The Asymptotic Behavior of a Doubly Nonlinear Parabolic Equation with a Absorption Term Related to the Gradient

Huashui Zhan
Jimei University
School of Sciences
Xiamen
P.R.China
hszhan@jmu.edu.cn

Abstract: By comparing the solution $u(x, t)$ of the doubly degenerate parabolic equation

$$
u_{t}=\operatorname{div}\left(\left|D u^{m}\right|^{p-2} D u^{m}\right)-u^{q_{1}}\left|\nabla u^{m}\right|^{p_{1}}
$$

with the Barenblatt type solution of the equation

$$
u_{t}=\operatorname{div}\left(\left|D u^{m}\right|^{p-2} D u^{m}\right)
$$

the large time asymptotic behavior of $u(x, t)$ are got. Here the exponents m, p, p_{1} and q_{1} satisfy $p>p_{1}$, $p>1, m>1, q_{1}+p_{1} m>m(p-1)>1$.

Key-Words: Doubly degenerate parabolic equation, weak solution, very singular solution, asymptotic behavior

1 Introduction

We will consider the large time asymptotic behavior of weak solutions of doubly degenerate parabolic equations of the following type

$$
\begin{gather*}
u_{t}=\operatorname{div}\left(\left|D u^{m}\right|^{p-2} D u^{m}\right)-u^{q_{1}}\left|D u^{m}\right|^{p_{1}} \tag{1}\\
u(x, 0)=u_{0}(x) \tag{2}
\end{gather*}
$$

Here, D is the gradient operator, the variables $(x, t) \in$ $S=R^{N} \times(0, \infty)$, the exponent constants $p>p_{1}$, $q_{1}+p_{1} m>m(p-1)>1, p>1, m>1, N \geq 1$, and $u_{0}(x) \in L^{1}\left(R^{N}\right)$. Equation (1.1) has been suggested as a mathematical model for a variety of problems in mechanics, physics and biology, one can see [1], [2] and [3] etc.

A classical example of (1) is the heat equation,

$$
\begin{equation*}
u_{t}=\Delta u \tag{3}
\end{equation*}
$$

its theory is well known, among its features we find C^{∞} smoothness of solutions, infinite speed of propagation of disturbances and the strong maximum principle. These properties are able to be generalized to a number of related evolution equations, notably those which are linear and uniformly parabolic. Other wellknown examples of (1) include the porous medium equation

$$
\begin{equation*}
u_{t}=\triangle u^{m}, \quad m>1 \tag{4}
\end{equation*}
$$

and evolutionary p-Laplacian equation

$$
\begin{equation*}
u_{t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \quad p>2 \tag{5}
\end{equation*}
$$

Clearly, compared with the heat equation, a marked departure occurs. These equations are degenerate parabolic and there are generally no classical solutions. Moreover, instead of the infinite speed of propagation of disturbances, the weak solutions of the Cauchy problem to (4) or (5) have the property of finite propagation. One can see [3], [10] et al.

The existence of nonnegative solution of some special cases of (1), defined in some weak sense, is well established (see [4] and [5] et al.). Here we quote the following definition.
Definition 1 A nonnegative function $u(x, t)$ is called a weak solution of (1)-(2) if u satisfies
(i)

$$
\begin{gather*}
u \in C\left(0, T ; L^{1}\left(R^{N}\right)\right) \cap L^{\infty}\left(R^{N} \times(\tau, T)\right), \\
u^{m} \in L_{l o c}^{p}\left(0, T ; W^{1, p}\left(R^{N}\right)\right), \tag{6}\\
u_{t} \in L^{1}\left(R^{N} \times(\tau, T)\right), \quad \forall \tau>0 \tag{7}
\end{gather*}
$$

(ii)

$$
\int_{S}\left[u(x, t) \varphi_{t}(x, t)-\left|D u^{m}\right|^{p-2} D u^{m} \cdot D \varphi\right.
$$

$$
\begin{equation*}
\left.-u^{q_{1}}\left|D u^{m}\right|^{p_{1}} \varphi\right] d x d t=0, \quad \forall \varphi \in C_{0}^{1}(S) \tag{8}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right| d x=0 \tag{9}
\end{equation*}
$$

In this paper, we always assume that the solutions of the corresponding equations are nonnegative. Similar to the proof of [4], we can prove the existence of the solution of (1)-(2) in the sense of Definition 1, we will published this result in another paper. However, we have found that the proof of the uniqueness of the solutions in [4] is not able to be generalized to our equation (1). It seems that the uniqueness of the solutions of (1)-(2) is hard to be proved.

In this paper, we are interested in the behavior of solutions as $t \rightarrow \infty$. Generally, there are three methods to study this problem.
I) Elliptic equation method. This method is base on the existence of the weak solutions of corresponding degenerate elliptic equation

$$
\begin{equation*}
\operatorname{div}\left(v^{m-1}|D v|^{p-2} D v\right)-u^{q_{1}}\left|D v^{m}\right|^{p_{1}}=0 \tag{10}
\end{equation*}
$$

Then, one is able to consider whether the weak solution $u(x, t)$ of (1) is asymptotic to the weak solution of (10) $v(x)$ or not. By this method, several papers (see e.g. [6], [7]) were devoted to the study of the asymptotic behavior of the solutions of the porous medium equations and the evolutionary p - Laplacian equations. Also by elliptic method, J. Manfredi and V. Vespri had studied the large time behavior of the solutions of the initial boundary problem without absorption term $u^{q_{1}}\left|D u^{m}\right|^{p_{1}}$ in [8].
II) Fundamental solution method. This method bases on comparing the large time behavior of the weak solution of (1)-(2) to the Barenblatt-type solution of (1).

It is not difficult to verify that

$$
\begin{aligned}
E_{c}= & t^{\frac{-1}{\mu}}\left\{\left[b-\frac{m(p-1)-1}{m p}(N \mu)^{\frac{-1}{(p-1)}}\right.\right. \\
& \left.\left.\times\left(|x| t^{\frac{-l}{N \mu}}\right)^{\frac{p}{p-1}}\right]_{+}\right\}^{\frac{p-1}{m(p-1)-1}}
\end{aligned}
$$

is the Barenblatt-type solution of the Cauchy problem

$$
\begin{gather*}
u_{t}=\operatorname{div}\left(\left|D u^{m}\right|^{p-2} D u^{m}\right), \text { in } S=R^{N} \times(0, \infty), \tag{12}\\
u(x, 0)=c \delta(x), \text { on } R^{N}, \tag{11}
\end{gather*}
$$

where

$$
\left.\mu=m(p-1)-1+\frac{p}{N}\right), c=\int_{R^{N}} u_{0}(x) d x
$$

b is a constant such that

$$
b=\int_{R^{N}} E_{c}(x, t) d x
$$

and δ denotes the usual Dirac mass centered at the origin.

If there is not the absorption term $u^{q_{1}}\left|D u^{m}\right|^{p_{1}}$ in (1), using the idea of asymptotic radial symmetry, [14] and [15] established the large time behavior of solutions of evolutionary p -Laplacian equation (i.e. $\mathrm{m}=1$ in (11)) and the porous medium equation (i.e. $\mathrm{p}=2$ in (11)) respectively. Using Morse substitution technique, by the assumption of that the uniqueness of the Barenblatt-type solution of (11) is true, [16] had established the large time behavior of solutions of (1) when $p_{1}=0$. When $m=1$ or $p=2$ the uniqueness had been solved, however, the uniqueness of the solution of general case of (11)-(12) is still open to this date.
III) Singular solution method. This method bases on comparing the large time behavior of the general solutions of (1)-(2) to the very singular solutions of (1). Now, we give the related concepts.

Let

$$
\begin{equation*}
u(x, t)=t^{-\alpha} f\left(|x| t^{-\beta}\right) \tag{13}
\end{equation*}
$$

The constants
$\alpha=\frac{p-p_{1}}{p\left(q_{1}+\left(p_{1}-p+1\right) m\right)-(1+m-m p)\left(p-p_{1}\right)}$,
$\beta=\frac{q_{1}+\left(p_{1}-p+1\right) m}{p\left(q_{1}+\left(p_{1}-p+1\right) m\right)-(1+m-m p)\left(p-p_{1}\right)}$,
clearly, $\alpha>0, \beta>0$ because of that $p>p_{1}, q_{1}+$ $p_{1} m>m(p-1)>1$. The equation (1) is equivalent to the following equation

$$
\begin{align*}
& \left(\left|\left(f^{m}\right)^{\prime}\right|^{p-2}\left(f^{m}\right)^{\prime}\right)^{\prime}+\frac{n-1}{r}\left|\left(f^{m}\right)^{\prime}\right|^{p-2}\left(f^{m}\right)^{\prime} \\
& \quad+\beta r f^{\prime}+\alpha f-f^{q_{1}}\left|\left(f^{m}\right)^{\prime}\right|^{p_{1}}=0 \tag{14}
\end{align*}
$$

where $r=|x| t^{-\beta}$, with the initial condition

$$
\begin{equation*}
f(0)=a>0, f^{\prime}(0)=0 \tag{15}
\end{equation*}
$$

A weak solution of (14) has the form of (13), as usual, is called a self-similar solution of (1).

By a singular solution of (1) it means that a notrivial nonnegative function $U \in C(\bar{S} \backslash(0))$, if U satisfies (1) in the sense of distribution in S and

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sup _{|x|>\varepsilon} U(x, t)=0, \forall \varepsilon>0 \tag{16}
\end{equation*}
$$

Further, if the singular solution U satisfies the following formula

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{|x| \leq \varepsilon} U(x, t)=\infty, \forall \varepsilon>0 \tag{17}
\end{equation*}
$$

then U is called a very singular solution.

Clearly, (16) is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow 0} r^{\frac{\alpha}{\beta}} f(r)=0 \tag{18}
\end{equation*}
$$

and (17) is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow 0} r^{n \beta-\alpha} \int_{r \leq \varepsilon t^{-\beta}} f(r) d r=0 . \forall \varepsilon>0 \tag{19}
\end{equation*}
$$

If $n \beta<\alpha$, the solution f of equation (14) satisfies (18), then $f \in L^{1}\left(0, \infty ; r^{n-1} d r\right), f$ satisfies(19). Thus the self-similar solution $u(x, t)$ defined as (13) satisfies (16) and (17), and so $u(x, t)$ is a very singular solution of equation (1). Recently, the author have got the existence of the self-similar solutions and the singular solutions of (1) in [17].

The main results of this paper are the following
Theorem 2 Let $m(p-1)>1$. If E_{c} is a unique solution of (11)-(12), then the solution u of (1)-(2) satisfies

$$
\begin{equation*}
t^{\frac{l}{\mu}}\left|u(x, t)-E_{c}(x, t)\right| \rightarrow 0, \text { as } t \rightarrow \infty \tag{20}
\end{equation*}
$$

uniformly on the sets $\left\{x \in R^{N}:|x|<a t^{\frac{-l}{\mu N}}, a>0\right\}$, where

$$
c=\int_{R^{N}} u_{0}(x) d x-\int_{0}^{\infty} \int_{R^{N}} u^{q_{1}}\left|D u^{m}\right|^{p_{1}} d x d t .
$$

Theorem 3 Suppose $m(p-1)>1, q_{1}+m p_{1}>$ $m(p-1)-1$ and

$$
|x|^{\alpha} u_{0}(x) \leq B, \quad \lim _{|x| \rightarrow \infty}|x|^{\alpha} u_{0}(x)=C
$$

where α, B, and C are constants with $\alpha \in$ $\left(0, \frac{p-p_{1}}{q_{1}+m p_{1}}\right)$. If the solution $u(x, t)$ of (1)-(2) satisfies

$$
\begin{equation*}
\left|D u^{m}\right| \geq 1,(x, t) \in S, \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
t^{\frac{1}{q_{1}-1}} u(x, t) \rightarrow C^{*}, \text { as } t \rightarrow \infty \tag{22}
\end{equation*}
$$

uniformly on the sets

$$
\left\{x \in R^{N}:|x| \leq a t^{\frac{1}{\beta}}, a>0\right\}
$$

where

$$
C^{*}=\left(\frac{1}{q_{1}-1}\right)^{\frac{1}{q_{1}-1}}
$$

and

$$
\beta=\frac{p\left(q_{1}+m p_{1}-1\right)-p_{1}(m(p-1)-1)}{q_{1}+m p_{1}-m(p-1)} .
$$

Theorem 4 Suppose $1<m(p-1)<q_{1}+m p_{1}<$ $m(p-1)+\frac{p}{N}$ and $\alpha>\frac{p-p_{1}}{q_{1}+m p_{1}-m(p-1)}$,

$$
|x|^{\alpha} u_{0}(x) \leq B, \int_{R^{N}} u_{0}(x) d x>0
$$

Assume that (1) has a unique very singular solution $U(x, t)$. Then the solution of (1)-(2) satisfies

$$
\begin{equation*}
t^{\frac{1}{q_{1}-1}}|u(x, t)-U(x, t)| \rightarrow 0 \text { as } t \rightarrow \infty \tag{23}
\end{equation*}
$$

uniformly on the sets

$$
\left\{x \in R^{N}:|x| \leq a t^{\frac{1}{\beta}}\right\}
$$

Remark 5 For $m=1$, the uniqueness of solutions of (11)-(12) is known (see [9]). For $m=1, p=2$, the uniqueness of the very singular solution of (1) is know too (see [12]).

Remark 6 For all $(x, t) \in S$, the condition (21) supposes that

$$
\left|D u^{m}\right| \geq 1
$$

this condition seems so strong that the conclusion (22) is not so interesting. However, according to the proof of our paper, we can deduce that for any given $t>0$, $x \in R^{N}$, whether (22) is true, or we have

$$
\begin{equation*}
\left|D u^{m}(x, t)\right| \leq 1 \text {. } \tag{24}
\end{equation*}
$$

As we have said before, that the uniqueness of the solutions of (1)-(2) is still an open problem, according to our original studying, a essential difficulty comes from that it is still difficult to prove that (24) is true for all $(x, t) \in S$. So, not only that Theorem 3 includes some information in the asymptotic behavior of the solutions, but also it includes some information in the uniqueness of the solutions of the problem.

2 Proof of Theorem 2

Let u be a solution of (1). We define the family of functions

$$
u_{k}=k^{N} u\left(k x, k^{N \mu} t\right), k>0 .
$$

It is easy to see that they are the solutions of the problems

$$
\begin{gather*}
u_{t}=\operatorname{div}\left(\left|D u^{m}\right|^{p-2} D u^{m}\right)-k^{v} u^{q_{1}}|D u|^{p_{1}}, \tag{25}\\
u(x, 0)=u_{0 k}(x), \text { on } R^{N} \tag{26}
\end{gather*}
$$

where $\mu=m(p-1)+\frac{p}{N}-1$ as before and

$$
\begin{gathered}
v=p-p_{1}+N\left(m(p-1)-q_{1}-m p_{1}\right), \\
u_{0 k}(x)=k^{N} u_{0}(x) .
\end{gathered}
$$

Lemma 7 For any $s \in(0, m(p-1)), u_{k}$ satisfies
$\int_{0}^{T} \int_{B_{R}} \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}\right|^{2} d x d t \leq c\left(s, R,\left|u_{0}\right|_{L^{1}}\right)$,

$$
\begin{equation*}
\int_{0}^{T} \int_{B_{R}} u^{m(p-1)+\frac{p}{N}-s} d x d t \leq c\left(s, R,\left|u_{0}\right|_{L^{1}}\right) \tag{28}
\end{equation*}
$$

where $B_{R}\left(x_{0}\right)=\left\{x \in R^{N}:\left|x-x_{0}\right|<R\right\}$ as usual, and if $x_{0}=0$, we denote it as B_{R} simply.
Proof: From Definition 1, we are able to deduce that (see [10]): for $\forall \varphi \in C^{1}(\bar{S}), \varphi=0$ when $|x|$ is large enough,

$$
\begin{gathered}
\int_{R^{N}} u_{k}(x, t) \varphi d x \\
-\int_{0}^{T} \int_{R^{N}}\left(u_{k} \varphi_{t}-\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \varphi\right) d x d t \\
+k^{v} \int_{0}^{T} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \varphi d x d t \\
=\int_{R^{N}} u_{0 k}(x) \varphi(x, 0) d x
\end{gathered}
$$

so,

$$
\begin{gather*}
\int_{R^{N}} u_{k}(x, t) \varphi d x \\
-\int_{0}^{T} \int_{R^{N}}\left(u_{k} \varphi_{t}-\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \varphi\right) d x d t \\
\leq \int_{R^{N}} u_{0 k}(x) \varphi(x, 0) d x \tag{29}
\end{gather*}
$$

Let

$$
\psi_{R} \in C_{0}^{\infty}\left(B_{2 R}\right), 0 \leq \psi_{R} \leq 1, \psi_{R}=1, \text { on } B_{R}
$$

$$
\begin{equation*}
\left|D \psi_{R}\right| \leq c R^{-1} \tag{30}
\end{equation*}
$$

By an approximate procedure, we can choose $\varphi=$ $\frac{u_{k}^{s}}{1+u_{k}^{s}} \psi_{R}^{p}$ in (29), then

$$
\begin{gather*}
\int_{R^{N}} \int_{0}^{u_{k}(x, t)} \frac{z^{s}}{1+z^{s}} d z \psi_{R}^{p}(x) d x \\
+s \int_{h}^{t} \int_{R^{N}} \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}^{m}\right|^{p} \psi_{R}^{p}(x) d x d \tau \\
\leq-p \int_{h}^{t} \int_{R^{N}} \frac{u_{k}^{s}}{1+u_{k}^{s}}\left|D u_{k}^{m}\right|^{p-2} \psi_{R}^{p-1}(x) D u_{k} \\
\cdot D \psi_{R} d x d \tau+\int_{R^{N}} \int_{0}^{u_{k}(x, h)} \frac{z^{s}}{1+z^{s}} d z \psi_{R}^{p}(x) d x \tag{31}
\end{gather*}
$$

where $0<h<t$. Noticing that

$$
\left.\left.\left|\int_{h}^{t} \int_{R^{N}} \frac{u_{k}^{s}}{1+u_{k}^{s}}\right| D u_{k}^{m}\right|^{p-2} \psi_{R}^{p-1}(x) D u_{k}^{m} \cdot D \psi_{R} d x d \tau \right\rvert\,
$$

$$
\leq \int_{h}^{t} \int_{R^{N}}\left[\varepsilon\left(\frac{u_{k}^{(s+m-2) \frac{p-1}{p}}}{\left(1+u_{k}^{s}\right)^{2 \frac{p-1}{p}}}\left|D u_{k}\right|^{p-1} \psi_{R}^{p-1}\right)^{\frac{p}{p-1}}\right.
$$

$$
\left.+c(\varepsilon)\left(\frac{u_{k}^{s+m-1-(s+m-2) \frac{p-1}{p}}}{\left(1+u_{k}^{s}\right)^{1-2 \frac{p-1}{p}}}\left|D \psi_{R}\right|\right)^{p}\right] d x d t
$$

$$
=\int_{h}^{t} \int_{R^{N}}\left[\varepsilon \left(\frac{u_{k}^{s+m-2}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}\right|^{p} \psi_{R}^{p}\right.\right.
$$

$$
\begin{equation*}
\left.+c(\varepsilon) \frac{u_{k}^{p+m-2}}{\left(1+u_{k}^{s}\right)^{2-p}}\left|D \psi_{R}\right|^{p}\right] d x d t \tag{32}
\end{equation*}
$$

$\int_{R^{N}} \int_{0}^{u_{k}(x, h)} \frac{z^{s}}{1+z^{s}} d z \psi_{R}^{p}(x) d x \leq \int_{R^{N}} u_{k}\left(x, k^{N \mu} h\right) d x$,
then by (31)-(33), we obtain

$$
\begin{gather*}
\sup _{0<t<T} \int_{R^{N}} \int_{0}^{u_{k}(x, t)} \frac{z^{s}}{1+z^{s}} d z d x \\
+\int_{h}^{t} \int_{R^{N}} \frac{u_{k}^{s+m-2}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}\right|^{p} \psi_{R}^{p} d x d \tau \\
\leq c \int_{R^{N}} u_{k}\left(x, k^{N \mu} h\right) d x \\
+c \int_{h}^{t} \int_{R^{N}} \frac{u_{k}^{p+s+m-2}}{\left(1+u_{k}^{s}\right)^{2-p}}\left|D \psi_{R}\right|^{p} d x d \tau \tag{34}
\end{gather*}
$$

Since $u_{k} \in L^{\infty}\left(R^{N} \times(h, T)\right) \cap L^{1}\left(S_{T}\right), m(p-1)-$ $1>0$, we have

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{h}^{t} \int_{R^{N}} \frac{u_{k}^{p+s+m-2}}{\left(1+u_{k}^{s}\right)^{2-p}}\left|D \psi_{R}\right|^{p} d x d \tau=0 \tag{35}
\end{equation*}
$$

Let $R \rightarrow \infty, h \rightarrow 0$ in (34).

$$
\begin{gather*}
\sup _{0<t<T} \int_{R^{N}} \int_{0}^{u_{k}(x, t)} \frac{z^{s}}{1+z^{s}} d z d x \\
+\iint_{S_{t}} \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}^{m}\right|^{p} d x d \tau \\
\quad \leq c \int_{R^{N}} u_{0 k}(x) d x \tag{36}
\end{gather*}
$$

Thus

$$
\begin{gather*}
\sup _{0<t<T} \int_{B_{2 R}} u_{k}(x, t) d x \\
+\int_{0}^{T} \int_{B_{2 R}} \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}^{m}\right|^{p} d x d \tau \leq c(R) \tag{37}
\end{gather*}
$$

Let

$$
u_{1}=\max \left\{u_{k}(x, t), 1\right\}, \quad w=u_{1}^{\frac{m(p-1)-s}{p}}
$$

By Sobolev's imbedding inequality (see [11]), for $\xi \in$ $C_{0}^{1}\left(B_{2 R}\right), \xi \geq 0$, we have

$$
\left(\int_{R^{N}} \xi^{p} w^{r} d x\right)^{\frac{1}{r}} \leq c\left(\int_{R^{N}}|D(\xi w)|^{p}\right)^{\frac{s}{p}}
$$

$$
\times\left(\int_{B_{2 R}} w^{\frac{p}{m(p-1)-s}} d x\right)^{\frac{(1-\theta)(m(p-1)-s}{p}},
$$

where

$$
\begin{gathered}
\theta=\left(\frac{m(p-1)-s}{p}-\frac{1}{r}\right)\left(\frac{1}{N}-\frac{1}{p}+\frac{m(p-1)-s}{p}\right)^{-1} \\
r=\frac{p\left(m(p-1)+\frac{p}{N}-s\right)}{m(p-1)-s}
\end{gathered}
$$

It follows that

$$
\begin{align*}
& \iint_{S_{T}} \xi^{p} w^{r} d x d t \leq c \iint_{S_{T}}|D(\xi w)|^{p} d x d t \\
\times & \sup _{t \in(0, T)}\left(\int_{B_{2 R}} w^{\frac{p}{m(p-1)-s}} d x\right)^{\frac{(r-p)(m(p-1)-s)}{p}} \tag{38}
\end{align*}
$$

Since

$$
|D w|^{p} \leq c \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}^{m}\right|^{p}
$$

a.e. on $\left\{u_{k} \geq 1\right\}$, and

$$
|D w|=0
$$

a.e. on $\left\{u_{k} \leq 1\right\}$, we have

$$
\begin{gather*}
\iint_{S_{T}}|D(\xi w)|^{p} d x d t \\
\leq c \iint_{S_{T}}\left(\xi^{p}|D w|^{p}+w^{p}|D \xi|^{p}\right) d x d t \\
\leq c\left[\iint_{S_{T}}|D \xi|^{p} u_{1}^{m(p-1)-s} d x d t\right. \\
\left.+\int_{0}^{T} \int_{B_{2 R}} \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}^{m}\right|^{p} d x d t\right] . \tag{19}
\end{gather*}
$$

Hence, by (38), (39) and (37), we get

$$
\iint_{S_{T}} \xi^{p} u_{1}^{m(p-1)+\frac{p}{N}-s} d x d t
$$

$\leq c\left(s, R,\left|u_{0}\right|_{L^{1}}\right)\left(1+\iint_{S_{T}}|D \xi|^{p} u_{1}^{m(p-1)-s} d x d t\right)$.
Let $\xi=\psi_{R}^{b}$. Where ψ_{R} is the function satisfies (30) and $b=\frac{N\left(m(p-1)+\frac{p}{N}-s\right)}{p}$. Then

$$
\begin{aligned}
& \iint_{S_{T}} \psi_{R}^{p b} u_{1}^{m(p-1)+\frac{p}{N}-s} d x d t \leq c\left(s, R,\left|u_{0}\right|_{L^{1}}\right) \\
& \times\left(1+\iint_{S_{T}} \psi_{R}^{p b} u_{1}^{m(p-1)+\frac{p}{N}-s} d x d t\right)^{\frac{m(p-1)-s}{m(p-1)-s+\frac{p}{N}}}
\end{aligned}
$$

which implies (28) is true.
Let $Q_{\rho}=B_{\rho}\left(x_{0}\right) \times\left(t_{0}-\rho^{p}, t_{0}\right)$ with $t_{0}>(2 \rho)^{p}$.

Lemma $8 u_{k}$ satisfies

$$
\sup _{Q_{\rho}} u_{k} \leq c\left(\rho, s_{1}\right)\left(\iint_{Q_{2 \rho}} u_{k 1}^{m(p-1)-1+s_{1}} d x d t\right)^{1 / s_{1}}
$$

where $c\left(\rho, s_{1}\right)$ depends on ρ and s_{1}, and s_{1} can be any number satisfying $0<s_{1}<1+\frac{p}{N}$.
Proof: For $\forall \varphi \in C^{1}(\bar{S}), \varphi=0$ when $|x|$ is large enough, we have

$$
\begin{gather*}
\int_{R^{N}} u_{k}(x, t) \varphi d x \\
-\int_{0}^{T} \int_{R^{N}}\left(u_{k} \varphi_{t}-\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \varphi\right) d x d t \\
+k^{v} \int_{0}^{T} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \varphi d x d t \\
=\int_{R^{N}} u_{0 k}(x) \varphi(x, 0) d x \tag{40}
\end{gather*}
$$

Let ξ be the cut function on Q_{ρ}, i.e.

$$
0 \leq \xi \leq 1,\left.\xi\right|_{Q_{\rho}}=1,\left.\xi\right|_{R^{N} \backslash Q_{\rho}}=0
$$

We choose the testing function in (40) as $\varphi=$ $\xi^{p} u_{k}^{2 \gamma-1}$, where $\gamma>\frac{1}{2}$ is a constant, and notice that

$$
k^{v} \int_{0}^{T} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \varphi d x d t \geq 0
$$

Then

$$
\begin{gather*}
\frac{1}{2 \gamma} \int_{B_{2 \rho}} \xi^{p} u_{k}^{2 \gamma}(x, t) d x \\
+\frac{2 \gamma-1}{m} \int_{0}^{t} \int_{B_{2 \rho}} \xi^{p} u_{k}^{2 \gamma-1-m}\left|\nabla u_{k}^{m}\right|^{p} d x d s \\
\leq p \int_{0}^{t} \int_{B_{2 \rho}} \xi^{p-1}|\nabla \xi| u_{k}^{2 \gamma-1}\left|\nabla u_{k}^{m}\right|^{p-1} d x d s \\
+\frac{p}{2 \gamma} \int_{0}^{t} \int_{B_{2 \rho}} \xi^{p-1}\left|\xi_{t}\right| u_{k}^{2 \gamma} d x d s \tag{41}
\end{gather*}
$$

Using Schwartz inequality

$$
\begin{gathered}
\xi^{p-1}|\nabla \xi| u_{k}^{2 \gamma-1}\left|\nabla u_{k}^{m}\right|^{p-1} \\
=u^{2 \gamma-1-m} \xi^{p-1}\left|\nabla u_{k}^{m}\right|^{p-1}|\nabla \xi| u_{k}^{m} \\
\leq u_{k}^{2 \gamma-1-m}\left(\varepsilon \xi^{p}\left|\nabla u_{k}^{m}\right|^{p}+c(\varepsilon) u_{k}^{m p}|\nabla \xi|^{p}\right)
\end{gathered}
$$

from (41), we have

$$
\begin{gathered}
\frac{1}{2 \gamma} \int_{B_{2 \rho}} \xi^{p} u_{k}^{2 \gamma}(x, t) d x \\
+\left[\left(\frac{2 \gamma-1}{m}-\varepsilon\right)\right] \int_{0}^{t} \int_{B_{2 \rho}} \xi^{p} u_{k}^{2 \gamma-1-m}\left|\nabla u_{k}^{m}\right|^{p} d x d s
\end{gathered}
$$

$$
\begin{align*}
\leq & c \int_{0}^{t} \int_{B_{2 \rho}} u_{k}^{2 \gamma-1+m(p-1)}|\nabla \xi|^{p} d x d s \\
& +\frac{p}{2 \gamma} \int_{0}^{t} \int_{B_{2 \rho}} \xi^{p-1}\left|\xi_{t}\right| u_{k}^{2 \gamma} d x d s \tag{42}
\end{align*}
$$

By the fact of that

$$
\begin{gathered}
\left|\nabla\left(\xi u_{k}^{\frac{2 \gamma-1+m(p-1)}{p}}\right)\right|^{p} \\
=\left\lvert\, u_{k}^{\frac{2 \gamma-1+m(p-1)}{p}} \nabla \xi\right. \\
+\left.\frac{2 \gamma-1+m(p-1)}{m p} \xi u_{k}^{\frac{2 \gamma-1-m}{p}} \nabla u_{k}^{m}\right|^{p}
\end{gathered}
$$

$\leq c|\nabla \xi|^{p} u_{k}^{2 \gamma-1+m(p-1)}+c \xi^{p}\left|\nabla u_{k}^{m}\right|^{p} u_{k}^{2 \gamma-1-m}$,
from (42), we have

$$
\begin{gather*}
\sup _{t_{0}-2 \rho^{p}<t<t_{0}} \int_{B_{2 \rho}} \xi^{p} u_{k}^{2 \gamma} d x d s \\
+\iint_{Q_{2 \rho}}\left|\nabla\left(\xi u_{k}^{\frac{2 \gamma-1+m(p-1)}{p}}\right)\right|^{p} d x d s \\
\leq c \int_{0}^{t} \int_{B_{2 \rho}} u_{k}^{2 \gamma-1+m(p-1)}|\nabla \xi|^{p} d x d s \\
\quad+c \int_{0}^{t} \int_{B_{2 \rho}} \xi^{p-1}\left|\xi_{t}\right| u_{k}^{2 \gamma} d x d s . \tag{43}
\end{gather*}
$$

Let

$$
\beta=\max \left\{1, \frac{2 \gamma-1+m(p-1)}{\gamma}\right\}
$$

and

$$
w=\xi^{\beta} u_{k}^{\frac{2 \gamma-1+m(p-1)}{p}}
$$

By the embedding theorem, from (43), we have

$$
\begin{gather*}
\iint_{Q_{2 \rho}} w^{h} d x d t \\
\leq c\left\{\sup _{t_{0}-2 \rho^{p}<t<t_{0}} \int_{B_{2 \rho}} w^{\frac{2 \gamma p}{2 \gamma-1+m(p-1)}} d x\right\}^{\frac{2 \gamma-1+m(p-1)}{2 \gamma p}(1-\delta) h} \\
\cdot \int_{t_{0}-\left(2 \rho^{p}\right)}\left(\int_{B_{2 \rho}}|\nabla w|^{p} d x\right)^{\frac{\delta h}{p}} d x \tag{44}
\end{gather*}
$$

where

$$
\begin{gathered}
\delta=\left(\frac{2 \gamma-1+m(p-1)}{2 \gamma p}-\frac{1}{h}\right) \\
\cdot\left(\frac{1}{N}-\frac{1}{p}+\frac{2 \gamma-1+m(p-1)}{2 \gamma p}\right)^{-1}
\end{gathered}
$$

$$
\cdot\left\{\frac{1}{((1-\tau) \rho)^{N+p}} \iint_{Q_{2 \rho}} u_{1 k}^{m(p-1)-1+r} d x d t\right\}^{\frac{1}{K}}
$$

By Schwartz inequality,

$$
\begin{gathered}
\sup _{2 \tau \rho} u_{1 k} \leq \frac{1}{2} \sup _{2 \rho} u_{1 k} \\
+c(r)\left\{\frac{1}{((1-\tau) \rho)^{N+p}} \iint_{Q_{2 \rho}} u_{1 k}^{m(p-1)-1+r} d x d t\right\}^{\frac{1}{r}}
\end{gathered}
$$

By the lemma 3.1 in [13], for any $\tau \in\left[\frac{1}{2}, 1\right)$, we have

$$
\sup _{2 \tau \rho} u_{1 k} \leq c(r, p)\left\{\iint_{Q_{2 \rho}} u_{1 k}^{m(p-1)-1+r} d x d t\right\}^{\frac{1}{r}}
$$

from this inequality, we get the conclusion.
Lemma $9 u_{k}$ satisfies

$$
\begin{gather*}
\int_{\tau}^{T} \int_{B_{R}}\left|D u_{k}^{m}\right|^{p} d x d t \leq c(\tau, R) \tag{46}\\
\int_{\tau}^{T} \int_{B_{R}}\left|u_{k t}\right|^{p} d x d t \leq c(\tau, R) \tag{47}
\end{gather*}
$$

Proof: By Lemma 7 and $8, u_{k}$ are uniformly bounded on every compact set $K \subset S_{T}$. Let ψ_{R} be a function ion satisfying (30) and $\xi \in C_{0}^{1}(0, T+1)$ with $0 \leq$ $\xi \leq 1, \xi=1$ if $t \in(\tau, T)$. We choose $\eta=\psi_{R}^{p} \xi u_{k}^{m}$ in (29) to obtain

$$
\begin{gather*}
\frac{1}{m+1} \int_{R^{N}} u_{k}^{m+1}(x, T) \psi_{R}^{p} d x \\
+\iint_{S_{T}}\left|D u_{k}^{m}\right|^{p} \psi_{R}^{p} \xi d x d t \\
\leq \frac{1}{m+1} \iint_{S_{T}} u_{k}^{m+1} \xi^{\prime} \psi_{R}^{p} d x d t \\
-p \iint_{S_{T}} u_{k}^{m}\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \psi_{R} \psi_{R}^{p-1} \xi d x d t \tag{48}
\end{gather*}
$$

At the same time, noticing

$$
\begin{gather*}
\iint_{S_{T}} u_{k}^{m}\left|D u_{k}^{m}\right|^{p-1}\left|D \psi_{R}\right| \psi_{R}^{p-1} \xi d x d t \\
\quad \leq \varepsilon \iint_{S_{T}}\left|D u_{k}^{m}\right|^{p} \psi_{R}^{p} \xi d x d t \\
+c(\varepsilon) \iint_{S_{T}} u_{k}^{p m}\left|D \psi_{R}\right|^{p} \xi d x d t, \tag{49}
\end{gather*}
$$

we know that (46) is true.
Now, we will prove (47). Let
$v(x, t)=u_{k r}(x, t)=r u_{k}\left(x, r^{m(p-1)-1} t\right), \quad r \in(0,1)$.

Then

$$
\begin{gather*}
v_{t}(x, t)=\operatorname{div}\left(\left|D v^{m}\right|^{p-2} D v^{m}\right) \\
-r^{m(p-1)-q_{1}-m p_{1}} k^{v} v^{q_{1}}\left|D v^{m}\right|^{p_{1}} \tag{50}\\
v(x, 0)=r u_{k}(x, 0) \tag{51}
\end{gather*}
$$

Noticing that

$$
m p_{1}+q_{1}>m(p-1), 0<r<1
$$

which implies that

$$
r^{m(p-1)-q_{1}-m p_{1}} k^{v}>k^{v}
$$

using the argument similar to that in the proof Theorem 1 of [4], we can prove

$$
u_{k} \geq u_{k r}
$$

It follows that

$$
\begin{aligned}
& \frac{u_{k}\left(x, r^{m(p-1)-1} t\right)-u_{k}(x, t)}{\left(r^{m(p-1)-1}-1\right) t} \\
\geq & \frac{r-1}{\left(1-r^{m(p-1)-1}\right) t} u_{k}\left(x, r^{m(p-1)-1} t\right)
\end{aligned}
$$

Letting $r \rightarrow 1$, we get

$$
\begin{equation*}
u_{k t} \geq-\frac{u_{k}}{(m(p-1)-1) t} \tag{52}
\end{equation*}
$$

Denote $w=t^{\beta} u_{k}(x, t), \beta=\frac{1}{m(p-1)-1}$. By (52), $w_{t} \geq 0$. By (25),

$$
\begin{gather*}
\int_{\tau}^{T} \int_{B_{2 R}} t^{-\beta} w_{t} \psi_{R} d x d t \\
=-\int_{\tau}^{T} \int_{B_{2 R}}\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \psi_{R} d x d t \\
-\int_{\tau}^{T} \int_{B_{2 R}} k^{\epsilon} u_{k}^{q_{1}}\left|D u^{m}\right|^{p_{1}} \psi_{R} d x d t \\
+\beta \int_{\tau}^{T} \int_{B_{2 R}} t^{-1} u_{k}(x) \psi_{R} d x d t \\
\leq \frac{\beta}{\tau} \int_{\tau}^{T} \int_{B_{2 R}} u_{k} d x d t \\
+\left(\int_{\tau}^{T} \int_{B_{2 R}}\left|D u_{k}^{m}\right|^{p} d x d t\right)^{\frac{p-1}{p}} \\
\cdot\left(\int_{\tau}^{T} \int_{B_{2 R}}\left|D \psi_{R}\right|^{p} d x d t\right)^{\frac{1}{p}} . \tag{53}
\end{gather*}
$$

From (37), (53) and Lemma 8, we obtain (47).

Proof of Theorem 2 By Lemmas 7-9 and [9], there exists a subsequence $\left\{u_{k_{j}}\right\}$ of $\left\{u_{k}\right\}$ and a function v such that on every compact set $K \subset S$

$$
\begin{gathered}
u_{k_{j}} \rightarrow u, \text { in } C(K), \\
D u_{k}^{m} \rightharpoonup D u^{m}, \text { in } L_{l o c}^{p}\left(S_{T}\right), \\
\left|u_{k t}\right|_{L_{l o c}^{1}\left(S_{T}\right)} \leq c .
\end{gathered}
$$

Similar to what was done in the proof of Theorem 2 in [4], we can prove u satisfies (1) in the sense of distribution.

We now prove $v(x, 0)=c \delta(x)$. Let $\chi \in$ $C_{0}^{1}\left(B_{R}\right)$. Then we have

$$
\begin{align*}
& \int_{R^{N}} u_{k}(x, t) \chi d x-\int_{R^{N}} \varphi_{k} \chi d x \\
=- & \int_{0}^{t} \int_{R^{N}}\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \chi d x d s \\
- & k^{v} \int_{0}^{t} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \chi d x d s . \tag{54}
\end{align*}
$$

To estimate $\int_{0}^{t} \int_{R^{N}}\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \chi d x d s$, without losing generality, one can assume that $u_{k}>0$. By Hölder inequality and Lemma 7,

$$
\begin{align*}
&\left.\left|\int_{0}^{t} \int_{R^{N}}\right| D u_{k}^{m}\right|^{p-2} D u_{k}^{m} \cdot D \chi d x d s \mid \\
& \leq c\left[\int_{0}^{T} \int_{B_{2 R}} \frac{u_{k}^{s-m}}{\left(1+u_{k}^{s}\right)^{2}}\left|D u_{k}^{m}\right|^{p} d x d t\right]^{\frac{p-1}{p}} \\
& \cdot\left(\int_{0}^{T} \int_{B_{2 R}}\left(1+u_{k}^{s}\right)^{2(p-1)} u_{k}^{(p-1)(m-s)} d x d \tau\right)^{\frac{1}{p}} \\
& \leq c\left[\int_{0}^{t} \int_{B_{2 R}}\left(u_{k 1}^{(p-1)(m-s)}+u_{k 1}^{(p-1)(s+m)}\right) d x d \tau\right]^{\frac{1}{p}} \\
& \leq c\left(\int_{0}^{t} \int_{B_{2 R}} u_{k 1}^{\left.m(p-1)+\frac{p}{N}-s\right)} d x d t\right)^{\frac{(p-1)(s+m)}{m(p-1)+\frac{p}{N}-s} \frac{1}{p}} t^{d}, \tag{55}
\end{align*}
$$

where $s \in\left(0, \frac{1}{N}\right)$, and

$$
d=\frac{1-N s}{N m(p-1)+p-N s}<\frac{1}{p}
$$

Hence from (54), we get

$$
\begin{gathered}
\mid \int_{R^{N}} u_{k}(x, t) \chi d x-\int_{R^{N}} \varphi_{k} \chi d x \\
+k^{v} \int_{0}^{t} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \chi d x d s \mid \\
=\mid \int_{R^{N}} u_{k}(x, t) \chi d x-\int_{R^{N}} \varphi_{k} \chi\left(k^{-1} x\right) d x
\end{gathered}
$$

$$
\begin{equation*}
+\int_{0}^{N \mu t} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \chi\left(k^{-1} x\right) d x d \tau \mid \leq c t^{d} \tag{56}
\end{equation*}
$$

Letting $k \rightarrow \infty, t \rightarrow 0$ in turn, we obtain

$$
\begin{gathered}
\lim _{t \rightarrow 0} \int_{R^{N}} v(x, t) \chi d x \\
=\chi(0)\left(\int_{R^{N}} \varphi(x) d x-\int_{0}^{\infty} \int_{R^{N}} u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} d x d t\right)
\end{gathered}
$$

Thus

$$
v(x, 0)=c \delta(x)
$$

where

$$
c=\int_{R^{N}} \varphi(x) d x-\int_{0}^{\infty} \int_{R^{N}} u^{q} d x d t
$$

$v(x, t)$ is a solution of (6)-(7). By the assumption on uniqueness of solution, we have $v(x, t)=E_{c}(x, t)$ and the entire sequence $\left\{u_{k}\right\}$ converges to E_{c} as $k \rightarrow$ ∞. Set $t=1$. Then

$$
u_{k}(x, 1)=k^{N} u\left(k x, k^{N \mu}\right) \rightarrow E_{c}(x, 1)
$$

uniformly on every compact subset of R^{N}. Thus writing $k x=k^{\prime}, k^{N \mu}=t^{\prime}$, and dropping the prime again, we see that

$$
t^{\frac{1}{\mu}} u(x, t) \rightarrow E_{c}\left(x t^{\frac{1}{N \mu}}, 1\right)=t^{\frac{1}{\mu}} E_{c}(x, t)
$$

uniformly on the sets $\left\{x \in R^{N}:|x| \leq a t^{\frac{1}{N \mu}}\right\}, a>0$. Thus Theorem 2 is true.

3 Proofs of Theorem 3 and 4

Let be a solution of (1)-(2) and

$$
u_{k}(x, t)=k^{\delta} u\left(k x, k^{\beta} t\right), k>0
$$

If

$$
\begin{gathered}
\delta=\frac{p-p_{1}}{q_{1}+m p_{1}-m(p-1)} \\
\beta=\frac{p\left(q_{1}+m p_{1}-1\right)-p_{1}(m(p-1)-1)}{q_{1}+m p_{1}-m(p-1)}
\end{gathered}
$$

then

$$
\begin{gather*}
u_{k t}=\operatorname{div}\left(\left|D u_{k}^{m}\right|^{p-2} D u_{k}^{m}\right)-u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \tag{58}\\
u_{k}(x, 0)=\varphi_{k}(x)=k^{\delta} \varphi(k x) \tag{57}
\end{gather*}
$$

Lemma 10 If the nonnegative solution u_{k} of (57)(58) satisfies

$$
\begin{equation*}
\left|D u_{k}^{m}\right| \geq 1 \tag{59}
\end{equation*}
$$

then

$$
\begin{equation*}
u_{k}(x, t) \leq C^{*} t^{-\frac{1}{q_{1}-1}}, \quad C^{*}=\left(\frac{1}{q_{1}-1}\right)^{\frac{1}{q_{1}-1}} \tag{60}
\end{equation*}
$$

Proof: We consider the regularized problem of (57), say,
$u_{k t}=\operatorname{div}\left(\left(\left|D u_{k}^{m}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}} D u_{k}^{m}\right)-u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}}$,
By the assumption of the uniqueness of the solution of (57)-(58), we can prove that

$$
u_{k \varepsilon} \rightarrow u_{k} \text { as } \varepsilon \rightarrow 0, \text { in } C(K)
$$

on every compact set $K \subset S$, where $u_{k \varepsilon}$ are the solutions of (61)-(58). By computation, it is easy show $C^{*}\left(t-t_{0}\right)^{-\frac{1}{q_{1}-1}}$ is a solution of the following equation

$$
\begin{equation*}
u_{k t}=\operatorname{div}\left(\left(\left|D u_{k}^{m}\right|^{2}+\varepsilon\right)^{\frac{p-2}{2}} D u_{k}^{m}\right)-u_{k}^{q_{1}} \tag{62}
\end{equation*}
$$

in $R^{N} \times\left(t_{0}, \infty\right), t_{0}>0$.
For any $\delta_{1}>0$, we choose $\delta_{0} \in\left(0, \delta_{1}\right)$ such that

$$
\left|u_{k \varepsilon}\left(x, \delta_{1}\right)\right|_{L^{\infty}\left(R^{N}\right)} \leq C^{*}\left(\delta_{1}-\delta_{0}\right)^{-\frac{1}{q_{1}-1}}
$$

Hence by the comparison principle, noticing that (59) implies that

$$
-u_{k}^{q_{1}}\left|D u_{k}^{m}\right|^{p_{1}} \leq-u_{k}^{q_{1}}
$$

we have

$$
u_{k \varepsilon}(x, t) \leq C^{*}\left(t-t_{0}\right)^{-\frac{1}{q_{1}-1}}, t>\delta_{1}
$$

The proof of Lemma 10 is completed by letting $\delta_{1} \rightarrow$ 0 and $\varepsilon \rightarrow 0$.

Lemma $11 u_{k}$ satisfies

$$
\begin{gather*}
\int_{\tau}^{T} \int_{B_{R}}\left|D u_{k}^{m}\right|^{p} \leq c(\tau, R) \tag{63}\\
\int_{\tau}^{T} \int_{B_{R}}\left|u_{t}\right| d x d t \leq c(\tau, R) \tag{64}
\end{gather*}
$$

where $\tau \in(0, T)$.
The proof of Lemma 11 is similar to that of Lemma 9, we omit details here.

Proof of Theorem 3 By Lemma 10, $\left\{u_{k}\right\}$ are uniformly bounded on every compact set of S. Hence by [9], there exists a subsequence $\left\{u_{k_{j}}\right\}$ and a function $U \in C(S)$ such that

$$
u_{k_{j}} \rightarrow U, \text { in } C(K)
$$

and

$$
U(x, t) \leq C^{*} t^{-\frac{1}{q_{1}-1}}
$$

We now prove that $U(x, t)=C^{*} t^{-\frac{1}{q_{1}-1}}$. Let us introduce the function

$$
\begin{equation*}
\varphi_{k}^{A}=\min \left\{\varphi_{k}, A\right\} \tag{3.9}
\end{equation*}
$$

and denote by $V_{K \varepsilon}^{A}$ the solution of (61) with initial value (65). By the comparison principle,

$$
\begin{equation*}
V_{K \varepsilon}^{A} \leq u_{k \varepsilon} \tag{66}
\end{equation*}
$$

where $u_{k \varepsilon}$ is the solution of (61)-(58).
Define

$$
V_{A}=C^{*}\left(t+\frac{A^{1-q_{1}}}{q_{1}-1}\right)^{-\frac{1}{q_{1}-1}}
$$

which is the solution of (62) with initial value

$$
\begin{equation*}
V_{A}(x, 0)=A \tag{67}
\end{equation*}
$$

Noticing that
$\lim _{k \rightarrow \infty} \varphi_{k}^{A}(x)=\lim _{k \rightarrow \infty} \min \left\{A, \frac{\varphi(k x)|k x|^{\alpha} k^{\delta-\alpha}}{|x|^{\alpha}}\right\}=A$, using the uniqueness of solution of (62)-(67), we can prove (see [11])

$$
V_{k \varepsilon}^{A} \rightarrow V_{A}, \quad \text { as } k \rightarrow \infty \text { in } C(K),
$$

where K is a compact set in S. Moreover, by [9] and [4]

$$
V_{k \varepsilon}^{A} \rightarrow V_{k}^{A} u_{k \varepsilon} \rightarrow u_{k}, \quad \text { as } k \rightarrow \infty \text { in } C(K)
$$

uniformly in K, where V_{k}^{A} is the solution of (1) with initial value (65). It follows that

$$
V_{k}^{A} \rightarrow V_{A}, \quad \text { as } k \rightarrow \infty \text { in } C(K)
$$

Letting $\varepsilon \rightarrow 0$ and $k \rightarrow \infty$ in turn in (66), we get

$$
V_{A}(x, t) \leq V_{\infty}(x, t)=C^{*} t^{-\frac{1}{q_{1}-1}},(x, t) \in S
$$

Since the lower bound holds for every $A>0$, we conclude that

$$
U(x, t)=V_{\infty}(x, t)=C^{*} t^{-\frac{1}{q_{1}-1}},(x, t) \in S
$$

Thus

$$
k^{\frac{p-p_{1}}{\left(q_{1}+m p_{1}-m(p-1)\right)}} u\left(k x, k^{\beta} t\right) \rightarrow C^{*} t^{-\frac{1}{q_{1}-1}}, \text { as } k \rightarrow \infty
$$

Set $t=1$. Then
$k^{\frac{p-p_{1}}{\left(q_{1}+m p_{1}-m(p-1)\right)}} u\left(k x, k^{\beta}\right) \rightarrow C^{*}$, as $k \rightarrow \infty$,
uniformly on every compact subset on R^{N}. Therefore if we set $k x=x^{\prime}, k^{\beta}=t^{\prime}$, and omit the primes, then we obtain

$$
t^{\frac{1}{q_{1}-1}} u(x, t) \rightarrow C^{*} \text { as } t \rightarrow \infty
$$

uniformly on sets $\left\{x \in R^{N}:|x| \leq \alpha t^{\frac{1}{\beta}}\right\}$ with $\alpha>0$ for $t>0$ and so Theorem 3 is proved.

Proof of Theorem 4 By Lemma 10 and [9], there exists a subsequence $\left\{u_{k_{j}}\right\}$ and a function $U \in C(S)$ such that

$$
\begin{equation*}
u_{k_{j}} \rightarrow U,(x, t) \in C(K) . \tag{68}
\end{equation*}
$$

By Lemma 11, we can prove that U satisfies (1) in the sense of distribution in a manner similar way as Theorem 2 of [4].

Acknowledgements: The research was supported by the NSF of Fujian Province of China (grant No. 2009J01009) and supported by Pan-Jinlong's SF in Jimei University, China.

References:

[1] A. S. Kalashnikkov, Some problems of nonlinear parabolic equations of second order, USSR. Math, Nauk, T. 42(1987), pp. 135-176.
[2] O. A. Ladyzenskaja, New equations for the description of incompressible fluids and solvability in the large boundary value problem for them, Proc. Steldov Inst. Math. 102(1976), pp. 95-118.
[3] E. Di Benedetto, Degenerate parabolic equations, Universitext, Springer Verlag, 1993.
[4] J. Zhao and H. Yuan, The Cauchy problem of some doubly nonlinear degenerate parabolic equations, Chinese Ann. Math. A 16(2)(1995), pp. 179-194.
[5] T. Masayoshi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl. 132(1988), pp. 187-212.
[6] S. Kamin and J. L. Vazquez, Fundamental solutions and asymptotic behavior for the p-Laplacian equation, Rev. Mat. Iberoamericana 4(2) (1988), pp. 339-354.
[7] M. Winkler, Large time behavior of solutions to degenerate parabolic equations with absorption, NoDEA. 8(2001), pp. 343-361.
[8] J. Manfredi and V. Vespri, Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Electronic J. Diff. Equ. (2)1994(1994), pp. 1-16.
[9] A. V. Ivanov, Hölder estimates for quasilinear parabolic equations, J.Soviet Mat. 56(2) (1991), pp. 2320-2347.
[10] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear diffusion equations, Word Scientific Publishing, 2001.
[11] O. A. Ladyzanskauam, V. A. Solonilov and N. N. Uraltseva, Linear and quasilinear equation of parabolic type, Trans. Math. Monographs 23. Amer. Math. Soc., Providence RTI. 1968.
[12] J. Yang and J. Zhao, The asymptotic behavior of solutions of some doubly degenerate nonlinear parabolic equations. Northeastern Math. J. (2)11(1995), pp. 241-252.
[13] M. Giaquinta, Multiple integrals in the calculus of variations and nonliner elliptic systems, Princeton Univ, Press., Princeton, NJ, 1983.
[14] M. Bertsch and L. A. Peletier, The asymptotic profile of a nonlinear diffusion equaation, Arch. Rat. Mech. Anal. 91(1985), pp. 207-229.
[15] E. Di Benedetto and M. A. Herrero, On the Cauchy problem and initian trace for a degenerate parabolic equation, Trans. AM. Math. Soc. 314(1989), pp. 187-224.
[16] D. G. Aronson and L. A. Peletier, Large time behavior of solutions of the porous medium equation in bounded domains, J. Diff. Equations 39(1981), pp. 1001-1022.
[17] H. Zhan, The self-similar solutions for a quasilinear doubly degenerate parabolic equation, Chinese J. of Eng. Math. 27(2010), pp. 10301034.
[18] H. Zhan, Large time behavior of solutions to a class of doubly nonlinear parabolic equations, Appl. of Math. (53)2008, pp. 521-333.

