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Abstract: In this paper, Turing instability of a symmetric discrete competitive Lotka-Volterra system is considered.
To this end, conditions for producing Turing instability of a general discrete system is attained and this conclusion
is applied to the discrete competition Lotka-Volterra system. Then a series of numerical simulations of the discrete
model are performed with different parameters. Results show that the discrete competitive Lotka-Volterra system
can generate a large variety of wave patterns in the Turing instability region. Particularly, the diffusion coefficients
can be equivalent, that is, there is neither ”activator” nor ”inhibitor”. Similar results can not be obtained for the
corresponding continuous models. On the other hand, the number of the eigenvalues is illuminated by calculation
and the unstable spaces can be clearly expressed. Thus, the Turing mechanism is also explained.
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1 Introduction
Reaction-diffusion systems have been proposed as
mechanisms for biological pattern formation in em-
bryological and ecological context [1]. All such works
are based on Turing’s pioneering work [2] in [3], the
authors were the first to call attention to the fact that
Turing’s idea would be applicable in ecological sit-
uation also. They conjectured that the nature of the
equations which describe chemical interaction does
not seem fundamentally different from the nature of
those which describe ecological interaction among the
species. Again, the idea that dispersal could give rise
to instabilities and hence to spatial pattern was due to
a number of authors, see [4], for review.

In [2], Turing specifically considered two chem-
icals, an activator and an inhibitor. The activator en-
hances the production rate of its own and of the in-
hibitor, whereas the inhibitor suppresses both the acti-
vator and the inhibitor. The diffusion coefficient of
the inhibitor is much larger than that of the activa-
tor. Without diffusion, the local reaction of the two
substances is stable and converges to the equilibrium.
However, with diffusion, the uniform steady state is
unstable. A nearly uniform initial distribution sponta-
neously gives rise to a spatially heterogeneous pattern,
and this distribution is referred to as the “Turing insta-
bility”. This simple mechanism suggests that the reac-
tion of a small number of chemicals and their random
diffusion can create stationary non-uniform patterns in

a perfectly homogeneous field.
In reaction-diffusion systems, studies of spatially-

distributed active media have demonstrated the ubiq-
uity of self-organized spatiotemporal patterns, in par-
ticular spiral waves, which emerge in excitable sys-
tems. Standing waves, spiral wave and target wave
have been found in chemical system, such as the Be-
lousov Zhabotinsky (BZ) reaction in which mathe-
matical modeling predicts Turing structures [5]-[7].
Maybe, one may expect that there are systems that
possess a range of parameters where the wave patterns
exist in the Turing instability region.

It is well known that the competitive Lotka-
Volterra system can be described as

{
du
dt = u(r1 − a11u− a12v) = f(u, v)
dv
dt = v(r2 − a21u− a22v) = g(u, v)

(1)

where ri(i = 1, 2) and aij , i, j = 1, 2 are positive
constants and A = [aij ]. There are four equilibria,
E0 = (0, 0), E1 = (r1/a11, 0) representing the ab-
sence of species 2, E2 (0, r2/a22) representing the ab-
sence of species 1, and

E = (u∗, v∗) =
(

r1a22 − r2a12

det A
,
r2a11 − r1a21

det A

)

which is in the interior of the positive quadrant of the
(u∗, v∗) plane if

a12

a22
<

r1

r2
<

a11

a21
(2)
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Otherwise, there is no equilibrium with positive co-
ordinates representing the coexistence of the two
species. One can show by phase plane methods or by
Lyapunov functions that the condition (2) implies that
the unique positive equilibrium E is globally asymp-
totically stable, for instants, see [2] or [3].

When we add diffusion part to the system, then
the model transform into the form

{
∂u
dt = u(r1 − a11u− a12v) + D1∇2u,
∂v
dt = v(r2 − a21u− a22v) + D2∇2v.

(3)

So the Eqs. (3) becomes

wt = J1w + D∇2w

in which

w =
(

u− u∗

v − v∗

)

and

J1 =
[

fu fv

gu gv

]

(u∗,v∗)

and

D =
[

D1 0
0 D2

]

Let k2 be the eigenvalue of the diffusion part and W
be the eigenfunction. Then

∇2W + k2W = 0 (4)

So, Jacobian Matrix of (3) should be of the following
form

J
′
1 = J1 −Dk2

If anyone of the eigenvalues λ of the J
′
1 have positive

real part, the system (3) is unstable at (u∗, v∗). This is
because
∣∣∣λI − J

′
1

∣∣∣ =
∣∣∣∣

D1k
2− fu+ λ −fv

−gu D2k
2− gv+ λ

∣∣∣∣ = 0

i.e.

(D1k
2 − fu + λ)(D2k

2 − gv + λ)− fvgu = 0.

Let

h(k2) = |J1| − k2(fuD2 + gvD1) + D1D2k
4,

then

λ2 − [fu + gv − (D1 + D2)k2]λ− h(k2) = 0.

Thus

λ1,2 = ±{[fu + gv − (D1 + D2)k2]2 − 4h(k2)} 1
2 +

[fu + gv − (D1 + D2)k2].

As we discussed above, if the system (1) is stable at
(u∗, v∗), there must be fu+gv = (−a11∗u∗)−(−a22∗
v∗) < 0, i.e. fu + gv − (D1 + D2)k2 < 0. So if we
want the system to remain unstable, there must be a
k2 6= 0, lead to the condition




[fu + gv − (D1 + D2)k2]2 − 4h(k2) > 0
{[fu + gv − (D1 + D2)k2]2 − 4h(k2)} 1

2 +
[fu + gv − (D1 + D2)k2] > 0

(5)

which ensure that there is at least one eigenvalue
has positive real part. From (5) we can obtain that
h(k2) < 0 while k2 6= 0.

Since

h(k2) = |J1| − k2(fuD2 + gvD1) + D1D2k
4

= D1D2[k4 − 1
2
k2(

fu

D1
+

gv

D2
)

+
1

D1D2
(fugv − fvgu)]

= D1D2[(k2 − 1
2
(
fu

D1
+

gv

D2
)]2

−D1D2

4
(
fu

D1
+

gv

D2
)2 + |J1|

we have

hmin = −D1D2

4
(
fu

D1
+

gv

D2
)2 + |J1|

= −D1D2

4
(
f2

u

D2
1

+
2fugv

D1D2
+

g2
v

D2
2

) + |J1|

= −D2f
2
u

4D1
− fugv

2
− D1g

2
v

4D2
+ |J1|

= −D1D2

4
(
fu

D1
+

gv

D2
)2 + |J1|

It is clear that only as long as hmin < 0, when k2 =
1
2( fu

D1
+ gv

D2
), we can have h(k2) < 0. Thus it must

satisfy the conditions of
{

1
2( fu

D1
+ gv

D2
) > 0

−D1D2
4 ( fu

D1
+ gv

D2
)2 + |J1| < 0.

The above equations are equal to
{

D2fu + D1gv > 0
D1D2( fu

D1
+ gv

D2
)2 − 4(fugv − fvgu) > 0

(6)

In conclusion, take (6) and the discussion about
the system without the diffusion part into considera-
tion, the unstable conditions for (3) in order to gener-
ate Turing Pattern





a12
a22

< r1
r2

< a11
a21

D2fu + D1gv > 0
D1D2( fu

D1
+ gv

D2
)2 − 4(fugv − fvgu) > 0

(7)
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However, in this competition model, we have the lim-
itation that ri(i = 1, 2) and A = [aij ](i, j = 1, 2)
are positive, which implies that the condition D2fu +
D1gv > 0 can never be satisfied. Thus, this continu-
ous model can never generate Turing Pattern.

Now, we have a problem. Can the discrete sys-
tems produce Turing instability? In this paper, we
will consider Turing instability at the positive fixed
point for a discrete competition Lotka-Volterra sys-
tem. Typical spiral pattern will be obtained by nu-
merical simulations. Relevant research on the discrete
competition models for spiral structure have also been
established when the coexistence is no longer possible
and exclusion of one of the competitors takes place
(e.g., see [8]-[10]).

However, the present paper is only concerned
with the coexistence case. Thus, we can say Turing
instability, wave pattern in the Turing space, etc.

This paper is organized as follows: in the next
section, we demonstrate the general theory of Turing
instability for a discrete system by using linearized
technique. In particular, the necessary and sufficient
conditions of stability or instability will be obtained.
The obtained results are very simple, however, they
are new. In Section 3, a symmetric discrete competi-
tive Lotka-Volterra model will be introduced and the
conditions of Turing instability will be achieved. Sim-
ilar results can not be obtained for the corresponding
continuous models. Particularly, the diffusion coeffi-
cients can be equivalent, that is, there is neither ”acti-
vator” nor ”inhibitor”. In Section 4, some numerical
simulations will be given for the symmetric discrete
competition Lotka-Volterra system with different pa-
rameters. Typical spiral Turing patterns are observed.
The pattern information associated with the time evo-
lution and the change of parameter will be also given.
Section 5 is concerned with the number of the eigen-
values and the unstable spaces. Turing mechanism
hopes to be revealed. Some conclusions will be pro-
posed in the final section.

2 Turing Instability for Discrete Sys-
tem

In this section, we firstly consider a general discrete
reaction-diffusion system without diffusion part of the
form {

ut+1 = f(ut, vt)
vt+1 = g(ut, vt)

(8)

for t ∈ Z+ = {0, 1, 2, · · ·} and let (u∗, v∗)1 denote
the fixed point of the system (8). The linearized form

1In fact, u∗ and v∗ can be zero or negative, however, in the
present paper, we will concentrate on the positive fixed point.

of (8) is then
{

ut+1 = fuut + fvvt

vt+1 = guut + gvvt
(9)

which has the Jacobian matrix

J1 =
[

fu fv

gu gv

]

(u∗,v∗)
. (10)

To obtain the stable result of (9), we consider the
algebraic equation

λ2 + bλ + c = 0. (11)

It is well known that it has two roots of the form

λ1,2 = (−b±
√

b2 − 4c) /2

By simple calculation, we can obtain the following re-
sult:

Proposition 1 The roots λ1,2 of the algebraic equa-
tion (11) satisfy the condition |λ1,2| < 1 if, and only if
b− 1 < c, −b− 1 < c and c < 1.

The following fact can be immediately deduced
from Proposition 1.

Proposition 2 The system (8) at the fixed point
(u∗, v∗) is local asymptotically stable when the con-
ditions

fu∗gv∗ − gu∗fv∗ > −(fu∗ + gv∗)− 1, (12)

fu∗gv∗ − gu∗fv∗ > (fu∗ + gv∗)− 1 (13)

and
fu∗gv∗ − gu∗fv∗ < 1. (14)

hold.

In the following, we consider the reaction-
diffusion system of the form

{
uij

t+1 = f(uij
t , vij

t ) + D1∇2uij
t

vij
t+1 = g(uij

t , vij
t ) + D2∇2vij

t

(15)

with the periodic boundary conditions

ui,0
t = ui,m

t , ui,1
t = ui,m+1

t (16)

and
u0,j

t = um,j
t , u1,j

t = um+1,j
t (17)

for i, j ∈ {1, 2, · · ·,m} = [1,m] and t ∈ Z+, where
m is a positive integer,

∇2uij
t = ui+1,j

t + ui,j+1
t + ui−1,j

t + ui,j−1
t − 4uij

t
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and

∇2vij
t = vi+1,j

t + vi,j+1
t + vi−1,j

t + vi,j−1
t − 4vij

t .

In order to study Turing instability of (15)-(17),
we firstly consider eigenvalues of the following equa-
tion

∇2Xij + λXij = 0 (18)

with the periodic boundary conditions

Xi,0 = Xi,m, X i,1 = Xi,m+1 (19)

and
X0,j = Xm,j , X1,j = Xm+1,j . (20)

In view of [11], the eigenvalue problem (18)-(20) has
the eigenvalues

λl,s = 4
(
sin2

(
(l−1)π

m

)
+ sin2

(
(s−1)π

m

))
= k2

ls

for l, s ∈ [1,m] .
(21)

The linearized form of (15) is
{

uij
t+1 = fu∗u

ij
t + fv∗v

ij
t + D1∇2uij

t

vij
t+1 = gu∗u

ij
t + gv∗v

ij
t + D2∇2vij

t

(22)

Then respectively taking the inner product of (22)
with the corresponding eigenfunction Xij

ls of the
eigenvalue λl,s, we see that





m∑
i,j=1

Xij
ls uij

t+1 = fu∗
m∑

i,j=1
Xij

ls uij
t

+fv∗
m∑

i,j=1
Xij

ls vij
t + D1

m∑
i,j=1

Xij
ls∇2uij

t

m∑
i,j=1

Xij
ls vij

t+1 = gu∗
m∑

i,j=1
Xij

ls uij
t

+gv∗
m∑

i,j=1
Xij

ls vij
t + D2

m∑
i,j=1

Xij
ls∇2vij

t

(23)

Let

Ut =
m∑

i,j=1

Xij
ls uij

t and Vt =
m∑

i,j=1

Xij
ls vij

t

and use the periodic boundary conditions (16) and
(17), then it follows that

{
Ut+1 = fu∗Ut + fv∗Vt −D1k

2
lsUt

Vt+1 = gu∗Ut + gv∗Vt −D2k
2
lsVt

or
{

Ut+1 =
(
fu∗ −D1k

2
ls

)
Ut + fv∗Vt,

Vt+1 = gu∗Ut +
(
gv∗ −D2k

2
ls

)
Vt.

(24)

Conversely, if (Ut, Vt) is a solution of the system (24),
then (

uij
t = UtX

ij
ls , vij

t = VtX
ij
ls

)

is also clearly a solution of (22) with the periodic
boundary conditions (16) and (17). Thus, the follow-
ing fact can be obtained

Proposition 3 If
(
uij

t , vij
t

)
is a solution of the prob-

lem of (15)-(17), then


Ut =

m∑

i,j=1

Xij
ls uij

t , Vt =
m∑

i,j=1

Xij
ls vij

t




is a solution of (24), where k2
ls is some eigenvalue of

(18)-(20) and Xij
ls is the corresponding eigenfunction;

For some eigenvalue k2
ls of (18)-(20), if (Ut, Vt) is a

solution of the system (24), then

(
uij

t = UtX
ij
ls , vij

t = VtX
ij
ls

)

is a solution of (22) with the periodic boundary con-
ditions (16) and (17).

From above we see that the unstable system (24)
will induce that the problem (15)-(17) is unstable. On
the other hand, the following fact can also be obtained
by using Proposition 1.

Proposition 4 If there exist positive numbers D1, D2,
and the eigenvalue k2

ls of the problem (18)-(20) such
that one of the following conditions

h(k2
ls) < (k2

ls(D1 + D2)− (fu∗ + gv∗))− 1, (25)

h(k2
ls) < −(k2

ls(D1 + D2)− (fu∗ + gv∗))− 1 (26)

or
h(k2

ls) > 1 (27)

holds, then the problem (15)-(17) at the fixed point
(u∗, v∗) is unstable, where

h(k2
ls) = D1D2k

4
ls − (D1gv∗ + D2fu∗)k2

ls

+(fu∗gv∗ − fv∗gu∗).

Propositions 2 and 4 imply that the problem (15)-
(17) is diffusion-driven unstable or Turing unstable.
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3 Discrete Competitive Lotka-
Volterra System

A continuous competition Lotka-Volterra system can
be described as follows

{
x′ (t) = x (t) (r1 − a11x (t)− a12y (t))
y′ (t) = y (t) (r2 − a21x (t)− a22y (t))

(28)

for t ∈ [0,+∞), where x (t) and y (t) are the quanti-
ties of the two species at time t, r1 > 0 and r2 > 0 are
growth rates of the respective species, a11 and a22 rep-
resent the strength of the intra-specific competition,
and a12 and a21 being the strength of the interspecific
competition. One can show by phase plane methods
or by Lyapunov functions that when:

a12 /a22 < r1 /r2 < a11 /a21

the unique positive equilibrium (x∗, y∗) is globally
asymptotically stable see [12], where (x∗, y∗) satisfies

{
a11x

∗ + a12y
∗ = r1,

a21x
∗ + a22y

∗ = r2.

Unfortunately, by simple calculation the correspond-
ing reaction diffusion system of (28) can not exhibit
diffusion-driven instability or Turing instability.

Now, we consider the corresponding discrete sys-
tem of the form

{
ut+1 = r1ut (1− ut − a12vt)
vt+1 = r2vt (1− a21ut − vt)

(29)

for t ∈ Z+, where r1, r2, a12 and a21 are positive
constants. We will here consider the completely sym-
metric case, that is,

{
ut+1 = rut (1− ut − avt) ,
vt+1 = rvt (1− aut − vt) ,

(30)

where r and a are positive constants. At the same
time, we also assume that the diffusion coefficients are
equal, that is, D1 = D2 = D. Thus, we also consider
the reaction diffusion system of the form





uij
t+1 = ruij

t

(
1− uij

t − avij
t

)
+ D∇2uij

t

vij
t+1 = rvij

t

(
1− auij

t − vij
t

)
+ D∇2vij

t

(31)

with the boundary conditions (16) and (17).
Clearly, the system (30) has four possible steady

states, i.e. P0 = (0, 0), exclusion points P1 =
((1− 1/r) , 0), P2 = (0, (1− 1/r)) and nontrivial
coexistence point Pc = (u∗, v∗), where

u∗ = v∗ = (r − 1)/r (a + 1).

The linear stability analysis leads to the stable do-
mains defined by the sets

S (P0) = {(r, a) |0 < r < 1, a > 0} ,

S (P1,2) = {(r, a) |a > 1, 1 < r < 3} ,

and

S (Pc) = {(r, a) |0 < a < 1, 1 < r < 3} .

For the cases S (P1,2), Turing-like structure or chaotic
Turing structure have been considered by Ricard and
Bascompte(e.g., [8]-[10]). In this paper, we are only
concerned with the coexistence case, that is, 0 < a <
1 and 1 < r < 3.

In this case, the systems (22) and (24) are respec-
tively reduced to

{
uij

t+1 = τ
(
k2

ls

)
uij

t − dvij
t

vij
t+1 = −duij

t + τ
(
k2

ls

)
vij
t

(32)

and {
Ut+1 = τ

(
k2

ls

)
Ut − dVt,

Vt+1 = −dUt + τ
(
k2

ls

)
Vt,

(33)

where
τ

(
k2

ls

)
= 1− r − 1

a + 1
−Dk2

ls

and

d =
a(r − 1)
(a + 1)

.

In view of Proposition 4, it follows immediately that
the corresponding reaction-diffusion system (31) with
the conditions (16) and (17) is unstable when the con-
dition Dk2

ls > 3 − r holds for some positive number
D and the eigenvalue k2

ls of the problem (18)-(20).

4 Discrete Competitive Lotka-
Volterra System

In this section, a series of numerical simulations will
be performed so that we can explore the dynamical
behavior of the discrete competition Lotka-Volterra
reaction-diffusion system (31) with the conditions
(16) and (17).

In all of the following simulations, the small am-
plitude random perturbation is 1% around the steady
state, the size of the lattice is chosen to be 200× 200,
periodic boundary conditions are applied and which
implies zero flux on the square boundary.

Simulations of pattern development at
t = 50, 500, 99900, 100000 (from Fig.1(1.1) to
Fig.1(1.4)) which shows the evolution in the stripe
spacing as the interaction time proceeds, for the
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(1.1)

(1.2)

(1.3)

(1.4)

Figure 1: Simulations of pattern develop-
ment. (1.1):t=50; (1.2):t=500; (1.3):t=99950;
(1.4):t=100000.

following parameters r = 2.98, a = 0.5, D = 0.1.
In Fig.1(1.1), the symmetry break around the fixed
point is shown and Fig.1(1.2) is the state at the
moment t = 500 which exhibits the self-organization
process of the system. Spiral pattern emerge in
Fig.1(1.3)(1.4) which are similar to the one in [13],
see Fig.2). Another interesting situation is depicted in
Fig.1(1.3) and Fig.1(1.4) where periodic-like pattern
are observed.

(2.1)

(2.2)

(2.3)

Figure 2: Spiral information with the decrease of r.
(2.1): r=2.98; (2.2): r=2.95; (2.3): r=2.92.

Turing instability is diffusion-driven instability,
thus the diffusion rate of the species is vital to the pat-
tern formation. For investigating the effect of diffu-
sion coefficients on patterns, by keeping all the other
parameters of the system fixed, we increase the dif-
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fusion coefficient D in step of 4D = 0.05 ( D =
0.1, D = 0.105, D = 0.11) and find that this can
change the emerging pattern dramatically, as depicted
in Fig.2. From Fig.2(2.1) to Fig.2(2.3) at t = 100000,
the wavelength of the traveling waves becomes shorter
with the increase of D. This reveals that fast diffu-
sive motion of two competitive species of the discrete
system is advantageous for the occurrence of stripe
waves.

(3.1)

(3.2)

(3.3)

Figure 3: Pattern evolution with the increase of D.
(3.1):D=0.1 ; (3.2):D=0.105; (3.3):D=0.11.

Similarly, we search for the impact of the dis-
crete intrinsic growth rates of the species on the in-
teraction, we decrease only r in step of 4r = 0.03

( r = 2.92, r = 2.95, r = 2.98, t = 100000), the
other parameters are the same as that of Fig.1, differ-
ent wave waves are shown in Fig.3(3.1, 3.2, 3.3), and
this indicates that the intrinsic growth rates of the two
competitive species can affect the distribution of the
species.

(4.1)

(4.2)

(4.3)

Figure 4: Pattern evolution with the change of a. (4.1):
a=0.4; (4.2): a=0.5; (4.3): a=0.6.

We have also explored other regions of parame-
ter space to look for new complex patterns, change
the parameter a in step of 4a = 0.1 (a = 0.4, a =
0.5, a = 0.6), keeping the other parameters fixed,
that is r = 2.98, D = 0.1. Distinct spiral patterns
emerge in Fig.4(4.1, 4.2, 4.3) at t = 100000, and this
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demonstrates that different interspecific competition
rates play an important role in pattern formation.

Here, we only choose a part of number simula-
tions. In fact, the similar patterns can be observed for
the different parameters r, a, and D when they satisfy
the conditions of Turing instability.

5 Discussion

In the following, eigenvalues will be analyzed in order
to better illuminate the unstable spaces which are the
root to produce wave patterns.

The coefficient matrix of (33) has the eigenvalues

λ1,2

(
k2

ls

)
= τ

(
k2

ls

)± d.

Thus, we can let
{

Ut = c1

(
k2

ls

)
xt + c2

(
k2

ls

)
yt

Vt = c3

(
k2

ls

)
xt + c4

(
k2

ls

)
yt

such that
(

xt+1

yt+1

)
=

(
λ1

(
k2

ls

)
0

0 λ2

(
k2

ls

)
)(

xt

yt

)

(34)
which has a general solution

xt = λt
1

(
k2

ls

)
x0 and yt = λt

2

(
k2

ls

)
y0.

Thus, the system (33) has a solution
{

Ut = c1

(
k2

ls

)
λt

1

(
k2

ls

)
x0 + c2

(
k2

ls

)
λt

2

(
k2

ls

)
y0,

Vt = c3

(
k2

ls

)
λt

1

(
k2

ls

)
x0 + c4

(
k2

ls

)
λt

2

(
k2

ls

)
y0.

It follows from Proposition 3 that
{

ut
ij =

[
c1

(
k2

ls

)
λt

1

(
k2

ls

)
x0 + c2

(
k2

ls

)
λt

2

(
k2

ls

)
y0

]
Xij

ls

vt
ij =

[
c3

(
k2

ls

)
λt

1

(
k2

ls

)
x0 + c4

(
k2

ls

)
λt

2

(
k2

ls

)
y0

]
Xij

ls

(35)
is a solution of (32).

From (21), we know that the number of eigenval-
ues for the eigenvalue problem (18)-(20) is m2, where
k2

11 = 0 is a unique simple eigenvalue. When m is
even, the eigenvalue problem (18)-(20) has a unique
maximum eigenvalue 8 and the multiplicity of the
other eigenvalues is 2 or 4; When m is odd, the mul-
tiplicity of the other eigenvalues except k2

11 = 0 is 4,
the maximum eigenvalue is

8 sin2((m− 1) π/2m).

which can be clearly shown in Fig.5 (for example, m
is even, m = 200).

It is well known that a linear combination of two
solutions of (32) is also its solution. Thus, we may say

Figure 5: Eigenvalue distribution.

that the asymptotic action of solutions of (32) is com-
pletely confirmed by the eigenvalues of the eigenvalue
problem (18)-(20) and (35). Particularly, in Fig.1, the
condition

Dk2
ls > 3− r,

k2
ls = 4(sin2((l − 1)π/m) + sin2((s− 1)π/m))

can be interpreted as

sin2((l − 1)π/m) + sin2((s− 1)π/m)
> (3− r)/4 ∗D = 0.05

(36)

by calculation, we obtain that there are 39343 pairs of
(l, s) satisfied the condition (36), and this means there
exist 39343 eigenvalues whose norms are larger than 1
for such parameters, and the linear combination of the
corresponding eigenvectors can generate different un-
stable spaces, thus, theoretically speaking, the above
discrete system can produce a large variety of wave
patterns.

6 Conclusion
Firstly, we have presented a theoretical analysis of
Turing instability for a general discrete system and
the conditions of Turing instability for a competitive
Lotka-Volterra system follows immediately which in-
dicates the destabilization of the homogeneous distri-
bution of two competitive species and the emergence
of diffusion-induced pattern formation.

Secondly, a large variety of wave pattern are ob-
tained by numerical simulations which is consistent
with the predictions drawn from the analysis of the
discrete competitive system. As given by Fig.1 ˜ 4,
the discrete model can produce spiral patterns. It is
worth mentioning here that the continuous competi-
tive system described in this paper can not generate
Turing instability, furthermore, for some other con-
tinuous system which can produce Turing instability,

WSEAS TRANSACTIONS on MATHEMATICS Yu-Tao Han, Bo Han, Lu Zhang, Li Xu, Mei-Feng Li,Guang Zhang

ISSN: 1109-2769 188 Issue 5, Volume 10, May 2011



the diffusion coefficient of the inhibitor must be much
larger than that of the activator, but this condition is
not necessary for discrete system any more.

Finally, the eigenvalue of the system (33) is an-
alyzed in detail. For some fixed parameters of the
discrete system, the number of the eigenvalues whose
norms are larger than 1 is obtained by calculation, and
the unstable spaces can be expressed clearly.

The conclusions drawn from this paper may moti-
vate us to pay more attention to the difference of wave
patterns between the continuous system and discrete
one, and help us to better understand the population
dynamics in a real competitive environment.
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