
Turing instability for a two dimensional semi-discrete Oregonator 
model 

LI XU, GUANG ZHANG, JUN-FENG REN 
Department of Mathematics, School of Science 

Tianjin University of Commerce 
Beichen, Tianjin  

 P. R. China  
Beifang_xl@yahoo.com.cn 

 
Abstract: - In this paper, a semi-discrete (time continuous but two-dimensional spatially discrete) Oregonator 
model has been given in the microscopic domain, and Turing instability theory analysis is discussed in detail. 
Turing instability conditions have been deduced by combining linearization method and inner product 
technique. Various patterns such as spiral wave, target wave, stripes and spotlike patterns are selectively 
obtained from numerical simulations in the Turing instability region. In particular, the effect of both system 
parameters and initial value on pattern formation is numerically proved. 
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1 Introduction 

In the last few years, the problem of pattern 
formation has become one of the most studied 
topics in the field of modern science. Patterns 
are observed in a wide range of physical 
systems, chemical and biological systems, 
magnetic and optical media, gas and electron 
hole plasmas, semiconductor and gas discharge 
structures [1-2]. From the experimental point of 
view, pattern formation can be easily 
reproduced for chemical systems, such as the 
Belousov Zhabotinsky (briefly, B-Z) reaction, 
which has been found to be the most simple and 
prototypical example of pattern forming in 
chemical reactions. 

Experiments about B-Z reaction in thin 
layers have exhibited such generic two 
dimensional wave patterns as pacemakers or 
spiral waves, and the transition to chemical 
turbulence due to spiral breakup has also been 
observed [3-5]. Turing patterns, such as 
labyrinthine, hexagonal and spotlike standing 
waves, have been reported by Vanag and 
Epstein [6-9] when the B-Z reaction is carried 
out in the aqueous domain of water in oil 
microemulsions. Twinkling eyes, where 
oscillating Turing spots are arranged as a 
hexagonal lattice, have also been observed in 
the work of Vanag and Epstein [10]. In short, 
the B-Z system exhibits an extremely rich 

variety of dynamical concentration patterns, 
which can be stable only far from equilibrium. 

The Oregonator model, regarded as a 
successful time-honored mathematical model in 
the macroscopic domain, was proposed to 
capture the main qualitative and quantitative 
features of the B-Z reaction [2]. In 
dimensionless units a simplified version of the 
model is given by the following reaction--
diffusion equations of the form 

  
2

1

2
2

( , )

( , )

du F u v D u
dt
dv G u v D v
dt

 = + ∇

 = + ∇
                                    (1) 

where t  is time, u  and v  denote the 
concentrations of the activator and the inhibitor, 

1D  and 2D  are the constant diffusion 
coefficients of u  and v , 
respectively

21( , ) ( ),     ( , )u qF u v u u fv G u v u v
u qε
−

= − − = −
+

. 

The small ε>0 parameter represents the ratio of 
time scales of the fast variable over that of the 
slow one, f is the stoichiometric parameter 
which is positive, and 0q >  is another chemical 
parameter. 
    Recently, the dynamic of the model has been 
widely studied by numerical experiments and 
theoretical analysis to understand those 
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mechanisms by a number of authors, for 
example, see [11-15] and the listed references. 
The negative-tension instability of scroll waves 
is been shown and the Winfree turbulence as 
well. Further, and a relationship between the 
negative-tension instability and the meandering 
behavior of spiral waves is also found [13]. In 
[14], the occurrence of the Turing pattern 
generated by the two-variable Oregonator 
model has been proved when ε=1. 

Note that the model (1) includes a basic 
assumption that the cells or units always live in 
a continuous patch environment. However, this 
may not be the case in reality, since the motion 
of individuals of given cells is random and 
isotropic, i.e., without any preferred direction. 
The cells or units are also absolute individuals 
in microscopic sense, and each isolated cell 
exchanges materials by diffusion with its 
neighbors [16-17]. Thus, it is reasonable to 
consider a one-dimensional (1D) or two-
dimensional (2D) spatially discrete reaction--
diffusion system to describe the B-Z system. In 
[18], the author gives a continuous time but 1D 
discrete space model for Belousov-Zhabotinsky 
medium. Similarly, it is sound to consider the 
following time continuous but 2D spatially 
discrete reaction--diffusion system to make a 
mathematical description of spatiotemporal 
dynamics: 
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, , , ,( ( ), ( )) ( ) ( )i j i j i j i jG u t v t u t v t= − , ,i j  is mesh 

point, and 1,2,..., ,i m= 1,2,...,j n= . 2∇  is a 

discrete Laplace operator 

2
, 1, , 1 1, , 1 ,4t t t t t t

i j i j i j i j i j i ju u u u u u+ + − −∇ = + + + −  

and 

2
, 1, , 1 1, , 1 ,4t t t t t t

i j i j i j i j i j i jv v v v v v+ + − −∇ = + + + − . 

    It also indicates each cell or unit exchanges 
materials by diffusion with the left ( , 1i j − ) and 
right ( , 1i j + ), top ( 1,i j+ ) and bottom ( 1,i j− ) 
cell respectively. 

Although the solution of (2) may be justified 
by considering the limiting case of the solution 
of (1), So far, to our knowledge, there have 
been very few works on dynamical behavior of 
the 2D semi-discrete Oregonator system.  

In this paper, we will mainly discuss Turing 
instability, namely diffusion-driven instability 
and pattern formation for above 2D semi-
discrete Oregonator system. 

This paper is organized as follows. After a 
brief presentation of the model without 
diffusion, the Turing instability theory analysis 
will be given for the semi-discrete Oregonator 
system, then Turing instability conditions can 
be deduced combining linearization method and 
inner product technique in Section 2. Based on 
the results of Section 2, a series of numerical 
simulations are performed and different patterns, 
including spiral wave and target wave but also 
honeycombs, stripes and spots, have been 
exhibited. The final Section is the conclusion. 
 
2 Turing Instability 

In this section, first of all, we shall show 
some properties of the system as follows 
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ε
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= − − +
 = −

      (3) 

In the sense of chemistry, only nonnegative 
steady state of (3) is really of interests. It is 
obvious that (3) has a unique positive constant 
solution ( * *,u v ), which is explicitly determined 
by 

 
2

* * 1 (1 ) 4 (1 )
2

f q f q q f
u v

− − + − − + +
= = . 

Linear stability analysis around this steady 
state yields the characteristic equation for the 
eigenvalue problem 
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From the Jacobian matrix we observe that 
 

*

*
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−
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+

 

          
* *
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2[1 ] 0
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Thus the positive steady state ( * *,u v ) is stable 
against homogeneous perturbations if 

      ( , ) 1 0trA p f q= − < .                        (4) 
So we can get the following fact. 

 
Proposition 1. The system (3) at the positive 
steady state ( * *,u v ) is local asymptotically 
stable when the condition (4) holds. 

Now we consider the reaction diffusion 
system as following 
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{ }, 1, 2,3..... [1, ], [0, )i j m m t R+∈ = ∈ = +∞ , 
where m  is a positive integer.  

For the above reaction diffusion system, 
again linearize about the steady state ( * *,u v ), to 
get 
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with the periodic boundary conditions 
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In order to study instability of (5)-(7), we 
firstly think over eigenvalues of the following 
equations 

 
2 0ij ijX Xλ∇ + =                    (10) 

 

with the periodic boundary conditions 

,0 , ,1 , 1,    i i m i i mX X X X += =  

0, , 1, 1,,j m j j m jX X X X += =             (11) 

 
In view of [19], the eigenvalue problem 

(10)-(11) has the eigenvalues as 
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π πλ − −

= + =

, [1, ]k l m∈  

Then respectively taking the inner product of (8) 
with the corresponding eigenfunction ij

lsX  of the 
eigenvalue  ,l sλ , we get  
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Let , 1( ) ( )m ij
i j ls ijU t X x t== ∑ ， , 1( ) ( )m ij

i j ls ijV t X y t== ∑  
and use the periodic boundary conditions (11), 
then we have 
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The eigenvalue equation is 
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Then the homogeneous steady state will be 

unstable for an inhomogeneous perturbation 
when 

 
2 4 2

1 2 2 1( ) ( ) 0ls ls u v lsh k D D k D f D g k A= − + + <    
(12) 
or 
 

2
1 2( ) ( ) 0ls u vk D D f g− + + + >                              
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holds, where 2 [0,8]lsk ∈ . 

Thus, in the view of Proposition 1, we can 
obtain the fact as follows. 

 
Proposition 2. There exist positive numbers 1D , 

2D  and the eigenvalues of 2
lsk  such that the 

conditions (12)  or  (13)  holds, then the system 
(5)-(7) at the positive homogeneous steady state 
( * *,u v ) is unstable. 

 Proposition 1 and 2 imply the system (5)-(7) 
is diffusion-driven unstable or Turing unstable. 
 
3 Numerical simulation 

To provide some numerical evidence for the 
qualitative dynamic behavior of the time 
continuous but spatial discrete system (1), the 
simulations were performed with periodic 
boundary conditions in a square domain of 
size:128×128 (grid: 128×128). To solve 
differential equations by computers, the time 
evolution should be discrete, i.e., the time goes 
in steps of t∆ . The time evolution can be 
solved by the Euler method, approximating the 
value of the concentration at the next time step 
based on the change rate of the concentration at 
the previous time step. The initial value 
function 0u  and 0v  are choose by  

 
0 *

0 *

u u
v v

ζ
η

 = +


= +
 

 
    If there is no special note in the following, 
ζ and η  are always small amplitude random 
perturbations 1% around the steady state, and 
spatial-temporal plots will be the ones about u . 

The value of ε  influences the concentration 
in the system mainly. When the value of ε , 
which can control the excitability of the system, 
is in the range of 0-1, spiral and target patterns 
can be observed (see,  Fig. 1). 

 An interesting phenomena is observed when 
the value is taken as ε =1, the system 
undergoing a Turing instability exhibits an 
extremely rich variety of dynamical 
concentration patterns, which can be stable only 
far from equilibrium. There are three types of 
typical Turing structures, honeycombs 
(hexagons), stripes, and spots (reentrant 
hexagons), as shown in Fig. 2. 

 It is plausible to argue that patterns observed 
in natural phenomena may be modeled as a 
combination of two complementary procedures, 
(i) fluctuations of system parameters; (ii) 
variation of the initial conditions. In order to 
show what changes the system parameters bring 
into the pattern formation, as a example, Fig. 3 
exhibit the impact of the parameter f on patterns, 
by keeping all the other parameters of the 
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system fixed. On varying the control parameter 
f the sequence hexagons(Fig. 3(a))→hexagon--
stripe mixtures(Fig. 3(b)) →stripes(Fig. 3(c)) →
reentrant hexagon--stripe mixtures(Fig. 3(d))→
reentrant hexagons(Fig. 3(e)) is observed. With 
the further increase of f, the number of reentrant 
hexagons will increasingly decrease, seen in Fig. 
3(f). 

 Likewise, we have considered the effect of 
initial value by keeping the system parameters 
of the system fixed, and some different patterns 
are depicted in Fig. 4. 

Since the time continuous but 2D spatially 
discrete reaction--diffusion system is derived 
from converting the elementary reactions of the 
BZ reaction system into reaction rate equations, 
it can reproduce the behavior of the reaction 
[15]. The patterns from above simulations can 
be found in laboratory experiment by given 
conditions. But only to the Oregonator model, 
complex dynamics will exist because of 
nonlinear term. In this paper, of course, we 
focus on the numerical simulations not theory 
analysis. So, next in Fig. 5, we show some 
different patterns by simulations.  

The above simulations show that the 
dynamics of a lattice site changes from the 
fixed point, with the change of parameters in 
the Turing instability region or different initial 
value by keeping the system parameters of the 
system fixed. We have seen various patterns 
such as spiral wave, target wave, stripes and 
spotlike patterns and so on. 
 
4 Conclusion 

In this paper, a semi-discrete Oregonator 
system is modeled, and Turing instability 
conditions have been illustrated by linearization 
method and inner product technique. Based on 
numerical simulations, we have found various 
spatial patterns including spiral wave, target 
wave, stripes and spotlike patterns in the 
parameter region of Turing instability. 
Simulations also show that the patterns are 
sensitive to initial values, which may render us 
to pay more attention to the effect of initial 
values on pattern formation. The further study 
along this line may lead to better prediction for 
patterns formation, and better control of pattern 

formation may be possible when the initial 
values are well characterized. 
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Appendix  Figures:  
 
 

 
(a) 
 
 

 
(b) 
 
Fig. 1: Selective pattern in the Turing instability region 
for model (5)-(7). (a) Spiral pattern when ε =0.25, 
f =0.7, q =0.0008, 1D =3, 2D =0.03, t∆ =0.002. 

(b)Target (circular) pattern when ε =0.4, f =1, 

q =0.0008, 1D =1, 2D =0.03, t∆ =0.002 and initial 
circular perturbation is made at the center of the 2D 
domain. 
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(a) 
 

 
(b) 
 

 
(c) 
Fig. 2:  Turing patterns in the Turing instability region 
for model (5)-(7) when ε  = 1.   (a) Honeycombs 
(Hexagons). f =0.60, q =0.002, 1D =1, 2D =75, 

t∆ =0.0025. (b) Stripes. f =0.75, q =0.002, 1D =1, 

2D =75, t∆ =0.0025. (c) Spots (Reentrant hexagons). 

f =1.60, q =0.002, 1D =1, 2D =75, t∆ =0.0025. 

 
 
 

 
(a) 
 

 
(b) 
 

 
(c) 
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(d) 
 

 
(e) 
 

 
(f) 
Fig. 3:  A series of patterns obtained by increasing the 
strength of the parameter f. The other parameters are the 
same, namely: ε  = 1, q =0.002, 

1D =1, 
2D =75, t∆  = 

0.0025.  (a) Hexagonal pattern (f=0.60). (b) Hexagon-
tripe mixtures (f=0.65). (c) Stripe pattern (f=0.75). (d) 
Reentrant hexagon-tripe mixtures (f=0.90). (e) Reentrant 
hexagons (f=1.2). (f) Reentrant hexagons (f=1.6). 

 
 

 
(a) 
 

 
(b) 
 

 
(c) 
Fig. 4: Selective patterns resulting from different 
initial values when ε  = 1, q =0.002, 1D =1, 2D =75, 

f =0.73, t∆ =0.0025. (a) Stripe pattern resulting 
from random initial value. (b) Straight Stripe pattern 
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when initial vertical perturbation is made  in the 2D 
domain (c) Spotlike pattern when initial vertical and 
horizontal perturbation is made in the 2D domain. 
 
 
 

 
(a) 
 

 
(b) 
 

 
(c) 
 
 

 

 
(d) 
 
Fig. 5:  Some different from simulations in the parameter 
space.  (a) ε  =0.3, f =1, q =0.0008, 1D =3, 2D =0.03, 

t∆ =0.0025. (b) ε  = 0.4, f =0.1, q =0.0008, 1D =1, 

2D =0.03, t∆ =0.0025. (c) ε  = 1, f =0.57, q =0.002, 

1D =1, 2D =75, t∆ =0.0025. Localized initial  perturbation 
in the centre domain. (d) ε  = 1, f =0.59, q =0.002, 

1D =1, 2D =75, t∆ =0.0025. Circle initial  perturbation in 
the 2D domain. 
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