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1 Introduction

In recent years many integral inequalities have
been established, which provide handy tools
for investigating the quantitative and qualitative
properties of solutions to integral and differen-
tial equations, for example, see [1-20], and the
references therein. In these investigations, most
of the known integral inequalities are concerned
of continuous functions [1-13], while few authors
take research in integral inequalities for discon-
tinuous functions [14-17]. Now let us first recall
some known inequalities in [14-17].

In [14, Theorem 2.1, 2.2, 3.1], the author es-
tablished the following three integral inequalities
for discontinuous functions:

(@): () <n(t)+ / 9()p(7(s))ds

+t Et: tﬁisom(tt:— 0), m > 0;

@) o)< 00+ al) [ g (o
+ > Bt —0), m >0

(@) ol <nl0) a0l See(oleas
+ [ g6 stetrenana
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+ > Bi™(ti—0), m>0
to<t;<t

where ¢(t) is unknown nonnegative piecewise con-
tinuous function defined on [tp, 00) with the first
kind of discontinuities in the points z;, 1
1,2, --.

Based on (ai) — (ag), some new bounds are
derived for the unknown function ¢(t) in [14].

Recently, in [15, Theorem 3, 5], the author
established two more general integral inequalities
for discontinuous functions as follows:

0 ula) < e(o)+ala) [ " W ulp(r)))dr
+ Z Bie™(t; — 0), m > 0;

to<t;<t

(b):  u(x) < u(0) + g(a)] / " f(s)ulp(s))ds
- " 1) / " g(r)ulp(r))dr)ds]

—}—/JC h(s)W (u(o(s)))ds
+ Z ﬁigom(ti — 0), m >0

where w(z) is unknown function as ¢(x) in
(a1) — (a3), and W € (Ry,Ry), W(yB) <
W (y)W(B), W(0) =0, W is nondecreasing.
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In [16, Theorem 2.1-2.3], the author presented
three inequalities for discontinuous functions with
two independent variables:

t x
: t < a(t b déd
(1) so<7x>_a<,z>+/t0/% (&, n)o(€, m)dedn
+ Z ~yie™(t; — 0,2, — 0), m > 0;
to<t; <t
(2):  ¢lt,2) < alt,o) // (&)™ (€, m)dEdn
+ Z g™ (t; —0,2; — 0), m > 0;
to<t; <t
(c3): o(t,z) < alt,z)

tx// (&)™ (€, m)dédn

+ > ™t = 0,2 —0), m>0

to<t; <t

where ¢(t,x) is unknown nonnegative contin-
uous function with the exception in the points
(xiayi)v 1=1,2,---

As one can see, (c1) — (c3) are the direct gen-
eralization for (a;) — (ag) from one independent
variable to two independent variables.

More recently, in [17, Theorem 2.1-2.3|, the
author presented the following inequalities for dis-
continuous functions with two independent vari-
ables:

(d):  u(t,z) < p(t,z)

—i—qt:v/to/ffs

+ Z Biu(t; — 0, z;

to<t;<t
u(t,z) < o(t, z)

+th//f7-s

to

+ ) Bt — 0,3 —
to<t; <t

(d3):  u™(, 93) < ¢(t,x)

D) / J (o sy (r, s (ulr, ))drds
+ > Buulti — 0,2

to<t;<t

T,8))dTds

—0);

T,8))drds

0);

—0)

where u(t,z) is unknown function as ¢(¢,x) in
(c1) — (c3), and w is similar to W in (b1) — (b2).
One easily see (di) — (d3) are the generaliza-

tion of (¢1) — (c3).
The inequalities (a1) — (a3), (b1) — (b2), (c1) —
(d3) have proven to be effective in de-

(c3), (d1) —
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riving bounds for discontinuous solutions of cer-
tain integration equations and differential equa-
tions. More details about them can be referred to
[14-17].

In this paper, motivated by the work above,
we will establish more general integral inequali-
ties for discontinuous functions with one or two
independent variables. Also we will present some
applications for them.

2 Main Results

In the rest of the paper we denote the set of real
numbers as R, and Ry = [0,00) is a subset of R.
For two given sets G, H, we denote the set of
maps from G to H by (G, H).

Theorem 1 Suppose u(x) is a nonnegative piece-
wise continuous function defined on [rg,00) with
discontinuities of the first kind in the points
Ty, = 1,2,..., and 0 < g < 1 < ... <
Ty < .., lim x, 0. ¢q, ¢ € (R,Ry),

n—oo
and q(z) > 1, o(x) > 0, p(z) is nondecreas-
ing. [3; are constants. [; > 0. f € (Ry,Ry).
o € S— class of continuous functions, that is,
o € (R,R), o(t) < t, ‘tllim o(t) 0. w €
— 00

(R+7R+)7 w(O) =0, w(aﬁ) < w(a)w(ﬁ)v and w
is nondecreasing. ¢ € C(Ry,Ry) is strictly in-
creasing. ¢ € (Ry,Ry). Furthermore, assume
o(z) > zi—1 for x € (xi—1, @], i = 1,2.... If for
x > xg, u(x) satisfies the following inequality

$lu(@)) < () + g(x) / C Frw(lule(n))dr
+ Y Bz —

To<T;<T
/ f(r

x € (zi,xiq1], 1 =0, 1,2,‘-',

where Gi(s) = fcs w(ls)ds 1 0,1,2...,
Ciy 1= 071,2...

are constants, and cg = 1,

ci = Gz:l1 [/“ f(T)W(q(U

)ﬂﬂ/J{Q( — 0)¢p(x; — 0)x
)

Zl/f

fori=1,2,---.

then

u(z) < ¢~ Hq(x)
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Proof: From (1), considering ¢(z) is nondecreas-
ing, it follows

< 2 o
2 Bt w
< 1+/x0 G W(ZZ D gr
Let v(z) = 55@;;3 and
)= [ LA ot
i = 0,1,2..: Under the assumption o(z) >

xi—1, ¢ € (x—1,x;], i = 1,2..., considering o is
continuous, we have in fact o(z) > xo, for Vo >
xo. Since w is nonnegative on [zg,00), SO
u(o(z)) >0, Vzx € [z9,00). Furthermore we have

v(o(x)) >0, Vo € [xg,00), and
* f(r)w(g(u(a(7))))
o +/x° i 0))d>
MR vy

i Z Bi(q(w; —

Case 1: If © € (xg, 1], the from (4) and the
definition of vy(x) we obtain

v(z) <Tp(x), = € (x0,x1]. (5)

According to the assumption for ¢ we have zg <
o(x) < z. Then v(o(x)) < vg(o(x)) < vo(x), and
(

_ f@wlglo(@)e(o(z)))w(v(o(x)))
()
f(x)w(glo(@))p(a(z)))w(@o(x))

o(z) ’
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An integration for (6) from xg to x yields

oy < [ LDetalelr)e

Considering 79(0) = 1 = ¢, then Gy(Tp(0)) = 0,

and
< Tola) < Gal[/x f(T)w(q(f;((TT)))so

Especially we have

Go(To(x))—G (@(1)) ,

T.

)y

v(z1 —0) < To(x1 —

< Gy [ LOACDNelotm) 1y

Case 2: If x € (x1,x2], considering (7) holds for
Vx € (xo, z1], then from (4) we deduce

(z) < 1+/z f()w(a(o(r))p(o())w(v(o(7))) ,

o(7)
+51¢(¢](1‘1 —0)p(x1

T

— 0)v(z1 —0))
¢(x1 —0)
" f(w(gle()e(e(m))w(v(o(r) |
o(T)
* f(m)wlqlo(r))e(o(r)))w(v(o(r)))
v/ ) !

=1+

T

T

51¢(Q($1 —0)p(r1 — 0)v(y
90(931 - 0)

/ flr (0(7))w(v(a(7))) ,
(1)

—0)

T

511/1( (1 = 0)p(z1 — 0))
p(z1—0)
o f(T)W(Q(U(T))SO(U(T)))dT]

o(7)

0) (z1 —

zo

P{q(x1 — 0)p(z1 —0)

_0)
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Then similar to the process of (5)-(7), we can de-
duce
o) <y Al

Especially we have

o),

7].

(9)

’U(Q?Q — 0) < 61(.%’2 — O) < @1(1‘2) <

 f(r)elalo()elor)
o (1) '
Case 3: Suppose

Gr'[

o 1f alo)olote))

holds for = € (xj_1,2;], j = 1,2..i. Then for

x € (x4, Tit1], from (4) we obtam

o / HOualete el utelem),,

— 0)p(z; — 0)u(z; —0))

.S B (q(x;

= @(:c)

Then similar to (5)-(7) we get that

v(z) < Ti(2) < Gil[/% f(T)w(Q(f;((TT)))w(a T
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Considering u(z) = ¢ {q(x)p(x)v(z)}, then it

follows
( )<¢ l{q / f T ( )))dﬂ},
which is the desired result. O

Remark 2 Theorem 1 generalize many known
theorems in the literature. For example, if we take
d(u) = u, Y(u) =u™, m >0, wlu) = u, then
Theorem 1 becomes [14, Theorem 2.1]. If we take
o(u) =u, P(u) =u™, wlu) =u™, m >0, then
Theorem 1 becomes [14, Theorem 2.2]. If we take
o(u) = u, Y(u) =u™, m > 0, then Theorem 1
becomes [15, Theorem 3.

Corollary 3 Suppose u(x), ¢(x), f(z), q(x),
w(x), e(z), ¥(x), Bi,i=1,2,--- are the same as
in Theorem 1. If for x > xg,

o(u(x)) < o(z) + qlx) / " ()l @(u(r))dr

+ > Bi(d(ulz; —0))),

zo<T;<T
/ f(r

WS (x@',xiJrl], 1=0,1,2...,

then

PADATD i),

1
u(r) < ¢~ {q(w o)

where

s 1
Gi(s)= [ ——ds, i=0,1,2...,
(s) /CZ o05) S, 1

o [T Delanem)

Swlate — Optes - OGE HEgehan)
p(z; —0)

, and cg = 1.

fori=1,2..
Now we consider the integral inequality con-
taining multiple integrals for discontinuous func-

tion with one independent variable.

Theorem 4 Suppose u, ¢, @, w, ¥, G i

1,2... are the same as in Theorem 1, o;, i =
1,2,3 € & class of functions, f, g, hi, ho €
(R, Ry), ¢i(x) € (R, Ry), qi(z) = 1,i=1,2,3.

Furthermore, assume min{o;(z), i = 1,2,3} >
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zj—1 for x € (zj_1,zj], j = 1,2,---. If for
x > g, u(x) satisfies the following inequality

$(u(@)) < o(@) + (@) [ (Gl (7)ds
+aa(o) [ " g()é(u(oa(r))ds

+q3(z) /z hi(7) /T ha(s)p(u(os(s)))dsdr
£ B -0, ()

ro<z;<T

then for x € (x;,x11], 1 =0,1,2... we have

u() < 6 Ma(@)p()C | / " exp(—Fia (7))

f(Dw(p(o1(r))g(o1(7)))
o(7)
w(exp(Fiy1(7)))dr] exp(Fit1(z))}- (13)
where
oy = [F19()e(02(7)g(02(7))
Finle) = [ HEE2)

+ha () /T ha(8)p(o3(9))al0s(5)) g0 i 01,9

©(s)

|
Gi(s):/ w(s)ds’ 1=0,1,2...,

Biv[p(zi — 0)g(xi — 0)b;]
o(w; —0)

e / ex -y LA ()

w(exp(F;(7)))dr] exp(Fi(x;)), i =1,2...

b;, ¢; are all constants.

C():]., Cz:bz+

Li=1,2...,

Proof: Let q(x) = max{qi(z),i = 1,2,3}, con-
sidering ¢ is nondecreasing, from (12) we have

o(u(x)) * fr)ulélulor(1))
o 4@l +/ o
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Let v(x) = %, and

) =ci+ / I )dT

o(Ds(ulos(r))
+/$ o)

+/$ hi(7) /T h2(8)¢;?§;3(8)))d8d7, i=0,1..

Then for x > g, we have

(x) <1+ / " <T>w<<f£u<m<r>>>> N

(1)
9()e(u(oa(r)) .
+/xo o(7) a
+/$h1( )/ (S)i()(é) () gogr

n Z Bi( J:]()_)O))) (15)

ro<z;<T

Under the assumption min{o;(x), i = 1,2,3} >
zj_1, © € (xj_1,2;], j = 1,2..., considering o;
is continuous, we have in fact min{o;(z), i =
1,2,3} > my, for Yx > xzy. Since u is non-
negative on [zg,00), so u(oi(z)) > 0, i =
1,23, Vx € [zg,00). Furthermore v(o;(z)) >
0, i =1,2.3, Vx € [0, 00).

Case 1: If x € (xp, 1], then from (15) it follows

v(z) < Tp(x). (16)

From the assumption for o; we have zy < o;(x) <
x, i =1,2,3. Then v(o(x)) < vo(0i(z)) < To(z),
and

@b (2))))
Yo(@) = () L

Issue 12, Volume 10, December 2011
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that is,

() —F (2)vo(x) <

Multiplying exp(—Fi(z)) on both sides of (17),
it follows

[0 () exp(— Fl( NI
Fi(z ))f z)w(p(o

< exp(—

An integration for (18) from z¢ to z yields
vo(z) exp(—Fi(z)) — 1

< /m[exp(fFl (7_)) f(T)w(QD(O'l (T))Q(Ul (T)))w(@()(’r))]d’r.

o(7)

Let c¢(z) = {1+

T FEe(elon (el ()
/x fep(-Fi(r) e

Then vp(z) < c(z) exp(Fi(x)).
Moreover,

w(o(7))]d}.

f(@)w(p(o1(z))g(o1(z)))
p(z)

< exp(—F1(z))

w(exp(F1(x)))-

Integrating (20) from z to z, it follows

(20)

Gole(@)) — Gale(0) < [ [exp(-Fi())

ISSN: 1109-2769 436
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f(r)w(p(o1(7))q(o1(7)))
20) w(exp(Fi(T)))ldr.

Considering Go(c(0)) = 0, then

() < G5l | " exp(—Fi(7))

f(r)w(p(o1(1))g(o1(7)))
o(T)

w(exp(F1(7)))d7],

and

v(z) <77
<G| ew(-Ri()

w(exp(F1(7)))dr] exp(Fi(z)

Especially we have

$(u(z1 = 0))

(x) < e(x) exp(Fi(x

~—
~—

f(r)wlp(on(r
(

=v(x; —0) <To(x1 —0) < Tp(x1)

o1~ 0)almr — 0
<G ew(-R)! “)”(“”(";8)‘1(“1(””

w(exp(F1(7)))dr]exp(F1(x1)) =

Case 2: If x € (x1, 2], then from (15) we have
f(rw((ulo1(7))))
o [ tet
9(1)¢(u(o2(7))
i /xo o(r .
! 7 ha(s)¢(u(os(s)))
+ /xo hi(T) /:C() o(5) dsdrt
L B6(utz: ~0)
¢(z1 —0)
_  fw(u(on(1))) [ 9(T)e(uloe(7)) |
L, e [ S
. / ) / h2<s>¢<z(t<;fs<s>>> o
By (p(u(r1 —0)) f(r )
* ."L‘l — 0 / dr

(u(o <>>
*/xl <T> .
+ [ [P gy
Brs(o(ulz: — 0))) (o)),

. " fr)uls
= Dol )t - +/ o)
T g(noulor(r)
*/xl o

Issue 12, Volume 10, December 2011



WSEAS TRANSACTIONS on MATHEMATICS

+ / e / ’ hQ(S)ég(Li;Tg(s)))dsdT. (22)

Considering (21) holds for Vz € (zo, 1], and the
definition of by, then it follows

Brfp(xr — 0)q(z1 — 0)bi]
p(z1 —0)

* HOw6ur (), [ gDe(uloar)
*/M o) d”/ml o

<
# [ [P gy

v(z) < b+

= 7 (x). (23)

Then similar to the process of (16)-(21
reach the estimate

), we can

() <71(x)
<67 exp(-py(r HAR )
w(exp(Fy(7)))d7] exp(Fa(x)). (24)
Especially we have
dulr—0) o

<71 (22— 0) < Ty (x2)
(

o(xa — 0)g(xo — 0)
< G et LA )

w(exp(Fy(7)))dr] exp(Fa(x2)) = ba.
Case 3: Suppose

v(z) <vj-1(v)

f(r)w(p(o1(7))q(o1(7)))

<G / ' exp(—Fj(7))

j—

(
o(T)
w(exp(F(7)))dr] exp(Fj(z))

holds for = € (zj—1,2;], 7 = 1,2,..
x € (x4, Tit1], from (15) we have

f(Mw(¢(u(o1(7))))
)<1 +/ o0r) dr

g(n)(uloz(r)) .
- /xo o(r

.4, then for

ISSN: 1109-2769 437
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[ i) [ 1)

1+/ f(r ))dTJF/‘” g(T)qﬁg(tic)fz(T))dT

o), [ greluloa)
*/z o(7) d”/m o

¥ / () / " 1as)ouls(5))) g,

o [ LD O,

+f hlm/ 2D gy

=7;i(x). (25)
Then similar to (16)-(21

v(z) <oi(x)

), we deduce that

< Gi_l[/% exp(~Fia (7))

w(exp(Fi1(7)))dr] exp(Fit1(x)). (26)

From the analysis above, considering

u(z) = ¢~ Halz)p(z)v(2)},

we have completed the proof. ]

Remark 5 If o(z) = up and uy is a constant,
o1(z) = o3(x), f(z) =hi(2), @2(z) =1, q(z) =
g3(x), o(u) = u, Y(u) = u™, m > 0, then
Theorem 4 becomes [15, Theorem 5]. If ¢1(x) =
02(z) = g3(2), f(z) = M(z), g(z) =0, ¢(u) =
u, w(u) =u, Y(u) =u™, m >0, then Theorem
4 becomes [14, Theorem 3.1].
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Corollary 6 Suppose u, ¢, ¢, w, ¥, ;i =
1,2... are the same as in Theorem 1,
f .9, o0i, g, i1 = 1,2 are the same as
Theorem 4. If for x > xq

D+ | " relélulo

Nds+ > Bip(p(u(x,

ro<z;<T

0,1,2...

p(u(x)) < 1(7))))ds

o) | " g()o(uloa(r

then for x € (x;, xiy1], i = we have

ulw) < 6 Ha()o(0)G; | | " exp(=Fin (7))

Zo

f(D)w(p(o1(1))g(o1(7)))

—0))),

Qinghua Feng, Fanwei Meng

£))))dsdt

) / / :f<s,t>w<¢<u<x<s,

+ > Biv(d(u(z;

To<x; <Z,Yo<Y; <y

= 0,95 = 0))) (27)

then
(z,y) < ¢~ 1{Q(x v)e(z,y)
f(s, )w(e(s, t)q(s, 1))
/y | / = dsdi]},
xy)GQ“,z—l2 (28)
where

Gi(s):/ (18)ds, 1=0,1,2...,

w{exp(Fyy1(7))dr] exp(Fyi1 vi
- o(7) {exp(Fita (7)) d7] exp(Fita (2))} e / N f(s,1) wgzif;;) a(s.) | i+
Fi(z) = exp{/: Q(TW(”Z((TT)§Q("2(T))dT}, =012 o 0; ooy Vel 0)q (s —0,;—0)
Gi(s) :/: w(ls)ds, i=0,1,2.., Gl /y :1 f(st) ws(;iii;)Q(S’t))det]}
=1, ¢ — bﬁ@w[@(% —0)q(z; — 0)547 i—12.. fori=1,2..., and cp = 1.

p(z; —0)
Gl [ e(-Ri) o

3 (7)))d7] exp(Fy(x)), i =1,2...

bi =

w(exp(F;

If we take o1(z) = o2(z) = z in Corollary 6,
then we can obtain another corollary, which can
be left to the readers.

In the following we study the integral inequal-
ity for discontinuous functions with two indepen-
dent variables.

Theorem 7 Suppose u(zx,y) is a nonnegative

continuous function on Q = |J Q;, Q; =
t,j>1

{@y)lrice <z < @y yjo1 < y <y} with

the exception in the points (z;,y;), i = 1,2,...,

where there are finite jumps, and ro < x1 < ... <

Tp < o, Yo < Y1 < oo < Yp < ooy lim x, =
n—oo
oo, lim y, = oco. ¢(x,y) is a positive nonde-
n—oo

creasing function, that is, for ¥V (p,q), (P,Q) € Q

and p < P, q < Q it follows ¢(p,q) < ¢(P,Q).
Furthermore, suppose q(z,y) > 1, f(z,y) > 0 and

f(xvy) =0 fOT (wvy) € Qi,j7 t 7é .7 W, (ba 1/}7 /82
are the same as in Theorem 1. If for x > xg, y >
yo u(x,y) satisfies the following inequality

o(u(z,y)) < ¢(z,y)

ISSN: 1109-2769

f(rwlp(ou(r))alon(r)

438

d(u(z,y))
e(@,y)q(zy)’

(o)t [ [ L DA Dl

¢(s:1)
i=0,1,2,

Proof: Let v(z,y) = and

Considering ¢ is nondecreasing, for x > xg, y >
1o we have

v(z,y) < 1+/yj/:: f(s,w

(Gu(s.t) ,

©(s,1)
Bi(p(u(x; — 0,y; —0)))
+xo<mj<xz,yo<yj<y ¢(r; —0,y; —0)
fs, tw ) (s, t)u(s,1)]
=1+ / / ™ dsdt
Bi
+x0<xj<xz,y0<yj<y{90($j — 07y] - 0)
Yle(z;—0,y;—0)q(x; -0, yj 0)v(z;—0,y; —0)]}
f(s,t)w(p(s, t)q(s,t))w(v(s, 1))
=1 +/ / go(s,t) dsdt
Bi
+x0<xj<xz,y0<yj<y{(p(xj — 07y] - 0)
Ylo(z;—0,y;—0)g(z;—0,y;—0)v(z;—0,y;—0)]} (29)
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Case 1: If (z,y) € Q11, then from (29) we have

v(z,y) <oz, y)- (30)

Given a fixed X such that g < X < 21 and
x € (x0,X], then v(z,y) < vo(x,y) < To(X,y),

and
/ f(s,y)w

p(s.y)as, y))w(vis,y)) o

e(s,y)
w(To(X. 1) / f(s,y w((:zi:j %)Q(Say))ds,
that is,
vo (X y

/ f(s, y)w

Considering vo(X,y0) = 1, Go(vo(X,50)) = 0,
an integration for (31) from yo to y yields

t) dsdt.

X
Galwa(x.p)) < [ [ Hnthetete bt
Yo Yo )

Then
v(z,y) < vo(X,y)

/ * fs ) ( Dals:8)) 4ean. (32)
yo Jzo (s, )

Take x = X and con51der1ng X € (zo,x1] is arbi-
trary, it follows

v(z,y) < o(x,y)
1 (V[T f(s, w(e(s, Dg(s, b))
>~ GO 1[/yo /IO 80(5715) dsdt], (m,y) S Ql,l-
(33)
Especially we have
v(z1 — 0,91 — 0) < Vo(z1 — 0,91 — 0) < Vo(z1,91)
[ [ )
Yo x0 (5 t)

Case 2:

o) < 1+/y /m f(Svt)w(@(ng;l(; w(v(s,t) ;0
+51¢[90(I1 — 0,91 — 0)g(z1 — 0,y1 — 0)v(x1 — 0,y1 — 0)]

If (z,y) € Q22, then from (29) we have

¢(z1 — 0,91 —0)
_ Yo f (s Dw(e(s, t)g(s, t))w(v(s, t))
= 1_|_/yo . 2(5.1) dsdt

YOIT f(s wle(s, 1)g(s, t))w(v(s, t))
—|—/yl . o(s.1) dsdt
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L Lo — 0,y — Oja(ar — 0, — O)e( ~ 0,31 —0)
o(x1—0,y1 —0)

e [ [ Ko D )l )

51%/1[( — 0,31 — 0)g(x1 Oy1 0)v(z1 — 0,91 — 0)]
x1—0y1—0)

v ”“fst (p(s,t)q(s,t))
/y o05.1) dsdt)

/ S (s thwle(s: t)als )w(v(s, b))
v S w(s t)

o1 _glyl — )1/1{90(951—0,yl—O)q(x1—O,y1—0)

v f (s Dw(e(s, t)g(s, )
/yo 5 o05.1) dsdt]|}

[ [ Fe el e (vl t)
- +/ . o(5.) ot

=1 (.CC, y) (34)

Following in the same manner as the process of
(30)-(33) we can deduce

v(z,y) < vi(z,y)
1 (V[T f(stw(e(s, Da(s, )
_G’ll[/y1 /gc1 S0(5725) det]’ ($7y) 6(9)22
35

Especially we have

v(xg —0,y2 — 0) < Ty(x2 — 0,52 — 0) <7y

< Gl—l[/y2 2 f('S?t)w((p(S?t)Q(sat
Y1 x1

o(s,t)
Case 8: Suppose

v(z,y) < G;_ll[/:l / £ (s, w(e(s

holds for (z,y) € Qj;, j = 1,2,...
(z,y) € Qit1,i+1, from (29) we have

o) < 1t / [ o Dlelo Duls ote(5:)

(z2,92)

) dsdt].

,t)q(s,t))dsdﬂ

i, then for

( 7 )
Bi
+xo<xj<xz,yo<yj<y{ (2 —0,y; — 0)
Y[p(x;—0,y;—0)q(z; —0,y; —0)v(z; —0,y; —0)]}
_ [T (s wle(s tg(s, t))w(v(s, 1) |
= 1+/ (s, 1) dsdt

yo Jao
VO[T f(s wle(s, 1)g(s, t))w(v(s, b))
—|—/i / dsdt

o(s,t
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D DR = e =
Ylp(x; =0,y —0)q(x; —0,y; —0)v(z; —0,y; - 0)]}
sorafl [[ et
/y/ f(s, tw (pzz’(:)t)) CICRN
o 0 oy e (@i—0,1i—0)a(xi=0,3:—0)

) dsdt]}

L

ot [ [ KAl D)0 1

©(s,1)
Similar to Case 2 we can reach the estimate

=vi(z,y) (36)

v(z,y) <vi(2,y)

/ / f(s,)w(p(s, t)q(s, t))dsdt],

o(s,1)

(z,y) € Qit1,i1- (37)
Considering u(z,y) = ¢~ {q(z,y)p(z, y)v(z,y)},
then we have completed the proof. O

Remark 8 Theorem 7 generalize many known
results.  For example, if we take q(x,y) =
1, ¢(u) = U w(u) = u, ﬂ)(u) =u™, m >0,
then Theorem 7 becomes [16, Theorem 2.1].

we take ¢p(u) = u, w(u) = P(u) = u™, m > 0,
then Theorem 2.3 reduces to [16, Theorem 2.3].
If we take q(z,y) = 1, G(u) = u, w(u) = () =
u™, m > 0, then Theorem 7 reduces to [16,
Theorem 2.2]. If we take ¢p(u) = u, Y(u) =

then Theorem 2.3 reduces to [17, Theorem 2.1].
If we take ¢p(u) = u, Y(u) = u™, m > 0, then
Theorem 7 reduces to [17, Theorem 2.2]. If we
take p(u) = u™, w(u) = w(uw)u", Y(u) =u, m >
n > 0, then Theorem 7 becomes [17, Theorem

Remark 9 Theorem 7 can easily be generalized
to the situation with delay items and four iterated
integrals, and the process of proof is almost the
same as in Theorem 7.
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3 Some Applications

In this section, we will present two examples so
as to illustrate the validity of the above results in
making estimate for the bounds of the solutions
of certain integral equations.

Example 1:
equation:

Consider the following integral

ln(l—l—u(a:)):C’—|—/mF(s,u(s))d8—|— > u(z;—0)

ro<z;<xT

(38)
with the initial condition u(zg) = e — 1 > 0,
where u(x) is a nonnegative piecewise continuous
function defined on [zg,00) with discontinuities
of the first kind in z;, ¢ = 1,2...;, and 0 < zg <
] < oo < Ty < nh_}ngoxn = 00. Assume 0 <
F(z,u) < f(z)(In(l +w))™, m > 0, where f €
(R+,R+).

If we let ¢(u) = In(u P(u) =

1, w(u) = w", o) = -
then from (38) we have:

P(u(x)) = In(1 + u(x))
<C+ /x F(s)(In(1+u(s)mds+ Y ua;—0)

e / " f(s)w((u(s))

ds+ Y (o(ula;
ro<z;<T

So according to Corollary 2.1 we can give the

bound of u(z) as

u

+ 1),
C, q(x) =

s
=

—0)))

u(x) < qb_l{C’Gi_l[/% f(T)Cm_ldT]}, x € (x4, Tit1]

where
G'(s)—/szlds i=0,1,2
1 - o (U(S) ’ T My Sy e
¢ =G| / f(r)Cmtdr]
Ti—1
H{CGTL [T f(r)Cmtdr]}
+
C
for i =1,2... and ¢y = 1.
Example 2: Consider the following integral

equation with two independent variables:

(@y) = C+/ / (s t,u(s,t))dsdt
Yo

+ enu(x] 0,y;—0)

zo<T; <ac Yo <y; <y

(39)
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with the initial condition u(zg,yp) = InC, where

u(x,y) is a nonnegative continuous function de-

fined on Q = U Qi,ja Q,L'J = {(l’,y)|£L‘Z’71 <
i,j>1

z < x;, yj—1 <y < y;} with the exception in

the points (x;,v;), ¢ = 1,2,..., and 0 < zy <

T] < . < Tp < ooy, 0 yo < y1 < .. < yYyp <
vy, lim z, = o0, lim y, = oo. Furthermore,
n—oo n—oo

assume 0 < F(z,y,u) < f(xz,y)e™", where m,n
are positive numbers, and f(z,y) = 0, V(z,y) €
Qij, i #£ ]

If we take ¢(u) = e*, w(u) = u™, Y(u) =
u q(z,y) =1, ¢(x,y) = C, B; = 1, then accord-
ing to Theorem 2.3 we can obtain the bound of
u(x,y) as

u(z,y) < ¢_1{C’G;1[/% /I f(s,t)C™ 1dsdt]},

(z,y) € Qiy, i =1,2...

where

51
GZ(S) :/ Ws)ds, 2.20,1,2...,

Yi Ti
= Gi__ll [/ f(s,t)C™ Ldsdt]
i—1 Y Ti—1
+ﬁiw{ca;ﬁ[ o F(s,)Cm T dsdt)}

C
fori=1,2... and ¢g = 1.

Remark 10 We note that the methods in [1-17]
are not available here to make estimate for the
bound of the solutions of the presented two integral
equations.
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