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Abstract: In the present article, we construct the traveling wave solutions involving parameters of some nonlinear
PDEs; namely the nonlinear Klein - Gordon equations, the nonlinear reaction- diffusion equation, the nonlinear
modified Burgers equation and the nonlinear Eckhaus equation by using the modified (G

′

G )- expansion method,
where G satisfies a second order linear ordinary differential equation. When these parameters are taken special
values, the solitary waves are derived from the traveling waves. The traveling waves solutions are expressed by
hyperbolic, trigonometric and the rational functions.
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1 Introduction

In recent years, the exact solutions of nonlinear PDEs
have been investigated by many authors( see for exam-
ple [1]–[45]) who are interested in nonlinear physical
phenomena. Many powerful methods have been pre-
sented by those authors such as the generalized pro-
jective Riccati equation expansion method [7, 31], the
sine / sinh-Gordon reduction method [32, 33], the re-
duction mKdV equation method [34], the tri-function
method [35, 36], the homogeneous balance method
[9], the hyperbolic tangent expansion method [29], the
tanh-method [8, 27], the nonlinear transform method
[16], the inverse scattering transform [1], the Back-
lund transform [21, 23], the Hirota’s bilinear method
[11, 12], the generalized Riccati equation [30], the
Weierstrass elliptic function method [22], the Sine-
Cosine method [27, 37], the Jacobi elliptic function
expansion [9, 38], the complex hyperbolic function
method [3],the truncated Painleve expansion [4], the
F-expansion method [25], the rank analysis method
[10], the ansatz method [14, 15, 16], the exp-function
expansion method [13], the sub- ODE. method [19],
the (G

′

G )−expansion method [26], [40]–[45] and so
on.

Recently, Bin et al [40] and Zayed et al [42] have
obtained the exact solutions of some nonlinear PDEs

using the modified (G
′

G )- expansion method. In the
present paper, we shall use the modified (G

′

G ) - ex-
pansion method to find the exact solutions of some
different PDEs. This method is proposed by which
the traveling wave solutions of nonlinear equations are
obtained. The main idea of this method is that the
traveling wave solutions of nonlinear evolution equa-
tions can be expressed by a polynomial in (G

′

G ),where
G = G(ξ) satisfies the second order linear ordinary
differential equation G

′′
(ξ) + λG′(ξ) + µG(ξ) = 0,

where ξ = x − V t, where λ, µ and V are con-
stants. The degree of this polynomial can be deter-
mined by considering the homogeneous balance be-
tween the highest order derivatives and the nonlin-
ear terms appearing in the given nonlinear equations .
The coefficients of this polynomial can be obtained by
solving a set of algebraic equations resulted from the
process of using the proposed method. In the present
paper, the modified (G

′

G )−expansion method will be
applied to construct the traveling wave solutions of
the nonlinear Klein - Gordon equations, the nonlin-
ear reaction- diffusion equation, the nonlinear mod-
ified Burgers equation and the nonlinear Eckhaus e-
quation.
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2 Description of the modified (G′

G )-
expansion method

Suppose that we have a nonlinear PDE in the follow-
ing form:

F (u, ut, ux, utt, uxt, uxx, .....) = 0, (1)

where u = u(x, t) is an unknown function, F is a
polynomial in u = u(x, t) and its partial derivatives,
in which the highest order derivatives and nonlinear
terms are involved. Let us now give the main steps for
solving Eq. (1) using the modified (G

′

G )-expansion
method [40,42]:
Step 1. The traveling wave variable

u(x, t) = u(ξ) , ξ = x− V t, (2)

where V is a constant, permits us reducing Eq. (1) to
an ODE for u = u(ξ) in the form

P (u,−V u′, u′, V 2u′′,−V u′′, u′′, ......) = 0, (3)

where P is a polynomial of u = u(ξ) and its total
derivatives.
Step 2. Suppose that the solution of Eq. (3) can be
expressed by a polynomial in (G

′

G ) as follows:

ψ(ξ) =
m∑

i=−m

αi

(
G′

G

)i

, (4)

where G = G(ξ) satisfies the following second order
linear differential equation in the form:

G
′′
+ λG

′
+ µG = 0, (5)

where αi, λ ,µ are constants to be determined later,
αm ̸= 0 or α−m ̸= 0 and m is a positive integer.
Step 3. Balancing the highest derivative term with
the nonlinear term in (3), we find the value of the pos-
itive integer m in (4). In some nonlinear equations
the balance numberm is not a positive integer. In this
case, we make the following transformations [20]:

(a) When m = q
p where q

p is a fraction in the
lowest terms, we let

u(ξ) = φ
q
p (ξ) (6)

then substituting (6) into (3) to get a new equation in
the new function φ(ξ) with a positive integer balance
number.

(b) When m is a negative number, we let

u(ξ) = φm(ξ), (7)

and substituting (7) into (3) to get a new equation in
the new function φ(ξ) with a positive integer balance
number.
Step 4. Substituting (4) into Eq. (3) and using Eq.(5),
collecting all terms with the same order of (G

′

G ) to-
gether, and then equating each coefficient of the re-
sulted polynomial to zero, yields a set of algebraic e-
quations for αi, V, λ and µ .
Step 5. Since the general solutions of (5) have been
well known for us, then substituting αi, V and the
general solutions of (5) into (4), we have the traveling
wave solutions of the nonlinear PDEs (1).

3 Applications
In this section, we apply the modified (G

′

G )- expansion
method to construct the traveling wave solutions for
some nonlinear partial differential equations, namely
the nonlinear Klein- Gordon equations, the nonlinear
reaction- diffusion equation, the nonlinear modified
Burgers equation and the nonlinear Eckhaus equation
which are very important in the mathematical physics
and have been paid attention by many researchers.

3.1 The nonlinear Klein - Gordon equations

with the cubic- quintic nonlinearity
Wazwaz [27, 28] investigated the nonlinear Klein -
Gordon equations and found many types of exac-
t traveling wave solutions including compact solution-
s, soliton solution, solitary patterns solutions and peri-
odic solutions using the tanh- function method . These
equations play an important role in many scientific
applications, such as the solid state physics, the non-
linear optics, the quantum field theory and so on (
see[17, 18, 24]).

3.1.1 Example 1.

We start with the following nonlinear Klein - Gordon
equation in the form:

utt − k2uxx + αu− βu3 + γu5 = 0, (8)
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where α, β, k and γ are constants, provided γ ̸= 0.

The traveling wave variable (2) permits us converting
equation (8) into the following ODE:

(V 2 − k2)u′′ + αu− βu3 + γu5 = 0. (9)

Suppose that the solution of the ODE (9) can be ex-
pressed by a polynomial in terms of (G

′

G ) as follows:

u(ξ) =
m∑

i= −m

αi

(
G′

G

)i

, (10)

where αi are arbitrary constants, while G(ξ) satis-
fies the second order linear ODE (5). Considering
the homogeneous balance between the highest order
derivative u′′ and the nonlinear term u5 in (9), we get
m = 1

2 . According to step 3, we use the transforma-
tion

u = [ψ( ξ)]
1
2 (11)

where ψ( ξ) is a new function of ξ. Substituting (11)
into (9), we get the new ODE:

1
4(V

2 − k2)[2ψψ′′ − ψ′2] + αψ2−
βψ3 + γψ4 = 0.

(12)

Determining the balance number m of the new Eq.
(12), we getm = 1.Consequently, we have the formal
solution of Eq.(12) in the form:

ψ(ξ) = α1

(
G′

G

)
+ α−1

(
G′

G

)−1

+ α0. (13)

After some calculation, we get

ψ′(ξ) = −α1

(
G′

G

)2
− λα1

(
G′

G

)
+ α−1

−µα1 + λα−1

(
G′

G

)−1
+ µα−1

(
G′

G

)−2
,

(14)

ψ′′(ξ) = 2α1

(
G′

G

)3
+ 3λα1

(
G′

G

)2
+

α1(2µ+ λ2)
(
G′

G

)
+ α1µλ+ λα−1

+(2µ+ λ2)α−1

(
G′

G

)−1
+ 3λµα−1

(
G′

G

)−2

+2α−1µ
2
(
G′

G

)−3
.

(15)
and so on.

On substituting (13) -(15) into (12) collecting all
terms with the same powers of

(
G′

G

)
and setting them

to zero then, we have the following system of algebra-
ic equations:

3

4
V 2α2

1 −
3

4
k2α2

1 + γα4
1 = 0,

V 2α0α1 − βα3
1 + 4γα3

1α0 − k2α0α1

+V 2α2
1λ− k2α2

1λ = 0,

−k2α2
−1λµ− βα3

−1 + V 2α0α−1µ
2 − k2α0α−1µ

2

+4γα3
−1α0 + V 2α2

−1λµ = 0,
3

4
V 2α2

−1µ
2 + γα4

−1 −
3

4
k2α2

−1µ
2 = 0,

−3k2α1λα−1µ− 3βα1α
2
−1 + 2αα−1α0

+4γα−1α
3
0 + 12γα1α

2
−1α0 −

1

2
k2α0α−1λ

2

−k2α0α−1µ+ V 2α0α−1µ+ 3V 2α1λα−1µ

+
1

2
V 2α0α−1λ

2 − 3βα−1α
2
0 = 0,

−3

2
k2α0α1λ− 1

2
k2α2

1µ+
3

2
V 2α1α−1

−3

2
k2α1α−1 +

1

4
V 2α2

1λ
2 + αα2

1 +
3

2
V 2α0α1λ

+4γα3
1α−1 − 3βα2

1α0 +
1

2
V 2α2

1µ

−1

4
k2α2

1λ
2 + 6γα2

1α
2
0 = 0,

1

2
V 2α2

−1µ+
1

4
V 2α2

−1λ
2 − 1

4
k2α2

−1λ
2

+6γα2
−1α

2
0 + αα2

−1 + 4γα1α
3
−1 −

3

2
k2α0α−1λµ

−1

2
k2α2

−1µ− 3

2
k2α−1µ

2α1 − 3βα2
−1α0

+
3

2
V 2α−1µ

2α1 +
3

2
V 2α0α−1λµ = 0,

−1

2
k2α0α1λ

2 + 3V 2α1λα−1 − 3βα1α
2
0

−3k2α1λα−1 + 2αα1α0 − 3βα2
1α−1

−k2α0α1µ+
1

2
V 2α0α1λ

2 + 4γα1α
3
0

+V 2α0α1µ+ 12γα2
1α−1α0 = 0,

−1

4
V 2α2

1µ
2 + γα4

0 +
1

4
k2α2

1µ
2 + 2αα1α−1

−βα3
0 + αα2

0 −
1

4
V 2α2

−1 +
1

4
k2α2

−1

−1

2
k2α0α1λµ+ 12 γα1α−1α

2
0 + 3V 2α1α−1µ

+
1

2
V 2α0α−1λ+ 6γα2

1α
2
−1 +

3

2
V 2α1λ

2α−1

−3k2α1α−1µ− 1

2
k2α0α−1λ− 3

2
k2α1λ

2α−1

+
1

2
V 2α0α1λµ

−6βα1α−1α0 = 0. (16)

On solving the above algebraic equations (16) by us-
ing the Maple or Mathematica, we have

α1 =
4αλ
βM , α0 =

4αλ2

β(M , α−1 =
4αλµ
βM ,

γ = 3β2M
16αλ2 , V =

√
k2 − 4α

M ,
(17)

where M = λ2 − 4µ ̸= 0 and k2 > 4α
M .
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Substituting (17) into (13) yields

ψ(ξ) =
4αλ

βM

(
G′

G

)
+

4αλµ

βM

(
G′

G

)−1

+
4αλ2

βM
, (18)

where

ξ = x− t

√
k2 − 4α

M
. (19)

On solving Eq. (12), we deduce that

G′

G
=



1
2

√
M
(

A cosh( 1
2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M ξ)+B cosh( 1

2

√
M ξ)

)
−λ

2 if M > 0,
1
2

√
−M

(
−A sin( 1

2

√
−Mξ)+B cos( 1

2

√
−Mξ)

A cos( 1
2

√
−Mξ)+B sin( 1

2

√
−Mξ)

)
−λ

2 if M < 0,
B

Bξ+A − λ
2 , if M = 0,

(20)

where A and B are arbitrary constants and M = λ2 − 4µ.
On substituting (20) into (18), we deduce the following
types of traveling wave solutions of Eq. (12):
Case 1.If M > 0, then we have the hyperbolic solution

ψ = 2αλ
β
√
M

(
A cosh( 1

2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M ξ)+B cosh( 1

2

√
M ξ)

)
+

2αλ2

βM + 8αλµ
βM ×[√

M
(

A cosh( 1
2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M ξ)+B cosh( 1

2

√
M ξ)

)
− λ

]−1

.

(21)

Case 2 . IfM < 0, then we have the trigonometric solution

ψ = 2αλ
β
√
−M

(
−A sin( 1

2

√
−Mξ)+B cos( 1

2

√
−Mξ)

A cos( 1
2

√
−Mξ)+B sin( 1

2

√
Mξ)

)
+

2αλ2

βM + 8αλµ
−βM×[√

−M
(

−A sin( 1
2

√
−Mξ)+B cos( 1

2

√
−Mξ)

A cos( 1
2

√
−Mξ)+B sin( 1

2

√
−Mξ)

)
− λ

]−1

.

(22)

On substituting (21) and (22) into (11) we have the
traveling wave solutions of Eq. (8).

In particular, if we set B = 0, A ̸= 0, λ > 0, µ = 0,
in (21) then we get

u(ξ) =

√
2α

β

[
coth(

1

2
λξ) + 1

]
, (23)

while if B ̸= 0, A2 > B2, λ > 0, µ = 0, then we have

u(ξ) =

√
2α

β

[
tanh(ξ0 +

1

2
λξ) + 1

]
, (24)

where ξ0 = tanh−1(AB ). Note that (23) and (24) represent
the solitary wave solutions of Eq.(8). These solutions are
completely physical in the case α

β > 0 and k2 > 4α
λ2 .

3.1.2 Example 2.
In this section, we study the following nonlinear Klein -
Gordon equation:

utt − k2uxx + αu− βun + γu2n−1 = 0, n > 2, (25)

where α, β, γ and k are constants.
The traveling wave variable (9) permit us converting

Eq. (25) into ODE in the form:

(V 2 − k2)u′′ + αu− βun + γu2n−1 = 0, n > 2. (26)

Suppose that the solution of the ODE (26) can be ex-
pressed by polynomial in term of (G

′

G ) in the same form
(10) where G(ξ) satisfies (5). Considering the homoge-
neous balance between the highest order derivative u′′ and
the nonlinear term u2n−1 in (26), we get m = 1

n−1 . Ac-
cording to step 3, we use the transformation

u = [ψ( ξ)]
1

n−1 (27)

where ψ( ξ) is a new function of ξ. Substituting (27) into
(26), we get the new ODE

(V 2 − k2)
[

2−n
(n−1)2ψ

′2 + 1
(n−1)ψψ

′′
]
+ αψ2−

βψ3 + γψ4 = 0.
(28)

Determining the balance number m of the new Eq. (28),
we get m = 1. Thus, the solutions of Eq. (28) have the
same form (13). Consequently,using the Maple or Mathe-
matica we get the following results:

α1 = (n+1)λα
βM , α0 = (n+1)λ2α

βM , α−1 = (n+1)µλα
βM ,

γ = nβ2M
αλ2(n+1)2 , V =

√
k2 − (n−1)2α

M ,

(29)
where M = λ2 − 4µ ̸= 0 and k2 > (n−1)2α

M . Substituting

(29) into (13) yields

ψ(ξ) = (n+1)λα
βM

(
G′

G

)
+ (n+1)µλα

βM

(
G′

G

)−1

+ (n+1)λ2α
βM ,

(30)

where

ξ = x− t

√
k2 − (n− 1)2α

M
. (31)

From (20) and (30), we deduce the following types of trav-
eling wave solutions of Eq.(28):
Case 1. If M > 0,then we have the hyperbolic solution

ψ = (n+1)λα

2β
√
M

(
A cosh( 1

2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M ξ)+B cosh( 1

2

√
M ξ)

)
+ (n+1)λ2α

2βM + 2(n+1)µλα
βM3/2 ×[(

A cosh( 1
2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M ξ)+B cosh( 1

2

√
M ξ)

)
− λ√

M

]−1

.

(32)

Case 2 . IfM < 0, then we have the trigonometric solution

ψ = (n+1)λα

2β
√
−M

(
−A sin( 1

2

√
−Mξ)+B cos( 1

2

√
−Mξ)

A cos( 1
2

√
−Mξ)+B sin( 1

2

√
−Mξ)

)
+ (n+1)λ2α

2βM − 2(n+1)µλα

β
√

(−M)3
×[(

−A sin( 1
2

√
−Mξ)+B cos( 1

2

√
−Mξ)

A cos( 1
2

√
−Mξ)+B sin( 1

2

√
−Mξ)

)
− λ√

−M

]−1

.

(33)
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On substituting (32) and (33) into (27) we have the
traveling wave solutions of Eq. (25).

In particular, if we set B = 0, A ̸= 0, λ > 0, µ = 0,
in (32) then we get the solitary wave solutions of Eq.(25)
as follows:

u(ξ) =

{
(n+ 1)α

2β

[
coth

λ

2
ξ + 1

]} 1
n−1

, (34)

while if B ̸= 0, A2 > B2, λ > 0, µ = 0, then we get

u(ξ) =

{
(n+ 1)α

2β

[
tanh(ξ0 +

1

2
λξ) + 1

]} 1
n−1

, (35)

where ξ0 = tanh−1(AB ). These solutions are completely

physical in the case α
β > 0 and k2 > (n−1)2α

λ2 .

3.1.3 Example 3.
In this section, we study the following nonlinear Klein -
Gordon equation:

utt − k2uxx + αu− βu1−n + γun+1 = 0, n > 2, (36)

where k, α, β and γ are constants.
The traveling wave variable (9) permits us converting

Eq.(36) into ODE in the form:

(V 2 − k2)u′′ + αu− βu1−n + γun+1 = 0. (37)

Considering the homogeneous balance between the high-
est order derivative u′′ and the nonlinear term un+1 in (37),
we get m = 2

n . According to step 3, we take the transfor-
mation

u = [ψ( ξ)]
2
n (38)

where ψ( ξ) is a new function of ξ. Substituting (38) into
(37), we get

(V 2 − k2)
[
2(2− n)ψ′2 + 2nψψ′′]+ αn2ψ2

−βn2ψ3 + γn2ψ4 = 0,
(39)

Determining the balance number m of the new Eq. (39),
we getm = 1. Thus, the solutions of Eq. (39) has the same
form (13). Consequently, using the Maple or Mathematica
we get the following results:
Case 1.

α−1 = 4
√

β
α(2−n)M , α0 = 2λ

√
β

α(2−n)M ,

γ = (n2−4)α2

16β , V =
√
k2 + n2α

2M , α1 = 0.
(40)

Case 2.

α1 = 4
√

β
α(2−n)M , α0 = 2λ

√
β

α(2−n)M ,

γ = (n2−4)α2

16β , V =
√
k2 + n2α

2M , α−1 = 0,
(41)

where M = λ2 − 4µ ̸= 0 , k2 + n2α
2M > 0 and n > 2.

We just list some exact solutions corresponding to case
1 to illustrate the effectiveness of the modified (G

′

G )− ex-
pansion method. Substituting (40) into (13) yields

ψ = 4

√
β

α(2− n)M

(
G′

G

)−1

+2λ

√
β

α(2− n)M
, (42)

where

ξ = x− t

√
k2 +

n2α

2M
. (43)

From (20) and (42), we deduce the following types of trav-
eling wave solutions of Eq.(36):
Family 1. If M > 0 and β

α < 0 then we have the hyper-
bolic solution

ψ = 2λ
√

β
α(2−n)M + 8

M

√
β

α(2−n)×[(
A cosh( 1

2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M) ξ)+B cosh( 1

2

√
M ξ)

)
− λ√

M

]−1

.

(44)
Family 2. If M < 0 and β

α > 0 then we have the trigono-
metric solution

ψ = 2λ
√

β
α(2−n)M − 8

M

√
β

α(n−2)×[(
−A sin( 1

2

√
−Mξ)+B cos( 1

2

√
−Mξ)

A cos( 1
2

√
−Mξ)+B sin( 1

2

√
−Mξ)

)
− λ√

−M

]−1

.

(45)
On substituting (44) and (45) into (38), we have the

traveling wave solutions of Eq. (36).
In particular, if B = 0, A ̸= 0, λ > 0, µ = 0, then we

obtain the solitary wave solutions of Eq.(36) as follows:

u =

{
2

√
β

α(2− n)
+

8

λ2

√
β

α(2− n)

[
coth

λ

2
ξ − 1

]−1
} 2

n

(46)
while if B ̸= 0, A2 > B2, λ > 0, µ = 0, then we have

u =

{√
β

α(2− n)

(
2 +

8

λ2

[
tanh(ξ0 +

1

2
λξ)− 1

]−1)} 2
n

(47)
where ξ0 = tanh−1(AB ). These solutions are completely

physical in the case β
α < 0 and k2 > −n2α

2λ2 .

3.2 Example 4. The nonlinear reaction- dif-
fusion equation

In this section we study the following nonlinear reaction-
diffusion equation [44]:

ut = (αup−1ux)x − βu+ γup, (48)

where u(x, t) describles a population density, α,β, γ are
constant coefficients with γ > 0 and p ̸= 1. The traveling
wave variable u(x, t) = u(ξ) and ξ = k(x − V t) permits
us converting Eq. (48) into the ODE:

kV u′+α2k2[(p−1)up−2u′2+up−1 u′′]−βu+γup = 0.
(49)
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Considering the homogeneous balance between the highest
order linear derivative u′ and the nonlinear term up−1 u′′

in (49), we get m = 1
1−p . According to step 3, we take the

transformation
u = [ψ( ξ)]

1
1−p , (50)

where ψ( ξ) is a new function of ξ. Substituting (50) into
(49), we obtain the new ODE

kV (1− p)ψ2ψ′ + α2k2
[
(2p− 1)ψ′2 + (1− p) ψψ′′]

−β(1− p)2ψ3 + γ(1− p)2ψ2 = 0.
(51)

Determining the balance number m of the new Eq.
(51), we get m = 1. Thus, the solutions of Eq. (51)
has the same form (13). Consequently, using the Maple or
Mathematica we get the following results:
Case 1.

α1 = γ

β
√
M
, α0 = γ

2β

[
λ√
M

+ 1
]
,

V = −βα
γ

√
−γ
p , k = (p−1)

α

√
−γ
pM , α−1 = 0.

(52)

Case 2.

α−1 = γµ

β
√
M
, α0 = γ

2β

[
λ√
M

+ 1
]
,

V = βα
γ

√
−γ
p , k = (p−1)

α

√
−γ
pM , α1 = 0,

(53)

where M = λ2 − 4µ > 0 and γ
p < 0.

We just list some exact solutions corresponding to case
1 to illustrate the effectiveness of the extended (G

′

G )− ex-
pansion method. Substituting (52) into (13) yields

ψ(ξ) =
γ

β
√
M

(
G′

G

)
+

γ

2β

[
λ√
M

+ 1

]
, (54)

where

ξ =
(p− 1)

α

√
−γ
pM

[
x+

βαt

γ

√
−γ
p

]
. (55)

From (20) and (54), we deduce for M > 0 that the hyper-
bolic solution has the form

ψ =
γ

2β

(
A cosh( 12

√
Mξ) +B sinh( 12

√
Mξ)

A sinh( 12
√
Mξ) +B cosh( 12

√
Mξ)

)
+

γ

2β

(56)
On substituting (56) into (50), we have the traveling wave
solution of Eq. (48). Note when M = λ2 − 4µ ≤ 0, the(

G′

G

)
- expansion method is no longer effective. This im-

plies that Eq.(48) has no such type solution. In particular,
if B = 0, A ̸= 0, λ > 0, µ = 0, then we get the solitary
wave solutions of Eq.(48) as follows:

u(ξ) =

{
γ

2β
[coth

λ

2
ξ + 1]

} 1
1−p

(57)

while if B ̸= 0, A2 > B2, λ > 0, µ = 0, then we have

u(ξ) =

{
γ

2β

[
tanh(ξ0 +

1

2
λξ) + 1

]} 1
1−p

(58)

where ξ0 = tanh−1(AB ). These solutions are completely
physical in the case γ

β > 0 and γ
p < 0.

3.3 Example 5. The nonlinear modified
Burgers equation

In this section we study the following nonlinear modified
Burgers equation [45]:

ut + u2ux + αuxx = 0, (59)

where α is a positive constant.
The modified Burgers equation (MBE) is also called

the nonlinear advection–diffusion equation. It retains the
strong nonlinear aspects of the governing equation in many
practical transport problems such as nonlinear waves in a
medium with low-frequency pumping or absorption, ion
reflection at quasi-perpendicular shocks, turbulence trans-
port, wave processes in thermo-elastic medium, transport
and dispersion of pollutants in rivers and sediment trans-
port. The traveling wave variable u(x, t) = u(ξ) and
ξ = k(x − V t) permits us converting Eq. (59) into the
ODE in the form:

−V u′ + u2u′ + αku′′ = 0. (60)

Considering the homogeneous balance between the high-
est order linear derivative u′′ and the nonlinear term u2 u′

in (60), we get m = 1
2 . According to step 3, we take the

transformation
u = [ψ( ξ)]

1
2 , (61)

where ψ( ξ) is a new function of ξ. Substituting (61) into
(60), we obtain the new ODE

−2V ψψ′ + 2ψ2ψ′ + 2αkψψ′′ − αkψ′2 = 0. (62)

Determining the balance number m of the new Eq. (62),
we get m = 1. Thus, the solution of Eq. (62) has the same
form (13). Consequently, using the Maple or Mathematica
we get the following results:
Case 1.

α−1 = − 3
2 αµk, α0 = 3

4 αk
[
−λ±

√
M
]
,

V = ∓αk
2

√
M ,α1 = 0.

(63)

Case 2.

α1 = 3
2 αk, α0 = 3

4 αk
[
λ±

√
M
]
,

V = ±αk
2

√
M, α−1 = 0.

(64)

where M = λ2 − 4µ > 0.
We just list some exact solutions corresponding to case

1 to illustrate the effectiveness of the extended (G
′

G )− ex-
pansion method. Substituting (63) into (13) yields

ψ(ξ) = − 3

2
αµk

(
G′

G

)−1

+
3

4
αk
[
−λ±

√
M
]
, (65)

where

ξ = k

[
x± αkt

2

√
M

]
. (66)
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From (20) and (65) we deduce for M > 0, that the hyper-
bolic solution has the form

ψ = 3
4 αk

[
−λ±

√
M
]
− 3αµk√

M
×[(

A cosh( 1
2

√
M ξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
M ξ)+B cosh( 1

2

√
M ξ)

)
− λ√

M

]−1

,
(67)

On submitting (67) into (61), we have the traveling wave
solutions of Eq. (59). Note when M = λ2 − 4µ ≤ 0,

the
(

G′

G

)
- expansion method is no longer effective. This

implies that Eq.(59) has no such type solution.

3.4 Example 6. The nonlinear Eckhaus e-
quation

In this section we study the nonlinear Eckhaus equation [2,
5, 6, 43] which takes the following form:

i ut+uxx+2u (|u|2)x+ |u|4 u = 0, i =
√
−1 . (68)

This equation is of nonlinear Schrodinger type. Eq. (68)
was found in [5] as an asymptotic multiscale reduction of
certain classes of nonlinear partial differential equations. In
[6], many of the properties of the Eckhaus equation were
investigated. The traveling wave variable

u(x, t) = U(ξ)ei(αx+β)t, ξ = k(x− 2αt), (69)

permits us converting Eq. (68) into the ODE:

−(β + α2)U + k2U ′′ + 4kU2U ′ + U5 = 0. (70)

where α, β, k are constants.
Considering the homogeneous balance between the

highest order linear derivative U ′′ and the nonlinear term
U2U ′ in (70), we get m = 1

2 . According to step 3, we take
the transformation

U = [ψ( ξ)]
1
2 . (71)

where ψ( ξ) is a new function of ξ . Substituting (71) into
(70), we obtain the new ODE

2k2 ψψ′′ − k2ψ′2 − 4(β + α2)ψ2 + 8kψ2ψ′ + 4ψ4 = 0.
(72)

Determining the value of m in the new Eq. (72), we get
m = 1. Thus, the solutions of Eq. (72) has the same form
(13). Consequently, using the Maple or Mathematica we
get the following results:
Case 1.

α−1 = − 1
2 µk, α0 = k

4

[
−λ±

√
M
]
,

β = 1
4 [k2M − 4α2], α1 = 0 ,

(73)

Case 2.

α1 = 1
2 k, α0 = k

4

[
λ±

√
M
]
,

β = 1
4 [k2M − 4α2], α−1 = 0 ,

(74)

where M = λ2 − 4µ > 0.

We just list some exact solutions corresponding to case
1 to illustrate the effectiveness of the extended (G

′

G )− ex-
pansion method. Substituting (73) into (13) yields

ψ(ξ) = − 1

2
µk

(
G′

G

)−1

+
k

4

[
−λ±

√
M
]
. (75)

From (20) and (75) we deduce for M > 0 that the hyper-
bolic solution has the form

U =
{
− µk√

M

[(
A cosh( 1

2

√
Mξ)+B sinh( 1

2

√
M ξ)

A sinh( 1
2

√
Mξ)+B cosh( 1

2

√
Mξ)

)
−

λ√
M

]−1

− k
4 (−λ±

√
M)

} 1
2

,

(76)
while if M = λ2 − 4µ = 0, then we have the rational

solution

U(ξ) =

[
− 1

8
λ2k

(
B

Bξ +A
− λ

2

)−1

− kλ

4

] 1
2

(77)

On substituting (76) and (77) into (69), we have the
traveling wave solutions of Eq. (68). Note that (77) is
completely physical if

[
B

Bξ+A − λ
2

]
> − 2

λ , λ > 0, k > 0

and µ ≥ 1.

4 Conclusion
In this work, the modified (G′/G)- expansion method
has been successfully applied to find exact solutions of
some nonlinear PDEs, via the Klein-Gordon equations, the
reaction-diffusion equation, the modified Burgers equation
and the Eckhaus equation. We have shown that this method
is direct,concise and effective, and can be applied to other
nonlinear PDEs in the mathematical physics. The ansatz
proposed in this paper is more general than the ansatz pro-
posed in Wang et al [26]. If we set the parameters in the
proposed method to special values, Wang et al method
can be recovered by this method. Therefore, our method
is more powerful than Wang et al’s method.
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