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Abstract: By comparing the solution u(x, t) of the doubly degenerate parabolic equation

ut = div(| Dum |p−2 Dum)− uq1 | ∇um |p1

with the Barenblatt type solution of the equation

ut = div(| Dum |p−2 Dum),

the large time asymptotic behavior of u(x, t) are got. Here the exponents m, p, p1 and q1 satisfy p > p1,
p > 1,m > 1, q1 + p1m > m(p− 1) > 1.
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1 Introduction
We will consider the large time asymptotic behavior
of weak solutions of doubly degenerate parabolic e-
quations of the following type

ut = div(| Dum |p−2 Dum)− uq1 | Dum |p1 , (1)

u(x, 0) = u0(x). (2)

Here, D is the gradient operator, the variables (x, t) ∈
S = RN × (0,∞), the exponent constants p > p1,
q1+p1m > m(p−1) > 1, p > 1,m > 1, N ≥ 1, and
u0(x) ∈ L1(RN ). Equation (1.1) has been suggested
as a mathematical model for a variety of problems in
mechanics, physics and biology, one can see [1], [2]
and [3] etc.

A classical example of (1) is the heat equation,

ut = △u, (3)

its theory is well known, among its features we find
C∞ smoothness of solutions, infinite speed of propa-
gation of disturbances and the strong maximum prin-
ciple. These properties are able to be generalized to a
number of related evolution equations, notably those
which are linear and uniformly parabolic. Other well-
known examples of (1) include the porous medium e-
quation

ut = △um, m > 1, (4)

and evolutionary p-Laplacian equation

ut = div(|∇u|p−2∇u), p > 2. (5)

Clearly, compared with the heat equation, a marked
departure occurs. These equations are degenerate
parabolic and there are generally no classical solution-
s. Moreover, instead of the infinite speed of propaga-
tion of disturbances, the weak solutions of the Cauchy
problem to (4) or (5) have the property of finite prop-
agation. One can see [3], [10] et al.

The existence of nonnegative solution of some
special cases of (1), defined in some weak sense, is
well established (see [4] and [5] et al.). Here we quote
the following definition.

Definition 1 A nonnegative function u(x, t) is called
a weak solution of (1)-(2) if u satisfies

(i)

u ∈ C(0, T ;L1(RN )) ∩ L∞(RN × (τ, T )),

um ∈ Lp
loc(0, T ;W

1,p(RN )), (6)

ut ∈ L1(RN × (τ, T )), ∀τ > 0; (7)

(ii) ∫
S
[u(x, t)φt(x, t)− | Dum |p−2 Dum ·Dφ
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−uq1 | Dum |p1 φ]dxdt = 0, ∀φ ∈ C1
0 (S); (8)

(iii)
lim
t→0

| u(x, t)− u0(x) | dx = 0. (9)

In this paper, we always assume that the solutions
of the corresponding equations are nonnegative. Sim-
ilar to the proof of [4], we can prove the existence
of the solution of (1)-(2) in the sense of Definition 1,
we will published this result in another paper. How-
ever, we have found that the proof of the uniqueness
of the solutions in [4] is not able to be generalized to
our equation (1). It seems that the uniqueness of the
solutions of (1)-(2) is hard to be proved.

In this paper, we are interested in the behavior of
solutions as t → ∞. Generally, there are three meth-
ods to study this problem.

I) Elliptic equation method. This method is base
on the existence of the weak solutions of correspond-
ing degenerate elliptic equation

div(vm−1 | Dv |p−2 Dv)−uq1 | Dvm |p1= 0. (10)

Then, one is able to consider whether the weak so-
lution u(x, t) of (1) is asymptotic to the weak solu-
tion of (10) v(x) or not. By this method, several pa-
pers (see e.g. [6], [7]) were devoted to the study of
the asymptotic behavior of the solutions of the porous
medium equations and the evolutionary p− Laplacian
equations. Also by elliptic method, J. Manfredi and
V. Vespri had studied the large time behavior of the
solutions of the initial boundary problem without ab-
sorption term uq1 | Dum |p1 in [8].

II) Fundamental solution method. This method
bases on comparing the large time behavior of the
weak solution of (1)-(2) to the Barenblatt-type solu-
tion of (1).

It is not difficult to verify that

Ec = t
−1
µ {[b− m(p− 1)− 1

mp
(Nµ)

−1
(p−1)

×(| x | t
−l
Nµ )

p
p−1 ]+}

p−1
m(p−1)−1

is the Barenblatt-type solution of the Cauchy problem

ut = div(| Dum |p−2 Dum), in S = RN × (0,∞),
(11)

u(x, 0) = cδ(x), on RN , (12)

where

µ = m(p− 1)− 1 +
p

N
), c =

∫
RN

u0(x)dx,

b is a constant such that

b =

∫
RN

Ec(x, t)dx,

and δ denotes the usual Dirac mass centered at the
origin.

If there is not the absorption term uq1 | Dum |p1
in (1), using the idea of asymptotic radial symmetry,
[14] and [15] established the large time behavior of so-
lutions of evolutionary p-Laplacian equation (i.e. m=1
in (11)) and the porous medium equation (i.e. p=2
in (11)) respectively. Using Morse substitution tech-
nique, by the assumption of that the uniqueness of the
Barenblatt-type solution of (11) is true, [16] had es-
tablished the large time behavior of solutions of (1)
when p1 = 0. When m = 1 or p = 2 the uniqueness
had been solved, however, the uniqueness of the so-
lution of general case of (11)-(12) is still open to this
date.

III) Singular solution method. This method bases
on comparing the large time behavior of the general
solutions of (1)-(2) to the very singular solutions of
(1). Now, we give the related concepts.

Let
u(x, t) = t−αf(|x|t−β). (13)

The constants

α =
p− p1

p(q1 + (p1 − p+ 1)m)− (1 +m−mp)(p− p1)
,

β =
q1 + (p1 − p+ 1)m

p(q1 + (p1 − p+ 1)m)− (1 +m−mp)(p− p1)
,

clearly, α > 0, β > 0 because of that p > p1, q1 +
p1m > m(p− 1) > 1. The equation (1) is equivalent
to the following equation

(|(fm)′|p−2(fm)′)′ +
n− 1

r
|(fm)′|p−2(fm)′

+βrf ′ + αf − f q1 |(fm)′|p1 = 0, (14)

where r = |x|t−β , with the initial condition

f(0) = a > 0, f ′(0) = 0. (15)

A weak solution of (14) has the form of (13), as usual,
is called a self-similar solution of (1).

By a singular solution of (1) it means that a no-
trivial nonnegative function U ∈ C(S̄\(0)), if U sat-
isfies (1) in the sense of distribution in S and

lim
t→0

sup
|x|>ε

U(x, t) = 0, ∀ε > 0. (16)

Further, if the singular solution U satisfies the follow-
ing formula

lim
t→0

∫
|x|≤ε

U(x, t) = ∞,∀ε > 0, (17)

then U is called a very singular solution.
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Clearly, (16) is equivalent to

lim
t→0

r
α
β f(r) = 0. (18)

and (17) is equivalent to

lim
t→0

rnβ−α
∫
r≤εt−β

f(r)dr = 0.∀ε > 0. (19)

If nβ < α, the solution f of equation (14) satis-
fies (18), then f ∈ L1(0,∞; rn−1dr), f satisfies(19).
Thus the self-similar solution u(x, t) defined as (13)
satisfies (16) and (17), and so u(x, t) is a very singu-
lar solution of equation (1). Recently, the author have
got the existence of the self-similar solutions and the
singular solutions of (1) in [17].

The main results of this paper are the following

Theorem 2 Let m(p−1) > 1. If Ec is a unique solu-
tion of (11)-(12), then the solution u of (1)-(2) satisfies

t
l
µ | u(x, t)− Ec(x, t) |→ 0, as t→ ∞, (20)

uniformly on the sets {x ∈ RN :| x |< at
−l
µN , a > 0},

where

c =

∫
RN

u0(x)dx−
∫ ∞

0

∫
RN

uq1 | Dum |p1 dxdt.

Theorem 3 Suppose m(p − 1) > 1, q1 + mp1 >
m(p− 1)− 1 and

| x |α u0(x) ≤ B, lim
|x|→∞

| x |α u0(x) = C,

where α,B, and C are constants with α ∈
(0, p−p1

q1+mp1
). If the solution u(x, t) of (1)-(2) satisfies

| Dum |≥ 1, (x, t) ∈ S, (21)

then
t

1
q1−1u(x, t) → C∗, as t→ ∞, (22)

uniformly on the sets

{x ∈ RN : | x |≤ at
1
β , a > 0},

where
C∗ = (

1

q1 − 1
)

1
q1−1

and

β =
p(q1 +mp1 − 1)− p1(m(p− 1)− 1)

q1 +mp1 −m(p− 1)
.

Theorem 4 Suppose 1 < m(p − 1) < q1 +mp1 <
m(p− 1) + p

N and α > p−p1
q1+mp1−m(p−1) ,

| x |α u0(x) ≤ B,

∫
RN

u0(x)dx > 0.

Assume that (1) has a unique very singular solution
U(x, t). Then the solution of (1)-(2) satisfies

t
1

q1−1 | u(x, t)− U(x, t) |→ 0 as t→ ∞, (23)

uniformly on the sets

{x ∈ RN : | x |≤ at
1
β }.

Remark 5 For m = 1, the uniqueness of solutions
of (11)-(12) is known (see [9]). For m = 1, p = 2,
the uniqueness of the very singular solution of (1) is
know too (see [12]).

Remark 6 For all (x, t) ∈ S, the condition (21) sup-
poses that

| Dum |≥ 1,

this condition seems so strong that the conclusion (22)
is not so interesting. However, according to the proof
of our paper, we can deduce that for any given t > 0,
x ∈ RN , whether (22) is true, or we have

| Dum(x, t) |≤ 1. (24)

As we have said before, that the uniqueness of the so-
lutions of (1)-(2) is still an open problem, according
to our original studying, a essential difficulty comes
from that it is still difficult to prove that (24) is true
for all (x, t) ∈ S. So, not only that Theorem 3 in-
cludes some information in the asymptotic behavior
of the solutions, but also it includes some information
in the uniqueness of the solutions of the problem.

2 Proof of Theorem 2
Let u be a solution of (1). We define the family of
functions

uk = kNu(kx, kNµt), k > 0.

It is easy to see that they are the solutions of the prob-
lems

ut = div(| Dum |p−2 Dum)−kυuq1 | Du |p1 , (25)

u(x, 0) = u0k(x), on RN , (26)

where µ = m(p− 1) + p
N − 1 as before and

υ = p− p1 +N(m(p− 1)− q1 −mp1),

u0k(x) = kNu0(x).

Lemma 7 For any s ∈ (0,m(p− 1)), uk satisfies∫ T

0

∫
BR

us−m
k

(1 + usk)
2
| Duk |2 dxdt ≤ c(s,R, | u0 |L1),

(27)
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∫ T

0

∫
BR

um(p−1)+ p
N
−sdxdt ≤ c(s,R, | u0 |L1),

(28)
where BR(x0) = {x ∈ RN :| x− x0 |< R} as usual,
and if x0 = 0, we denote it as BR simply.

Proof: From Definition 1, we are able to deduce that
(see [10]): for ∀φ ∈ C1(S̄), φ = 0 when | x | is large
enough, ∫

RN
uk(x, t)φdx

−
∫ T

0

∫
RN

(ukφt− | Dumk |p−2 Dumk ·Dφ)dxdt

+kυ
∫ T

0

∫
RN

uq1k | Dumk |p1 φdxdt

=

∫
RN

u0k(x)φ(x, 0)dx,

so, ∫
RN

uk(x, t)φdx

−
∫ T

0

∫
RN

(ukφt− | Dumk |p−2 Dumk ·Dφ)dxdt

≤
∫
RN

u0k(x)φ(x, 0)dx. (29)

Let

ψR ∈ C∞
0 (B2R), 0 ≤ ψR ≤ 1, ψR = 1, on BR,

| DψR |≤ cR−1. (30)

By an approximate procedure, we can choose φ =
us
k

1+us
k
ψp
R in (29), then

∫
RN

∫ uk(x,t)

0

zs

1 + zs
dzψp

R(x)dx

+s

∫ t

h

∫
RN

us−m
k

(1 + usk)
2
| Dumk |p ψp

R(x)dxdτ

≤ −p
∫ t

h

∫
RN

usk
1 + usk

| Dumk |p−2 ψp−1
R (x)Duk

·DψRdxdτ +

∫
RN

∫ uk(x,h)

0

zs

1 + zs
dzψp

R(x)dx,

(31)
where 0 < h < t. Noticing that

|
∫ t

h

∫
RN

usk
1 + usk

| Dumk |p−2 ψp−1
R (x)Dumk ·DψRdxdτ |

≤
∫ t

h

∫
RN

[ε(
u
(s+m−2) p−1

p

k

(1 + usk)
2 p−1

p

| Duk |p−1 ψp−1
R )

p
p−1

+c(ε)(
u
s+m−1−(s+m−2) p−1

p

k

(1 + usk)
1−2 p−1

p

| DψR |)p]dxdt

=

∫ t

h

∫
RN

[ε(
us+m−2
k

(1 + usk)
2
| Duk |p ψp

R

+c(ε)
up+m−2
k

(1 + usk)
2−p

| DψR |p]dxdt, (32)

∫
RN

∫ uk(x,h)

0

zs

1 + zs
dzψp

R(x)dx ≤
∫
RN

uk(x, k
Nµh)dx,

(33)
then by (31)-(33), we obtain

sup
0<t<T

∫
RN

∫ uk(x,t)

0

zs

1 + zs
dzdx

+

∫ t

h

∫
RN

us+m−2
k

(1 + usk)
2
| Duk |p ψp

Rdxdτ

≤ c

∫
RN

uk(x, k
Nµh)dx

+c

∫ t

h

∫
RN

up+s+m−2
k

(1 + usk)
2−p

| DψR |p dxdτ. (34)

Since uk ∈ L∞(RN × (h, T ))∩L1(ST ), m(p− 1)−
1 > 0, we have

lim
R→∞

∫ t

h

∫
RN

up+s+m−2
k

(1 + usk)
2−p

| DψR |p dxdτ = 0.

(35)
Let R→ ∞, h→ 0 in (34).

sup
0<t<T

∫
RN

∫ uk(x,t)

0

zs

1 + zs
dzdx

+

∫ ∫
St

us−m
k

(1 + usk)
2
| Dumk |p dxdτ

≤ c

∫
RN

u0k(x)dx. (36)

Thus
sup

0<t<T

∫
B2R

uk(x, t)dx

+

∫ T

0

∫
B2R

us−m
k

(1 + usk)
2
| Dumk |p dxdτ ≤ c(R).

(37)
Let

u1 = max{uk(x, t), 1}, w = u
m(p−1)−s

p

1 .

By Sobolev’s imbedding inequality (see [11]), for ξ ∈
C1
0 (B2R), ξ ≥ 0, we have

(

∫
RN

ξpwrdx)
1
r ≤ c(

∫
RN

| D(ξw) |p)
s
p
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×(

∫
B2R

w
p

m(p−1)−sdx)
(1−θ)(m(p−1)−s

p ,

where

θ = (
m(p− 1)− s

p
− 1

r
)(

1

N
− 1

p
+
m(p− 1)− s

p
)−1,

r =
p(m(p− 1) + p

N − s)

m(p− 1)− s
.

It follows that∫ ∫
ST

ξpwrdxdt ≤ c

∫ ∫
ST

| D(ξw) |p dxdt

× sup
t∈(0,T )

(

∫
B2R

w
p

m(p−1)−sdx)
(r−p)(m(p−1)−s)

p . (38)

Since

| Dw |p≤ c
us−m
k

(1 + usk)
2
| Dumk |p

a.e. on {uk ≥ 1}, and

| Dw |= 0,

a.e. on {uk ≤ 1}, we have∫ ∫
ST

| D(ξw) |p dxdt

≤ c

∫ ∫
ST

(ξp | Dw |p +wp | Dξ |p)dxdt

≤ c[

∫ ∫
ST

| Dξ |p um(p−1)−s
1 dxdt

+

∫ T

0

∫
B2R

us−m
k

(1 + usk)
2
| Dumk |p dxdt]. (19)

Hence, by (38), (39) and (37), we get∫ ∫
ST

ξpu
m(p−1)+ p

N
−s

1 dxdt

≤ c(s,R, | u0 |L1)(1+

∫ ∫
ST

| Dξ |p um(p−1)−s
1 dxdt).

Let ξ = ψb
R. Where ψR is the function satisfies

(30) and b = N(m(p−1)+ p
N
−s)

p . Then∫ ∫
ST

ψpb
R u

m(p−1)+ p
N
−s

1 dxdt ≤ c(s,R, | u0 |L1)

×(1 +

∫ ∫
ST

ψpb
R u

m(p−1)+ p
N
−s

1 dxdt)
m(p−1)−s

m(p−1)−s+
p
N ,

which implies (28) is true.
LetQρ = Bρ(x0)× (t0−ρp, t0) with t0 > (2ρ)p.

Lemma 8 uk satisfies

sup
Qρ

uk ≤ c(ρ, s1)(

∫ ∫
Q2ρ

u
m(p−1)−1+s1
k1 dxdt)1/s1 ,

where c(ρ, s1) depends on ρ and s1, and s1 can be any
number satisfying 0 < s1 < 1 + p

N .

Proof: For ∀φ ∈ C1(S̄), φ = 0 when | x | is large
enough, we have ∫

RN
uk(x, t)φdx

−
∫ T

0

∫
RN

(ukφt− | Dumk |p−2 Dumk ·Dφ)dxdt

+kυ
∫ T

0

∫
RN

uq1k | Dumk |p1 φdxdt

=

∫
RN

u0k(x)φ(x, 0)dx. (40)

Let ξ be the cut function on Qρ, i.e.

0 ≤ ξ ≤ 1, ξ |Qρ= 1, ξ |RN\Qρ
= 0.

We choose the testing function in (40) as φ =

ξpu2γ−1
k , where γ > 1

2 is a constant, and notice that

kυ
∫ T

0

∫
RN

uq1k | Dumk |p1 φdxdt ≥ 0.

Then
1

2γ

∫
B2ρ

ξpu2γk (x, t)dx

+
2γ − 1

m

∫ t

0

∫
B2ρ

ξpu2γ−1−m
k | ∇umk |p dxds

≤ p

∫ t

0

∫
B2ρ

ξp−1 | ∇ξ | u2γ−1
k | ∇umk |p−1 dxds

+
p

2γ

∫ t

0

∫
B2ρ

ξp−1 | ξt | u2γk dxds. (41)

Using Schwartz inequality

ξp−1 | ∇ξ | u2γ−1
k | ∇umk |p−1

= u2γ−1−mξp−1 | ∇umk |p−1| ∇ξ | umk
≤ u2γ−1−m

k (εξp | ∇umk |p +c(ε)ump
k | ∇ξ |p),

from (41), we have

1

2γ

∫
B2ρ

ξpu2γk (x, t)dx

+[(
2γ − 1

m
− ε)]

∫ t

0

∫
B2ρ

ξpu2γ−1−m
k | ∇umk |p dxds
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≤ c

∫ t

0

∫
B2ρ

u
2γ−1+m(p−1)
k | ∇ξ |p dxds

+
p

2γ

∫ t

0

∫
B2ρ

ξp−1 | ξt | u2γk dxds. (42)

By the fact of that

| ∇(ξu
2γ−1+m(p−1)

p

k ) |p

=| u
2γ−1+m(p−1)

p

k ∇ξ

+
2γ − 1 +m(p− 1)

mp
ξu

2γ−1−m
p

k ∇umk |p

≤ c | ∇ξ |p u2γ−1+m(p−1)
k + cξp | ∇umk |p u2γ−1−m

k ,

from (42), we have

sup
t0−2ρp<t<t0

∫
B2ρ

ξpu2γk dxds

+

∫ ∫
Q2ρ

| ∇(ξu
2γ−1+m(p−1)

p

k ) |p dxds

≤ c

∫ t

0

∫
B2ρ

u
2γ−1+m(p−1)
k | ∇ξ |p dxds

+c

∫ t

0

∫
B2ρ

ξp−1 | ξt | u2γk dxds. (43)

Let

β = max{1, 2γ − 1 +m(p− 1)

γ
},

and

w = ξβu
2γ−1+m(p−1)

p

k .

By the embedding theorem, from (43), we have∫ ∫
Q2ρ

whdxdt

≤ c

{
sup

t0−2ρp<t<t0

∫
B2ρ

w
2γp

2γ−1+m(p−1)dx

} 2γ−1+m(p−1)
2γp

(1−δ)h

·
∫
t0−(2ρp)

(∫
B2ρ

| ∇w |p dx
) δh

p

dx, (44)

where

δ = (
2γ − 1 +m(p− 1)

2γp
− 1

h
)

·( 1
N

− 1

p
+

2γ − 1 +m(p− 1)

2γp
)−1.

In particular, we choose

h = p[1 +
2γp

N(2γ − 1 +m(p− 1))
],

then from (43), we have∫ ∫
Q2ρ

ξβhu
2γ−1+m(p−1)+ 2γp

N
k dxdt

≤ c1

(
sup

t0−2ρp<t<t0

∫
B2ρ

ξ
2γpβ

2γ−1+m(p−1)u2γk dx

) p
N

·
∫ ∫

Q2ρ

| ∇(ξβu
2γ−1+m(p−1)

p

k ) |p dxdt

≤ c2{ sup
t0−2ρp<t<t0

∫
B2ρ

ξ
2γpβ

2γ−1+m(p−1)u2γk dx

+

∫ ∫
Q2ρ

| ∇(ξβu
2γ−1+m(p−1)

p

k ) |p dxdt}1+
p
N . (45)

Now, for τ ∈ [12 , 1], we denote that

ρl = 2ρ(τ +
1− τ

2l
), l = 1, 2, · · · ,

and choose the cut functions ξl(x, t) of Qρl, such that
on Qρ(l+1), ξl = 1.

Denote

K = 1 +
p

N
, 2γ = K l.

and let
u1k = max{1, uk}.

Then, by (44)(45), we have∫ ∫
Qρ(l+1)

u
m(p−1)−1+Kl+1

k dxdt

≤
∫ ∫

Qρ(l+1)

u
m(p−1)−1+Kl+1

1k dxdt

≤
∫ ∫

Qρ(l+1)

u
m(p−1)−1+Kl+1

k dxdt+mesQρ(l+1)

{ ccl1
((1− τ)ρ)p

∫ ∫
Qρl

u
m(p−1)−1+Kl

1k dxdt}K .

Using Morse interaction technique, we have

sup
2τρ

u1k ≤ { 1

((1− τ)ρ)N+p

∫ ∫
Q2ρ

u
m(p−1)−1+K
1k dxdt}

1
K .

Then, we have

sup
2τρ

u1k ≤ (sup
Q2ρ

u1k)
K−r
K
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·{ 1

((1− τ)ρ)N+p

∫ ∫
Q2ρ

u
m(p−1)−1+r
1k dxdt}

1
K .

By Schwartz inequality,

sup
2τρ

u1k ≤ 1

2
sup
2ρ

u1k

+c(r){ 1

((1− τ)ρ)N+p

∫ ∫
Q2ρ

u
m(p−1)−1+r
1k dxdt}

1
r .

By the lemma 3.1 in [13], for any τ ∈ [12 , 1), we have

sup
2τρ

u1k ≤ c(r, p){
∫ ∫

Q2ρ

u
m(p−1)−1+r
1k dxdt}

1
r ,

from this inequality, we get the conclusion.

Lemma 9 uk satisfies∫ T

τ

∫
BR

| Dumk |p dxdt ≤ c(τ,R), (46)

∫ T

τ

∫
BR

| ukt |p dxdt ≤ c(τ,R). (47)

Proof: By Lemma 7 and 8, uk are uniformly bounded
on every compact set K ⊂ ST . Let ψR be a function
ion satisfying (30) and ξ ∈ C1

0 (0, T + 1) with 0 ≤
ξ ≤ 1, ξ = 1 if t ∈ (τ, T ). We choose η = ψp

Rξu
m
k in

(29) to obtain

1

m+ 1

∫
RN

um+1
k (x, T )ψp

Rdx

+

∫ ∫
ST

| Dumk |p ψp
Rξdxdt

≤ 1

m+ 1

∫ ∫
ST

um+1
k ξ́ψp

Rdxdt

−p
∫ ∫

ST

umk | Dumk |p−2 Dumk ·DψRψ
p−1
R ξdxdt.

(48)
At the same time, noticing∫ ∫

ST

umk | Dumk |p−1| DψR | ψp−1
R ξdxdt

≤ ε

∫ ∫
ST

| Dumk |p ψp
Rξdxdt

+c(ε)

∫ ∫
ST

upmk | DψR |p ξdxdt, (49)

we know that (46) is true.
Now, we will prove (47). Let

v(x, t) = ukr(x, t) = ruk(x, r
m(p−1)−1t), r ∈ (0, 1).

Then

vt(x, t) = div(| Dvm |p−2 Dvm)

−rm(p−1)−q1−mp1kυvq1 | Dvm |p1 , (50)

v(x, 0) = ruk(x, 0), (51)

Noticing that

mp1 + q1 > m(p− 1), 0 < r < 1,

which implies that

rm(p−1)−q1−mp1kυ > kυ,

using the argument similar to that in the proof Theo-
rem 1 of [4], we can prove

uk ≥ ukr.

It follows that

uk(x, r
m(p−1)−1t)− uk(x, t)

(rm(p−1)−1 − 1)t

≥ r − 1

(1− rm(p−1)−1)t
uk(x, r

m(p−1)−1t).

Letting r → 1, we get

ukt ≥ − uk
(m(p− 1)− 1)t

. (52)

Denote w = tβuk(x, t), β = 1
m(p−1)−1 . By (52),

wt ≥ 0. By (25),∫ T

τ

∫
B2R

t−βwtψRdxdt

= −
∫ T

τ

∫
B2R

| Dumk |p−2 Dumk ·DψRdxdt

−
∫ T

τ

∫
B2R

kϵuq1k | Dum |p1 ψRdxdt

+β

∫ T

τ

∫
B2R

t−1uk(x)ψRdxdt

≤ β

τ

∫ T

τ

∫
B2R

ukdxdt

+(

∫ T

τ

∫
B2R

| Dumk |p dxdt)
p−1
p

·(
∫ T

τ

∫
B2R

| DψR |p dxdt)
1
p . (53)

From (37), (53) and Lemma 8, we obtain (47).
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Proof of Theorem 2 By Lemmas 7-9 and [9], there
exists a subsequence {ukj} of {uk} and a function v
such that on every compact set K ⊂ S

ukj → u, in C(K),

Dumk ⇀ Dum, in Lp
loc(ST ),

| ukt |L1
loc

(ST )≤ c.

Similar to what was done in the proof of Theorem 2
in [4], we can prove u satisfies (1) in the sense of dis-
tribution.

We now prove v(x, 0) = cδ(x). Let χ ∈
C1
0 (BR). Then we have∫

RN
uk(x, t)χdx−

∫
RN

φkχdx

= −
∫ t

0

∫
RN

| Dumk |p−2 Dumk ·Dχdxds

−kυ
∫ t

0

∫
RN

uq1k | Dumk |p1 χdxds. (54)

To estimate
∫ t
0

∫
RN | Dumk |p−2 Dumk ·Dχdxds,with-

out losing generality, one can assume that uk > 0. By
Hölder inequality and Lemma 7,

|
∫ t

0

∫
RN

| Dumk |p−2 Dumk ·Dχdxds |

≤ c[

∫ T

0

∫
B2R

us−m
k

(1 + usk)
2
| Dumk |p dxdt]

p−1
p

·(
∫ T

0

∫
B2R

(1 + usk)
2(p−1)u

(p−1)(m−s)
k dxdτ)

1
p

≤ c[

∫ t

0

∫
B2R

(u
(p−1)(m−s)
k1 + u

(p−1)(s+m)
k1 )dxdτ ]

1
p

≤ c(

∫ t

0

∫
B2R

u
m(p−1)+ p

N
−s)

k1 dxdt)
(p−1)(s+m)

m(p−1)+
p
N

−s

1
p
td,

(55)
where s ∈ (0, 1

N ), and

d =
1−Ns

Nm(p− 1) + p−Ns
<

1

p
.

Hence from (54), we get

|
∫
RN

uk(x, t)χdx−
∫
RN

φkχdx

+kυ
∫ t

0

∫
RN

uq1k | Dumk |p1 χdxds |

=|
∫
RN

uk(x, t)χdx−
∫
RN

φkχ(k
−1x)dx

+

∫ Nµt

0

∫
RN

uq1k | Dumk |p1 χ(k−1x)dxdτ |≤ ctd.

(56)
Letting k → ∞, t→ 0 in turn, we obtain

lim
t→0

∫
RN

v(x, t)χdx

= χ(0)(

∫
RN

φ(x)dx−
∫ ∞

0

∫
RN

uq1k | Dumk |p1 dxdt).

Thus
v(x, 0) = cδ(x),

where

c =

∫
RN

φ(x)dx−
∫ ∞

0

∫
RN

uqdxdt.

v(x, t) is a solution of (6)-(7). By the assumption on
uniqueness of solution, we have v(x, t) = Ec(x, t)
and the entire sequence {uk} converges to Ec as k →
∞. Set t = 1. Then

uk(x, 1) = kNu(kx, kNµ) → Ec(x, 1)

uniformly on every compact subset ofRN . Thus writ-
ing kx = ḱ, kNµ = t́, and dropping the prime again,
we see that

t
1
µu(x, t) → Ec(xt

1
Nµ , 1) = t

1
µEc(x, t)

uniformly on the sets {x ∈ RN :| x |≤ at
1

Nµ }, a > 0.
Thus Theorem 2 is true.

3 Proofs of Theorem 3 and 4
Let be a solution of (1)-(2) and

uk(x, t) = kδu(kx, kβt), k > 0.

If
δ =

p− p1
q1 +mp1 −m(p− 1)

,

β =
p(q1 +mp1 − 1)− p1(m(p− 1)− 1)

q1 +mp1 −m(p− 1)
,

then

ukt = div(| Dumk |p−2 Dumk )− uq1k | Dumk |p1 ,
(57)

uk(x, 0) = φk(x) = kδφ(kx). (58)

Lemma 10 If the nonnegative solution uk of (57)-
(58) satisfies

| Dumk |≥ 1, (59)
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then

uk(x, t) ≤ C∗t
− 1

q1−1 , C∗ = (
1

q1 − 1
)

1
q1−1 . (60)

Proof: We consider the regularized problem of (57),
say,

ukt = div((| Dumk |2 +ε)
p−2
2 Dumk )−uq1k | Dumk |p1 ,

(61)
By the assumption of the uniqueness of the solution
of (57)-(58), we can prove that

ukε → uk as ε→ 0, in C(K)

on every compact set K ⊂ S, where ukε are the so-
lutions of (61)-(58). By computation, it is easy show

C∗(t−t0)
− 1

q1−1 is a solution of the following equation

ukt = div((| Dumk |2 +ε)
p−2
2 Dumk )− uq1k , (62)

in RN × (t0,∞), t0 > 0.
For any δ1 > 0, we choose δ0 ∈ (0, δ1) such that

| ukε(x, δ1) |L∞(RN )≤ C∗(δ1 − δ0)
− 1

q1−1 .

Hence by the comparison principle, noticing that (59)
implies that

−uq1k | Dumk |p1≤ −uq1k ,

we have

ukε(x, t) ≤ C∗(t− t0)
− 1

q1−1 , t > δ1

The proof of Lemma 10 is completed by letting δ1 →
0 and ε→ 0.

Lemma 11 uk satisfies∫ T

τ

∫
BR

| Dumk |p≤ c(τ,R), (63)

∫ T

τ

∫
BR

| ut | dxdt ≤ c(τ,R), (64)

where τ ∈ (0, T ).
The proof of Lemma 11 is similar to that of Lem-

ma 9, we omit details here.

Proof of Theorem 3 By Lemma 10, {uk} are uni-
formly bounded on every compact set of S. Hence by
[9], there exists a subsequence {ukj} and a function
U ∈ C(S) such that

ukj → U, in C(K)

and
U(x, t) ≤ C∗t

− 1
q1−1 .

We now prove that U(x, t) = C∗t
− 1

q1−1 . Let us intro-
duce the function

φA
k = min{φk, A} (3.9)

and denote by V A
Kε the solution of (61) with initial

value (65). By the comparison principle,

V A
Kε ≤ ukε, (66)

where ukε is the solution of (61)-(58).
Define

VA = C∗(t+
A1−q1

q1 − 1
)
− 1

q1−1 ,

which is the solution of (62) with initial value

VA(x, 0) = A. (67)

Noticing that

lim
k→∞

φA
k (x) = lim

k→∞
min{A, φ(kx) | kx |α kδ−α

| x |α
} = A,

using the uniqueness of solution of (62)-(67), we can
prove (see [11])

V A
kε → VA, as k → ∞ in C(K),

where K is a compact set in S. Moreover, by [9] and
[4]

V A
kε → V A

k ukε → uk, as k → ∞ in C(K)

uniformly in K, where V A
k is the solution of (1) with

initial value (65). It follows that

V A
k → VA, as k → ∞ in C(K).

Letting ε→ 0 and k → ∞ in turn in (66), we get

VA(x, t) ≤ V∞(x, t) = C∗t
− 1

q1−1 , (x, t) ∈ S.

Since the lower bound holds for every A > 0, we
conclude that

U(x, t) = V∞(x, t) = C∗t
− 1

q1−1 , (x, t) ∈ S.

Thus

k
p−p1

(q1+mp1−m(p−1))u(kx, kβt) → C∗t
− 1

q1−1 , as k → ∞.

Set t = 1. Then

k
p−p1

(q1+mp1−m(p−1))u(kx, kβ) → C∗, as k → ∞,
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uniformly on every compact subset on RN . Therefore
if we set kx = x́, kβ = t́, and omit the primes , then
we obtain

t
1

q1−1u(x, t) → C∗ as t→ ∞

uniformly on sets {x ∈ RN :| x |≤ αt
1
β } with α > 0

for t > 0 and so Theorem 3 is proved.

Proof of Theorem 4 By Lemma 10 and [9], there
exists a subsequence {ukj} and a function U ∈ C(S)
such that

ukj → U, (x, t) ∈ C(K). (68)

By Lemma 11, we can prove that U satisfies (1) in
the sense of distribution in a manner similar way as
Theorem 2 of [4].
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