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Abstract: - By extending the operations +,× on natural numbers to the operations on finite sets of natural 
numbers, we founded a new formal system of a second order arithmetic  〈P(N), N, +,× ,0,1,∈〉. We designed a 
recursive sieve method on residue classes and obtained recursive formulas of a set sequence and its subset 
sequence of Sophie Germain primes, both the set sequences converge to the set of all Sophie Germain primes. 
Considering the numbers of elements of this two set sequences, one is strictly monotonically increasing and the 
other is monotonically increasing, the order topological limits of two cardinal sequences exist and these two 
limits are equal, we concluded that the counting function of Sophie Germain primes approaches infinity. The 
cardinal function is sequentially continuous with respect to the order topology, we proved that the cardinality of 
the set of all Sophie Germain primes is ℵ0  using modular arithmetical and analytic techniques on the set 
sequences. Further we extended this result to attack on Twin primes, Cunningham chains and so on. 
 
Key − Words: Second order arithmetic, Recursive sieve method, Order topology, Limit of set sequences,
Sophie Germain primes, Twin primes, Cunningham chain, Ross-Littwood paradox 
 
1 Introduction 
Primes are mysterious, in WSEAS there is a recent 
research also [7]. 

In number theory there are many hard 
conjectures about primes, the Sophie Germain prime 
conjecture is one from them. 

If a, 2a + 1  are simultaneously prime, we call 
this natural number a be a Sophie Germain prime 
and denote it with a predicate S(2, a). 

  The first few Sophie Germain primes are 
    3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131,…… . 
      Like the twin prime conjecture, it is a conjecture 
that there are infinitely many Sophie Germain 
primes. We may express this conjecture with a very 
simple formal sentence 
                     ∀b∃a>𝑏S(2, a), 
but it is very hard to prove this sentence rigorously. 
     Sophie Germain primes play an important role in 
number theory. Here are two examples. 
     These primes were named after her when French 
woman mathematician Sophie Germain (around 
1825) proved that Fermat's Last Theorem holds true 
for such primes, this is the first general result toward 
a proof of Fermat's Last Theorem. This beautiful 
result was extended by Legendre, and also by Denes 
(1951), and more recently by Fee and Granville 
(1991) [4]. 
   There is a theorem about Mersenne composites. 

    If a ≡ 3 mod 4  , then a is a Sophie Germain 
prime if and only if  
                        2a + 1|Ma. 
Where Mais a Mersenne  number 

 Ma = 2a − 1. 
This theorem is stated by Euler in 1750 and 

proved by Lagrange in 1775. 
Thus the proof of the Sophie Germain prime 

conjecture is a proof of another open problem, that 
there are infinitely many Mersenne composites. 
     On the basis of heuristic prime number theory 
and the prime theorem, Hardy and Littlewood 
formulated the Sophie Germain prime conjecture as 
follows. 

The number π(x, S)  of Sophie Germain primes 
less than or equal to a given real number x is 
approximately [2] 
π(x, S)~2c2 ∫

dt
log t log 2t

x
2 ~ 2c2 x

log2x
. 

    This formula gives accurate predications. It is 
extremely difficult to prove this formula rigorously 
in analytic number theory. 
     In 2006, Terence Tao expounded additive 
patterns in primes and said: "Prime numbers have 
some obvious structure. (They are mostly odd, 
coprime to 3, ect.) We don't know if they also have 
some additional exotic structure. Because of this, we 
have been unable to settle many questions about 
primes."[21]. 
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    In 2007, G.Harman described the rapid 
development in recent decades of sieve methods and 
analytic number theory, stressed again: "As is well 
known, the solution to these problems seems to be 
well beyond all our current method."[6] 
   Many remarkable results have been proved using 
modern sieve theory. Because the parity problem, a 
formidable obstacle, the traditional sieve theory is 
unable to settle those conjecture [9] [21]. One needs 
to recast the sieve method. 
    Based on the modern progress of model theory, 
set theory, general topology and recursion theory we 
try to tackle those problems with a new sieve 
method. 
     In an exotic realm of a second order arithmetic 
P(N), we introduce set sequences of natural numbers, 
and use the Chinese remainder theorem to recast or 
refine Eratosthene's sieve method, then we can 
capture some enough usable secret structures about  
prime sets and use limits of set sequences to directly 
determine the set of all Sophie Germain primes and 
its cardinality. 
 
                {a: S(2, a)} = limAi

′  = limTi′, 
   |{a: S(2, a)}| = |limAi

′ |=|limTi′| = lim|Ti′| = ℵ0. 
 
     By this formulation, it is comparatively easy to 
prove the Sophie Germain prime conjecture, 
because this formula itself has discerned a logical 
structure of the set of all Sophie Germain primes. 
The parity problem in the traditional sieve theory 
would naturally be circumvented. 
 
2 A formal system 
First of all we define several operations on finite 
sets of natural numbers. 

Let 
                    A = 〈a1, a2, … , ai, … , an〉, 

B = 〈b1, b2, … , bj, … , bm〉 
be arbitrary finite sets of natural numbers, we define 
  A + B = 〈a1 + b1, a2 + b1, … , ai + bj, … , an−1 +
                     bm, an + bm〉, 

AB = 〈a1 b1, a2 b1, … , ai bj, … , an−1 bm, an bm〉. 
     For the empty set  ∅, let  

      ∅ + A = ∅,   
      ∅A = ∅. 

     Let A\B be the set subtraction. 
     Define the solution of the system of congruences 

X ≡ A = 〈a1, a2, … , ai, … , am〉 mod a , 
            X ≡ B = 〈b1, b2, … , bj, … , bm, 〉 mod b 
 to be 
X ≡ D = 〈d11, d21, … , di j, … , dn−1 m, dn m〉mod ab. 
Where  

 x ≡ di j mod a b  
 is the solution of the system of congruences 
           x ≡ ai mod a, 
           x ≡ bj mod b. 
     If a, b are coprime gcd(a,b)=1, by the Chinese 
remainder theorem the solution is unique and 
computable. 
     Except extending +, ×  to finite sets of natural 
numbers, we continue the traditional interpretation 
of symbols +,×,∈, then we founded a now model of 
the arithmetic of natural numbers by a two-sorted 
logic 
                  〈P(N), N, +, ×, 0, 1 ,∈〉. 
Where N is the set of natural numbers and P(N) is 
the power set of  N. 
     In contrast to the usual first order arithmetical 
model 
                           〈N, +,×, 0, 1〉,  
we call this new model be a second order 
arithmetical model or algebraic structure and denote 
it with P(N). 
     Mathematicians assume that 〈N, +,×, 0, 1〉 is the 
standard model of Peano theory PA, similarly, we 
assume that 〈P(N), N, +,×, 0, 1,∈〉  is the standard 
model of the theory of the second order arithmetic 
PA ∪ ZF, which is a joint theory of PA and ZF, in 
other words the P(N) not only is a model of Peano 
theory PA but also is a model of set theory ZF. 
     As a model of set theory ZF, the natural numbers 
are atoms or urelements, objects that have no 
element. We discuss the sets of natural numbers and 
sets of sets of natural numbers. 
     In the second order formal system P(N), we 
formalize natural numbers and sets thereof as 
individuals, terms or points. A determined set not 
only contains its all elements but also includes all 
information of the distribution of its elements, 
especially the number of elements in this set. 
    The second order language 〈+,×, 0, 1,∈〉  has  
stronger expressive power. The second order model 
has richer mathematical structures. The second 
order theory is more powerful and flexible. 
     Except inheriting usual theorems of the first 
order arithmetic, in P(N) we may introduce a new 
sort of mathematical structures and to prove some 
hard conjectures about primes. The first order 
arithmetic N has no well formed formula to 
represent such new structures and to prove those 
conjectures about primes. 

In particular we introduce a new sort of 
arithmetic functions 

 f:    N → P(N),  
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which is a set valued function defined on the set  N, 
i.e., set sequences of natural numbers, to obtain a 
recursive sieve method  on the residue classes. 
    We may use the recursive sieve method to look 
for a string of logical reasoning that demonstrates 
the truth of the Sophie Germain prime conjecture is 
built into the structures of prime sets in the 
framework of recursion theory and general topology, 
rather than to look for good approximations or non-
trivial lower bounds of the counting function π(x, S). 
   "A well chosen notation can contribute to making 
mathematical reasoning itself easier, or even purely 
mechanical."[11]. 
   As a simple example of the recursive sieve 
method, deleting the congruence class 0 mod pi 
from the set of all natural numbers successively, i.e., 
all numbers a such that the least prime factor of a  is 
pi , instead the multiples of  pi  in a given range, 
leaving the reduced residue systemTi+1 mod mi+1 , 
we obtain an exact formula producing all primes[16]: 
             T1 =  〈1〉, 
             p1 = 3, 
     Ti+1 =  (Ti +  〈mi〉〈0,1,2, … , pi − 1〉)\ Di, 
     pi+1 = U(Ti+1).                                              (1) 
Where the  U(Ti+1) is a projective function 
            U(〈t1, t2, … , tn〉) =  t2, 
            p0 = 2, 
            mi+1 =  ∏ pji

0 , 
 and     
              X ≡  Di =  〈pi〉 Ti mod mi+1 
 is the solution of the system of congruences  
             X ≡  〈0〉  mod pi, 
             X ≡  Ti mod mi. 
     The first few terms of this formula are: 
             T1 =  〈1〉, 
             p1 = 3, 
             T2 =  〈1,3,5〉\〈3〉 =  〈1,5〉,  
             p2 = 5, 
             T3 = 〈1,5,7,11,13,17,19,23,25,29 〉\〈5,25〉 
                 = 〈1,7,11,13,17,19,23,29〉 
             P3 = 7 
             T4 = 〈1,7,11,13,17, … ,199,203,209  〉\ 
                    〈7,49,77,91,119,133,161,203〉 
                 = 〈1,11,13,17, … ,197,199,209〉 

    p4 = 11, 
      It is easy to prove this formula by means of 
mathematical induction: the least number except 1 
in the reduced residue system Ti+1 is the prime pi+1. 
     One plugs i into this formula, this formula will 
produce the i-th prime. This primitive recursive 
formula actually exhibits infinitely many primes by 
+, ×,  it provides a constructive proof of Euclid's 
theorem using the new sieve method[19]. 

It reveals a fundamental rule of the distribution of 
primes. Now the primes appear in a highly regular 
pattern.  

Note, the traditional sieve theory itself is unable 
to prove Euclid's theorem [21]. 

We do not discuss further this formal system in 
view from logic [14]. 

 
3 A recursive formula and its simple 
consequences 
An ancient Greek mathematician Eratosthenes 
created a sieve method for fining the primes in a 
given range. 

Based on the inclusion-exclusion principle, 
Lagendre used the sieve method of Eratosthenes to 
estimate the size of sifted sets of integers in a given 
range. A main difficult is the accumulation of error 
terms 

Taking a partial summation from the formula of 
the inclusion-exclusion principle, Brun estimated 
the size of sifted sets for almost primes, products of 
at most k primes. 

According to carefully chosen weight functions, 
Selberg given a better estimate for the almost primes.    

Some partial successes of the traditional sieve 
theory include: Brun’s theorem the sum of the 
reciprocals of twin primes converges, Chen’s 
theorem there are infinitely many primes p such that 
p + 2 is the product of at most two primes[3], and 
the fundamental lemma of sieve theory. 

One of original purposes of the traditional sieve 
theory was to settle prime patterns of various forms, 
example the twin primes or the Sophie Germain 
primes. 

It has proven that the traditional sieve theory is 
unable to provide non-trivial lower bounds on the 
size of prime patterns. Also, any upper bounds must 
be off from the truth by a factor of 2 or more. This is 
the parity problem[21]. 

It seems that one needs basically to recast the 
traditional sieve theory to get around the parity 
problem.  

   Now we recast the sieve method of Eratosthenes 
using the Chinese remainder theorem. We try to 
understand what is the sieve of Eratosthenes in view 
from modern mathematics and logic, and then to 
prove Sophie Germain prime conjecture.  

Let  pi be the i-th prime,  p0 = 2. 
For any prime pi > 2， we consider the 

congruence classes 
Bi =  {a: a ≡ 0 mod pi  ∨  2a + 1 ≡ 0 mod pi} 
          ≡  〈0, 1

2 
(pi − 1)〉  mod pi. 

     Let 
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             mi+1 =  ∏ pji
0 . 

From the set of all odd numbers  
 X ≡ 〈1〉 mod 2 

we successively delete the congruence  classes   
             X ≡  Bi mod pi,           
i.e., all numbers a such that the least prime factor of 
a or 2a+1 is pi , and obtain the congruence  classes  
             X ≡   Ti+1 mod mi+1 
such that if   a ∈ X  then a and 2a+1 do not contain 
any prime  pj ≤  pi  as a factor. 

So that a recursive formula of Ti+1 which is the 
set of the least nonnegative representatives of the 
residue class mod mi+1 is as follows: 
             T1 =  〈1〉, 
           Ti+1 =  (Ti + 〈mi〉〈0,1,2, … , pi − 1〉)\Di.   (2) 
Where 
              X ≡  Di mod mi+1 
 is the solution of the system of congruences 
               X ≡  Ti mod mi 
               X ≡ Bi mod pi. 
    The number of elements of the set   Ti+1 is 

      |Ti+1| =  ∏ �pj − 2�i
1 .                                (3) 

    The first few terms of those sets  Ti are 
        T1 =  〈1〉, 
        T2 =  (〈1〉 + 〈0,2,4〉) \〈1,3〉 =  〈5〉, 

    T3 =  (〈5〉 + 〈0,6,12,18,24〉) \〈5,17〉, 
         = 〈11,23,39〉,              

 T4 =  (〈11,23,29〉 + 〈0,30, … ,150,180〉)  
                  \〈59,101,119,143,161,203〉 
              =  〈11,23,29,41,53, … ,173,179 ,191,209〉. 
    It is easy to prove the formulas (2), (3) by means 
of mathematical induction. 
    Like Eratosthene's sieve, the number 1 is hidden, 
which does not enter the filtration, all odd numbers 
a > 1 are filtrated. 
     We delete the numbers a in the congruence 
classes 
        X ≡ Bi mod pi 
under the divisible condition 
 {a: (a ≡ 0 mod pi ∨ 2a + 1 ≡ 0 modpi) ∧ a ≥ pi}, 
then except a =  pi itself may be a Sophie Germain 
prime, other numbers  a  all are not Sophie Germain 
prime. 
    Now we list some simple consequences from the 
recursive formula Ti, their proof is easy. 
 
 1)   Let min Ti is the least number in the set Ti, then 
a  criterion of Sophie Germain prime is 

      S(2, a) ↔ a = min Ti = pi ≥ 3.                   (4) 
    This criterion recursively enumerates all Sophie 
Germain primes. 
 

 2) Using the recursive formula (2), we easily 
compute Sophie Germain primes, in fact, we had 
computed out the first few Sophie Germain primes 
 3,5,11,23,29,41,53,83,89,113,131,173,179 ,191,…. 
 
3)   If a ≥ pi is a Sophie Germain prime, then the 
natural number a  belongs to the congruence class Ti 

a ∈ Ti mod mi. 
 

    As an algorithm for Sophie Germain primes, like 
the prime formula, one may further observe a fact 
that the least number in the set Ti  min Ti is a Sophie 
Germain prime for all i 
             a = min Ti → S(2, a), 
then intuitively our sieve method provides a 
conclusion that there are infinitely many Sophie 
Germain primes, but it is not easy to directly prove 
this fact. We do not discuss this problem in detail.  
 
4   A Sophie Germain prime theorem  
The sifting process on residue classes products a 
recursive set sequence Ti,  we refine this recursive 
set sequence to determine the set of all Sophie 
Germain primes and its cardinality using  analytic 
techniques. 
 
    Let Bi′ denote the set of all non-Sophie Germain 
primes in the congruence classe Bi 
  Bi′ = {a: (a ≡ 0 mod pi ∨ 2a + 1 ≡ 0 modpi) ∧
              a > pi} 
    We delete the set  Bi′  and save the natural number 
a as a survivor if a is a Sophie Germain prime. 
      Let Ai be the set of all Sophie Germain primes  
less  than  pi 
       Ai =  {a: a < pi  ∧  S(2, a)}. 
     We adjust the set Ti to be 
          Ti′ =  Ai ∪ Ti                                                (5) 
      Except saving all Sophie Germain primes a < 
pi as survivors in the set Ti′, two set sequences Ti′ 
and  Ti are same. 
     Let |Ai | be the number of all Sophie Germain 
primes less than  pi , then the number of elements of 
the set  Ti′ is  
              |Ti′| = |Ai| +  |Ti|.                                    (6) 
      Let Ai

′  be the Sophie Germain prime subset of 
the set  Ti′ 
              Ai

′ =  {a: a ∈ Ti′ ∧ S(2, a)}                        (7) 
 
4.1    An informal argument 
     Now we describe how the sifting process Ti′, Ai

′  
approaches the infinite set of all Sophie Germain 
primes in the framework of an order topology. 
      Obtained the set  Ti′ from the formula (5), let  
a ∈ Ti′, if  
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2a + 1 < pi2, 
then the number a is a Sophie Germain prime, which 
belongs to all Tr′ for  r > i  and will never be deleted.    
     Obtained the set  Ti′ from the formula (5), let   
a ∈ Ti′, if   

2a + 1 ≥ pi2, 
then a is a good candidate for the Sophie Germain 
prime, a and 2a+1 do not contain any one of the first 
i -1 primes as a factor. In this case, if a is a Sophie 
Germain prime, then a belongs to all Tr′  for r > i, 
otherwise the a is an "error term", there is a prime  
pk such that 

pk| a ∨ pk|2a+1, 
a does not belong to any Tr′ for r > k.  

Our sieve method itself will delete all error terms 
and needs not estimate the number of error terms.  

Each non- Sophie Germain prime is deleted 
exactly once, our sieve method needs not the 
inclusion-exclusion principle. There is no 
accumulation of error terms. 
     As i goes to infinity we delete more and more 
non-Sophie Germain primes, exhibit more and more 
Sophie Germain primes or candidates of Sophie 
Germain primes in the set Ti′ , the set sequence Ti 
gets as close as we want to the infinite set of Sophie 
Germain primes, the set sequences  Ti′ , Ai

′  get as 
close as we want to the infinite set {a:S(2,a)} of all 
Sophie Germain primes. 
     If i is extremely large, example   

i=c=10101000 , 
theoretically we can construct a set  by the formula 
(5), which has approximated to the set {a:S(2,a)}of 
all Sophie Germain primes. 
     By the prime theorem, the set Tc′  has exactly 
exhibited all Sophie Germain primes 
 
      a < 1/2pc2 ~101000 × 10101000 × 2.3 × 101000 

× 10101000  
     The set Tc′ has 
        |Ti′| > ∏ �pj − 2�1010

1000

1          
elements a such that a and 2a+1 do not contain any 
one of the first 10101000-1 primes as a factor except 
itself, in other words, if a or 2a+1 has prime factors 
except itself, they are large than 
     2.3 × 101000 × 10101000 . 
    In the approximate sense the set Tc′  may be 
regarded as a set of Sophie Germain primes and the 
number of elements of this set may be regarded as 
an infinity. Against our daily standard the set Tc′ is 
an infinite set of Sophie Germain primes. 
     Ultimately, as the limit of the set sequences Ti′, 
Ai
′  we have deleted all non- Sophie Germain prime 

sets Bi′  successively, philosophers of mathematics 

said that one performed a supertask [13], and have 
obtained infinitely many natural numbers a such that  
a and 2a+1 do not contain any prime as a factor 
except itself, these infinitely many natural numbers 
a exactly constitute the set of all Sophie Germain 
primes.  
      Our sieve method can exactly determine that the 
numbers of elements of the set sequence Ti′  is 
strictly monotonically increasing, we need not 
estimate the lower bounds or upper bounds of the 
counting function π(x, S) through the almost primes. 
We get around the parity problem. 
      Our proof needs not the Cramer random model 
or The Riemann Hypothesis. 

This is an informal argument, which shows the 
Sophie Germain prime conjecture is true. 
     We give a formal proof in the sense of logic 
using analytic techniques in an order topological 
space. 
 
 
4.2    A formal argument 
 
Lemma 1  The set sequences 𝑇𝑖′, 𝐴𝑖′ converge to the 
set of all Sophie Germain primes. 
 
Proof:  First of all we quote a definition of the set 
theoretic limit of a set sequence from the textbook 
''Set Theory, with an introduction to descriptive set 
theory'' by K.Kuratowski and A.Mostowski [15]. 
     Let Fn denote a set sequence, we define 
            limsupn=∞ Fn = ∩n=0∞ ∪i=0∞ Fn+i, 
           liminfn=∞ Fn = ∪n=0∞ ∩i=0∞ Fn+i, 
     If 
             limsupn=∞ Fn =  liminfn=∞ Fn,  
we say that the set sequence Fn  converges to the 
limit 
            lim Fn = limsupn=∞ Fn =  liminfn=∞ Fn. 
      Let  

Te = {a: S (2, a)} 
 be the set of all Sophie Germain primes, the sifted 
set, which is the end result by deleting all non-
Sophie Germain primes from the set of all odd 
numbers. 
     Let Xi  be the whole congruence class mod mi 
with the representatives  Ti, 

     Xi  ≡  Ti mod mi 
     Let 

Xi′ =  Ai  ∪ Xi 
Then 

X1′）  X2′） … ）Xi′）… …., 
according to the definition of the set theoretic limit 
of a set sequence we have 

               lim Xi′ = ∩  Xi′ =  Te. 
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      Obviously 
             A1

′   ∁ A2
′  ∁  … ∁ Ai

′∁… …., 
we have also 
             lim Ai

′ = ∪ Ai
′ = Te. 

Obviously, 
              Ai

′  ∁ Ti′ ∁ Xi′   
It is easy to prove 
        limsup Ti′ ∁ limsup Xi′ = lim Xi′, 
        liminf Ti′ ） liminf Ai

′ = lim Ai
′  

        liminf Ti′ ∁ limsup Ti′. 
Thus 
             lim Ti′ =  Te. 
      In the sense of the set theoretic limit we have 
proved that both the set sequences Ti′, Ai

′  converge 
to their common limit point Te 
               lim Ti′ = lim Ai

′ =  Te.                            (8) 
      We want to determine the cardinality of the set 
of all Sophie Germain primes by convergence and 
continuity of the cardinal function, where 
continuous function is a map preserving the 
topological structure between topological spaces. 
The set theoretic limit itself does not involve any 
topology, it is unable to determine the cardinality of 
the set of all Sophie Germain primes directly. We 
need to reveal an order topological structure of the 
equality (8). 
     Now we quote a definition of the order topology 
from the textbook ''Topology'' by J.R. Munkres [12]. 

 The order topology is a topology on the non-
empty linear order set, which contains more than 
one element, their open sets are the sets that are the 
unions of open intervals (c, d) and half-open 
intervals [c0 , d), (c, d0], where  c0  is the smallest 
element and d0 is the largest element of the linear 
order set. The empty and the sets with a single 
element have no linear order structure, they have no 
order topology. 
     According on the sifting procedure (5), the 
particular set theoretic limit above  

   lim Ti′ = lim Ai
′ =  Te. 

has equipped a natural order structure. In other 
words, both the set sequences Ti′,Ai

′   and their limit 
point Te construct  non-empty well ordered sets with 
the order type  ω + 1 
              X:   T1,

′  T2,… ,
′ Ti′, … … ; Te.                        (9) 

              X:   A1,
′ A2,…,

′ Ai
′  ,……; Te.                      (10) 

     We try to endow the well ordered sets (9), (10) 
with an order topology. 
     From the formula (7), Ai

′  is the Sophie Germain 
prime subset of Ti′ 
                    Ai

′  ∁ Ti′, 

hence when we endow the well ordered set (9) with 
an order topology, the well ordered set (10) will be 
automatically endowed an order topology. 
     We had computed out patterns of the first few 
Sophie Germain primes 
    a=3,5,11,23,29,41,53,83,89,113,131,173,179 ,191, 
hance the numbers of elements of both the well 
ordered sets (9),(10) are more than one. We can 
safely endow the well ordered set (9) with a 
naturally compatible order topology, such that the 
well ordered set (10) is automatically endowed an 
order topology. 
     Obviously, for every neighborhood (c, Te] of  Te 
there is a natural number i0, for all i > i0,  
                     Ti′  ∈ (c, Te]， 
                     Ai

′  ∈ (c, Te] 
thus both the set sequences Ti′, Ai

′  converge to their 
common limit point Te. 
               lim Ti′ = lim Ai

′ =  Te .                         (11) 
     In the sense of the order topological limit we 
have proved also that both the set sequences Ti′, Ai

′   
converge to the identical limit point Te. 

                                                                  □ 
   If the sifted set Te  is empty Te  = ∅  under some 
sifting conditions, the sequence (10) contains only 
one element ∅, it has no linear order structure, we 
can not endow the sequence (10) with an order 
topology by the definition. Otherwise we will fall 
into a Ross-Littwood paradox. In the last of this 
section we will discuss this paradox in detail. 
 
Lemma 2  The cardinal sequences | 𝑇𝑖′ |, | 𝐴𝑖′ | 
converge to the smallest infinite cardinality ℵ0. 
 

Like Euler used the product formula for the 
Riemann zeta function 

�
1
ps

=  ��1 −
1
ps
�
−1

 

to reprove Euclid's theorem that there are infinitely 
many primes [5], we take the cardinality on two 
sides of the equality (11) and consider the limits of  
cardinal sequences |Ti′|, |Ai

′  | as 
 Ti′, Ai

′  → Te  
to determine the cardinality of the sifted set Te. 
    About the limit of a function, in general topology 
it is easy to prove: 
     "If the space X satisfies the first axiom of 
countability at the point x0  and the space Y is 
Hausdorff, then for the existence of the limit  
limx→x0 f(x)  of a mapping 
        f: E → Y, E ∁ X , 
it is necessary and sufficient that for any sequence 

xn  ∈   E,   n=1,2,3,……,  
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such that   limn→∞ xn = x0, the limit  limn→∞ f(xn) 
exists. If this condition holds, the limit 

 limn→∞ f(n) 
does not depend on the choice of the sequence xn , 
and the common value of these limits is the limit of 
f at x0 ." [18].  

In other words for every sequence satisfying this 
condition  xn, the limits of functions 

 limn→∞ f(n) 
are equal. 
 
Proof: From the formula (6) we have  

        | Ti′| ≥ |Ti|. 
From the formula (3) we obtain that the cardinal 

sequence |Ti′| of the sets Ti′, is strictly monotonically 
increasing  

|Ti′| < |Ti+1′ |.  
Thus 
     limTi 

′ →Te| Ti′ | = ∪ |Ti′| =  ℵ0.                         
The cardinal sequence | Ti′ | and its limit point  

ℵ0 construct a non-empty well ordered set with the 
order type  ω + 1 
         Y :    |T1′|,|T2′ |,…, |Ti′|,……;  ℵ0.               (12) 

Like the lemma 4.1, endowing this well ordered 
set with an order topology, in the sense of the order 
topological limit we obtain that the cardinal 
sequence|Ti′| of the sets Ti′ converges to the smallest 
infinite cardinality ℵ0 as   Ti′ → Te  
             limTi 

′ →Te| Ti′ | = ∪ |Ti′| =  ℵ0.                (13) 
Obviously the cardinal sequence |Ai

′ | of the sets Ai
′  

is monotonically increasing 
 | Ai

′   |  ≤  | Ai+1
′   |.  

Thus 
         limAi 

′→Te| Ai
′ | = ∪ |Ai

′|. 
     The limit of the cardinal sequence |Ai

′ | exists, 
although we do not know whether ∪ |Ai

′| is infinite 
or not. 
     For the Sophie Germain primes we know  

Te ≠ ∅,  
the cardinal sequence |Ai

′ | and its limit point ∪ |Ai
′| 

construct  a non-empty well ordered set 
        Y :   |Ai

′|, |Ai
′|, … , |Ai

′|, … … ; ∪ |Ai
′| ,            (14) 

may be endowed with an order topology and in the 
sense of the order topological limit we have 
              limAi 

′→Te| Ai
′ | = ∪ |Ai

′|.                           (15) 
     The order topological space is first countable and 
Hausdorff. Like the Euler product formula, the 
limits of the cardinal sequences of two sides of the 
equality (11) exist, two limits are equal 
         lim|𝐴𝑖′| = lim|𝑇𝑖′|=   ℵ0.                             (16) 
     In the traditional sieve theory or analytic number 
theory, one uses the counting function π(x, S) , 
which is a real function, to model the number of  

Sophie Germain primes and tries to prove the 
Sophie Germain prime conjecture by proving that 
lim π(x, S) is infinite. Unfortunately, one has never 
proved that lim π(x, S) is infinite or not by using all 
our current method.  

We regard |Ai
′ |, |Ti′| as the real functions. 

     Obviously 
lim  π(x, S)= lim  π(mi, S), 

now we easily obtain 
 lim π(x, S) = lim π(mi, S) = lim|𝐴𝑖′| =

            lim|𝑇𝑖′| =  ∞.                                             (17) 
Then we directly prove that lim π(x, S) is infinite 
using the recursive sieve method. In the usual sense 
we have proved the Sophie Germain prime 
conjecture. 

                                                                         □ 
     From topology we know that the value |Te| of  
counting functions at Te  is irrelevant to the 
definition of the limits  of  cardinal functions 
lim |Ti′|, lim|𝐴𝑖′|, lim π(x, S). We need to prove the 
continuity of the cardinal function at the point Te, 
then obtain 

 |Te|=  ℵ0. 
 
Theorem 1  The set of all Sophie Germain primes is 
an infinite set. 
 
Proof:  Let f:  X →Y be the cardinal function from 
the order topological space X to the order 
topological space Y,    

f (T) = | T |, 
       X:        T1′,    T2′ , … ,   Ti′, … … ;     Te, 
       Y：  |T1′|,  |T2′|, … , |Ti′|, … … ;  ℵ0. 
      It is easy to cheek: for every open set [|T1′ |, 
|d|),(|c|, |d|), (|c|, ℵ0] in Y, their preimages [ T1′,d), 
(c,d), (c,  ℵ0 ] are open sets also in X, thus the 
cardinal function f (T)= |T| is continuous with 
respect to the above order topology. 
    Both the order topological spaces are first 
countable, thus the cardinal function |T| is 
sequentially continuous. By the usual topological 
theorem, the cardinal function |T| preserves limit, 
           | lim𝑇𝑖′ | = lim|𝑇𝑖′| 
    Order topological spaces are Hausdorff spaces, in 
Hausdorff spaces the limit points of the set sequence 
Ti′   and the cardinal sequence |Ti′|  are unique 
provided that it exists. 
    The lemmas 1), lemmas 2) have proved that there 
exist the order topological limits lim Ti′ ,  lim|𝑇𝑖′| 
and the condition for existence of both the limits is 
sufficient. 
     From the lemmas 2) we have 
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            | lim𝑇𝑖′ | = lim|𝑇𝑖′| =  ℵ0 
     From the lemmas 1) we obtain that the set of all 
Sophie Germain primes is an infinite set 
 

 |{a:S(2,a}|=| lim𝐴𝑖′ | = | lim𝑇𝑖′ | = lim|𝑇𝑖′| =
           ℵ0.                                                               (18) 
 
   In other words, we have rigorously proved the 
Sophie Germain prime theorem that there are 
infinitely many Sophie Germain primes. 
    Similarly, we can prove the continuity of the 
counting functions |Ai

′ | or π(x, S) at the point Te. 
□ 

      We known, one hardly handles the counting 
functions | Ai

′ |, π(x, S) , and their limits lim |𝐴𝑖′ | 
lim π(x, S) directly, but easily handles the function 
|Ti′|, and its limit  lim | 𝑇𝑖′ |. Taking the cardinality 
on  two sides of the equality (11), we had assembled 
an order topological structure of the set of all Sophie 
Germain primes piecemeal by the sifting process Ti′, 
Ai
′ , the difficulty is reduced to a proof of the 

existence about the limit of the cardinal sequence  
|Ai
′ |. For Sophie Germain primes, Te ≠ ∅, the order 

topology (9) induces a natural order topology (10) 
on the set  Te, corresponding with this, (9) induces a 
natural order topology on the cardinal sequence (14), 
it is easy to prove the existence (15) of the limit  
lim |𝐴𝑖′ |, then we discern the mystery about primes 
a little by the recursive sieve method. 
 
4. 3   About the Ross-Littwood paradox  
      Like Euler product formula, using the order 
topological limits we need to be a little careful about 
whether two sides of a formula converge [5]. 
      Only if there is not any survivor as a pattern 
under some sifting conditions, the set theoretical 
limit (8)  
             lim Ti′ = lim Ai

′ =  Te = ∅. 
Obviously |Te| = 0. Nothing may be proved by the 
above order topological reasoning, because empty 
set sequence (10) has no any order topology, we can 
not endow the set sequence (9) with an order 
topology also, needless say continuous or not.  
      In the informal argument, like lim π(x, S), one 
extends the reasoning paradigm and regards lim|𝑇𝑖′|  
as a cardinality of the empty, then falls into a Ross-
Littwood paradox [10] [17] [20], today this paradox 
is an argumentative problem also. 
     1953. J.E. Littlewood described the following 
paradox about infinity. 

Balls numbered 
          Ti =  〈i + 1, i + 2, … ,10i〉 
are put into a urn. How many balls are in the urn at 
the end as i → ∞?  

      We ignore physically plausible space-time 
continuity conditions and consider what is the limit  
lim Ti of the set sequence Ti. 

A similar example concerning the distribution of 
primes is the primes in the reducible polynomial 
              a2 − 1, a > 2. 
Under the sifting condition   

   Bi = 〈1,−1〉  mod  pi. 
One seeks for the lim Ti , where the number a = 2, 
 a - 1 = 1 does not enter the filtration. 

Their set theoretic limit is empty 
            lim Ti =  ∅. 

Their cardinal limit itself is infinite 
              lim |Ti| =  ℵ0  
At first sight this is a contradiction. 

Through thorough investigation, the condition for 
the existence of the cardinal limit lim |Ti | is not 
sufficient with respect to the order topology, 
because the cardinal sequence Ai

′ = ∅ has no order 
topological limit. There is no continuity, |Te| and 

lim |Ti| are irrelevant, there is no contradiction.  
One can not regard lim Ti as a cardinality of the 

empty. In view from pour mathematics, the order 
topology distinguishes non-empty sifted sets from 
the empty sifted set and provides a formal solution 
of the Ross-Littwood paradox. 
     If we relax the restrictive condition and seek for 
a natural number a such that  
                 a2 − 1,  a > 2, 
is a product of at most two primes, an almost prime, 
or a product of exactly two primes, a semiprime, 
then such natural numbers a have patterns 
     a=4,6,12,18,30,42,60,72,102,108,138,150,…, 
 a2 − 1= 3× 5, 5× 7,11 × 13,17 × 19,29 × 31, …, 
and the set  lim Ti′ =  Te  of all such numbers a is 
infinite. 
     This result is similar to the famous results of 
J.R.Chen [3] or H.Iwaniec [8]. 
      It is interesting that this is a proof of the twin 
prime conjecture via the polynomial   a2 − 1. 
 
5 A Cunningham chain theorem 
We may uniformly extend the above sieve method 
and reasoning to a wide variety of additive patterns 
in  primes. 

Let Bi be the solution of the congruence  
cx + d ≡ o  mod  pi, 

we obtain a different proof of Dirichlet's theorem 
that there are infinitely many primes of the form  

cx + d, gcd (c, d) = 1. 
    Let Bi be the solution of the congruence  

             x2+ 1  ≡ 0  mod  pi, 
we  prove that the number of primes of the form x2 
+ 1 is infimite. 
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        Let 
         X ≡  Bi =  〈1,−2〉 mod pi, 
We prove the twin prime conjecture. Similarly we 
may prove the k-tuple prime conjecture. 
     Let 
         X ≡  Bi =  〈1, pi−1

4
〉 mod pi, 

repeat the above reasoning, we prove that there exist 
infinitely many primes p such that 4p+1 is prime. 

It is easy to prove that if there exist infinitely 
many primes p such that 4p+1 is prime, then 2 is a 
primitive  root modulo q for infinitely many primes  

q  = 4p + 1. 
Thus we prove that Artin’s conjecture, an open 
problem, is true at 2. 
    One naturally extends Sophie Germain primes to 
Cunningham  chains [1]. 
      A Cunningham chain of length k is a finite set of 
primes 

a1, a2, … , ak,   
Where 
            ar+1 = 2ar + 1, r = 1,2, … , k − 1, 
each which is twice the proceeding one plus one.  

For example: 
 2, 5, 11, 23, 47 ; 
89, 179, 359, 719, 1439, 2879.  

      Like the k-tuple prime conjecture, it is 
conjectured that there are infinitely many 
Cunningham chains of length k. 
      Extending the above proof we obtain a theorem 
following. 
 
Theorem 2  The number of admissible Cunningham 
chains known of length k is infinite. 
 
Proof:  For any Cunningham chain 
                    〈a1, a2, … , ak〉, 
let 
            Bi =  〈b1, b2, … , br, … , bk〉, 
where  br is the solution of the congruence 
       2rx +  2r − 1 ≡ 0  mod pi, 
         r = 1, 2, ..., k.  
      Let wi be the number of congruence classes in 
Bi mod pi, 
      If there is a prime pi , the Cunningham chain 
covers all congruence classes mod pi 
        Bi ≡  〈0,1,2, … , k − 1〉 mod pi, 
we say that this Cunningham chain is inadmissible.  

For an inadmissible Cunningham chain, 
obviously, if n > i, then the set Tn  is empty, the 
recursive sieve method itself proves that there is no 
any natural number  c >  pi  such that 

               〈a1 + c, a2 + c, … , ak + c〉 
are simultaneously prime. 

    Thus we only discuss the admissible Cunningham 
chains. 
        Like above proof, from the set of all odd 
numbers 
            X ≡ 〈1〉 mod 2, 
we delete the congruence classes  
             X ≡   Bi =  〈b1, b2, … , br, … , bk〉 mod pi, 
successively, and obtain the recursive formula Ti . 
The number of elements of the set Ti is 
(19)              |Ti | =  ∏ �pj −  wj�i−1

1  
   If pj > k+1, wj  ≤  k , then the | Ti  | is strictly 
monotonically increasing for  i > 𝑗. 
     We have known that there is a pattern a1  of the 
Cunningham chain, thus the sifted set is not empty.  
     We refine this recursive set sequence Ti  and 
obtain two set sequences Ti′, 𝐴𝑖′ . 
     Further we prove that both the set sequences 
Ti′ ,  𝐴𝑖′  converge to the sifted set Te , the cardinal 
functions |Ti′|, |𝐴𝑖′ | are continuous with respect to the 
order topology. 
     Thus we proved the Cunningham chain theorem. 
   |{a:S(k,a)}| = | lim𝐴𝑖′ | =|limTi′ |= lim | Ti′|=  ℵ0. 
                                                                              (20) 
 This completes the proof..                                     □ 
    
 We do not know whether there exists a 
Cunningham chain of length k > 17, if we find a 
Cunningham chain of length k > 17 and it is 
admissible then its number is infinite. 
   According our sieve method, many additive 
patterns in primes have the same structure of set 
theory, structure of order topology and recursive 
structure, although they have different arithmetical 
structures. The methods proving infinity or not of 
various sifted sets Te  all are same. In this short 
paper we do not discuss those problems in detail. 
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