponential) Cauchy functional
equation

A(x+ y) = A(x) +A(y)

respectively,

E(x+ y) = E(x)E(y)

for all x, y belonging to the domain of A (respec-
tively, E). The main result in [15] is:

Theorem 1.3. I. Let F,G,H and K be nonze-
ro functions from an abelian group (G,+) to the
complex field C and ψ : G → [0,∞). Suppose that
F,G,H,K satisfy

|F (x+ y)−G(x− y)− 2H(x) K(y)| ≤ ψ(x)

(x, y ∈ G). (5)

Then either
(I.i) K is bounded, or
(I.ii) there is a sequence {yn} ⊂ G such that the
limit

ℓK(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)

exists for each y ∈ G, and H satisfies the func-
tional equation

H(x+y)+H(x−y) = H(x)ℓK(y) (x, y ∈ G).

Assume (I.ii) holds.
(I.iia) If K satisfies the functional equation

K(x+ y) +K(x− y) = 2K(x)K(y),

then H,K are solutions of the functional equation

f(x+ y) + f(x− y) = 2f(x)g(y),

and are given by

K(x) =
E(x) + E∗(x)

2
,

H(x) =
k (E(x) + E∗(x))

2
+ c (E(x)− E∗(x)) ,

where k, c ∈ C, E is an exponential function and
E∗(x) = 1/E(x);
(I.iib) If H(0) = 0 and G is a 2-divisible abelian
group, then H satisfies the functional equation

H

(
x+ y

2

)2

−H

(
x− y

2

)2

= H(x)H(y)

and is of the form

H(x) = A(x)

or
H(x) = c (E(x)− E∗(x))
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where A is an additive function, c, E and E∗ are
as in (II.iia).

II. If F,G,H,K satisfy

|F (x+ y)−G(x− y)− 2H(x)K(y)| ≤ ψ(y),
(6)

then
(II.i) H is bounded, or
(II.ii) there is a sequence {yn} ⊂ G such that the
limit

ℓH(y) := lim
n→∞

H(yn + y) +H(yn − y)

H(yn)

exists for each y ∈ G, and K satisfies the func-
tional equation

K(x+y)+K(x−y) = K(x)ℓH(y) (x, y ∈ G).

Assume (II.ii) holds.
(II.iia) If H satisfies the functional equation

H(x+ y) +H(x− y) = 2H(x)H(y),

then H,K are solutions of the functional equation

f(x+ y) + f(x− y) = 2f(x)g(y)

and are given by

H(x) =
E(x) + E∗(x)

2
,

K(x) =
k (E(x) + E∗(x))

2
+ c (E(x)− E∗(x)) ,

where k, c ∈ C, E is an exponential function and
E∗(x) = 1/E(x);

(II.iib) If K(0) = 0, and G is a 2-divisible
abelian group, then K satisfies the functional e-
quation

K

(
x+ y

2

)2

−K

(
x− y

2

)2

= K(x)K(y)

and is given by

K(x) = A(x),

or
H(x) = c (E(x)− E∗(x)) ,

where A is an additive function, c, E and E∗ are
as in (II.iia).

Later in the same year, [16], a generalized
trigonometric functional equation with either the
function H or K being bounded, was investigated
to complement Theorem 1.3, where such function
boundedness was not treated. The result so ob-
tained is:

Theorem 1.4. Let (G,+) be an abelian group,
α ∈ G, ψ : G×G → [0,∞) and let

φr(y, x) := φ(x, y) + φ(−x,−y).

If F,G,H,K satisfy

|F (x+ y)−G(x− y)− 2H(x) K(y)| ≤ φ(x, y)

(x, y ∈ G). (7)

Then

|H(α)K(x) −H(x)K(α)

+H(−α)K(−x)−H(−x)K(−α)|

≤ 1

2
{φr(x, α) + φr(α, x)} ; (8)

in particular, if α = 0, then

|H(0){K(x) +K(−x)} − {H(x) +H(−x)}K(0)|

≤ 1

2
{φr(x, 0) + φr(0, x)} . (9)

Theorem 1.4 shows that the boundedness of
one function, either H or K, essentially implies
the boundedness of the even part of the other,
viz., we have

Corollary 1.5. Let the notation be as in Theo-
rem 1.4, and let M1,M2 be positive real numbers.
Assume that F,G,H,K satisfy (7).
I. If |H(x)| ≤M1 (x ∈ G), then

|H(α)K(x) +H(−α)K(−x)|

≤ 1

2
{φr(x, α) + φr(α, x)}

+M1 {|K(α)|+ |K(−α)|} .

II. If |K(x)| ≤M2 (x ∈ G), then

|K(α)H(x) + K(−α)H(−x)|

≤ 1

2
{φr(x, α) + φr(α, x)}

+M2 {|H(α)|+ |H(−α)|} .

If we specialize the control function φ in The-
orem 1.4 to be functions of a single variable (x or
y ) or a constant, we get

Corollary 1.6. I. Let ψ : G → [0,∞), letM1,M2

be positive real numbers, and let

ψr(x) := ψ(x) + ψ(−x).

If F,G,H,K satisfy

|F (x+ y)−G(x− y)− 2H(x)K(y)| ≤ ψ(x) or ψ(y)

(x, y ∈ G),
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then

|H(α)K(x) −H(x)K(α)

+H(−α)K(−x)−H(−x)K(−α)|

≤ 1

2
{ψr(x, α) + ψr(α, x)} .

Moreover, if |H(x)| ≤M1 (x ∈ G), then

|H(α)K(x) +H(−α)K(−x)|

≤ 1

2
{ψr(x, α) + ψr(α, x)}+M1 {|K(α)|+ |K(−α)|} ;

while if |K(x)| ≤M2 (x ∈ G), then

|K(α)H(x) +K(−α)H(−x)|

≤ 1

2
{ψr(x, α) + ψr(α, x)}+M2 {|H(α)|+ |H(−α)|} .

II. Let δ be a positive real number. If F,G,H,K
satisfy

|F (x+ y)−G(x− y)− 2H(x) K(y)| ≤ δ

(x, y ∈ G), (10)

then

|H(α)K(x) −H(x)K(α)

+H(−α)K(−x)−H(−x)K(−α)| ≤ 2δ.

Moreover, if |H(x)| ≤M1 (x ∈ G), then

|H(α)K(x) +H(−α)K(−x)|
6 2δ +M1 {|K(α)|+ |K(−α)|} ;

while if |K(x)| ≤M2 (x ∈ G), then

|K(α)H(x) +K(−α)H(−x)|
6 2δ +M2 {|H(α)|+ |H(−α)|} .

Motivated by the above works, it is natural
to ask whether there is a similar stability result
along the same line as in Theorem 1.3 if the gen-
eralized trigonometric and quadratic functional e-
quations are combined together. We give here a
positive answer to this question. Our generalized
trigonometric-quadratic functional equation takes
the form

F(x+ y) + G(x− y)

= 2H(x)K(y) + L(x) +M(y). (11)

As elaborated in Section 4.2.4, pp.196-201 of
[4], a general differentiable solution of (11) can be
found by a method due to Levi-Civita, and the
solution functions are mostly exponential polyno-
mials.

There are cases that can be put under the
above two results (Theorems 1.3 and 1.1) which
we describe in the following two remarks.

• Taking the domain as an abelian group
(G,+) and the complex field C as the range.
If F ,G,H,K,L,M satisfy

|F(x+ y) + G(x− y)− 2H(x)K(y)

−L(x)−M(y)| ≤ ψ(x) or ψ(y) (12)

with both L andM being bounded functions,
then the inequality (12) can be put under the
form (5) or (6), and the stability results of
parts I and II in Theorem 1.3 apply.

• Taking the domain as a normed space E1 and
a Banach space E2, with norm ∥·∥, as the
range.
If F ,G,H,K,L,M satisfy

∥F(x+ y) + G(x− y)− 2H(x)K(y)

−L(x)−M(y)∥ ≤ ϕ(x, y) (13)

with either H or K being bounded functions,
then the inequality (13) can be put under the
form (3) and the stability results in Theorem
1.1 apply.

Since Theorems 1.3 and 1.1 have different do-
mains and ranges, to put both of them into one
perspective, we have adopted to take, in our main
result and throughout the rest of the paper, an
abelian group (G,+) as the domain and the com-
plex field C as the range of all functions involved,
except the control function ϕ whose range is tak-
en to be the nonnegative real numbers [0,∞). We
now state our main result.

Theorem 1.7. Let (G,+) be an abelian group,
and ϕ : G → [0,∞).
A. If F ,G,H,K,L,M : G → C satisfy

|F(x+ y) + G(x− y)− 2H(x)K(y) −L(x)−M(y)|
≤ ϕ(x) (x, y ∈ G), (14)

and K is not bounded, then there is a sequence
{yn} ⊂ G such that the following two limits exist
for all x, y ∈ G,

H(x) = lim
n→∞

F(x+ yn) + G(x− yn)−M(yn)

2K(yn)
,

ℑK,M(x, y) :=

lim
n→∞

1

2K(yn)
{2H(x) (K(yn + y) +K(yn − y))

+M(yn + y) +M(yn − y)− 2M(yn)}
and the function H satisfies the functional equa-
tion

H(x+ y) +H(x− y) = ℑK,M(x, y) (15)
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B1. Assuming part A, if either the limit

ℓK(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)

or the limit

ℓM,K(y) := lim
n→∞

M(yn + y) +M(yn − y)− 2M(yn)

2K(yn)

exists for all y ∈ G, then the functional equation
(15) simplifies to

H(x+ y) +H(x− y) = H(x)ℓK(y) + ℓM,K(y)

(x, y ∈ G). (16)

B2. Assuming part A, if K satisfies the equation

K(x+ y) +K(x− y) = 2K(x)K(y),

then the limit

ℓM,K(y) := lim
n→∞

M(yn+y) +M(yn−y)−2M(yn)

2K(yn)

exists for each y ∈ G, and the function H satisfies
the functional equation

H(x+ y) +H(x−y) = 2H(x)K(y)+ℓM,K(y).

C1. Suppose parts A and B1 hold.
I. When G = R, if H, ℓK, ℓM,K are differen-
tiable, and either

ℓ′K(0) ̸= 0 or ℓ′M,K(0) ̸= 0,

then
H (x) ≡ h ∈ C

is a constant function.
Furthermore,
(Ia) if ℓ′K(0) ̸= 0 and h = 0 then

ℓM,K(y) ≡ 0,

and ℓK is an arbitrary function;
(Ib) if ℓ′K(0) ̸= 0 and h ̸= 0 then

ℓM,K(y) = (2− ℓK(y))h,

and is an arbitrary function;
(Ic) the case where ℓ′M,K(y) ̸= 0 and h = 0 never
occurs;
(Id) if ℓ′M,K(y) ̸= 0 and h ̸= 0 then

ℓM,K(y) = (2− ℓK(y))h,

and ℓK is an arbitrary function.

II. When G is a 2-divisible abelian group,
if

ℓK(y) ≡ c ∈ C

is a constant function, then
(IIa) for c = 2, we have

H(x) = B(x, x) +A(x) + r, ℓM,K(x) = 2B(x, x),

where B : G × G → C is a symmetric biadditive
function, A : G → C is an additive function and
r ∈ C;
(IIb) for c ̸= 2, we have

H(x) ≡ r, ℓM,K(x) ≡ r(2− c) (r ∈ C)

being two constant functions.

C2. Suppose parts A and B2 hold.
I. If M is quadratic (i.e.,

M(x+ y) +M(x− y) = 2M(x) + 2M(y))

or if M is additive, then the functions H and K
satisfies the functional equation

H(x+ y) +H(x− y) = 2H(x)K(y)

and are given by

K(x) =
E(x) + E∗(x)

2
,

H(x) =
k (E(x) + E∗(x))

2
+ c (E(x)− E∗(x)) ,

where k, c ∈ C, E is an exponential function and
E∗(x) = 1/E(x).

For related results, see also [17], [18], [19],
[20].

2 Some Preliminaries

Since the proof of Theorem 1.7 leads us to solve
certain special cases of the functional equation
(11), for convenience, we solve these special cases
in this section. Our approach is similar to the one
in [21] (see also [22], [23], [24]).

Proposition 2.1. Let H,K, ℓ : R → C be differ-
entiable functions. If K′(0) ̸= 0 or ℓ′(0) ̸= 0 and
if H,K, ℓ satisfy

H(x+ y) +H(x− y) = H(x)K(y) + ℓ(y)

(x, y ∈ R), (17)

then
H(x) = h ∈ C.
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Moreover,
(i) if K′(0) ̸= 0 and h = 0 then

ℓ(y) ≡ 0,

and K is an arbitrary function;
(ii) if K′(0) ̸= 0 and h ̸= 0 then

ℓ(y) = (2−K(y))h,

and K is an arbitrary function;
(iii) the case where ℓ′(0) ̸= 0 and h = 0 never
occurs;
(iv) if ℓ′(0) ̸= 0 and h ̸= 0, then

ℓ(y) = (2−K(y))h,

and K is an arbitrary function.

Proof. Differentiating (17) with respect to x and
to y, we obtain

H′(x+ y) +H′(x− y) = H′(x)K(y)
(18)

H′(x+ y)−H′(x− y) = H(x)K′(y) + ℓ′(y).
(19)

Adding and subtracting (18) and (19), we get

2H′(x+ y) = H′(x)K(y) +H(x)K′(y) + ℓ′(y)
(20)

2H′(x− y) = H′(x)K(y)−H(x)K′(y)− ℓ′(y).
(21)

Putting y = 0 in (20) and (21), we respectively
get

2H′(x) = H′(x)K(0) +H(x)K′(0) + ℓ′(0) (22)

2H′(x) = H′(x)K(0)−H(x)K′(0)− ℓ′(0). (23)

Adding (22) and (23) leads to

4H′(x) = 2H′(x)K(0). (24)

We now consider two separate cases.
• If K(0) ̸= 2, by (24), we get

H′(x) ≡ 0.

• If K(0) = 2, by (22), we get

H(x)K′(0) = −ℓ′(0)

and since K′(0) ̸= 0 or ℓ′(0) ̸= 0, we see that H is
constant.
In both cases, we deduce that

H(x) = h ∈ C,

a constant function. There are four possibilities:
(i) If K′(0) ̸= 0 and h = 0 then (17) yields

ℓ(y) ≡ 0,

and K is an arbitrary function.
(ii) If K′(0) ̸= 0 and h ̸= 0 then (17) yields

ℓ(y) = (2−K(y))h,

and K is an arbitrary function.
(iii) If ℓ′(0) ̸= 0 and h = 0, then (17) yields

ℓ(y) ≡ 0

which contradicts ℓ′(0) ̸= 0, and so this situation
does not occur.
(iv) If ℓ′(0) ̸= 0 and h ̸= 0, then (17) yields

ℓ(y) = (2−K(y))h,

and K is an arbitrary function.

Note that the general solution of (1) can be
found in Theorem 4.25, pp.238-240 of [5], which
we now quote.

Lemma 2.2. Let G be a 2-divisible group and let
F be a commutative field of characteristic ̸= 2.
The general solution of (1) with f1, f2 satisfying

fi (x+ y + z) = fi (x+ z + y) (i = 1, 2;x, y, z ∈ G)

is given by

f1 (x) = B (x, x)−A1 (x) +A2 (x) + b1,

f2 (x) = B (x, x)−A1 (x)−A2 (x) + b2,

f3 (x) = 2B (x, x)− 2A1 (x) + b3,

f4 (x) = 2B (x, x) + 2A2 (x) + b4,

with
b1 + b2 = b3 + b4,

where B : G × G → F is a symmetric bi-additive
function and Ai : G → F (i = 1, 2) are additive.

Making use of Lemma 2.2, we have:

Proposition 2.3. Let H, ℓ be functions from a
2-divisible abelian group G to a field F of charac-
teristic ̸= 2 and c ∈ F. Assume that

H(x+ y) +H(x− y) = cH(x) + ℓ(y) (x, y ∈ G).

• If c = 2, then

H(x) = B(x, x) +A(x) + r, ℓ(x) = 2B(x, x),
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where B : G × G → F is a symmetric bi-additive
function, A : G → F is an additive function and
r ∈ F.
• If c ̸= 2, then

H(x) ≡ r, ℓ(x) ≡ r(2− c) (r ∈ F)

are constant functions.

Proof. Substituting

f1(x) = f2(x) = H(x), f3(x) = cH(x), f4(y) = ℓ(y)

in Lemma 2.2, we get

H(x) = B(x, x)−A1(x) +A2(x) + b1 (25)

H(x) = B(x, x)−A1(x)−A2(x) + b2 (26)

cH(x) = 2B(x, x)− 2A1(x) + b3 (27)

ℓ(x) = 2B(x, x) + 2A2(x) + b4 (28)

with
b1 + b2 = b3 + b4,

where B is a symmetric bi-additive function and
A1, A2 are additive functions. Equating (25) and
(26), we get

2A2(x) = b2 − b1,

a constant function. Since A2 is additive, we must
have A2(x) ≡ 0 and so b1 = b2. Putting this
information back into (25), we get

H(x) = B(x, x)−A1(x) + b1.

Multiplying this last equation by c, equating with
(27) and using b3 = 2b1 − b4, we get

c(B(x, x)−A1(x) + b1)

= 2B(x, x)− 2A1(x) + 2b1 − b4. (29)

Consider now two possible cases.
• If c = 2, then (29) yields b4 = 0 and (28) gives

ℓ(x) = 2B(x, x).

• If c ̸= 2, then (2.13) yields

B(x, x)−A1(x) =
b4

2− c
− b1, (30)

and so

B(x+ y, x+ y)−A1(x+ y) =
b4

2− c
− b1. (31)

Since B is symmetric bi-additive and A1 is addi-
tive, the relation (31) implies

b4
2− c

− b1 = B(x+ y, x+ y)−A1(x+ y)

= (B(x, x)−A1(x))+(B(y, y)−A1(y))+2B(x, y).

Replacing the expression on the right-hand side
using (28), we get

b4
2− c

− b1 =
b4

2− c
− b1 +

b4
2− c

− b1 + 2B(x, y),

which shows that B is constant, and so

B ≡ 0

(because B is symmetric biadditive). Thus, (30)
shows that A1 is constant and so

A1 ≡ 0

(because A1 is additive). Consequently,

b4 = b1(2− c),H(x) = b1, ℓ(x) = b1(2− c).

3 Proof of Theorem 1.7

A. Since K is not bounded, there is a sequence
{yn} ⊂ G such that

0 ̸= |K(yn)| → ∞(n→ ∞).

Substituting y = yn in (14) and dividing by
2 |K(yn)|, we get∣∣∣∣F(x+yn) + G(x−yn)−M(yn)

2K(yn)
− L(x)
2K(yn)

−H(x)

∣∣∣∣
≤ ϕ(x)

|2K(yn)|
.

Thus,

lim
n→∞

F(x+ yn) + G(x− yn)−M(yn)

2K(yn)
= H(x).

(32)

Replacing y by yn ± y in (14), we respectively
obtain

|F((x+ y) + yn) + G((x− y)− yn)

−2H(x)K(yn + y)− L(x)−M(yn + y)|
≤ ϕ(x), (33)
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and

|F((x− y) + yn) + G((x+ y)− yn)

−2H(x)K(yn − y)− L(x)−M(yn − y)|
≤ ϕ(x). (34)

From (33) and (34), we have∣∣∣∣F((x+ y) + yn) + G((x+ y)− yn)−M(yn)

2K(yn)

+
F((x− y) + yn) + G((x− y)− yn)−M(yn)

2K(yn)

− 1

2K(yn)
{2H(x) (K(yn + y) +K(yn − y))

+M(yn + y) +M(yn − y)− 2M(yn) −
L(x)
K(yn)

∣∣∣∣
6 ϕ(x)

|K(yn)|
.

Using (32), we deduce that the limit

ℑK,M(x, y)

:= lim
n→∞

1

2K(yn)
{2H(x) (K(yn + y) +K(yn − y))

+M(yn + y) +M(yn − y)− 2M(yn)}

exists and

ℑK,M(x, y) = H(x+ y) +H(x− y),

which finishes the proof of part A.

B1. Because ℑK,M(x, y) exists, the existence
of either

ℓK(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)

or

ℓM,K(y) := lim
n→∞

M(yn+y) +M(yn−y)−2M(yn)

2K(yn)

implies that of the other, and yields at once

H(x+ y) +H(x− y) = H(x)ℓK(y) + ℓM,K(y).
(35)

B2. Since K(x+ y)+K(x− y) = 2K(x)K(y), the
limit

ℓK(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)

exists and
ℓK(y) = 2K(y).

Thus, the limit

ℓM,K(y) := lim
n→∞

M(yn + y) +M(yn − y)− 2M(yn)

2K(yn)

exists and

H(x+ y) +H(x− y) = 2H(x)K(y) + ℓM,K(y).

C1. Part I follows by taking

G = R, K = ℓK, ℓ = ℓM,K

in Proposition 2.1. Part II follows similarly
by taking G to be a 2-divisible abelian group,
F = C, ℓ = ℓM,K and ℓK = c in Proposition 2.3.

C2. If M is quadratic or additive, then
the limit

ℓM,K(y) := lim
n→∞

M(yn+y) +M(yn−y)−2M(yn)

2K(yn)

exists and
ℓM,K(y) = 0.

Thus, the functionsH andK satisfy the functional
equation

H(x+ y) +H(x− y) = 2H(x)K(y) (36)

and the given explicit solutions are taken from [5,
p. 148]. This completes the proof of Theorem 1.7.

Since the functions F and G do not appear
in the conclusion of Theorem 1.7, interchanging x
with y, we have:

Theorem 3.1. Let (G,+) be an abelian group,
and ϕ : G → [0,∞).
A. If F ,G,H,K,L,M : G → C satisfy

|F(x+y) +G(x−y)−2H(x)K(y)−L(x)−M(y)|
≤ ϕ(y) (x, y ∈ G), (37)

and K is not bounded, then there is a sequence
{xn} ⊂ G such that the following two limits exist
for all x, y ∈ G,

H(y) = lim
n→∞

F(y+xn) + G(y−xn)−M(xn)

2K(xn)
,

ℑK,M(y, x) :=

lim
n→∞

1

2K(xn)
{2H(y) (K(xn+x) +K(xn−x))

+M(xn + x) +M(xn − x)− 2M(xn)}
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and the function H satisfies the functional equa-
tion

H(y + x) +H(y − x) = ℑK,M(y, x) (38)

B1. Assuming part A, if either the limit

ℓK(x) := lim
n→∞

K(xn + x) +K(xn − x)

K(xn)

or the limit

ℓM,K(x) := lim
n→∞

M(xn + x) +M(xn − x)− 2M(xn)

2K(xn)

exists for all x ∈ G, then the functional equation
(38) simplifies to

H(y + x) +H(y − x) = H(y)ℓK(x) + ℓM,K(x)

(x, y ∈ G).
(39)

B2. Assuming part A, if K satisfies the equation

K(y + x) +K(y − x) = 2K(y)K(x),

then the limit

ℓM,K(x) := lim
n→∞

M(xn+x) +M(xn−x)−2M(xn)

2K(xn)

exists for each x ∈ G, and the function H satisfies
the functional equation

H(y + x) +H(y − x) = 2H(y)K(x) + ℓM,K(x).

C1. Suppose parts A and B1 hold.
I. When G = R, if H, ℓK, ℓM,K are differen-
tiable, and either

ℓ′K(0) ̸= 0 or ℓ′M,K(0) ̸= 0

then
H (y) ≡ h ∈ C

is a constant function.
Furthermore,
(Ia) if ℓ′K(0) ̸= 0 and h = 0 then ℓM,K(x) ≡ 0,
and ℓK is an arbitrary function;
(Ib) if ℓ′K(0) ̸= 0 and h ̸= 0 then

ℓM,K(x) = (2− ℓK(x))h

and is an arbitrary function;
(Ic) the case where ℓ′M,K(x) ̸= 0 and h = 0 never
occurs;
(Id) if ℓ′M,K(0) ̸= 0 and h ̸= 0 then

ℓM,K(x) = (2− ℓK(x))h

and ℓK is an arbitrary function.

II. When G is a 2-divisible abelian group,
if

ℓK(x) ≡ c ∈ C

is a constant function, then
(IIa) for c = 2, we have

H(y) = B(y, y) +A(y) + r, ℓM,K(y) = 2B(y, y),

where B : G × G → C is a symmetric biadditive
function, A : G → C is an additive function and
r ∈ C;
(IIb) for c ̸= 2, we have

H(y) ≡ r, ℓM,K(y) ≡ r(2− c) (r ∈ C)

being two constant functions.

C2. Suppose parts A and B2 hold.
I. If M is quadratic (i.e.,

M(y + x) +M(y − x) = 2M(y) + 2M(x))

or if M is additive, then the functions H and K
satisfy the functional equation

H(y + x) +H(y − x) = 2H(y)K(x)

and are given by

K(y) =
E(y) + E∗(y)

2
,

H(y) =
k (E(y) + E∗(y))

2
+ c (E(y)− E∗(y)) ,

where k, c ∈ C, E is an exponential function and
E∗(x) = 1/E(x).

4 Examples

In this final section, we give several examples of
Theorems 1.7 and 3.1, some of which are special
cases obtained previously by other authors.

Example 4.1. If we put L = M ≡ 0 in Theo-
rem 1.7, respectively, Theorem 3.1, then we have
part I and part II of Theorem 1.3, which shows
that all earlier works mentioned in [15] are direct
consequences of our main results above.

Example 4.2. If we put L = M ≡ 0,F(x) =
G(x) = f(x),H(x) = g(x), and K(y) = h(y) in
Theorem 1.7, respectively, Theorem 3.1, then we
have Theorem 1, respectively, Theorem 2 of Kim’s
results in [24].
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Example 4.3. If we put L = M ≡ 0,F(x) =
G(x) = K(x) = f(x), and H(x) = g(x) in Theo-
rem 1.7, then we have Theorem 2.1 of Kim’s re-
sult in [21].

Example 4.4. If we put L = M ≡ 0,F(x) =
G(x) = f(x),H(x) = g(x), and K(y) = g(y) in
Theorem 3.1, then we have Theorem 3.1 of Kim’s
results in [21].

Example 4.5. If we put L = M ≡ 0, and
F = G = H = K = f in Theorem 1.7, respective-
ly, Theorem 3.1, we get an extension of Baker’s
result in [25].

Example 4.6. As another simple example of
Theorem 3.1 with explicit solutions, take the group
G to be R, F(x) = G(x) = x,L(x) = c1 and
M(x) = c2 as two constant functions. The con-
dition (37) of Theorem 3.1 becomes

|2x− 2H(x)K(y)− c1 − c2| ≤ ϕ(y). (40)

Dividing by x and taking the limit x → ∞, we
deduce that

2− 2K(y) lim
x→∞

H(x)

x
= 0,

so that K(y) = c3 ̸= 0, a constant function. Sub-
stituting bact into (40), we see that

H(x) =
x

c3
+H1(x),

where H1(x) is a bounded function.
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