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1 Introduction

During the past decades, with the development
of the theory of differential and integral equation-
s, a lot of integral and difference inequalities, for
example, [3-12] and the references therein, have
been discovered, which play an important role in
the research of boundedness, global existence, sta-
bility of solutions of differential and integral e-
quations as well as difference equations. In these
inequalities, Gronwall-Bellman type inequalities
and their generations have been paid much atten-
tion by many authors (for example, see [3-8]). On
the other hand, Hilger [13] initiated the theory of
time scales, and one of the purposes of the theory
of time scales is to unify continuous and discrete
analysis. Since then, many integral inequalities on
time scales have been established(for example, see
[14-20] and the references therein), which on one
hand provide a handy tool in the study of qual-
itative as well as quantitative properties of solu-
tions of certain dynamic equations on time scales,
on the other hand unify continuous and discrete
analysis to some extent. But to our knowledge,
Gronwall-Bellman type inequalities in two inde-
pendent on time scales containing integration on
infinite intervals have been paid little attention in
the literature so far.

In this paper, we will establish some new
Gronwall-Bellman type dynamic inequalities in t-

wo independent variables on time scales contain-
ing integration on infinite intervals, which gener-
alize the main results in [1] and [2], and present
some applications for them.

First we will give some preliminaries on calcu-
lus of time scales and some universal symbols used
in this paper. Throughout the paper, R denotes
the set of real numbers and R+ = [0,∞). Z de-
notes the set of integers. For two given sets G, H,
we denote the set of maps from G to H by (G,H).
A time scale is an arbitrary nonempty closed sub-
set of the real numbers. In this paper, T denotes
an arbitrary time scale. On T we define the for-
ward and backward jump operators σ ∈ (T,T)
and ρ ∈ (T,T) such that σ(t) = inf{s ∈ T, s > t},
ρ(t) = sup{s ∈ T, s < t}.

Definition 1 The graininess µ(t) ∈ (T,R+) is
defined by µ(t) = σ(t)− t.

Remark 2 Obviously, µ(t) = 0 if T = R while
µ(t) = 1 if T = Z.

Definition 3 A point t ∈ T is said to be left-
dense if ρ(t) = t and t ̸= inf T, right-dense if
σ(t) = t and t ̸= supT, left-scattered if ρ(t) < t
and right-scattered if σ(t) > t.

Definition 4 The set Tκ is defined to be T if T
does not have a left-scattered maximum, otherwise
it is T without the left-scattered maximum.
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Definition 5 A function f(t) ∈ (T,R) is called
rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense
points, while f is called regressive if 1+µ(t)f(t) ̸=
0. Crd denotes the set of rd-continuous func-
tions, while R denotes the set of all regressive
and rd-continuous functions, and R+ = {f |f ∈
R, 1 + µ(t)f(t) > 0, ∀t ∈ T}.

Definition 6 For some t ∈ Tκ, and a function
f ∈ (T,R), the delta derivative of f at t is
denoted by f∆(t) (provided it exists) with the
property such that for every ε > 0 there exists a
neighborhood U of t satisfying

|f(σ(t))−f(s)−f∆(t)(σ(t)−s)| ≤ ε|σ(t)−s|
for all s ∈ U.

Similarly, for some x ∈ Tκ, and a function
f(x, y) ∈ (T×T,R), the partial delta derivative
of f(x, y) with respect to x is denoted by
(f(x, y))∆x , and satisfies

|f(σ(x), y)− f(s, y)− (f(x, y))∆x (σ(x)− s)|
≤ ε|σ(x)− s|, for ∀ε > 0,

where s ∈ U, and U is a neighbor-
hood of x. The function f(x, y) is called
partial delta differential with respect to x on
Tκ.

Remark 7 If T = R, then f∆(t) becomes the
usual derivative f ′(t), while f∆(t) = f(t+1)−f(t)
if T = Z, which represents the forward difference.

Definition 8 If F∆(t) = f(t), t ∈ Tκ, then
F is called an antiderivative of f , and the
Cauchy integral of f is defined by∫ b

a f(t)∆t = F (b)− F (a),
where a, b ∈ T.

Similarly, for a, b ∈ T and a function f(x, y) :
T×T → R, the Cauchy partial integral of f(x, y)
with respect to x is defined by∫ b
a f(x, y)∆x = F (b, y)− F (a, y),

where (F (x, y))∆x = f(x, y), x ∈ Tκ.

The following theorem includes some impor-
tant properties for Cauchy partial integral on
time scales.

Theorem 9 If a, b, c ∈ T, α ∈ R, and
f(x, y), g(x, y) ∈ Crd(T× T,R), then

(i)
∫ b
a [f(x, y) + g(x, y)]∆x =

∫ b
a f(x, y)∆x

+
∫ b
a g(x, y)∆x,

(ii)
∫ b
a (αf)(x, y)∆t = α

∫ b
a f(x, y)∆x,

(iii)
∫ b
a f(x, y)∆x = −

∫ a
b f(x, y)∆x,

(iv)
∫ b
a f(x, y)∆x =

∫ c
a f(x, y)∆x

+
∫ b
c f(x, y)∆x,

(v)
∫ a
a f(x, y)∆x = 0,

(vi) if f(x, y) ≥ 0 for all a ≤ x ≤ b, then∫ b
a f(x, y)∆x ≥ 0.

Remark 10 If b = ∞, then all the conclusions
of Theorem 1.1 still hold.

Definition 11 The cylinder transformation ξh is
defined by

ξh(z) =


Log(1+hz)

h , if h ̸= 0 (for z ̸= − 1
h),

z, if h = 0,

where Log is the principal logarithm function.

Definition 12 For p(x, y) ∈ R with respect to x,
the exponential function is defined by

ep(x, s) = exp(

∫ x

s
ξµ(τ)(p(τ, y))∆τ)

for s, x ∈ T.

Remark 13 If T = R, then for x ∈ R the follow-
ing formula holds

ep(x, s) = exp(

∫ x

s
p(τ, y)dτ)

for s ∈ T.

If T = Z, then for t ∈ Z,

ep(x, s) =

x−1∏
τ=s

[1 + p(τ, y)]

for s ∈ T and s < x.

The following two theorems include some
known properties on the exponentialfunction.
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Theorem 14 If p(x, y) ∈ R with respect to x,
then the following conclusions hold

(i) ep(x, x) ≡ 1, and e0(x, s) ≡ 1,
(ii) ep(σ(x), s) = (1 + µ(x)p(x, y))ep(x, s),
(iii) If p ∈ R+ with respect to x, then

ep(x, s) > 0 for ∀s, x ∈ T,
(iv) If p ∈ R+ with respect to x, then ⊖p ∈

R+,
(v) ep(x, s) = 1

ep(s,x)
= e⊖p(s, x), where

(⊖p)(x, y) = − p(x,y)
1+µ(x)p(x,y) .

Theorem 15 If p(x, y) ∈ R with respect to
x, x0 ∈ T is a fixed number, then the
exponential function ep(x, x0) is the unique so-
lution of the following initial value problem{

(z(x, y))∆x = p(x, y)z(x, y),
z(x0, y) = 1.

Remark 16 Theorem 9 14 and 15 are extensions
of [16, Theorem 2.2] and [21, Theorem 5.2, 5.1]
respectively.

Remark 17 For more details about time scales,
we advise the reader to refer to [22].

2 Main Results

For convenience of notation, in the rest
of this paper we always assume that

T0 = [x0,∞)
∩

T, T̃0 = [y0,∞)
∩

T,
where x0, y0 ∈ T, and furthermore assume

T0 ⊆ Tκ, T̃0 ⊆ Tκ.

We will give some lemmas for further use.

Lemma 18 Suppose Y ∈ T̃0 is an arbitrarily
fixed number, and u(x, Y ) ∈ Crd, m(x, Y ) ∈ R+

with respect to x, m(x, Y ) ≥ 0, then

u(x, Y ) ≤ a(x, Y )+

∫ x

x0

m(s, Y )u(s, Y )∆s, x ∈ T0

implies

u(x, Y ) ≤ a(x, Y ) +

∫ x

x0

em(.,Y )(x, σ(s))a(s, Y )

m(s, Y )∆s, x ∈ T0,

where em(.,Y )(x, x0) is the unique solution of the
following problem{

(z(x, Y ))∆x = m(x, Y )z(x, Y ),
z(x0, Y ) = 1.

The proof for Lemma 18 is similar to [21, The-
orem 5.6], and we omit it here.

Lemma 19 Under the conditions of Lemma 18,
and furthermore assume a(x, y) is nondecreasing
in x for every fixed y, then we have

u(x, Y ) ≤ a(x, Y )em(.,Y )(x, x0).

Proof : Since a(x, y) is nondecreasing in x for
every fixed y, then from Lemma 18 we have

u(x, Y ) ≤ a(x, Y ) +

∫ x

x0

em(.,Y )(x, σ(s))a(s, Y )

m(s, Y )∆s

≤ a(x, Y )[1 +

∫ x

x0

em(.,Y )(x, σ(s))m(s, Y )∆s].

On the other hand, from [22, Theorem 2.39 and
2.36 (i)],

1+

∫ x

x0

em(.,Y )(x, σ(s))m(s, Y )∆s = em(.,Y )(x, x0).

Then Collecting the above information we can ob-
tain the desired inequality.

Lemma 20 [23] Assume that a ≥ 0, p ≥ q ≥ 0,
and p ̸= 0, then for any K > 0

a
q
p ≤ q

pK
q−p
p a+ p−q

p K
q
p .

Theorem 21 Suppose sup
y∈T̃0

y = ∞, u, f, g, h,

a, b ∈ Crd(T0 × T̃0, R+), p is a constant with

p ≥ 1. If for (x, y) ∈ T0× T̃0, u(x, y) satisfies the
following inequality

up(x, y) ≤ a(x, y) + b(x, y)

∫ x

x0

∫ ∞

y
[f(s, t)u(s, t)

+g(s, t)+

∫ s

x0

∫ ∞

t
h(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s, (1)

then

u(x, y) ≤ {a(x, y) + b(x, y)[B1(x, y)

+

∫ x

x0

eB2(.,y)(x, σ(s))B2(s, y)B1(s, y)∆s]}
1
p ,

X(x, y) ∈ T0 × T̃0, (2)

where

B1(x, y) =

∫ x

x0

∫ ∞

y
[f(s, t)(

1

p
K

1−p
p a(s, t)+

p− 1

p
K

1
p )
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+g(s, t) +

∫ s

x0

∫ ∞

t
h(ξ, η)(

1

p
K

1−p
p a(ξ, η)

+
p− 1

p
K

1
p )∆η∆ξ]∆t∆s, (3)

B2(x, y) =

∫ ∞

y
[f(x, t) +

∫ x

x0

∫ ∞

t
h(ξ, η)∆η∆ξ]

1

p
K

1−p
p b(x, t)∆t. (4)

Proof : Let

v(x, y) =

∫ x

x0

∫ ∞

y
[f(s, t)u(s, t) + g(s, t)

+

∫ s

x0

∫ ∞

t
h(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s. (5)

Then

u(x, y) ≤ (a(x, y)+b(x, y)v(x, y))
1
p , (x, y) ∈ T0×T̃0

(6)

Fix Y ∈ T̃0, and let y ∈ [Y,∞)
∩

T, x ∈ T0. Then

v(x, Y ) =

∫ x

x0

∫ ∞

Y
[f(s, t)u(s, t) + g(s, t)

+

∫ s

x0

∫ ∞

t
h(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s

≤
∫ x

x0

∫ ∞

Y
[f(s, t)(a(s, t) + b(s, t)v(s, t))

1
p + g(s, t)

+

∫ s

x0

∫ ∞

t

h(ξ, η)(a(ξ, η)+b(ξ, η)v(ξ, η))
1
p∆η∆ξ]∆t∆s.

(7)
From Lemma 20, for ∀K > 0 we have

(a(x, y) + b(x, y)v(x, y))
1
p

≤ 1

p
K

1−p
p (a(x, y) + b(x, y)v(x, y)) +

p− 1

p
K

1
p ,

(x, y) ∈ T0 × T̃0. (8)

So combining (7) and (8), considering v(x, y) is
decreasing in y, it follows

v(x, Y ) ≤
∫ x

x0

∫ ∞

Y
[f(s, t)(

1

p
K

1−p
p (a(s, t)

+b(s, t)v(s, t)) +
p− 1

p
K

1
p ) + g(s, t)

+

∫ s

x0

∫ ∞

t
h(ξ, η)(

1

p
K

1−p
p (a(ξ, η)

+b(ξ, η)v(ξ, η)) +
p− 1

p
K

1
p )∆η∆ξ]∆t∆s

=

∫ x

x0

∫ ∞

Y

[f(s, t)(
1

p
K

1−p
p a(s, t) +

p− 1

p
K

1
p ) + g(s, t)

+

∫ s

x0

∫ ∞

t

h(ξ, η)(
1

p
K

1−p
p a(ξ, η)+

p− 1

p
K

1
p )∆η∆ξ]∆t∆s

+

∫ x

x0

∫ ∞

Y
[f(s, t)

1

p
K

1−p
p b(s, t)v(s, t)

+

∫ s

x0

∫ ∞

t
h(ξ, η)

1

p
K

1−p
p b(ξ, η)v(ξ, η)∆η∆ξ]∆t∆s

≤ B1(x, Y ) +

∫ x

x0

B2(s, Y )v(s, Y )∆s, (9)

where B1(x, y), B2(x, y) are defined in (3) and (4)
respectively.

From Lemma 18, it follows

v(x, Y ) ≤ B1(x, Y )

+

∫ x

x0

eB2(.,Y )(x, σ(s))B2(s, Y )B1(s, Y )∆s, x ∈ T0.

(10)

Since Y ∈ T̃0 is arbitrary, then in fact (10) holds

for ∀(x, y) ∈ (T0 × T̃0), that is,

v(x, y) ≤ B1(x, y) +

∫ x

x0

eB2(.,y)(x, σ(s))B2(s, y)

B1(s, y)∆s, (x, y) ∈ (T0 × T̃0). (11)

Then combining (6) and (11) we obtain the de-
sired inequality.

Theorem 22 Under the conditions of Theorem

2.1, if for (x, y) ∈ T0 × T̃0, u(x, y) satisfies (1),
then
then

u(x, y) ≤ {a(x, y)+b(x, y)B1(x, y)eB2(.,y)(x, x0)}
1
p ,

(x, y) ∈ T0 × T̃0, (12)

where B1(x, y), B2(x, y) are defined the same as
in Theorem 21.

Proof : Considering B1(x, y) is nondecreasing in
x, from (2) we have

u(x, y) ≤ {a(x, y) + b(x, y)[B1(x, y)

+

∫ x

x0

eB2(.,y)(x, σ(s))B2(s, y)B1(s, y)∆s]}
1
p

≤ {a(x, y) + b(x, y)B1(x, y)[1+
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∫ x

x0

eB2(.,y)(x, σ(s))B2(s, y)∆s]}
1
p , (x, y) ∈ T0 × T̃0.

(13)

On the other hand, according to [12, Theorem
2.39 and 2.36 (i)] we have∫ x

x0

eB2(x,y)(x, σ(s))B2(s, y)∆s = eB2(x,y)(x, x0)−1.

(14)
Combining (13) and (14) we obtain the desired
inequality.

Corollary 23 Under the conditions of Theorem

22, if for (x, y) ∈ T0 × T̃0, u(x, y) satisfies the
following inequality

u(x, y) ≤ a(x, y) +

∫ x

x0

∫ ∞

y
[f(s, t)u(s, t) + g(s, t)

+

∫ s

x0

∫ ∞

t
h(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s, (15)

then

u(x, y) ≤ a(x, y) +B1(x, y)eB2(.,y)(x, x0),

(x, y) ∈ T0 × T̃0, (16)

where

B1(x, y) =

∫ x

x0

∫ ∞

y
[f(s, t)a(s, t) + g(s, t)

+

∫ s

x0

∫ ∞

t
h(ξ, η)a(ξ, η)∆η∆ξ]∆t∆s, (17)

B2(x, y) =

∫ ∞

y
[f(x, t)+

∫ x

x0

∫ ∞

t
h(ξ, η)∆η∆ξ]∆t.

(18)

Theorem 24 Suppose sup
y∈T̃0

y = ∞, u, f, g, p

are the same as in Theorem 21, a, h1, h2 ∈
Crd(T0× T̃0, R+), and a(x, y) is nondecreasing in

x for every fixed y. If for (x, y) ∈ T0× T̃0, u(x, y)
satisfies the following inequality

up(x, y) ≤ a(x, y) +

∫ x

x0

[f(s, y)up(s, y)∆s

+

∫ x

x0

∫ ∞

y
[g(s, t)u(s, t) + h1(s, t)

+

∫ s

x0

∫ ∞

t
h2(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s, (19)

then

u(x, y) ≤ {[a(x, y) + B̃1(x, y)eB̃2(.,y)
(x, x0)]

ef(.,y)(x, x0)}
1
p , (x, y) ∈ T0 × T̃0, (20)

where

f̃(x, y) = g(x, y)(ef(.,y)(x, x0))
1
p
1

p
K

1−p
p

+

∫ x

x0

∫ ∞

y
h2(ξ, η)(ef(.,η)(ξ, x0))

1
p
1

p
K

1−p
p ∆η∆ξ,

(21)

g̃(x, y) = g(x, y)(ef(.,y)(x, x0))
1
p [
1

p
K

1−p
p a(x, y)+

p− 1

p
K

1
p ] + h1(x, y)

+

∫ x

x0

∫ ∞

y
h2(ξ, η)(ef(.,η)(ξ, x0))

1
p [
1

p
K

1−p
p a(ξ, η)

+
p− 1

p
K

1
p∆η∆ξ, (22)

B̃1(x, y) =

∫ x

x0

∫ ∞

y
g̃(s, t)∆t∆s, (23)

B̃2(x, y) =

∫ ∞

y
f̃(x, t)∆t. (24)

Proof : Let

v(x, y) = a(x, y) +

∫ x

x0

∫ ∞

y
[g(s, t)u(s, t) + h1(s, t)

+

∫ s

x0

∫ ∞

t
h2(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s. (25)

Then

up(x, y) ≤ v(x, y) +

∫ x

x0

[f(s, y)up(s, y)∆s,

(x, y) ∈ T0 × T̃0. (26)

Fix Y ∈ T̃0, and let y ∈ [Y,∞)
∩

T̃. Then

up(x, Y ) ≤ v(x, Y )+

∫ x

x0

[f(s, Y )up(s, Y )∆s, x ∈ T0.

(27)
Considering v(x, Y ) is nondecreasing in x, by
Lemma 19 we obtain

up(x, Y ) ≤ v(x, Y )ef(.,Y )(x, x0), x ∈ T0. (28)

Since Y is selected from T̃0 arbitrarily, then in

fact (28) holds for ∀y ∈ T̃0, that is

up(x, y) ≤ v(x, y)ef(.,y)(x, x0), (x, y) ∈ (T0 × T̃0).
(29)
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Let

c(x, y) =

∫ x

x0

∫ ∞

y
[g(s, t)u(s, t) + h1(s, t)

+

∫ s

x0

∫ ∞

t
h2(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s. (30)

Then
v(x, y) = a(x, y) + c(x, y), (31)

and

up(x, y) ≤ (a(x, y) + c(x, y))ef(.,y)(x, x0),

(x, y) ∈ (T0 × T̃0). (32)

Combining (30) and (32) we have

c(x, y) =

∫ x

x0

∫ ∞

y
[g(s, t)u(s, t) + h(s, t)]∆t∆s

≤
∫ x

x0

∫ ∞

y
{g(s, t)[(a(s, t) + c(s, t))ef(.,t)(s, x0)]

1
p

+h1(s, t) +

∫ s

x0

∫ ∞

t
h2(ξ, η)(a(ξ, η)

+c(ξ, η))ef(.,η)(ξ, x0)]
1
p∆η∆ξ}∆t∆s. (33)

On the other hand, From Lemma 2.3 the following
inequality holds

(a(x, y) + c(x, y))
1
p

≤ 1

p
K

1−p
p (a(x, y) + c(x, y)) +

p− 1

p
K

1
p ,

(x, y) ∈ T0 × T̃0. (34)

So from (33) and (34) it follows

c(x, y) ≤
∫ x

x0

∫ ∞

y
{g(s, t)(ef(.,t)(s, x0))

1
p

[
1

p
K

1−p
p (a(s, t) + c(s, t)) +

p− 1

p
K

1
p ] + h1(s, t)

+

∫ s

x0

∫ ∞

t
h2(ξ, η)(ef(.,η)(ξ, x0))

1
p

[
1

p
K

1−p
p (a(ξ, η)+c(ξ, η))+

p− 1

p
K

1
p ]∆η∆ξ}∆t∆s

=

∫ x

x0

∫ ∞

y
[f̃(s, t)c(s, t) + g̃(s, t)]∆t∆s, (35)

where f̃(x, y), g̃(x, y) are defined in (21) and (22)
respectively.

According to Corollary 23 we obtain

c(x, y) ≤ B̃1(x, y)eB̃2(.,y)
(x, x0), (36)

where B̃1(x, y), B̃2(x, y) are defined in (23) and
(24) respectively.

Combining (32) and (36) we get the desired
inequality (20).

Corollary 25 Under the conditions of Theorem

24, if for (x, y) ∈ T0 × T̃0, u(x, y) satisfies the
following inequality

u(x, y) ≤ a(x, y) +

∫ x

x0

[f(s, y)u(s, y)∆s

+

∫ x

x0

∫ ∞

y
[g(s, t)u(s, t) + h1(s, t)

+

∫ s

x0

∫ ∞

t
h2(ξ, η)u(ξ, η)∆η∆ξ]∆t∆s, (37)

then

u(x, y) ≤ [a(x, y)+B̃1(x, y)eB̃2(x,y)
(x, x0)]ef(x,y)(x, x0),

(x, y) ∈ T0 × T̃0. (38)

where
f̃(x, y) = g(x, y)ef(.,y)(x, x0)

+

∫ x

x0

∫ ∞

y
h2(ξ, η)ef(.,η)(ξ, x0)∆η∆ξ,

g̃(x, y) = g(x, y)ef(.,y)(x, x0)a(x, y) + h1(x, y)

+

∫ x

x0

∫ ∞

y
h2(ξ, η)ef(.,η)(ξ, x0)a(ξ, η)∆η∆ξ,

B̃1(x, y) =

∫ x

x0

∫ ∞

y
g̃(s, t)∆t∆s,

B̃2(x, y) =

∫ ∞

y
f̃(x, t)∆t.

Theorem 26 Suppose sup
y∈T̃0

y = ∞, u, a, f, p

are the same as in Theorem 24, L ∈ C(T0 × T̃0

×R+, R+), and 0 ≤ L(s, t, x) − L(s, t, y) ≤
M(s, t, y)(x − y) for x ≥ y ≥ 0, where M ∈
C(T0 × T̃0 × R+, R+). If for (x, y) ∈ T0 × T̃0,
u(x, y) satisfies the following inequality

up(x, y) ≤ a(x, y) +

∫ x

x0

f(s, y)up(s, y)∆s

+

∫ x

x0

∫ ∞

y
L(s, t, u(s, t))∆t∆s, (39)
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then

u(x, y) ≤ {[a(x, y) + B̂1(x, y)eB̂2(x,y)
(x, x0)]

ef(x,y)(x, x0)}
1
p , (x, y) ∈ T0 × T̃0. (40)

where

f̂(x, y) =M(x, y, (ef(x,y)(x, x0))
1
p (

1

p
K

1−p
p a(x, y)

+
p− 1

p
K

1
p ))(ef(x,y)(x, x0))

1
p
1

p
K

1−p
p , (41)

ĝ(x, y) = L(x, y, (ef(x,y)(x, x0))
1
p (

1

p
K

1−p
p a(x, y)

+
p− 1

p
K

1
p )), (42)

B̂1(x, y) =

∫ x

x0

∫ ∞

y
ĝ(s, t)∆t∆s, (43)

B̂2(x, y) =

∫ ∞

y
f̂(x, t)∆t. (44)

Proof : Let

v(x, y) = a(x, y) +

∫ x

x0

∫ ∞

y
L(s, t, u(s, t))∆t∆s.

(45)
Then

up(x, y) ≤ v(x, y) +

∫ x

x0

f(s, y)up(s, y)∆s,

(x, y) ∈ T0 × T̃0. (46)

Fix a Y ∈ T̃0, and let y ∈ [Y,∞)
∩

T̃, then

up(x, Y ) ≤ v(x, Y )+

∫ x

x0

f(s, Y )up(s, Y )∆s, x ∈ T0.

(47)
Considering v(x, Y ) is nondecreasing in x, then
by Lemma 19 we obtain

up(x, Y ) ≤ v(x, Y )ef(x,Y )(x, x0), x ∈ T0. (48)

Since Y is selected from T̃0 arbitrarily, then in

fact (48) holds for ∀y ∈ T̃0, that is,

up(x, y) ≤ v(x, y)ef(x,y)(x, x0), (x, y) ∈ T0 × T̃0.
(49)

Let

c(x, y) =

∫ x

x0

∫ ∞

y
L(s, t, u(s, t))∆t∆s. (50)

Then we have

v(x, y) = a(x, y) + c(x, y), (51)

and

up(x, y) ≤ (a(x, y) + c(x, y))ef(x,y)(x, x0),

(x, y) ∈ T0 × T̃0. (52)

Combining (34), (50) and (52) we have

c(x, y) ≤
∫ x

x0

∫ ∞

y
L(s, t, ((a(s, t)

+c(s, t))ef(s,t)(s, x0))
1
p )∆t∆s

≤
∫ x

x0

∫ ∞

y
L(s, t, (ef(s,t)(s, x0))

1
p (

1

p
K

1−p
p (a(s, t)

+c(s, t)) +
p− 1

p
K

1
p ))∆t∆s

=

∫ x

x0

∫ ∞

y
[L(s, t, (ef(s,t)(s, x0))

1
p (

1

p
K

1−p
p (a(s, t)

+c(s, t)) +
p− 1

p
K

1
p ))

−L(s, t, (ef(s,t)(s, x0))
1
p (

1

p
K

1−p
p a(s, t)+

p− 1

p
K

1
p ))

+L(s, t, (ef(s,t)(s, x0))
1
p (

1

p
K

1−p
p a(s, t)+

p− 1

p
K

1
p ))]∆t∆s

≤
∫ x

x0

∫ ∞

y
[M(s, t, (ef(s,t)(s, x0))

1
p (

1

p
K

1−p
p a(s, t)

+
p− 1

p
K

1
p ))(ef(s,t)(s, x0))

1
p
1

p
K

1−p
p c(s, t)

+L(s, t, (ef(s,t)(s, x0))
1
p (

1

p
K

1−p
p a(s, t)+

p− 1

p
K

1
p ))]∆t∆s

=

∫ x

x0

∫ ∞

y
[f̂(s, t)c(s, t) + ĝ(s, t)]∆t∆s, (53)

where f̂(x, y), ĝ(x, y) are defined in (41) and (42)
respectively.

By use of Corollary 2.3 we obtain

c(x, y) ≤ B̂1(x, y)eB̂2(x,y)
(x, x0), (x, y) ∈ T0×T̃0,

(54)

where B̂1(x, y), B̂2(x, y) are defined in (43) and
(44) respectively.

Combining (52) and (54) we obtain the de-
sired inequality (40).
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3 Some Applications

In this section, we will present some applications
for the established results above, and new explicit
bounds of solutions of certain dynamic equations
will be derived.

Example 27 Consider the following dynamic e-
quation

up(x, y) = a(x, y) +

∫ x

x0

∫ ∞

y
F (s, t, u(s, t))∆t∆s,

(x, y) ∈ T0 × T̃0, (55)

where u, a ∈ Crd(T0× T̃0, R), and p is a constant
with p ≥ 1.

Theorem 28 If u(x, y) is a solution of (55), and
|F (s, t, u)| ≤ f(s, t)|u| + g(s, t), where f, g ∈
Crd(T0 × T̃0,R+), then we have

|u(x, y)| ≤ {|a(x, y)|+[B1(x, y)+

∫ x

x0

eB2(x,y)(x, σ(s))

B2(s, y)B1(s, y)∆s]}
1
p , (x, y) ∈ T0 × T̃0, (56)

where

B1(x, y) =

∫ x

x0

∫ ∞

y
[f(s, t)(

1

p
K

1−p
p |a(s, t)|

+
p− 1

p
K

1
p ) + g(s, t)]∆t∆s,

B2(x, y) =

∫ ∞

y
f(x, t)

1

p
K

1−p
p ∆t.

Proof : From (55) we have

|u(x, y)|p ≤ |a(x, y)|+
∫ x

x0

∫ ∞

y
|F (s, t, u(s, t))|∆t∆s

≤ |a(x, y)|+
∫ x

x0

∫ ∞

y
[f(s, t)|u(s, t)|+g(s, t)]∆t∆s.

Then a suitable application of Theorem 2.1 yields
the desired inequality (56).

Example 29 Consider the following dynamic e-
quation

u2(x, y) = φ(y) +

∫ x

x0

F1(s, y)∆s

+

∫ x

x0

∫ ∞

y
F2(s, t, u(s, t))∆t∆s, (57)

where u ∈ Crd(T0 × T̃0, R), (x, y) ∈ T0 × T̃0.

Theorem 30 If u(x, y) is a solution of (57),
and |F1(x, y)| ≤ f(x, y)u2(x, y), |F2(x, y, u)| ≤
g(x, y)|u| + h(x, y), where f, g, h ∈ Crd(T0 ×
T̃0, R+), then the following estimate holds

|u(x, y)| ≤√
[|φ(y)|+ (B̃1(x, y)eB̃2(x,y)

(x, x0))]ef(x,y)(x, x0),

(x, y) ∈ T0 × T̃0, (58)

where

f̃(x, y) = g(x, y)

√
ef(x,y)(x, x0)

2
√
K

,

g̃(x, y) = g(x, y)(ef(x,y)(x, x0))
1
p [
|φ(y)|
2
√
K

+

√
K

2
]+h(x, y),

B̃1(x, y) =

∫ x

x0

∫ ∞

y
g̃(s, t)∆t∆s,

B2(x, y) =

∫ ∞

y
f̃(x, t)∆t.

Proof : from (57) we have

|u2(x, y)| ≤ |φ(y)|+
∫ x

x0

|F1(s, y)|∆s

+

∫ x

x0

∫ ∞

y
|F2(s, t, u(s, t))|∆t∆s

≤ |φ(y)|+
∫ x

x0

f(s, y)|u(s, y)|2∆s

+

∫ x

x0

∫ ∞

y
[g(s, t)|u(s, t)|+ h(s, t)]∆t∆s,

and then a suitable application of Theorem 24
yields (58).

Remark 31 From these applications, one can
see some explicit bounds for unknown functions
to certain dynamic equations on time scales are
established by the present theorems.

Remark 32 If we take T = R, x0 = 0, y0 = 0,
then our Theorem 22,24 and 26 reduce to [1,
Theorem 1, 3, 5(α)] respectively.

Remark 33 If we take T = Z, x0 = 0, y0 = 0,
then our Theorem 22,24 and 26 reduce to [2, The-
orem 1, 3, 5] respectively with slight difference.
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4 Conclusions

In this paper, we established some new Gronwall-
Bellman Type dynamic inequalities in two inde-
pendent variables on time scales containing inte-
gration on infinite intervals. As one can see from
the presented examples, the established results
provide a handy tool in the study of bounded-
ness of solutions of certain dynamic equations on
time scales. Furthermore, the established results
generalize some known inequalities for continuous
functions and their corresponding discrete analy-
sis in the literature.
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