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Abstract: In this paper, based on the known first integral method, we try to seek the traveling wave solutions of
several nonlinear evolution equations. As a result, some exact travelig wave solutions and solitary solutions for
Whitham-Broer-Kaup (WBK) equations, Gardner equation, Boussinesq-Burgers equations, nonlinear schrodinger
equation and mKDV equation are established successfully.
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1 Introduction
Recently searching for exact traveling wave solution-
s of nonlinear equations has gained more and more
popularity, and many effective methods have been p-
resented so far. Some of these approaches are the ho-
mogeneous balance method [1], the extended hyper-
bolic functions method [2], the tanh-method [3-6], the
inverse scattering transform [7], the Backlund trans-
form [8], the Exp-function method [9], the general-
ized Riccati equation method [10,11], the F-expansion
method [12,13], and so on.

In [14], Feng presented the first integral method
originally. The main steps of the first integral method
are summarized as follows:
Step 1. Consider a general NLEE in the form

P (u, ut, ux, uxx, utt, uxt, uxxx, ...) = 0 (1)

Using a wave variable ξ = x− ct, we can rewrite Eq.
(1) in the following nonlinear ODE

Q(u, u′, u′′, u′′′, ...) = 0, (2)

where u = u(ξ).
Step 2. Suppose the solution of Eq. (2) can be writ-
ten as u(x, t) = X(ξ), and furthermore, we intro-
duce a new independent variable Y = Y (ξ) such that
Y (ξ) = dX

dξ .
Step 3. Under the conditions of Step 2, Eq. (2) can be
converted into a system of nonlinear ordinary differ-
ential equations as follows.{

dX
dξ = Y (ξ),
dY
dξ = F (X(ξ), Y (ξ)),

(3)

If we can find the integrals to Eq. (3), then the
general solutions to Eq. (3) can be solved directly.
However, in general, it is really difficult for us to real-
ize this even for one first integral, because for a given
plane autonomous system, there is no systematic the-
ory that can tell us how to find its first integrals, nor
is there a logical way for telling us what these first
integrals are. We will apply the so-called Division
Theorem to obtain one first integral to Eq. (3) which
reduces Eq. (2) to a first order integrable ordinary dif-
ferential equation. An exact solution to Eq. (1) is then
obtained by solving this equation.

Division theorem [14]: Suppose that P (w, z),
Q(w, z) are polynomials inC(w, z) and P (w, z) is ir-
reducible in the complex domain C(w, z). If Q(w, z)
vanishes at all zero points of P (w, z), then there exists
a polynomial G(w, z) in C(w, z) such that

Q(w, z) = P (w, z)G(w, z). (4)

Because of its simpleness and validity, the first inte-
gral method is soon applied to other problems (see
[15-17]).

In this paper, we test the power of the first in-
tegral method by applying it to several nonlinear e-
quations, and construct exact traveling wave solution-
s for them. In Section 2, WBK equations, Gard-
ner equation, Boussinesq-Burgers equations, nonlin-
ear schrodinger(NLS+) equation and mKDV equa-
tion are considered, and some solitary wave solutions
are obtained respectively by use of the first integral
method. Some conclusions are presented at the end of
the paper.
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2 Applications of the first integral
method to some nonlinear equa-
tions

2.1 Whitham-Broer-Kaup Equations
In this subsection, we will consider the Whitham-
Broer-Kaup (WBK) equations [18-20]:

ut + uux + vx + βuxx = 0. (5)

vt + (uv)x + αuxxx − βvxx = 0. (6)

where α, β are constants.
Suppose that

ξ = k(x− ct).

Then (5) and (6) are converted to ODEs

−cu′ + uu′ + v′ + βku′′ = 0. (7)

−cv′ + (uv)′ + αk2u′′′ − βkv′′ = 0. (8)

Integrating (7) and (8) once, and considering the zero
constants for integration we have:

−cu+
1

2
u2 + v + βku′ = 0. (9)

−cv + uv + αk2u′′ − βkv′ = 0. (10)

From (9), it follows

v = cu− 1

2
u2 − βku′. (11)

Substituting (11) into (10), we have

(β + α)k2u′′ +
3

2
cu2 − c2u− 1

2
u3 = 0. (12)

Let

X(ξ) = u(ξ), Y (ξ) = uξ(ξ).

Then we have

dX

dξ
= Y (ξ),

dY

dξ
=
c2X + 1

2X
3 − 3

2cX
2

(β + α)k2
. (13)

Suppose that X(ξ) and Y (ξ) are nontrivial solu-
tions of (12), and R(X,Y ) is an irreducible polyno-
mial in the complex domain C(X,Y ) such that

R(X(ξ), Y (ξ)) =
m∑
i=0

si(X)Y i = 0, (14)

where si(X), i = 0, 1...m are polynomials of X , and
sm(X) ̸= 0. Eq. (14) is called the first integral to
(13).

Due to the Division Theorem, there exists a poly-
nomial h1(X) + h2(X)Y in the complex domain
C(X,Y ) such that

dR

dξ
=
∂R

∂X

dX

dξ
+
∂R

∂Y

dY

dξ

= [h1(X) + h2(X)Y ]
m∑
i=0

si(X)Y i. (15)

In this example, for the sake of convenience we
take m = 1. Then by equating the coefficients of Y i

on both sides of Eq. (15), we have
ds1(X)
dX = h2(X)s1(X)

ds0(X)
dX = h1(X)s1(X) + h2(X)s0(X)

s1(X)
c2X+ 1

2
X3− 3

2
cX2

(β+α)k2
= h1(X)s0(X).

(16)

Then it follows 
deg(s1(X)) = 0
h2(X) = 0

deg(h1(X)) = 1
deg(s0(X)) = 2

(17)

For simplicity, let s1(X) = 1, and let h1(x) =
a1X + a0, a1 and a0 are constants to be determined
later. Then from (16) we can obtain s0(X) = a1

2 X
2+

a0X + d, where d is the integral constant. Also from
(16), we have

c2X + 1
2X

3 − 3
2cX

2

(β + α)k2
= (

a1
2
X2+a0X+d)(a1X+a0).

Equating all the coefficients of Xi on both sides,
yields a serials of nonlinear algebraic equations as fol-
lows: 

a21
2 = 1

2(β+α)k2
3a1a0

2 = −3c
2(β+α)k2

a20 + da1 =
c2

(β+α)k2

da0 = 0

⇒


a0 =

−c√
(β+α)k2

a1 =
1√

(β+α)k2

d = 0

or


a0 =

c√
(β+α)k2

a1 = − 1√
(β+α)k2

d = 0
(18)

Case I:
If a0 = −c√

(β+α)k2
, a1 = 1√

(β+α)k2
, d = 0, then

from (13) and (14) we have

dX

dξ
= Y = −s0(X)
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= − 1

2
√
(β + α)k2

X2 +
c√

(β + α)k2
X. (19)

Solving (19), we have

X = coth[
c(ξ + c0)

2
√
(β + α)k2

].c+ c (20)

and

X = tanh[
c(ξ + c0)

2
√
(β + α)k2

].c+ c (21)

Then combining with (11) we can obtain the solitary
wave solutions of WBK equations as denoted in (22)-
(23):

u(x, t) = coth[
c(k(x− ct) + c0)

2
√
(β + α)k2

].c+ c

v(x, t) =
c2

2
{1− coth2[

c(k(x− ct) + c0)

2
√
(β + α)k2

]

+
βk√

(β + α)k2
csch2[

c(k(x− ct) + c0)

2
√
(β + α)k2

]} (22)

u(x, t) = tanh[
c(k(x− ct) + c0)

2
√
(β + α)k2

].c+ c

v(x, t) =
c2

2
{1− tanh2[

c(k(x− ct) + c0)

2
√
(β + α)k2

]

− βk√
(β + α)k2

sech2[
c(k(x− ct) + c0)

2
√
(β + α)k2

]} (23)

where c0 is an arbitrary constant.
Case II:
If a0 = c√

(β+α)k2
, a1 = − 1√

(β+α)k2
, d = 0, then

from (13) and (14) we have

dX

dξ
= Y = −s0(X)

=
1√

(β + α)k2
X2 − c√

(β + α)k2
X (24)

Solving (24), then we can obtain the solitary wave
solutions of WBK equations as denoted in (25)-(26) in
the same manner:

u(x, t) = − coth[
c(k(x− ct) + c0)

2
√
(β + α)k2

].c+ c

v(x, t) =
c2

2
{1− coth2[

c(k(x− ct) + c0)

2
√
(β + α)k2

]

− βk√
(β + α)k2

csch2[
c(k(x− ct) + c0)

2
√
(β + α)k2

]} (25)

u(x, t) = − tanh[
c(k(x− ct) + c0)

2
√
(β + α)k2

].c+ c

v(x, t) =
c2

2
{1− tanh2[

c(k(x− ct) + c0)

2
√
(β + α)k2

]

+
βk√

(β + α)k2
sech2[

c(k(x− ct) + c0)

2
√
(β + α)k2

]} (26)

where c0 is an arbitrary constant.

Remark 1 Considering the difference of the form of
constants, our results (23) and (26) are consistent with
the results derived by tanh method in Ref. [18], and
(22), (25) can be compared with the results by homo-
topy perturbation method in Ref. [19].

Remark 2 For the case of m ≥ 2, the discussions
becomes more complicated and involves the irregular
singular point theory, and the elliptic integrals of the
second kind and the hyper-elliptic integrals. Some so-
lutions in the functional form cannot be expressed ex-
plicitly. We should note here that one does not need to
consider the cases m ≥ 5 due to the fundamental fac-
t that an algebraic equation with the degree greater
than or equal to 5 is generally not solvable.

2.2 Gardner Equation
In this subsection we will consider the Gardner equa-
tion [21] as follows:

ut + 2auux − 3bu2ux + uxxx = 0, a > 0, b > 0.
(27)

Let ξ = k(x−ct), u(x, t) = u(ξ). Then Eq. (27)
can be reduced to an ODE:

−cu′ + 2auu′ − 3bu2u′ + k2u′′′ = 0. (28)

Integrating it with respect to ξ once, considering the
zero constant for the integration, yields:

−cu+ au2 − bu3 + k2u′′ = 0. (29)

Let
X(ξ) = u(ξ), Y (ξ) = uξ(ξ).

Then

dX

dξ
= Y (ξ),

dY

dξ
=
cX − aX2 + bX3

k2
. (30)

Suppose that X(ξ) and Y (ξ) are nontrivial solutions
of (30), and η(X,Y ) is an irreducible polynomial in
the complex domain C(X,Y ) such that

η(X(ξ), Y (ξ)) =
m∑
i=0

si(X)Y i = 0, (31)

where si(X), i = 0, 1...m are polynomials of X , and
sm(X) ̸= 0. Eq. (31) is called the first integral to
(30).

WSEAS TRANSACTIONS on MATHEMATICS Bin Zheng

ISSN: 1109-2769 251 Issue 8, Volume 10, August 2011



According to the Division Theorem, there exists a
polynomial h1(X)+h2(X)Y in the complex domain
C(X,Y ) such that

dη

dξ
=

∂η

∂X

dX

dξ
+
∂η

∂Y

dY

dξ

= [h1(X) + h2(X)Y ]
m∑
i=0

si(X)Y i. (32)

In this example we take m = 1. Then by collect-
ing all the terms with the same power of Y together
and equating each coefficient to zero, yields a set of
simultaneous algebraic equations as follows

ds1(X)
dX = h2(X)s1(X)

ds0(X)
dX = h1(X)s1(X) + h2(X)s0(X)

s1(X)( cX−aX2+bX3

k2
) = h1(X)s0(X)

(33)

Solving (33), we have
deg(s1(X)) = 0
h2(X) = 0

deg(h1(X)) = 1
deg(s0(X)) = 2

(34)

For simplicity, let s1(X) = 1, h1(x) = b1X + b0, b1
and b0 are constants to be determined later. Then from
(33) it follows s0(X) = b1

2 X
2 + b0X + d, where d is

the integral constant. Also we obtain

cX − aX2 + bX3

k2
= (

b1
2
X2 + b0X + d)(b1X + b0)

Equating all the coefficients of Xi on both sides, we
obtain a serials of nonlinear algebraic equations as fol-
lows:

b21
2 = b

k2
3b1b0
2 = − a

k2

b20 + db1 =
c
k2

db0 = 0

⇒


b0 = ± a

3k

√
2
b

b1 = ∓
√
2b
k

d = 0

c = 2a2

9b

(35)

From (30) and (31) we have

dX

dξ
= Y = −s0(X) = ±

√
2b

k
X2 ∓ a

3k

√
2

b
X

Solving it, we can obtain the solitary wave solutions
of Gardner equation as follows:

X(ξ) =
a

3b
[1± tanh

a

3k
√
2b

(ξ + c0)] (36)

X(ξ) =
a

3b
[1± coth

a

3k
√
2b

(ξ + c0)] (37)

where c0 is an arbitrary constant. Then

u(x, t) =
a

3b
[1± tanh

a

3k
√
2b

(k(x− 2a2

9b
t) + c0)]

(38)

u(x, t) =
a

3b
[1± coth

a

3k
√
2b

(k(x− 2a2

9b
t) + c0)]

(39)

Remark 3 If we take c0 = 0, k = 1 in (38) and (39),
then the results are consistent with the results derived
by the tanh method in Ref. [21].

2.3 Boussinesq-Burgers Equations
In this subsection, we will consider the Boussinesq-
Burgers equations [22-24]:

ut + 2uux −
1

2
vx = 0. (40)

vt + 2(uv)x −
1

2
uxxx = 0. (41)

Suppose that

ξ = k(x− ct)

Then (40) and (41) are converted to ODEs

−cu′ + 2uu′ − 1

2
v′ = 0. (42)

−cv′ + 2(uv)′ − 1

2
k2u′′′ = 0. (43)

Integrating (42) and (43) once, and considering the
zero constants for integration we have:

−cu+ u2 − 1

2
v = 0. (44)

−cv + 2uv − 1

2
k2u′′ = 0. (45)

From (44), it follows

v = 2(u2 − cu). (46)

Substituting (46) into (45), we have

k2u′′ = 8u3 − 12cu2 + 4c2u. (47)

Let
X(ξ) = u(ξ), Y (ξ) = uξ(ξ).

Then we have

dX

dξ
= Y (ξ),

dY

dξ
=

8X3 − 12cX2 + 4c2X

k2
. (48)
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Suppose that X(ξ) and Y (ξ) are nontrivial solutions
of (47), and R(X,Y ) is an irreducible polynomial in
the complex domain C(X,Y ) such that

R(X(ξ), Y (ξ)) =
m∑
i=0

si(X)Y i = 0. (49)

where si(X), i = 0, 1...m are polynomials of X , and
sm(X) ̸= 0. Eq. (49) is called the first integral to
(48).

Due to the Division Theorem, there exists a poly-
nomial h1(X) + h2(X)Y in the complex domain
C(X,Y ) such that

dR

dξ
=
∂R

∂X

dX

dξ
+
∂R

∂Y

dY

dξ

= [h1(X) + h2(X)Y ]
m∑
i=0

si(X)Y i. (50)

Take m = 1. Then by equating the coefficients of Y i

on both sides of Eq. (50), we have
ds1(X)
dX = h2(X)s1(X)

ds0(X)
dX = h1(X)s1(X) + h2(X)s0(X)

s1(X)8X
3−12cX2+4c2X

k2
= h1(X)s0(X).

(51)

Then it follows 
deg(s1(X)) = 0
h2(X) = 0

deg(h1(X)) = 1
deg(s0(X)) = 2

(52)

For simplicity, let s1(X) = 1, and let h1(x) =
r1X + r0, r1 and r0 are constants to be determined
later. Then from (51) we can obtain s0(X) = r1

2 X
2+

r0X + d, where d is the integral constant. Also from
(51), we have

8X3 − 12cX2 + 4c2X

k2
= (

r1
2
X2+r0X+d)(r1X+r0).

Equating all the coefficients of Xi on both sides,
yields a serials of nonlinear algebraic equations as fol-
lows:

r21
2 = 8

k2
3r1r0

2 = −12c
k2

r20 + dr1 =
4c2

k2

dr0 = 0

⇒


r0 = ±2c

k
r1 = ∓ 4

k
d = 0

(53)

From (48) and (49) we have

dX

dξ
= Y = −s0(X) = ±2

k
X2 ∓ 2

k
X.

Solving it, we have

X(ξ) =
c

2
[1± tanh

c

k
(ξ + c0)], (54)

X(ξ) =
c

2
[1± coth

c

k
(ξ + c0)], (55)

where c0 is an arbitrary constant. Then combining
with (46), we can obtain the solitary wave solutions
of Boussinesq-Burgers equations as follows:

u(x, t) =
c

2
{1± tanh[

c

k
(k(x− ct) + c0)]},

v(x, t) = −c
2

4
sech2[

c

k
(k(x− ct) + c0)]. (56)

u(x, t) =
c

2
{1± coth[

c

k
(k(x− ct) + c0)]},

v(x, t) =
c2

4
csch2[

c

k
(k(x− ct) + c0)]. (57)

Remark 4 Our results (56), (57) are analogous to
some of the results in Ref. [22-24].

2.4 NLS+ Equation

In this subsection, we will consider the NLS+ equa-
tion [25]:

iΦt − Φxx + 2(|Φ|2 − ρ2)Φ = 0, (58)

where Φ is a complex wave function and ρ is a con-
stant.

Since Φ = Φ(x, t) in Eq. (58) is a complex func-
tion, we suppose that

Φ = u(ξ)ei(x+t), ξ = x+ 2t. (59)

By using (59), Eq. (58) is converted to an ODE as
follows

−2ρ2u+ 2u3 − u′′ = 0. (60)

Let
X(ξ) = u(ξ), Y (ξ) = uξ(ξ). (61)

Then we have

dX

dξ
= Y (ξ),

dY

dξ
= 2X3(ξ)− 2ρ2X(ξ). (62)

Suppose that X(ξ) and Y (ξ) are nontrivial solutions
of (62), and R(X,Y ) is an irreducible polynomial in
the complex domain C(X,Y ) such that

R(X(ξ), Y (ξ)) =
m∑
i=0

si(X)Y i = 0, (63)
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where si(X), i = 0, 1...m are polynomials of X , and
sm(X) ̸= 0. Eq. (63) is called the first integral to
(62).

Due to the Division Theorem, there exists a poly-
nomial h1(X) + h2(X)Y in the complex domain
C(X,Y ) such that

dR

dξ
=
∂R

∂X

dX

dξ
+
∂R

∂Y

dY

dξ

= [h1(X) + h2(X)Y ]
m∑
i=0

si(X)Y i. (64)

Case 1: Take m = 1, ρ ̸= 0. By equating the coeffi-
cients of Y i on both sides of Eq. (64) we obtain

ds1(X)
dX = h2(X)s1(X)

ds0(X)
dX = h1(X)s1(X) + h2(X)s0(X)

s1(X)(2X3 − 2ρ2X) = h1(X)s0(X)

(65)

which implies 
deg(s1(X)) = 0
h2(X) = 0

deg(h1(X)) = 1
deg(s0(X)) = 2

(66)

For simplicity, let s1(X) = 1, and let h1(X) =
a1X + a0, where a1 and a0 are constants to be deter-
mined later. Then from (65) we can obtain s0(X) =
a1
2 X

2 + a0X + d, where d is the integral constant.
Also from (65), we have

2X3 − 2ρ2X = (
a1
2
X2 + a0X + d)(a1X + a0).

Equating all the coefficients ofXi on both sides of the
equation above, yields

a21
2 = 2
3a1a0

2 = 0
a20 + da1 = −2ρ2

da0 = 0

⇒


a0 = 0
a1 = 2
d = −ρ2

or


a0 = 0
a1 = −2
d = ρ2

(67)
We will construct the traveling wave solutions of

NLS+ equation in two families.
Family I:

If a0 = 0, a1 = 2, d = −ρ2, then from (62)-(63)
we obtain

dX

dξ
= Y = −s0(X) = −X2 + ρ2.

Considering u(ξ) = X , solving the equation above
we get that u(ξ) = X = ρ1+c0e−2ρξ

1−c0e−2ρξ , where c0 is an
arbitrary constant. So combining with (59) we can

demonstrate the exact complex traveling wave solu-
tion of NLS+ equation as follows

ϕ1(x, t) = ρ
1 + c0e

−2ρ(x+2t)

1− c0e−2ρ(x+2t)
ei(x+t). (68)

Especially, if we take c0 = 1, we obtain the complex
solitary wave solution as follows

ϕ2(x, t) = ρei(x+t) coth[ρ(x+ 2t)].

If we take c0 = −1, we obtain another solitary wave
solution

ϕ3(x, t) = ρei(x+t) tanh[ρ(x+ 2t)].

Family II:
If a0 = 0, a1 = −2, d = ρ2, then from (62)-(63)

we have

dX

dξ
= Y = −s0(X) = X2 − ρ2

It follows u(ξ) = X = ρ1+c1e2ρξ

1−c1e2ρξ
, where c1 is an

arbitrary constant. Then the exact complex traveling
wave solution of NLS+ equation can be denoted by

ϕ4(x, t) = ρ
1 + c1e

2ρ(x+2t)

1− c1e2ρ(x+2t)
ei(x+t). (69)

Especially, if we take c1 = 1, we obtain the complex
solitary wave solution as follows

ϕ5(x, t) = −ρei(x+t) coth[ρ(x+ 2t)].

If we take c1 = −1, we obtain another solitary wave
solution

ϕ6(x, t) = −ρei(x+t) tanh[ρ(x+ 2t)].

Case 2: Take m = 2, ρ = 0. Equating the coefficients
of Y i on both sides of Eq. (64) we obtain

ds2(X)
dX = h2(X)s2(X)

ds1(X)
dX = h1(X)s2(X) + h2(X)s1(X)

ds0(X)
dX + 2(2X3 − 2ρ2X) = h1(X)s1(X) + h2(X)s0(X)

s1(X)(2X3 − 2ρ2X) = h1(X)s0(X)

(70)
which implies 

deg(s2(X)) = 0
h2(X) = 0

deg(h1(X)) = 1
deg(s1(X)) = 2
deg(s0(X)) = 3

(71)
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For simplicity, let s2(X) = 1, and let h1(X) =
a1X + a0, where a1 and a0 are constants to be de-
termined later. Then from (70) we can obtain

s1(X) =
a1
2
X2 + a0X + d, s0(X)

= (
a21
8
−1)X4+

1

2
a0a1X

3+
da1 + a20

2
X2+da0X+c,

(72)
where d, c are the integral constants. Also from (70),
we have

2X3(
a1
2
X2 + a0X + d)

= [(
a21
8
−1)X4+

1

2
a0a1X

3+
da1 + a20

2
X2+da0X+c]×

(a1X + a0). (73)

Equating all the coefficients ofXi on both sides of the
equation above, yields

a1 = a1(
a21
8 − 1)

2a0 = a0(
a21
8 − 1) +

a0a21
2

2d =
a20a1
2 +

da21+a1a20
2

0 = a0
2 (da1 + a20) + da0a1
0 = da20 + ca1

0 = ca0

⇒


a0 = 0

a1 = ±2
√
2

d = 0
c = 0

(74)
So the traveling wave solutions of NLS+ equation
can be deduced as follows.
Family III:
If a0 = 0, a1 = ±2

√
2, d = 0, c = 0, then we obtain

s1(X) =
√
2X2, s0(X) = X4. (75)

So from (62)-(63) we have

Y 2 +
√
2X2Y +X4 = 0, (76)

which implies

dX

dξ
= Y = (−1

2

√
2± 1

2
i
√
2)X2. (77)

Solving (77), yields

u(ξ) = X =
1

1
2

√
2∓ 1

2 i
√
2 + c0

, (78)

where c0 is an arbitrary constant. Then furthermore
combining with (59) we obtain the complex solutions
of NLS+ equation as follows

ϕ7(x, t) =
1

1
2

√
2∓ 1

2 i
√
2 + c0

ei(x+t) (79)

Remark 5 The traveling wave solutions of NLS+ e-
quation denoted by ϕ1(x, t), ϕ4(x, t), ϕ7(x, t) are
not given in [25], and are new complex solutions to
our best knowledge.

2.5 mKDV Equation
In this subsection we will consider the mKDV equa-
tion [25-26] as follows:

ut − u2ux + βuxxx = 0, β > 0. (80)

Let ξ = x− ct, u(x, t) = u(ξ). Then Eq. (80) can be
reduced to an ODE as follows:

−cu′ − u2u′ + βu′′′ = 0. (81)

Integrating Eq. (81) with respect to ξ once yields:

p− cu− u3

3
+ βu′′ = 0,

where p is an integral constant.
Let X(ξ) = u(ξ), Y (ξ) = uξ(ξ). Then we have

dX

dξ
= Y (ξ),

dY

dξ
=
cX + X3

3 − p

β
. (82)

Suppose that X(ξ) and Y (ξ) are nontrivial solutions
of (82), and η(X,Y ) is an irreducible polynomial in
the complex domain C(X,Y ) such that

η(X(ξ), Y (ξ)) =
m∑
i=0

si(X)Y i = 0, (83)

where si(X), i = 0, 1...m are polynomials of X , and
sm(X) ̸= 0. Eq. (83) is called the first integral to
(82).

According to the Division Theorem, there exists a
polynomial h1(X)+h2(X)Y in the complex domain
C(X,Y ) such that

dη

dξ
=

∂η

∂X

dX

dξ
+
∂η

∂Y

dY

dξ

= [h1(X) + h2(X)Y ]
m∑
i=0

si(X)Y i. (84)

In this example, for the sake of convenience we take
m = 1. Then then by equating the coefficients of Y i

on both sides of Eq. (84) we obtain a set of algebraic
equations as follows

ds1(X)
dX = h2(X)s1(X)

ds0(X)
dX = h1(X)s1(X) + h2(X)s0(X)

s1(X)
β (cX + X3

3 − p) = h1(X)s0(X)

(85)

Solving (85), yields
deg(s1(X)) = 0
h2(X) = 0

deg(h1(X)) = 1
deg(s0(X)) = 2

(86)
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For simplicity, let s1(X) = 1, h1(x) = b1X + b0,
where b1 and b0 are constants to be determined later.
Then from (85) it follows s0(X) = b1

2 X
2 + b0X + b,

where b is the integral constant. Also we obtain

cX + X3

3 − p

β
= (

b1
2
X2 + b0X + b)(b1X + b0).

Equating all the coefficients ofXi on both sides of the
equation above, yields

b21
2 = 1

3β
3b1b0

2 = 0
b20 + bb1 = c

β

bb0 = 0

⇒


b0 = 0

b1 =
√

2
3β

b = c
√

3
2β

or


b0 = 0

b1 = −
√

2
3β

b = −c
√

3
2β

(87)

We will construct the traveling wave solutions for
mKDV equation in two families.
Family I:

b0 = 0, p = 0, b1 =

√
2

3β
, b = c

√
3

2β
.

From (82)-(83) we have

dX

dξ
= Y = −s0(X) = − 1√

6β
X2 − c

√
3

2β

When c > 0: It follows

X =
√
3c tan[

√
3c(− 1√

6β
ξ + c0)],

where c0 is an arbitrary constant. So we can demon-
strate the exact traveling wave solution of mKDV e-
quation as

u11(x, t) =
√
3c tan[

√
3c(− 1√

6β
(x− ct) + c0)]

(88)
When c < 0: It can be solved that

X =

√
−3c(1 + c0e

−
√

2c
β
ξ
)

1− c0e
−
√

2c
β
ξ

,

where c0 is an arbitrary constant. So the exact travel-
ing wave solution of mKDV equation can be denoted
by

u12(x, t) =

√
−3c(1 + c0e

−
√

− 2c
β
(x−ct)

)

1− c0e
−
√

− 2c
β
(x−ct)

(89)

Especially, if we take c0 = 1, then we obtain the soli-
tary solution

u13(x, t) =
√
−3c coth[

√
− c

2β
(x− ct)].

If we take c0 = −1, we obtain another solitary solu-
tion

u14(x, t) =
√
−2c tanh[

√
− c

2β
(x− ct)].

Family II:

b0 = 0, p = 0, b1 = −
√

2

3β
, b = −c

√
3

2β

From (82)-(83) we have

dX

dξ
= Y = −s0(X) =

1√
6β
X2 + c

√
3

2β

When c > 0: It follows

X =
√
3c tan[

√
3c(

1√
6β
ξ + c1)]

where c1 is an arbitrary constant. So we can demon-
strate the exact traveling wave solution of mKDV e-
quation as

u21(x, t) =
√
3c tan[

√
3c(

1√
6β

(x−ct)+c1)] (90)

When c < 0: We deduce X =
√
−3c(1+c1e

√
− 2c

β
ξ
)

1−c1e

√
− 2c

β
ξ

, where c1 is an arbitrary con-

stant. Then the exact traveling wave solution of
mKDV equation can be demonstrated as

u22(x, t) =

√
−3c(1 + c1e

√
− 2c

β
(x−ct)

)

1− c1e

√
− 2c

β
(x−ct)

(91)

Especially, if we take c1 = 1, we obtain another soli-
tary solution

u23(x, t) = −
√
−3c coth[

√
− c

2β
(x− ct)].

However, if we take c1 = −1, we obtain another soli-
tary solution

u24(x, t) = −
√
−3c tanh[

√
− c

2β
(x− ct)].
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Remark 6 If we take c0 = −1, c1 = −1,
√

−2c
β =

λ, β = δ in u14(x, t) and u24(x, t), then we
can obtain the solitary wave solutions u(x, t) =

±λ
2

√
6δ tanh[12λ(x + 1

2βλ
2t)], which are consistent

with the results derived by the (G′/G) method in [26]
by M.Wang.

Remark 7 The solutions u11(x, t), u13(x, t),
u21(x, t), u23(x, t) are not given in [25-26], and have
not been reported so far in the literature to our best
knowledge.

Remark 8 All of the solutions presented in Section 2
have been checked with Maple11 by putting them back
into the original equations.

3 Conclusions
In this paper, the solitary wave solutions of the W-
BK equations, Gardner equation, Boussinesq-Burgers
equations, nonlinear schrodinger equation and mKD-
V equation are successfully constructed by use of the
first integral method. The main point of the first in-
tegral method is to find the first integral for the re-
duced first order integrable ordinary differential equa-
tion from the original equation. Also it is the difficult
part of the method to find the first integral.

As it is concise and effective, the first integral
method is one of the most effective methods to estab-
lish the exact solutions of the nonlinear equations.
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