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Abstract: By comparing the solution u(x, t) of the doubly degenerate parabolic equation

ug = div(] Du™ P72 Du™) — u® | Vu™ |P*

with the Barenblatt type solution of the equation

ug = div(| Du™ [P~2 Du™),

the large time asymptotic behavior of u(x,t) are got. Here the exponents m, p, p; and ¢ satisfy p > pi,

p>1lm>1q¢+pm>mp—1)>1.
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1 Introduction

We will consider the large time asymptotic behavior
of weak solutions of doubly degenerate parabolic e-
quations of the following type

up = div(| Du™ ]p72 Du™) —u? | Du™ |P*, (1)

u(z,0) = ug(z). (2)

Here, D is the gradient operator, the variables (x,t) €
S = RN x (0, 00), the exponent constants p > py,
qg+pim>m(p—1)>1,p>1,m>1,N > 1,and
ug(x) € L*(RYN). Equation (1.1) has been suggested
as a mathematical model for a variety of problems in
mechanics, physics and biology, one can see [1], [2]
and [3] etc.
A classical example of (1) is the heat equation,

3)

its theory is well known, among its features we find
C* smoothness of solutions, infinite speed of propa-
gation of disturbances and the strong maximum prin-
ciple. These properties are able to be generalized to a
number of related evolution equations, notably those
which are linear and uniformly parabolic. Other well-
known examples of (1) include the porous medium e-
quation

(4)

u = Au,

u = Au™, m>1,
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and evolutionary p-Laplacian equation

Up = div(|Vu\p_2Vu), p> 2. (5)
Clearly, compared with the heat equation, a marked
departure occurs. These equations are degenerate
parabolic and there are generally no classical solution-
s. Moreover, instead of the infinite speed of propaga-
tion of disturbances, the weak solutions of the Cauchy
problem to (4) or (5) have the property of finite prop-
agation. One can see [3], [10] et al.

The existence of nonnegative solution of some
special cases of (1), defined in some weak sense, is
well established (see [4] and [5] et al.). Here we quote
the following definition.

Definition 1 A nonnegative function u(x, t) is called
a weak solution of (1)-(2) if u satisfies

(@
u € C0,T; LY(RN)) N L=®(RN x (,T)),

u™ e LP

loc

(0, T3 WH(RY)), (6)

ug € LY(RY x (1,T)), V7> 0; (7)
(ii)

[ lutet¢@. )= | Du™ 772 Du - Dy
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—u? | Du™ |P* p|dxdt = 0,
(iii)

Vo € C3(S); (8)

(9)

In this paper, we always assume that the solutions
of the corresponding equations are nonnegative. Sim-
ilar to the proof of [4], we can prove the existence
of the solution of (1)-(2) in the sense of Definition 1,
we will published this result in another paper. How-
ever, we have found that the proof of the uniqueness
of the solutions in [4] is not able to be generalized to
our equation (1). It seems that the uniqueness of the
solutions of (1)-(2) is hard to be proved.

In this paper, we are interested in the behavior of
solutions as ¢ — oo. Generally, there are three meth-
ods to study this problem.

I) Elliptic equation method. This method is base
on the existence of the weak solutions of correspond-
ing degenerate elliptic equation

%g% | u(z,t) — up(z) | de = 0.

div(v™ ! | Dv |P=2 Dv)—u® | Dv™ [P'= 0. (10)

Then, one is able to consider whether the weak so-
lution u(z,t) of (1) is asymptotic to the weak solu-
tion of (10) v(z) or not. By this method, several pa-
pers (see e.g. [6], [7]) were devoted to the study of
the asymptotic behavior of the solutions of the porous
medium equations and the evolutionary p— Laplacian
equations. Also by elliptic method, J. Manfredi and
V. Vespri had studied the large time behavior of the
solutions of the initial boundary problem without ab-
sorption term u?* | Du™ |P* in [8].

II) Fundamental solution method. This method
bases on comparing the large time behavior of the
weak solution of (1)-(2) to the Barenblatt-type solu-
tion of (1).

It is not difficult to verify that

=1 —-1)—-1 =1
EC e t ,u,l{[b — M(NN) (pfll)
mp

=L P _p-l
X(| @ | 4% 7T
is the Barenblatt-type solution of the Cauchy problem

uy = div(] Du™ [P=2 Du™), in § = RN x (0, 0)

(11)
u(x,0) = c6(x), on RV, (12)
where
,u:m(p—l)—l-i-ﬁ) cz/ uo(x)dx
N ) RN )
b is a constant such that
b= E.(z,t)dz,
RN
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and J denotes the usual Dirac mass centered at the
origin.

If there is not the absorption term w9 | Du™ |P!
in (1), using the idea of asymptotic radial symmetry,
[14] and [15] established the large time behavior of so-
lutions of evolutionary p-Laplacian equation (i.e. m=1
in (11)) and the porous medium equation (i.e. p=2
in (11)) respectively. Using Morse substitution tech-
nique, by the assumption of that the uniqueness of the
Barenblatt-type solution of (11) is true, [16] had es-
tablished the large time behavior of solutions of (1)
when p; = 0. When m = 1 or p = 2 the uniqueness
had been solved, however, the uniqueness of the so-
lution of general case of (11)-(12) is still open to this
date.

III) Singular solution method. This method bases
on comparing the large time behavior of the general
solutions of (1)-(2) to the very singular solutions of
(1). Now, we give the related concepts.

Let

u(a,t) =t~ f(jalt").

The constants

(13)

o b—D1

Cpla+ (pr—p+1)m) — (L+m—mp)(p—p1)’

g+ Pi—p+1)m

plqr + (p1 —p+1)m) — (1 +m —mp)(p —p1)’

clearly, « > 0,8 > 0 because of that p > p1, ¢1 +
pim > m(p — 1) > 1. The equation (1) is equivalent
to the following equation

(PG + Y PRy

+Brf +af — fUI(f) =0, (14)
where 7 = |x|t~#, with the initial condition
f(0)=a>0,f(0)=0. (15)

A weak solution of (14) has the form of (13), as usual,
is called a self-similar solution of (1).

By a singular solution of (1) it means that a no-
trivial nonnegative function U € C(S\(0)), if U sat-
isfies (1) in the sense of distribution in S and

lim sup U(zx,t) = 0,Ve > 0.
t—0 |z|>e

(16)
Further, if the singular solution U satisfies the follow-
ing formula

lim
t—0

U(z,t) = oo,Ve > 0,
|z|<e

(17)

then U is called a very singular solution.
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Clearly, (16) is equivalent to

lim r%f(r) =0.

t—0

(18)

and (17) is equivalent to

t—0

lim A~ /< - f(r)dr = 0.¥e > 0. (19)
r<et—

If nS < a, the solution f of equation (14) satis-
fies (18), then f € L(0,00; 7" tdr), f satisfies(19).
Thus the self-similar solution u(x,t) defined as (13)
satisfies (16) and (17), and so u(x,t) is a very singu-
lar solution of equation (1). Recently, the author have
got the existence of the self-similar solutions and the
singular solutions of (1) in [17].
The main results of this paper are the following

Theorem 2 Let m(p—1) > 1. If E. is a unique solu-
tion of (11)-(12), then the solution u of (1)-(2) satisfies
l
ti | u(z,t) — Ec(x,t) |— 0, as t — oo, (20)
-1
uniformly on the sets {x € RY :| x |< at#N,a > 0},
where

c :/ uo(z)dz —/ / u? | Du™ |P* dxdt.
RN 0 RN

Theorem 3 Suppose m(p — 1) > 1,q1 + mp; >
m(p—1) — 1 and

|z |* uo(z) < B, C,

lim |z |* up(z) =

|x|—o00

where «, B, and C are constants with a €

(0, qf:%)l ). If the solution u(x, t) of (1)-(2) satisfies
| Du™ > 1, (2,t) € S, (21)

then )
ta—Tu(z,t) = C*, ast — oo, (22)

uniformly on the sets

1
{z e RN :|z|<atF,a> 0},

where
1 1

q1 —1)q171

C* =

and

g Platmp—1) —pi(mp—1) — 1)
a1 +mp1 —m(p—1) '

Theorem 4 Suppose 1 < m(p — 1) < g1 + mp; <

m(p—1)+ & and a > —q1+m51__”7il(p_1),

2 [* wo () < B,/ wo(x)dz > 0.
RN
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Assume that (1) has a unique very singular solution
U(x,t). Then the solution of (1)-(2) satisfies

1
ta-1 |u(z,t) —U(z,t) |— 0 ast — oo, (23)

uniformly on the sets
1
{re RN |z |<at?h}.

Remark 5 For m = 1, the uniqueness of solutions
of (11)-(12) is known (see [9]). Form = 1,p = 2,
the uniqueness of the very singular solution of (1) is
know too (see [12]).

Remark 6 For all (z,t) € S, the condition (21) sup-
poses that
| Du™ |> 1,

this condition seems so strong that the conclusion (22)
is not so interesting. However, according to the proof
of our paper, we can deduce that for any given ¢ > 0,
x € RN, whether (22) is true, or we have

| Du™(z,t) |< 1. (24)

As we have said before, that the uniqueness of the so-
lutions of (1)-(2) is still an open problem, according
to our original studying, a essential difficulty comes
from that it is still difficult to prove that (24) is true
for all (x,t) € S. So, not only that Theorem 3 in-
cludes some information in the asymptotic behavior
of the solutions, but also it includes some information
in the uniqueness of the solutions of the problem.

2 Proof of Theorem 2

Let u be a solution of (1). We define the family of
functions

ugp = kNu(kz, kNHt), k> 0.

It is easy to see that they are the solutions of the prob-
lems

uy = div(] Du™ [P~2 Du™)—k%u? | Du [P*, (25)

U({L‘, 0) = uOk(:E)v on RNa

where 11 = m(p — 1) + & — 1 as before and

(26)

v=p—p1+Nmp-1)—q —mp1),
uor () = kN ug ().

Lemma 7 For any s € (0, m(p — 1)), uy, satisfies

T usm
_ "k D 2 <
/0 /BR (14 u3)? | Duy [* dedt < c(s, R, [ ug |1),
(27)

Issue 7, Volume 10, July 2011



WSEAS TRANSACTIONS on MATHEMATICS

N7%dxdt < c(s, R, | uo |11),

[ fe
2

where Br(z0) = {x € RN :| x — 20 |< R} as usual,
and if zg = 0, we denote it as By simply.

Proof: From Definition 1, we are able to deduce that
(see [10]): for Vo € C1(S), o = 0 when | z | is large
enough,

ug(z, t)pdx
T
—/0 /RN (uppi— | DU |P~2 Du* - Dy)dxdt

T
k:“/ / Y| Dui® [Pt pdxdt
0 RN
= [ wonlw)e(a, 0)da,
RN

S0,
/RN ug(z, t)pdx
T
[ [ (s | D 2 D D)
0o JRN
< [, uon(@)e(e,0)do. (29)
RN
Let

Yr € C5°(Bar),0 < ¢ < 1,9g =1, on Bg,

| Dypg |< cR™. (30)

By an approximate procedure, we can choose ¢ =
TEoqbP in (29), then

1+ui
ug(z,t) 58
/RN /o 1+ 28
p
s //RN oy | D P (o)

< —p/ / i
n JRN 14 uj

up(w,h) s
-Dz/)Rd:ﬁdT+/RN/O T

where 0 < h < t. Noticing that

‘ /t / ] us |
h R’ US
s+m 2

<
RN 1+ %

u

dz (z)dx

P2 bt (x) Dug

dzyhy (z)dx
(31)

m =2 b (2) Du Dyppdadr |

\wa*wgw%

;..
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s+m—1—(s+m—2)2==
uy, P

(1+ug

s+m 2
— P P
/ /RN (1 + uj, ’ | VR

p+m—2

Uk
T T

ug(x,h) 48 Do < k.Nuh p
/RN/O T+ 2 (x) x_/RNuk(m, )dz,
(33)

+e(e)( | Dipr |)P]dxdt

)1—2%

| Dpg [Pldzdt, — (32)

then by (31)-(33), we obtain

/ / - -
0<t<T RN

s+m 2
P P
/ /RN 0 +u) Duy, |P opdadr

SC/
RN

p+s+m 2

+//RN 1—|—u

Since uy € L¥°(RN x (h,T))NLY(S7), m(p—1) —
1 > 0, we have

dzdx

ug(z, KNPR) de

| Diyr |P dxdr.  (34)

+S+m 2

. P _
o [ o 25 i .
(35)
Let R — oo, h — 0in (34).
k(z,t) 25
/ / dzdx
O<t<T RN
// 5 | Dup' [P dxdr
St
< c/ uok(z)dx. (36)
RN

Thus

sup ug(z, t)dz

0<t<T JBsgr
Dup® |P dxdr < ¢(R
e e | D dadr < ()
(37)
Let
m(p—1)—s
up = max{ug(z,t),1}, w=u; °*

By Sobolev’s imbedding inequality (see [11]), for & €
C§(B2g), € > 0, we have

(] ewdn)r <[ | D(ew) )

RN
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(1-6)(m(p—1)—s

x(/ wm(PfU*de) P ,
Bar

where
mp—1)—s 1,1 1 mp-—1)—s _
R e N
p r p p
_pmp=1)+ % )
m(p—1) —
It follows that
/ ePw" dadt < ¢ / / D(ew) P dedt
St
(r—p)(m(p—1)—s)
x sup ( WA dx) = . (38)
te(0,T) Y B2r
Since
“Zim m |p
’Dw|p§CW\DUk |

a.e. on {ug > 1}, and
| Dw |=0

a.e. on {u; < 1}, we have

/L,
< / / (€ | Dw [P +uw? | DE [P)dadt
St
< / / | DE [P PV dgdt
St

Duit |P dxdt
e e | D o)

Hence, by (38), (39) and (37), we get

/ PPN T gy

D(&w) |P dzxdt

(19)

cls. Bl uo )+ [ [ Dg P a0 dude),
St

Let ¢ = w%. Where v is the function satisfies
_ P _
(30) and b = P UTN ) e

p
//,WbﬂplN “dwdt < (s, R, | ug | 1)

m(p—1)—s

1_|_// Ulpb m(p—1)+%&— Sl dt)m(p - 5+N7

which implies (28) is true.
Let Qp = Bp(xo) X (to—pp,t()) with tg > (Qp)p.
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Lemma 8 wu,, satisfies
sup e < elpyon) ([ [ g ey Vo,
Qp QQP

where ¢(p, s1) depends on p and s1, and s; can be any
number satisfying 0 < sy <1+ &.

Proof: For Vo € C!(S), ¢ = 0 when | z | is large
enough, we have

/RN ug(z, t)pdx

T
_/0 /RN (uppi— | DU |P~2 Dufl* - Dy)dxdt

T
k:“/ / ) Dup* [Pr pdadt
0 RN
= [, uonl@)e(w. 0)da.
RN

Let & be the cut function on @, i.e.

0<€<1Elg,= L& pvg,= 0.

We choose the testing function in (40) as ¢ =
{pu?j_l, where vy > % is a constant, and notice that

T
k“/ / ul' | Duil’ [Pt pdzdt > 0.
0 RN

(40)

Then
1

— §pu27 z,t)dx
37y, S

2 -1 _1-
7 / / §pu? = U P dads
Bs,

<p// 1| Ve |2 | vl P dads

+£/ / g | u?dmds.
2vJo JBo,

Using Schwartz inequality

(41)

e VE ) | Vgl P
= uB el v P Ve |
< w " | Vi P e(e)uy™ | VEP),
from (41), we have

1 / 9
— EPuy (x,t)dx
2y Jg,, &k (z,1)

2v—1 t
7 - 6)]/ / fpuzpy_l_m | Vui' |P dxds
0 /By,
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By,

+£/ / g | uzwdxds.
2vJo JBo,
By the fact of that

(42)

2y—1+m(p—1)

| V(€uy 7

2y—14+m(p—1)
= uy ! V¢

2y—1—-m

§uy, "

) 7

2v — 1
el +m(p—1) v P
mp
<c| VEPu T Leer | v Py

)

from (42), we have

sup &P uiwdacds

to—2pP <t<tg /B

5/4

By,

2p

2y—1+m(p—1)

V(€u, ° ) |P dxds

—I—c/ / Pl & | uz'yd:vds. (43)
0 /By,
Let
2y —1 -1
5 = max{1, 2 +m(p )}’
Y
and
2y—1+m(p—1)
w = §5uk P

By the embedding theorem, from (43), we have

/ / whdxdt
QQp

2vp 2vp
<c sup / w2y =1+mp=1) dg
to—2pP<t<to J B2y
sh
P
/ / | Vw |Pdx | dz, (44)
to—(2p7) \/B2p
where
2y—1+m(p-1) 1
5= -3
2vp h
1 1 2y—1+m(p—-1) _
'(N - -+ )~
P 2vp
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In particular, we choose

29p ]

h=rl+ N T mp =)

then from (43), we have

— _ 29p
/ / ghhy PTG
Q2p

<c sup / 3
to—2pP<t<to J B2y
2y—14m(p=1)
/ / P ) P dadt
Q2p

<co{ sup /
to—2pP<t<to JB

2y— 1+m(p 1)

V(EPu, 7 )P dedt}' R,
Now, for 7 € [%

2fs

2vpB
2y—1+m(p—1) ui&im)

527—1+m(p—1) u?dw

(45)

, 1], we denote that

1—17
2[

pl=2p(r +

and choose the cut functions & (x,t) of @, such that

on Qpq41), & = 1.
Denote

K=142

=2y =K'
N2

and let
u1r = maxq{1, ug}.

Then, by (44)(45), we have

1)\ I+1
// uZL(p D—1HK dxdt
Qp+1)

1) ()
< / / I
Qp(lJrl

m(p 1)—1+KHH1L

dzdt + mesQ) (41

< fy
Gt/

Using Morse interaction technique, we have

p D=1k di) k.

m(p—1)—1+K 1
sup uip < —// U dxdt}x.
2Tp { (( )p)N+p 2p 1k }

Then, we have
K—r

supuyy < (supuyg) K
27—p QQp
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{( 1_7_ N+p// m(p b 1+le‘dt}%.

By Schwartz inequality,

1
Supuir < = Sup Uik
2Tp 2 2p

1 m(p—1)—14r 511
e | L,

By the lemma 3.1 in [13], for any 7 € [%, 1), we have

supuyx < ¢(r,p) {// 1kp D=1 g dt}f
2Tp

from this inequality, we get the conclusion.

Lemma 9 w; satisfies

T
/ / | Dujl* |P dzdt < c(T, R),
T Br

T
/ / | uge [P dedt < ¢(7, R).
T Br

(46)

(47)

Proof: By Lemma 7 and 8, uj, are uniformly bounded
on every compact set X C St. Let )p be a function
ion satisfying (30) and ¢ € C3(0,T + 1) with 0 <
£<1,§=1ift € (1,T). We choose nn = Y &uf in
(29) to obtain

m+1 p
T
m+1 / (=, wRdx
—I—// | Dup* | wﬁfd:vdt
St

<1l
m+1 Sr

-p / / uf' | DU P~ Dull - Dby edadt.
St
(48)

u eyl dadt

At the same time, noticing

//S uf" | DU [P~ Dypg | %t edadt
T

<e / / | Du P 4P edudt
St

6)// 2™
St

we know that (46) is true.
Now, we will prove (47). Let

| DR |P Edxdt, (49)

v(z,t) = upy (x, 1) = rug(z, U7 e (0,1).
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Then
ve(z,t) = div(| Dv™ |P~2 Dv™)
_pmp—D)—q1—mp1 v, @1 | Dv™ |P1, (50)
v(z,0) = rug(x,0), (51)
Noticing that

mp1+q >mp—1), 0<r <1,
which implies that
Tm(Pfl)*fh*mm kY > kv,

using the argument similar to that in the proof Theo-
rem 1 of [4], we can prove

Ug 2 Uy
It follows that

ug(z, Tm(p_l)_lt) — ug(z,t)
(rm(p=1-1 _ 1)¢

S r—1
= =11y

g (z, PP,
Letting » — 1, we get

Ukt = —

(mlp— 1)~ 1)t (52

Denote w = tAuy(z,t), 8 =
w > 0. By (25),

T
/ / tPwpppdadt
T B2R

T
- / /B | Du* [P~2 Duf* - Dappdadt
T 2R

W By (52),

T
—/ Eui' | Du™ [Pt ¢ppdxdt
T BQR

T
+8 / / t~ Yy, (z)p pdadt
T BQR
T
gﬁ// updxdt
T T BQR
T p—1
+(// | DUl P dadt) 7
T BQR
T 1
([ [ 1Dvn P dedtys.
T BQR

From (37), (53) and Lemma 8, we obtain (47).

(53)
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Proof of Theorem 2 By Lemmas 7-9 and [9], there
exists a subsequence {uy; } of {u;} and a function v
such that on every compact set K C S

ug; — u, in C(K),

Duj* = Du™,in L} (S7),
| uke |y (s7)< €

Similar to what was done in the proof of Theorem 2
in [4], we can prove u satisfies (1) in the sense of dis-
tribution.

We now prove v(x,0) = cd(x).
C}(BR). Then we have

/RN ug(z, t)xdr — /RN prxdr

t
= —/0 /RN | Duf* [P~2 Duf* - Dxdxds

t
—k“/ / & Duplt [Pt xdads.
0 JRN

Toestimate [ [nn | Dull [P~ Duj*- Dxdxds, with-
out losing generality, one can assume that u; > 0. By
Holder inequality and Lemma 7,

Let x €

(54)

t
| /0 /R | Duf P Duf' - Dxdads |

/ / 5 | Dug" [P da;dt] P
Bar 1+uk

(/ / (14 ui)z(p_l)ul(gpfl)(mfs)dxdT)%
Bagr

t
_c[// (ul(ﬁ_ —) 4 ,(ﬁ 1)(s+m))d$d7']%
0 JBagr

wl
/ / klp 1)+N )d dt)m(p 1) +W—.s Ptd
Baog
(55)
where s € (0, ), and
B 1—Ns < 1
~ Nm(p—1)+p—Ns p’

Hence from (54), we get

|/RN Uk:(xat)de_/RN prxdx

t
k”/ / 2] Duglt [Pt xdads |
0 JRN

:]/ uk(az,t)xdx—/ npkx(szla:)da;
RN RN
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Nut
+/ / uft | Dt Pt x(ktx)dadr |< ct?.
0 RN

(56)
Letting £ — oo, ¢ — 0 in turn, we obtain
%g% o v(x,t)xdz
[e.e]
0)/( / o(2)dz— / / V| Dul Pt dedt).
RN 0 RN
Thus
o(a,0) = cd(x),

where

c= x dx—/oo/ uldzxdt.
[ etda—[" [

v(z,t) is a solution of (6)-(7). By the assumption on
uniqueness of solution, we have v(z,t) = E.(z,t)
and the entire sequence {uy} converges to F. as k —
oo. Sett = 1. Then

up(z,1) = kNu(kz, EN*) — E (z,1)
uniformly on every compact subset of RY. Thus writ-

ing kx = K, kV* = t, and dropping the prime again,
we see that

tiu(a,t) — E(xt¥i 1) = t% Eo(z, 1)

1
uniformly on the sets {x € RY :| x |[< at¥r },a > 0.
Thus Theorem 2 is true.

3 Proofs of Theorem 3 and 4
Let be a solution of (1)-(2) and

up(z,t) = Ku(kz, kPt), k > 0.

If
5= p—p
g1 +mp1 —m(p—1)’
g=Platmp—1) = pi(mp—1) — 1)
@ +mpr —m(p—1) ’
then

uy = div(| Du! [P72 D) —uft | Duf? [P,

(57)
ug(z,0) = pi(x) = k6g0(k::c). (58)
Lemma 10 If the nonnegative solution ug of (57)-
(58) satisfies

| Duy' |> 1, (59)
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then

1 )ﬁ_
g —1

up(z,t) < C a1, CF = ( (60)

Proof: We consider the regularized problem of (57),
say,

g = div((| Dufl' [2 +¢)"7 Duf) —u’ | Dufl [P,

(61)
By the assumption of the uniqueness of the solution
of (57)-(58), we can prove that

Uge — u ase — 0, in C(K)

on every compact set K C 5, where ug. are the so-
lutions of (61)-(58). By computation, it is easy show
1

C*(t—tp) «—1 isasolution of the following equation
upe = div((] Duj" |2 +¢)"T Duj?) — ul*,  (62)

in RNV x (tg,00), tg > 0.
For any 6; > 0, we choose 0y € (0, d1) such that

__1
| ng(.’lf,(sl) ’LOO(RN)S C*(51 — (50) q1—1,

Hence by the comparison principle, noticing that (59)
implies that

—uzl | Dup* |P*< —uZl,
we have
1
uke(x7t) < C*(t — to) a-1 ¢t > ¢

The proof of Lemma 10 is completed by letting §; —
Oand e — 0.

Lemma 11 wuy satisfies

T
/ / | Dup* |P< ¢(7, R),
T Br

T
/ / | ug | dedt < o(r, R),
T BR

where 7 € (0,T).
The proof of Lemma 11 is similar to that of Lem-
ma 9, we omit details here.

(63)

(64)

Proof of Theorem 3 By Lemma 10, {u;} are uni-
formly bounded on every compact set of .S. Hence by
[9], there exists a subsequence {uy,} and a function
U € C(S) such that

up, = U, in C(K)
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and )
Uz, t) <C*t a1,

o1
We now prove that U (z,t) = C*t «-1. Let us intro-
duce the function

i = min{ypy, A} (3.9)

and denote by Vf?a the solution of (61) with initial
value (65). By the comparison principle,

Vfég S uk’E? (66)
where uy. is the solution of (61)-(58).
Define
I-¢¢
Vi=C*(t+ a-l
( Q- 1)
which is the solution of (62) with initial value
Va(z,0) = A. (67)

Noticing that

(kx) | kx | KO

Ea

lim of(z) = lim min{A, Y= A,
k—o00 k—o00

using the uniqueness of solution of (62)-(67), we can
prove (see [11])
VA = Vy, ask — ooin C(K),

where K is a compact set in S. Moreover, by [9] and

[4]
VA = Vi = up, ask — ocoin C(K)

uniformly in K, where VkA is the solution of (1) with
initial value (65). It follows that

VA = Vy, ask— oo in C(K).
Letting ¢ — 0 and £ — oo in turn in (66), we get
1
Va(z,t) < Voo(x,t) = C*t a1, (z,t) € S.

Since the lower bound holds for every A > 0, we
conclude that

1
U(z,t) = Vao(z,t) = C*t a1, (2,t) € S.
Thus
P—P1 _1
ke laFmer=mG=10 y(kx, kPt) — C*t” 01, ask — oc.
Sett = 1. Then

pP—P1
ke Grtmr=mG=0) g (kx, kP) — C*, as k — oo,
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uniformly on every compact subset on RV, Therefore
if we set kz = 2, k® = t, and omit the primes , then
we obtain

1
ta-Ty(z,t) - C"ast — oo

1
uniformly on sets {z € RN :| x |< at?} witha > 0
for ¢ > 0 and so Theorem 3 is proved.

Proof of Theorem 4 By Lemma 10 and [9], there
exists a subsequence {uy; } and a function U € C(95)
such that

ug;, — U, (2,t) € C(K). (68)

By Lemma 11, we can prove that U satisfies (1) in
the sense of distribution in a manner similar way as
Theorem 2 of [4].
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