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Abstract: The theory of maximal set-valued monotone mappings provide a powerful framework to the
study of convex programming and variational inequalities. Based on the notion of relatively maximal
relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed,
while generalizing most of investigations on weak convergence using the proximal point algorithm in a
real Hilbert space setting. A well-known method of multipliers of constrained convex programming is a
special case of the proximal point algorithm. The obtained results can be used to generalize the Yosida
approximation, which, in turn, can be applied to generalize first-order evolution equations to the case
of evolution inclusions. Furthermore, we observe that the Douglas-Rachford splitting method for finding
the zero of the sum of two monotone operators is a specialization of the proximal point algorithm as well.
This allows a further generalization and unification of a wide range of convex programming algorithms.

Key–Words: Variational inclusion problems; Relatively maximal relaxed monotone mapping; Generalized
resolvent

1 Introduction

Let X be a real Hilbert space with the inner prod-
uct ⟨·, ·⟩ and with the norm ∥·∥ on X.We consider
the variational inclusion problem: find a solution
to

0 ∈M(x), (1)

where M : X → 2X is a set-valued mapping on
X.

In [16, Theorem 1], Rockafellar investigated
the general weak convergence using the proximal
point algorithm to the context of solving (1), by
showing for M maximal monotone, that the se-
quence {xk} generated for an initial point x0 by
the proximal point algorithm

xk+1 ≈ Pk(x
k) (2)

converges weakly to a solution of (1), provided
the approximation is sufficiently accurate as the
iteration proceeds, where Pk = (I + ckM)−1 is
the classical resolvent of M for a sequence {ck}
of positive real numbers, that is bounded away
from zero. We observe from (2) that xk+1 is an
approximate solution to the variational inclusion

problem: determine a solution to

0 ∈M(x) + c−1
k (x− xk). (3)

Next, we recall the theorem of Rockafellar[16,
Theorem 1], where the strong monotonicity of M
is avoided to achieve a more application-enhanced
convergence analysis to the context of convex pro-
gramming.

Theorem 1 Let X be a real Hilbert space, and
let M : X → 2X be maximal monotone. For an
arbitrarily chosen initial point x0, let the sequence
{xk} be generated by the proximal point algorithm

xk+1 ≈ Pk(x
k) (4)

such that

∥xk+1 − Pk(x
k)∥ ≤ ϵk,

where Pk = (I+ ckM)−1 and the scalar sequences
{ϵk} and {ck}, respectively satisfy Σ∞

k=0ϵk < ∞
and {ck} is bounded away from zero. Then the
sequence {xk} converges weakly to x∗, a unique
solution to (1).
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On the other hand, Xu [20] modified the prox-
imal point algorithm considered by Rockafellar
[16] into form: choose arbitrarily an initial point
x0 ∈ C such that

xn+1 = αnx
0 + (1− αn)R

M
ρn(x

n) + en

where C is a closed convex subset of X, αn ∈
[0,1] and {en} is the sequence of errors such that
Σn∥en∥ < ∞. Then Xu [20] showed the strong
convergence of the algorithm under suitable con-
ditions. It turned out that this algorithm was
better than considered by Solodov and Svaiter
[4]. More recently, Boikanyo and Morosanu [3]
observed that the algorithm in [20] requires that
the error sequence must be summable, which is
way too strong from computational point of view.
They constructed a suitable algorithm as follows:

xn+1 = (1− αn)fn(x
n) + αnR

M
ρn(x

n) + en,

where fn : C → C is sequence of nonexpansive
mappings, and RM

ρn = (I+ρnM)−1 for ρn > 0. As
a matter of fact, this algorithm is a relaxed version
of the proximal point algorithm and its variants.
Furthermore, they also presented a different form

xn+1 = (1− αn)fn(x
n) + αnR

M
ρn(u) + en,

where u is any point of X (not necessarily the
starting point x0 of the proximal point algorithm).

Eckstein and Bertsekas [14] relaxed the prox-
imal point algorithm applied in [16], widely cit-
ed in literature, and examined the approximation
solvability of (1). They further applied the ob-
tained results to the Douglas-Rachford splitting
method for finding the zero of the sum of two
monotone mappings, while this turned out to be
a specialized case of the proximal point algorith-
m. Note that most of the variational problems,
including minimization or maximization of func-
tions, variational inequality problems, quasivaria-
tional inequality problems, decision and manage-
ment sciences, and engineering sciences problems
can be unified into form (1), and the notion of
the general maximal monotonicity has played a
crucially significant role by providing a powerful
framework to develop and use suitable proximal
point algorithms in exploring and further study-
ing convex programming as well as variational in-
equalities. For more details, we recommend the
reader [1]–[22].

In this communication, we examine the ap-
proximation solvability of variational inclusion
problem (1) by introducing the notion of rela-
tively maximal relaxed monotone mappings, and

derive some significant results involving relative-
ly maximal relaxed monotone mappings [2] to
that setting. The notion of the relatively max-
imal relaxed monotonicity is based on the notion
of A−maximal relaxed monotonicity [1] and its
variants introduced and studied in [6]–[13] and is
more general than the usual maximal monotonic-
ity, especially it could not be achieved to that
context, but it seems to be application-oriented.
More details on relaxed and hybrid proximal point
algorithms can be found in [1]–[5], [8]–[14], [16]–
[18],[21, 22]. We present a generalization to a well-
cited work (in literature) of Eckstein and Bert-
sekas [14, Theorem 3] to the case of relatively
maximal (m)−relaxed monotone mappings with
some specializations, while the obtained results
generalize the result of Agarwal and Verma [2]. In
a way it seems interesting that we observe that our
findings do not reduce to existing results in trivial
sense unless there is a real shift from the maximal
relaxed monotonicity (with respect to mapping A)
to maximal monotonicity. We note that our main
results, Theorem3.2 and Theorem 3.3 on the ap-
proximation solvability of (1) differ significantly
from that of [14, Theorem 3] in the sense that M
is without the monotonicity assumptions, while
the relative maximal (m)−relaxed monotonicity
(and relative maximal monotonicity) is applied in-
stead of just the maximal monotonicity. However,
the construction of Theorem 3.2 collapses when
A = I, but Theorem3.3 still holds for A = I
and reduces to the case of the maximal mono-
tonicity results in [14, Theorem 3]. There exists a
tremendous amount of research work on new de-
velopments and further applications of proximal
point algorithms in literature to approximating
solutions of variational inclusion problem of the
form (1) in different space settings, especially in
Hilbert as well as Banach space settings.

2 Preliminaries

In this section, first we introduce the notion of the
relatively maximal relaxed monotonicity and then
we derive some basic properties along with some
auxiliary results for the problem on hand. Let
X be a real Hilbert space with the inner product
⟨·, ·⟩ and with the norm ∥ · ∥ on X.

Definition 2 Let X be a real Hilbert space. Let
M : X → 2X be a set-valued mapping, and A :
X → X be a single-valued mapping on X. The
map M is said to be:
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(i) Monotone if

⟨u∗−v∗, u−v⟩ ≥ 0∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) Strictly monotone if M is monotone and e-
quality holds only if u=v.

(iii) Strongly monotone if there exists a positive
constant r such that

⟨u∗ − v∗, u− v⟩ ≥ r∥u− v∥2

∀ (u, u∗), (v, v∗) ∈ graph(M).

(iv) Strongly expansive if there exists a positive
constant r such that

∥u∗−v∗∥ ≥ r∥u−v∥ ∀ (u, u∗), (v, v∗) ∈ graph(M).

(v) Relaxed monotone if there exists a positive
constant m such that

⟨u∗ − v∗, u− v⟩ ≥ −m∥u− v∥2

∀ (u, u∗), (v, v∗) ∈ graph(M).

(vi) Cocoercive if there exists a positive constant
c such that

⟨u∗ − v∗, u− v⟩ ≥ c∥u∗ − v∗∥2

∀ (u, u∗), (v, v∗) ∈ graph(M).

(vii) Monotone with respect to A if

⟨u∗ − v∗, A(u)−A(v)⟩ ≥ 0

∀ (u, u∗), (v, v∗) ∈ graph(M).

(viii) Strictly monotone with respect to A if M is
monotone with respect to A and equality holds
only if u=v.

ix) Strongly monotone with respect to A if there
exists a positive constant r such that

⟨u∗ − v∗, A(u)−A(v)⟩ ≥ r∥u− v∥2

∀ (u, u∗), (v, v∗) ∈ graph(M).

(x) Relaxed monotone with respect to A if there
exists a positive constant m such that

⟨u∗ − v∗, A(u)−A(v)⟩ ≥ −m∥u− v∥2

∀ (u, u∗), (v, v∗) ∈ graph(M).

(xi) Cocoercive with respect to A if there exists a
positive constant c such that

⟨u∗ − v∗, A(u)−A(v)⟩ ≥ c∥u∗ − v∗∥2

∀ (u, u∗), (v, v∗) ∈ graph(M).

Definition 3 Let X be a real Hilbert space. Let
M : X → 2X be a set-valued mapping on X. The
map M is said to be:

(i) Nonexapansive if

∥u∗ − v∗∥ ≤ ∥u− v∥

∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) Lipschitz continuous if there is a positive con-
stant s such that

∥u∗ − v∗∥ ≤ s∥u− v∥

∀ (u, u∗), (v, v∗) ∈ graph(M).

Definition 4 Let X be a real Hilbert space. Let
M : X → 2X be a set-valued mapping, and
A : X → X be a single-valued mapping on X.
The map M is said to be relatively maximal re-
laxed monotone (with respect to A) with a positive
constant m if

(i) M is relatively relaxed monotone (with re-
spect to A) with a constant m, that is,

⟨u∗ − v∗, A(u)−A(v)⟩ ≥ −m∥u− v∥2

∀ (u, u∗), (v, v∗) ∈ graph(M),

(ii) R(I + ρM) = X for ρ > 0.

Definition 5 Let X be a real Hilbert space. Let
M : X → 2X be a set-valued mapping, and A :
X → X be a single-valued mapping on X. The
map M is said to be relatively maximal monotone
(with respect to A) if

(i) M is relatively monotone (with respect to A),
that is,

⟨u∗ − v∗, A(u)−A(v)⟩ ≥ 0

∀ (u, u∗), (v, v∗) ∈ graph(M),

(ii) R(I + ρM) = X for ρ > 0.
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Definition 6 Let X be a real Hilbert space. Let
M : X → 2X be a set-valued mapping, and
A : X → X be a single-valued mapping on X.
Suppose that map M is relatively maximal relaxed
monotone (with respect to A) with a positive con-
stant m. Then the resolvent RM

ρ,m,A : X → X is
defined by

RM
ρ,m,A(u) = (I + ρM)−1(u) for r − ρm > 0.

Proposition 7 Let X be a real Hilbert space.
Let M : X → 2X be a relatively maximal re-
laxed monotone set-valued mapping with a con-
stant m > 0, and let A : X → X be a strong-
ly monotone single-valued mapping on X with
a constant r > 0. Then the generalized resol-
vent RM

ρ,m,A = (I + ρM)−1 is single-valued for
r − ρm > 0.

Proof: The proof follows from the definition of
the generalized resolvent. For any z ∈ X, consider
x, y ∈ (I + ρM)−1(z). Then

−x+ z ∈ ρM(x) and − y + z ∈ ρM(y).

SinceM is relatively maximal (m)−relaxed mono-
tone for m > 0, it implies

−ρm∥x−y∥2 ≤ −⟨x−y,A(x)−A(y)⟩ ≤ −r∥x−y∥2

⇒ (r − ρm)∥x− y∥2 ≤ 0

⇒ x = y for r − ρm > 0.

Definition 8 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal monotone
set-valued mapping, and let A : X → X be strong-
ly monotone with a constant r > 0. Then the gen-
eralized resolvent is defined by

RM
ρ,A(u) = (I + ρM)−1(u) for r > 0.

Proposition 9 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal monotone
set-valued mapping, and let A : X → X be a
strongly monotone single-valued mapping on X
with a constant r > 0. Then the generalized re-
solvent RM

ρ,A = (I + ρM)−1 is single-valued for
r > 0.

Proof: The proof follows from the definition of
the generalized resolvent.

Definition 10 Let X be a real Hilbert space. A
mapM : X → 2X is said to be maximal monotone
if

(i) M is monotone, i.e.,

⟨u∗−v∗, u−v⟩ ≥ 0∀ (u, u∗), (v, v∗) ∈ graph(M),

(ii) (I + ρM) = X for ρ > 0.

Furthermore, the classical resolvent JM
ρ is defined

by
RM

ρ (u) = (I + ρM)−1(u).

Next, we include the following examples on
the relative monotonicity.

Example 11 Let X = (−∞,+∞), A(x) = −1
2x

and M(x) = −x for all x ∈ X. Then M is rela-
tively monotone, but not monotone.

Example 12 Let X be a real Hilbert space. Let
M : X → 2X be a maximal monotone mapping.
Suppose thatMρ = ρ−1(I−RM

ρ ) denotes the Yosi-

da approximation of M , where RM
ρ is the classical

resolvent defined by

RM
ρ (u) = (I + ρM)−1(u).

Then, for any u, v ∈ X, we have

⟨Mρ(u)−Mρ(v), R
M
ρ (u)−RM

ρ (v)⟩ ≥ 0.

Therefore, Mρ is relatively monotone with respect
to RM

ρ .

Lemma 13 Let X be a real Hilbert space. Let
M : X → 2X be a set-valued mapping, and let
A : X → X be a strongly monotone mapping with
a constant r > 0. Then the following implications
hold:

(a) M is relatively (m)−relaxed monotone iff its
resolvent RM

ρ,m,A is (r)−cocoercive.

(b) M is relatively maximal relaxed monotone if-
f its resolvent RM

ρ,m,A is (r)−cocoercive and

dom(RM
ρ,m,A) = X.

Proof: To prove (a), we use the definition of
the scaling, addition and inversion operations as
follows:

(x, y) ∈M ⇔ (x+ ρy, x) ∈ (I + ρM)−1.

As a result, ∀(x, y), (x′, y′) ∈ M , we begin with
(for r − ρm > 0)

M is relatively (m)− relaxedmonotone

⇔ ⟨A(x′)−A(x), y′ − y⟩ ≥ −m∥x′ − x∥2

⇔ ⟨A(x′)−A(x), ρy′ − ρy⟩ ≥ −ρm∥x′ − x∥2
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⇔ ⟨A(x′)−A(x), x′ − x+ ρy′ − ρy⟩
≥ ⟨A(x′)−A(x), x′ − x⟩ − ρm∥x′ − x∥2

⇔ ⟨x′ + ρy′ − (x+ ρy), A(x′)−A(x)⟩
≥ (r − ρm)∥x′ − x∥2

⇔ (I + ρM)−1 is

(r − ρm)− cocoercive relative toA.

Based on Lemma 13, we present the General-
ized Representation Lemma as follows:

Lemma 14 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal (m)−relaxed
monotone set-valued mapping for m > 0, and let
A : X → X be a strongly monotone mapping with
a constant r > 0. Then every element z ∈ X can
be represented exactly one way as x + ρy = z for
ρ > 0 and y ∈M(x).

Proof: The follows from Lemma 13.

3 New Generalization to Linear
Convergence

This section deals with the significant generaliza-
tions to Rockafellar’s theorem [16, Theorem 1],
to the result of Eckstein and Bertsekas [14, The-
orem 3], and to the result of Agarwal and Verma
[2, Theorem 3.2] in light of the new framework of
the relative maximal (m)−relaxed monotonicity.
We will give some lemmas for further use.

Lemma 15 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal (m)−relaxed
monotone set-valued mapping for m > 0, and let
A : X → X be a strongly monotone mapping with
a constant r > 0. Furthermore, suppose that (I −
A)oRM

ρ,m,A is (λ)−cocoercive with a constant λ >

0. Then the generalized resolvent RM
ρ,m,A : X →

X, defined by

RM
ρ,m,A(u) = (I + ρM)−1(u) for r − ρm > 0,

satisfies the inequality

⟨RM
ρ,m,A(u)−RM

ρ,m,A(v), u− v⟩

≥ (r − ρm)∥RM
ρ,m,A(u)−RM

ρ,m,A(v)∥2

where r − ρm > 0.

Proof: Using the definition of the generalized
resolvent in conjunction with other hypotheses,
we have

⟨u− v,A(RM
ρ,m,A(u))−A(RM

ρ,m,A(v))⟩

≥ ⟨A(RM
ρ,m,A(u))−A(RM

ρ,m,A(v))

, RM
ρ,m,A(u)−RM

ρ,m,A(v)⟩

−ρm∥RM
ρ,m,A(u)−RM

ρ,m,A(v)∥2

≥ (r − ρm)∥RM
ρ,m,A(u)−RM

ρ,m,A(v)∥2.

Thus, we have

⟨u− v,A(RM
ρ,m,A(u))−A(RM

ρ,m,A(v))⟩

≥ (r − ρm)∥RM
ρ,m,A(u)−RM

ρ,m,A(v)∥2,

where r−ρm > 0. Based on the above inequality,
we derive (for (r − ρm) > 0)

⟨u− v,RM
ρ,m,A(u)−RM

ρ,m,A(v)⟩

≥ (r − ρm)∥RM
ρ,m,A(u)−RM

ρ,m,A(v)∥2

+λ∥(I −A)oRM
ρ,m,A(u)− (I −A)oRM

ρ,m,A(v)∥2

≥ (r − ρm)∥RM
ρ,m,A(u)−RM

ρ,m,A(v)∥2.

Lemma 16 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal monotone
set-valued mapping for m > 0, and let A : X → X
be a strongly monotone mapping with a constant
r > 0. Furthermore, suppose that (I −A)oRM

ρ,A is

(λ)−cocoercive with a constant λ > 0. Then the
generalized resolvent RM

ρ,A : X → X, defined by

RM
ρ,A(u) = (I + ρM)−1(u) for ρ > 0,

satisfies the inequality

⟨RM
ρ,A(u)−RM

ρ,A(v), u− v⟩

≥ r∥RM
ρ,A(u)−RM

ρ,A(v)∥2.

Theorem 17 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal (m)−relaxed
monotone set-valued mapping for m > 0, and let
A : X → X be a strongly monotone mapping with
a constant r > 0. Furthermore, suppose that (I −
A)oRM

ρ,m,A is (λ)−cocoercive with a constant λ >
0. Then the following statements are mutually
equivalent:

(i) An element u ∈ X is a solution to (1).

(ii) For an u ∈ X, we have

u = RM
ρ,m,A(u),

where RM
ρ,m,A(u) = (I+ρM)−1(u) for r−ρm > 0.
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Proof: The proof follows applying the definition
of the generalized resolvent corresponding to M.

Theorem 18 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal (m)−relaxed
monotone set-valued mapping for m > 0, and
let A : X → X be a strongly monotone map-
ping (with a constant r > 0) and weakly continu-
ous. Furthermore, suppose that (I−A)oRM

ρk,m,A is

(λ)−cocoercive with a constant λ > 1. For an ar-
bitrarily chosen initial point x0, suppose that the
sequence {xk} is generated by the proximal point
algorithm

xk+1 = (1− αk)x
k + αky

k ∀k ≥ 0 (5)

such that

∥yk − JM
ρk,m,A(x

k)∥ ≤ ϵk, (6)

where {αk}, {ϵk}, {ρk} ⊆ [0,∞) are scalar se-
quences with e1 = Σ∞

k=0ϵk < ∞, a1 = inf αk > 0,
a2 = supαk < 2, ρ = inf ρk. Suppose that the se-
quence {xk} is bounded in the sense that there
exists at least one solution to (1). Then, for
Jk = I −RM

ρk,m,A, we have

⟨Jk(u)− Jk(v), u− v⟩
≥ ∥Jk(u)− Jk(v)∥2

+ (r − ρkm− 1)∥RM
ρk,m,A(u)−RM

ρk,m,A(v)∥2,

where r − ρkm > 1 and the sequence {xk} con-
verges weakly to a solution of (1) for

e1 = Σ∞
k=0ϵk <∞, a1 = inf αk > 0,

a2 = supαk < 2, ρ = inf ρk.

Proof: We start off the proof as follows: using
Lemma 15, for u, v ∈ X, we have

⟨Jk(u)− Jk(v), u− v⟩
= ⟨Jk(u)− Jk(v), Jk(u)− Jk(v)

+ RM
ρk,m,A(u)−RM

ρk,m,A(v)⟩
= ∥Jk(u)− Jk(v)∥2

+ ⟨RM
ρk,m,A(u)−RM

ρk,m,A(v), u− v⟩
− ∥RM

ρk,m,A(u)−RM
ρk,m,A(v)∥2

≥ ∥Jk(u)− Jk(v)∥2 + (r − ρkm)

. ∥RM
ρk,m,A(u)−RM

ρk,m,A(v)∥2

− ∥RM
ρk,m,A(u)−RM

ρk,m,A(v)∥2

= ∥Jk(u)− Jk(v)∥2 + (r − ρkm− 1)

. ∥RM
ρk,m,A(u)−RM

ρk,m,A(v)∥2,

where r − ρkm > 1.
Suppose that x∗ is a zero of M . Note that

any zero of M is a fixed point of RM
ρk,m,A, so by

Theorem 17, Jk(x
∗) = 0 for all k. We define for

all k

zk+1 = (1− αk)x
k + αkR

M
ρk,m,A(x

k)

= (I − αkJk)(x
k).

Next, we estimate using the above formulation

∥zk+1 − x∗∥2

= ∥xk − x∗ − αk(Jk(x
k)− Jk(x

∗))∥2

= ∥xk − x∗∥2 − 2αk⟨xk − x∗, Jk(x
k)− Jk(x

∗)⟩
+ α2

k∥Jk(xk)− Jk(x
∗)∥2

≤ ∥xk − x∗∥2 − 2αk[∥Jk(xk)− Jk(x
∗)∥2

+ (r − ρkm− 1)∥RM
ρk,m,A(u)−RM

ρk,m,A(v)∥2]
+ α2

k∥Jk(xk)− Jk(x
∗)∥2

≤ ∥xk − x∗∥2 − 2αk[∥Jk(xk)− Jk(x
∗)∥2

+ α2
k∥Jk(xk)− Jk(x

∗)∥2

= ∥xk − x∗∥2 − αk(2− αk)∥Jk(xk)− Jk(x
∗)∥2

≤ ∥xk − x∗∥2 − a1(2− a2)∥Jk(xk)− Jk(x
∗)∥2.

Since a1(2− a2) > 0, it follows that

∥zk+1 − x∗∥ ≤ ∥xk − x∗∥,

while
∥xk+1 − zk+1∥ ≤ αkϵk.

It follows from the above arguments that

∥xk+1 − x∗∥ = ∥xk+1 − zk+1 + zk+1 − x∗∥
≤ αkϵk + ∥xk − x∗∥.

Combining the inequality for all k, we have

∥xk+1 − x∗∥ ≤ ∥x0 − x∗∥+Σk
i=0αiϵi ∀ i

≤ ∥x0 − x∗∥+ 2e1. (7)

Hence, the sequence {xk} is bounded.
Now we turn our attention to establish the

weak convergence. Since

∥xk+1 − x∗∥2 = ∥zk+1 − x∗ + xk+1 − zk+1∥2

= ∥zk+1 − x∗∥2 + ∥xk+1 − zk+1∥2

+ 2⟨zk+1 − x∗, xk+1 − zk+1⟩
≤ ∥zk+1 − x∗∥2 + ∥xk+1 − zk+1∥2

+ 2∥zk+1 − x∗∥∥xk+1 − zk+1∥
≤ ∥xk − x∗∥2 − a1(2− a2)∥Jk(xk)− Jk(x

∗)∥2

+ 2αkϵk[∥x0 − x∗∥+ 2e1]

+ α2
kϵ

2
k
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and the summability of the sequence {ϵk} implies
the summability of the sequence {ϵ2k} (and hence,
e2 = Σ∞

k=0ϵ
2
k <∞), we have (for all k)

∥xk+1 − x∗∥2

≤ ∥x0 − x∗∥2 − a1(2− a2)Σ
k
k=0∥Jk(xk)− Jk(x

∗)∥2

+ 4e1[∥x0 − x∗∥+ 2e1] + 4e2.

Now, as k → ∞, we have

Σk
i=0∥Jk(xk)− Jk(x

∗)∥2 <∞

and hence,
lim
k→∞

Jk(x
k) = 0.

At this stage of the proof, by Lemma 14, Gener-
alized Representation Property, there exists a u-
nique element (uk, vk) ∈M such that uk+ρkv

k =
xk for all k. Since uk = RM

ρk,m,A(x
k) and

xk − uk = xk −RM
ρk,m,A(x

k) → 0,

this, in turn, implies

vk = ρ−1
k (xk − uk) → 0,

where ρk is bounded away from zero. On the other
hand, since the sequence {xk} is bounded, it must

have a weak cluster point, say x′. Let {xk(j)} be a

subsequence of {xk} such that xk(j) → x′ weakly.
Let us consider a point (u, v) ∈ M .

Then in conjunction with the relative maximal
(m)−relaxed monotonicity of M with a positive
constantm and the weak continuity of A, we have

⟨A(u)−A(uk), v − vk⟩ ≥ −m∥u− uk∥2.

It follows that

⟨A(u)−A(xk(j)), v − vk⟩ ≥ −m∥u− xk(j)∥2,

or

⟨A(u)−A(x′), v − 0⟩ ≥ −m∥u− x′)∥2.

Therefore, 0 ∈ M(x′). Thus, x′ is a solution to
(1).

Finally, all we need is to show the uniqueness
of the weak cluster point {xk}. Assume that x∗

is a zero of M. Then using

∥xk − x∗∥ ≤ ∥x0 − x∗∥+ 2e1 ∀ k,

we have

a∗ = lim
k→∞

inf ∥xk − x∗∥,

which is finite and nonnegative, and it follows

∥xk − x∗∥ → a∗.

Now consider any two weak cluster points x∗1 and
x∗2 of {xk}. Then it follows in light of the above
argument that both are zeros of M , and hence

a∗1 = lim inf
k→∞

∥xk − x∗1∥ and a∗2 = lim inf
k→∞

∥xk − x∗2∥

and both exist and are finite. If we express

∥xk − x∗2∥2 = ∥xk − x∗1∥2

+ 2⟨xk − x∗1, x
∗
1 − x∗2⟩

+ ∥x∗1 − x∗2∥2,

then it follows that

lim
k→∞

⟨xk − x∗1, x
∗
1 − x∗2⟩

=
1

2
[a22 − a21 − ∥x∗1 − x∗2∥2].

Since x∗1 is a limit point of {xk}, the left hand side
limit tends to zero. Therefore,

a21 = a22 − ∥x∗1 − x∗2∥2.

Similarly, we obtain

a22 = a21 − ∥x∗1 − x∗2∥2.

Thus, we conclude that x∗1 = x∗2. �
Next, we observe that Theorem 18, reduces

to the following result on the relative maximal
monotonicity ([2], Theorem 3.2), which happens
to generalize a significant result [14, Theorem 3]
as well in literature.

Theorem 19 Let X be a real Hilbert space. Let
M : X → 2X be a relatively maximal mono-
tone set-valued mapping, and let A : X → X
be a strongly monotone mapping (with a constant
r > 0) and weakly continuous. We further sup-
pose that (I − A)oRM

ρk,A
is (λ)−cocoercive with a

constant λ > 1. For an arbitrarily chosen initial
point x0, suppose that the sequence {xk} is gen-
erated by the proximal point algorithm

xk+1 = (1− αk)x
k + αky

k ∀k ≥ 0 (8)

such that

∥yk −RM
ρk,A

(xk)∥ ≤ ϵk, (9)

where {αk}, {ϵk}, {ρk} ⊆ [0.∞) are scalar se-
quences with e1 = Σ∞

k=0ϵk < ∞, a1 = inf αk > 0,
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a2 = supαk < 2, ρ = inf ρk. Suppose that the se-
quence {xk} is bounded in the sense that there
exists at least one solution to (1). Then, for
Jk = I −RM

ρk,A
, we have

⟨Jk(u)− Jk(v), u− v⟩
≥ ∥Jk(u)− Jk(v)∥2

+ (r − 1)∥RM
ρk,A

(u)−RM
ρk,A

(v)∥2,

where r > 1 and the sequence {xk} converges
weakly to a solution of (1) for

e1 = Σ∞
k=0ϵk <∞, a1 = inf αk > 0,

a2 = supαk < 2, ρ = inf ρk.

4 Some Observations

Under the assumptions of Theorem 18, we observe
the following implications:

(a) The resolvent RM
ρk,m,A is (r −

ρkm)−cocoercive, i.e.,

⟨RM
ρk,m,A(u)−RM

ρk,m,A(v), u− v⟩

≥ (r − ρkm)∥RM
ρk,m,A(u)−RM

ρk,m,A(v)∥2

where r − ρkm > 0.

(b) Any relatively (m)−relaxed monotone map-
ping M is relatively maximal (m)−relaxed
monotone if R(I + ρM) = X for ρ > 0.

(c) For Jk = I −RM
ρk,m,A, we have

⟨Jk(u)− Jk(v), u− v⟩ ≥ ∥Jk(u)− Jk(v)∥2,

for r − ρkm− 1 > 0.

(d) A mapping M is relatively maximal re-
laxed monotone if RM

ρk,m,A is cocoercive and

D(RM
ρk,m,A) = X.

We further remark that our results hold
for relatively maximal (m)−relaxed monotone
and relatively maximal monotone mappings,
while these results do not hold for maximal
(m)−relaxed monotone mappings since the rel-
ative (m)−relaxed monotonicity may not imply
the (m)−relaxed monotonicity, especially the con-
stant term r−ρkm > 1 in Theorem 18 changes to
1 − ρkm < 1 instead when A = I. On the other
hand, Theorem 19 on the relative maximal mono-
tonicity seems to be compatible with the of the
maximal monotonicity in the sense that it reduces
to the following result of Eckstein and Bertsekas
[14] for A = I.

Theorem 20 Let X be a real Hilbert space. Let
M : X → 2X be a maximal monotone set-valued
mapping. For an arbitrarily chosen initial point
x0, suppose that the sequence {xk} is generated by
the proximal point algorithm

xk+1 = (1− αk)x
k + αky

k ∀k ≥ 0 (10)

such that
∥yk − JM

ρk
(xk)∥ ≤ ϵk, (11)

where {αk}, {ϵk}, {ρk} ⊆ [0,∞) are scalar se-
quences with e1 = Σ∞

k=0ϵk < ∞, a1 = inf αk > 0,
a2 = supαk < 2, ρ = inf ρk. Suppose that the se-
quence {xk} is bounded in the sense that there
exists at least one solution to (1). Then, for
Jk = I −RM

ρk
, we have

⟨Jk(u)− Jk(v), u− v⟩
≥ ∥Jk(u)− Jk(v)∥2,

where the sequence {xk} converges weakly to a so-
lution of (1) for

e1 = Σ∞
k=0ϵk <∞, a1 = inf αk > 0,

a2 = supαk < 2, ρ = inf ρk.

5 Douglas–Rachford Splitting
Methods

This section is devoted to the Douglas-Rachford
splitting method by choosing relatively maximal
(m)−relaxed monotone mappings S and T with
corresponding resolvents (for ρ > 0)

RS
ρ,m,A = (I + ρS)−1 andRT

ρ,m,A = (I + ρT )−1

for S and T , respectively. Eckstein and Bert-
sekas [14] studied the Douglas-Rachford splitting
of maximal monotone mapping M in a Hilbert s-
pace setting. We generalize this splitting to the
case of the map M without the monotonicity as-
sumptions. Let us consider two relatively max-
imal (m)−relaxed monotone mappings S and T
such that M = S + T with generalized resolvents
RS

ρ,m,A and RT
ρ,m,A corresponding to S and T , re-

spectively. Suppose that the following recursion
relating to the sequence {zk} holds:

zk+1 = RS
ρ,m,A((2R

T
ρ,m,A − I)(zk))

+(I −RT
ρ,m,A)(z

k).
(12)

Based on recurrence relation (12), suppose
that(xk, bk) be a unique element of T such that
xk + ρbk = zk for all k ≥ 0. Then we have

(I −RT
ρ,m,A)(z

k) = ρ bk,

WSEAS TRANSACTIONS on MATHEMATICS Ram Verma

ISSN: 1109-2769 266 Issue 8, Volume 10, August 2011



(2RT
ρ,m,A − I)(zk) = xk − ρ bk.

Similarly, for (yk, ak) ∈ S, it follows that

RS
ρ,m,A(y

k + ρ ak) = yk.

Based on the above identities, one may write zk+1

in terms of zk alternatively as follows:
I. Find the unique element in (yk+1, ak+1) ∈ S

such that

yk+1 + ρ ak+1 = xk − ρ bk.

II. Find the unique element in (xk+1, bk+1) ∈
T such that

xk+1 + ρ bk+1 = yk+1 + ρ bk.

Next, we consider the mapping

GS,T
ρ,A = RS

ρ,m,Ao(2R
T
ρ,m,A − I) + (I −RT

ρ,m,A).

Based on the above definition, it can be written
as

GS,T
ρ,A = {(u+ ρb, v + ρb)|(u, b) ∈ T, (v, a) ∈ S},

where v + ρa = u− ρb.
Next, we define another mapping in terms of

GS,T
ρ,A by

WS,T
ρ,A = (GS,T

ρ,A)
−1 − I

= {(v + ρb, u− v)|(u, b) ∈ T, (v, a) ∈ S},

where v + ρa = u− ρb.

Theorem 21 Let WS,T
ρ,A represent the splitting

mapping for S and T for ρ > 0. Then following
implications hold:

(i) If S and T are relatively (m)−relaxed mono-
tone, and if S and T are (λ)−strongly mono-

tone with respect to (I − A), then WS,T
ρ,A is

relatively (ρm)−relaxed monotone.

(ii) If S and T are relatively maximal
(m)−relaxed monotone, and if S and T are
(λ)−strongly with respect to (I − A), then

WS,T
ρ,A is relatively maximal (ρm)−relaxed

monotone.

Proof: To prove (i), let u, b, v, a, u′, b′, v′, a′ ∈ X
be such that

(u, b), (u′, b′) ∈ T, (v, a), (v′, a′) ∈ S,

v + ρ a = u− ρ b and v′ + ρ a′ = u′ − ρ b′.

Then we have

a =
1

ρ
(u− v)− b and a′ =

1

ρ
(u′ − v′)− b′,

and using the definition ofWS,T
ρ,A , we proceed with

⟨(v′ + ρb′)− (v + ρb), u′ − v′ − (u− v)⟩
= ρ⟨(v′ + ρb′)− (v + ρb),

ρ−1(u′ − v′)− b′ − ρ−1(u− v) + b⟩
+ ρ⟨(v′ + ρb′)− (v + ρb), b′ − b⟩
= ρ⟨(v′ − v), ρ−1(u′ − v′)− b′ − ρ−1(u− v) + b⟩
+ ρ2⟨b′ − b, ρ−1(u′ − v′)− b′ − ρ−1(u− v) + b⟩
+ ρ⟨(v′ − v), b′ − b⟩+ ρ2⟨b′ − b, b′ − b⟩
= ρ⟨v′ − v, a′ − a⟩ − ρ2⟨b′ − b, b′ − b⟩
+ ρ⟨b′ − b, u′ − u⟩ − ρ⟨b′ − b, v′ − v⟩
+ ρ⟨(v′ − v), b′ − b⟩+ ρ2⟨b′ − b, b′ − b⟩
= ρ⟨v′ − v, a′ − a⟩+ ρ⟨b′ − b, u′ − u⟩
= ρ⟨A(v′)−A(v) + (v′ − v)− (A(v′)−A(v)),

a′ − a⟩
+ ρ⟨b′ − b,

A(u′)−A(u) + (u′ − u)− (A(u′)−A(u))⟩
= ρ⟨A(v′)−A(v) + (I −A)(v′)− (I −A)(v),

a′ − a⟩
+ ρ⟨b′ − b,

A(u′)−A(u) + (I −A)(u′)− (I −A)(u)⟩
≥ −ρ(m− λ)[∥v′ − v∥2 + ∥u′ − u∥2]
≥ −ρm[∥v′ − v∥2 + ∥u′ − u∥2]

for m − λ > 0. Hence, WS,T
ρ,A is relatively

(ρm)−relaxed monotone.
To prove (ii) in light of (i), it remains just

to show that WS,T
ρ,A is maximal, while S and T

are relatively maximal relaxed monotone already.

It only remains to show that (I + WS,T
ρ,A )−1 =

GS,T
ρ,A has the full domain. Based on Lemma 13,

(I+WS,T
ρ,A )−1 has the full domain since resolvents

RS
ρ,m,A and RT

ρ,m,A are defined everywhere.
The next theorem reflects the relationship be-

tween zeros of WS,T
ρ,A and M = S + T.

Theorem 22 Let S and T be the setvalued map-
pings on X with a positive constant ρ. Suppose

that zer(WS,T
ρ,A ) denotes the zeros of WS,T

ρ,A and Z∗
ρ

is defined by

Z∗
ρ = {u+ ρb|b ∈ T (u),−b ∈ S(u)}

⊆ {u+ ρb|zer(S + T ), b ∈ T (u)}.

Then zer(WS,T
ρ,A ) = Z∗

ρ .
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Proof: First, we show, zer(WS,T
ρ,A ) ⊆ Z∗

ρ . Then,

for z ∈ zer(WS,T
ρ,A ), there are some u, b, v, a ∈ X,

v + ρb = z such that u − v = 0, (u, b) ∈ T and
(v, a) ∈ S. This implies

u− v = 0 ⇔ u = v ⇔ ρa = −ρb ⇔ a = −b.

On the other hand, it follows that u+ρb = z,
(u, b) ∈ T and (u,−b) ∈ S, so z ∈ Z∗

ρ . Similarly,
one can show the converse inclusion. Hence, we
conclude z ∈ zer(S + T ). �

We observe based on Theorem 22 that for any

given zero z of WS,T
ρ,A , RT

ρ,m,A is a zero of A + B,
and as a result, one may apply the generalized

proximal point algorithm for WS,T
ρ,A to find a zero

of S + T, and apply the resolvent RT
ρ,m,A to the

result. This is equivalent to applying the Douglas-
Rachford splitting method to the relatively max-

imal relaxed monotone map WS,T
ρ,A with stepsize

ρk = 1 and exact evaluation of resolvents.

6 Conclusions

We observe that results obtained in Section3 can
be applied to generalize the first-order evolution
inclusions/evolution equations of the form [21]
and [7, Theorem 4.1]

u′(t) +M u(t)− ω u(t) ∋ b(t), u(0) = u0 (13)

for almost all t ∈(0,T), where T is fixed, 0 < t <
∞, b ∈ W 1

2 (0,T;X), ω ∈ ℜ, M : X → 2X is a
setvalued mapping, and u0 ∈ D(M).
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