
A Heuristic for the Multi-knapsack Problem

JOSE GRANDÓN1 AND IVAN DERPICH2
Industrial Engineering Department,

 University of Santiago of Chile
 Ave. Ecuador 3769, Estacion central, Santiago

 CHILE
 ivan.derpich@usach.cl http://www.industria.usach.cl/

Abstract: - In this work a heuristic for the problem multi-knapsack , based on directions of ascent is
presented. These directions are generated from a center of the polyhedron and they conduct to good
approximations of the integer solutions. For it a center of the polyhedron of the relaxed problem is
obtained. Then an interior ellipse is constructed in this polyhedron and those eigenvectors of the ellipse
that present the best objective ascent of the function are selected as ascent direction. For determine how
many eigenvectors to use, an angle that relate the eigenvector with the objective function, was used. The
heuristic algorithm has been proved with problems from the OR-library. Four groups of problems were
proved with 30 instances every one, combining 100 and 250 variables with 5 and 10 constraints. The
results show process time that are from a little seconds for little problems, to 400 seconds for bigger
problems. The Cpu time average is 190 seconds. The errors of the best solution found measured using the
integrality gap are in order to 3% in the worst case.

Key-Words: - Heuristics, Integer Programming, Multi-knapsack

1 Introduction

The NP-hard multidimensional knapsack
problem (MKP) presented in [2] arises in several
practical problems, such as capital budgeting,
cargo loading, stock cutting and processor
allocation. It can be defined as

(MKP)

{ }{ }njxbacbAxxcMaxcbAP jjij
T ,...,1;1,0;0;0;0;:),,(=∈>≥>≤=

We will use a related program called the
Relaxed program, which is obtained by
replacing the binary variables with others

between zero and one. Let ()cbAPR ,, be the

relaxed problem; then,

{ }ℜ∈=≤≤>≥>≤= jjjij
T

R xnjxbacbAxxccbAP ;,...,1;10;0;0;0;:),,(

We propose a heuristic algorithm based on
interior searching in the style of well-known
interior point methods, like the projective
method or the ellipsoid method. The main idea
of the heuristic algorithm is to locate an interior
point first and then find a “good” search
direction, as in the Augmentation Algorithm
proposed by Spille and Weismantel [3]. In
addition, we propose using a set of vectors as
search directions, which have a reasonable
probability of finding the vertex of the unit
hypercube defined by the binary values of the
variable. While moving in augmentation
directions will improve the quality of the
solution because the goal is to find the best
vertex of the unit hypercube in terms of the
objective function. For this purpose, we fix an

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 95 Issue 3, Volume 10, March 2011

mailto:ivan.derpich@usach.cl�
http://www.industria.usach.cl/�

ellipse at the center point of the interior of the

polyhedron of the relaxed problem ()cbAPR ,, . It

is known that an ellipse’s Dikin has a similar
form to the polyhedron defined by the matrix of
the ellipse. This characteristic shows that there is
a probability that the semi-axes of the ellipse
pass through the vertex of the unit hypercube. If
so, then we find an integer point, but if not, then
we have a non-integer point over a facet of the
unit hypercube. We found that this kind of
points is to a distance bounded by a function of

type ()nf , thing that “may be” nearby to an

integer point. Therefore, we use a simple
rounding procedure, defining a limit value over
which the fractional variable is rounded to one,
and the feasibility is also checked. In the
proposed heuristic algorithm, we use the
eigenvectors of the matrix of the ellipse instead
of the semi-axes, because they require less CPU
time to calculate. The number of eigenvectors to
be used is defined in terms of the size and
complexity of the problem. This results in the
following dilemma: using every eigenvector is
sure to yield the best solution, but it will be very
costly in CPU time. On the other hand, using
only the best eigenvector in terms of the
objective function requires very little CPU time,
but will yield only one solution. Therefore, we
adopt a solution for this dilemma that involves
balancing the CPU time and the quality of the
solution. We construct an empirical rule that
takes into account the size and complexity of the
problem.

At this stage, we have a “good” integer point,
but we are not sure if it is the optimal point. In
many cases, we find that points of this kind do
not use all available resources. For this reason,
we implement a second stage of the algorithm to
improve the solution using the slack in the
constraints. The point obtained in the second
stage definitely cannot be improved by only

changing one component. Nevertheless,
improved solutions can be obtained by
interchanging components. Those components
with a value of one must be set to zero in order
to free up some resources, and then other
components with a value of zero must be
selected and set to the value of one. This
computational procedure is relatively simple and
does not require too much CPU time.

This paper is organized as follows: the first
section introduces the main aspects of the
proposed heuristic, and the second explains how
an interior ellipse representing the shape of the
polyhedron and the eigenvector are good
candidates to be used as augmentation directions.
The heuristic algorithm is presented in the third
section, including the first construction step and
the subsequent improvement steps. Then, in the
fourth section, we present the computational
results showing that the average integrality gap
is on the order of 1.98%. Finally, the fifth
section presents some concluding remarks.

2 Problem Formulation
Our methodology starts by fixing a central point
and then moving across the chosen search
directions. An augmentation direction is a
direction such moving along it always increases
the objective function. Based on the
augmentation algorithm, we know that it is
possible to find such directions in the interior of
a polyhedron [3]. We found that some of the
eigenvectors of the interiors of ellipses were of
this type, and we constructed a procedure to find
these directions. Next, we briefly review some
background material.

2.1 Eigenvectors of interior ellipses

Let us define a Dikin’s ellipse in the interior of

the polyhedron defined as ()cbAPR ,, , to be

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 96 Issue 3, Volume 10, March 2011

() (){ }1: 00 ≤−−ℜ∈= xxQxxxE E
Tn . (1)

The matrix of the ellipse E, QE is

AxDAxQ T
E

2002)()(−=∇= ρ (2)

 with)()(00 xbdiagxD T
ii α−= … (3)

The center 0x may be defined in several ways.

The best definition for our objective is to use the
analytic center, which is defined based on a

logarithmic barrier function. Thus, 0x is the

point that minimize

 () ()∑
=

−−=
m

i

T
ii xbx

1
log αρ , (4)

where iα is the ith row of the matrix A and ib is

the ith component of vector b. However,

calculating 0x can take a lot of CPU time. For

this reason, the pseudo-Chebyshev center will be
used because it can be calculated rapidly [6].
This centre only requires a simple heuristic
based on the resolution of a linear program. The
pseudo-Chebyshev center is the center of the
maximum volume sphere inscribed in the
polyhedron. This center is obtained by solving
the following linear problem:









∀≤≤∀≤+∑ jxibtxat iijij ,10;,:max ….(5)

The ellipse QE is contained in the polyhedron
defined by the convex hull of the extreme points

of ()cbAPR ,, . Let nµµ ,...,1 be the eigenvectors

of the matrix QE . Then, we select those that are

the best augmentation directions with respect to
the objective function. To make this decision,
we build a ranking of augmentation directions
based on the following measure:

2

c
c i

T

i
µβ = , ..(6)

where iβ is a measure of the amount of

augmentation of the direction defined by iµ . A

direction may be very good from the point of
view of augmentation, but can fail to lead to a
integer feasible point. For this reason, it is
necessary to evaluate several augmentation
directions. How many directions are necessary
to evaluate to find the optimum solution remains
an open question; however, we know that the
answer is related to the size and complexity ratio
τ of the problem. The ratio τ is the maximum
ratio between the right size and the sum of the
coefficients of the constraints. We solve this
question empirically by constructing a rule
based on computational experiments. First, we
define the complexity ratio τ as









== ∑
=

n

j
ijiiii ab

1
:min τττ (7)

Then, I can be defined as the number of
augmentation search directions.

 ()mn
nI
−

=
τ

4
5

… (8)

This number I is the number of directions of the
ranking that we will use to find a “good”
approximation point. A “good” approximation
point is a point near a vertex of the unit
hypercube. We can be sure that a point obtained
using an augmentation direction intersects a
facet of the unit hypercube at a point near some

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 97 Issue 3, Volume 10, March 2011

vertex of the same unit hypercube. The distance
between any two points in a facet of the unit
hypercube is bounded by a certain expression in
terms of the dimension of the problem, as
follows.

Proposition 1: Let y be a point of a facet of the

unit hypercube. The Euclidean distance from

point y to the nearest vertex of the unit

hypercube is bounded by
2

1−n . (9)

Proof: Let z be a vertex of the unitary
hypercube. The components of this vector are 0

or 1. Let y be the most distant vector from the

set of all possible vertices. This vector

is ()5.0,...,,...,5.0 iyy = . Note that the point y

has a component that is 0 or 1 depending on

whether it lies in the facet defined by 0=iy

or 1=iy . Let),(yzd denote the Euclidean

distance between the two vectors z and y . Then,

() () () ()222
1 5.0...5.0, −+−++−= nii zyzzyzd

The difference between any component jz of

the vector z and the corresponding component

yj, , 1,...,j i j n∀ ≠ = , is 0.5, because jz can only

be equal to 0 or 1. Moreover, ii yz = , because

both are in the same facet. Thus,

() () () () ()()
2

15.015.0...5.0, 2222
1

−
=−=−+−++−=

nnzyzzyzd nii

If the coordinate vectors are used as
augmentation vectors starting from the center of

the unitary hypercube, the point obtained is of

the form of the point y in Proposition 1, and the

distance to the nearest vertex is
2

1−n .

However, if we use vectors corresponding to the
semi-axes of an ellipse’s Dikin, then there is a
higher probability of finding a vertex of the
unitary hypercube or of finding a non-integer
point close to an integer point.

Figure 1 shows the heuristic algorithm in six
graphics. The first picture shows the center point

0x (Fig. 1a), and the second includes the ellipse

EQ (Fig. 1b).

Then, we show the eigenvector 1µ y 2µ of the

matrix of the ellipse EQ (Fig. 1c). The fourth

picture illustrates how the eigenvectors are used

0 x

2 x Fig . 1a

0 x

2 x

E Q

Fig . 1b

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 98 Issue 3, Volume 10, March 2011

as search directions (Fig. 1d). The fifth graphic
shows the points found with the eigenvectors

(Fig. 1e), and finally the approximation points
are shown (Fig. 1f).

2.2 Heuristic Algorithm

The heuristic algorithm has three steps. The first
is the most important, to find a point near the
final integer point. The second step is to improve
the solution obtained in the first step by using
the right amount of slack. In the third step, a
simple permutation is executed to improve the
solution. The goal in steps 2 and 3 is to remove
naive solutions that the first stage could generate.
The heuristic algorithm uses two complementary
subroutines, first to find a center point and then
to round the solution to an integer point.

SUBROUTINE: Find_Center

INPUT: mxnA ℜ∈ , mb ℜ∈

OUTPUT: the center point 0x

Solve the linear program:
max t

0
,0

≥
≤+

t
bteAx

where e is the vector ()T1,...,1 . 0x is the

optimal solution of this program.

SUBROUTINE: Round

INPUT: []nky 1,0∈

OUTPUT: { }n
kz 1,0∈

For every nj ,...,1=

 If () 9.0≥jyk

 Then () 1=jzk

 Else () 0=jzk

 End for

0 x

2 x

E Q

Fig . 1c

1 x

2 x

E Q

1 u  2 u 

Fig . 1d

1 x

2 x

E Q

1 u  2 u 

Fig . 1e

1 x

2 x

E Q

1 u  2 u 

Fig . 1f

1 z
2 z

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 99 Issue 3, Volume 10, March 2011

MAIN ROUTINE: HEURISTIC
ALGORITHM

INPUT : matrix mxnA ℜ∈ , vector mb ℜ∈ ,

vector nc ℜ∈

OUTPUT: y (integer solution)
Step 1, Output: nz Ζ∈1
1. Call to Subroutine Find_Center (A,b) and

return 0x .

2. Let () () AxDAxxQ T 20020)(−
=∇= ϕ ,

where)()(00 xbdiagxD T
ii α−= .

3. Let nµµ ,...,1 be the eigenvectors of the matrix

()0xQ that will be used as search directions.

4. Let nββ ,...,1 be measures of improvement

along the search directions nµµ ,...,1 , calculated

as i
c

c i
T

i ∀= ;*

2

µβ .

5. Let








== ∑
=

n

j
ijiii ab

1
:min τττ .

6. Let ()mn
nI
−

=
τ

4
5

.

7. Let S be a vector formed by iµ corresponding

to the I major measures of iβ .

8. Let 0max =fo .

9. For every Sk ∈µ ,

Solve two linear programs:

 Max/Min k
T
k yµ

 byA k ≤*

 0≥ky , with n
ky ℜ∈

 Call to Subroutine Round(ky) and return

{ }n
kz 1,0∈ .

 If (bzA k ≤*) and max* fozc k
T > ,

then

kk
T zzzcfo == 1

max ;*

End for

Step 2, Input: { }nz 1,01 ∈ , Output: { }nz 1,02 ∈

10. Let 1* zAbh −= .

11. Let { () }0: 1 == jzjJ and let I be a set of

indices in J, ordered from the largest to the
smallest values of the objective function.

12. Let 12 zz = .

13. For every Ii∈

 () 12 =iz

If 0≤h

Then () 02 =iz

Else
 End For

 Step 3, Input: { }nz 1,02 ∈ , Output: { }nz 1,03 ∈

14. Let 23 zz = .

15. For every Jj∈

 If () 03 =jz

Then 0Jj →

Else 1Jj →

 End For

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 100 Issue 3, Volume 10, March 2011

16. Order the set 0J from largest to smallest

values of the objective function.

17. For every 00 Jj ∈

For every 11 Jj ∈

 If () ()10 jcjc >

 Then

 If 0
01
≥−+ jj AAh

 Then

1001 ; JjJj →→

End For
 End For

18. For Every nj ,...,1=

 If 1Jj ∈

Then () 13 =jz

Else () 03 =jz

 End For

Where jA is the j-jth column of matrix A.

A simple complexity analysis shows that the
main routine makes n2 calls to the simplex
algorithm in the first step, and in the second step
it performs n matrix operations. In the third step,

n2 matrix operations are required.

The subroutine round performs n operations,
and the subroutine find_center solves a simplex
problem. Thus, we can say that the complexity is

on the order of ()nO 2 calls to the simplex

problem.

3. Computational Experiments
The heuristic algorithm was tested using test
problems taken from the public web OR-library
[1] for instances of the MKP. Nine groups of 30
instances were tested, generating a total of

Table 1. Results grouped by variables,
constraints and tightness.

270 instances. These groups were formed by
combining three possible numbers of variables
(100, 250, 500), three possible numbers of
constraints (5, 10, 30) and three possible values
for the ratio of tightness Γ (25%, 50%, 75%).
The algorithm was implemented using a
personal computer with a processor of 1.8 GHz
and 1 GB RAM. The instances were solved

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 101 Issue 3, Volume 10, March 2011

using Matlab software version R12. The results
are shown in Table 1 in terms of the number of
variables, restrictions, and tightness ratios.
The results shown in Table 1 show an average
integrality gap of 1.98%. This means that the
percent difference between the values obtained
for the heuristic algorithm and the optimal
solution is lower than 2%. This is a good value
considering the values of the function objective.
In particular, the average gap is less than the
maximum coefficient of the objective function.
Moreover, the CPU times are reasonable in
comparison with the CPU times required for an
optimal solution. The average CPU time is
132.71 seconds, or equivalently, 2.2 minutes.

3.1. CPU Time
Graph 1 below shows the CPU times of the
heuristic algorithm in seconds for the different
numbers of variables, the ratio of the problems
and the number of restrictions. Observe that the
CPU times are inversely related to the
complexity of the problem measured by τ , so
in these cases, more CPU time is required for
those problems that are geometrically more
difficult in terms of tightness.

This finding may be caused by the rule used in
the heuristic algorithm. This rule calculates the
number of eigenvectors that will be used as
search vectors (I), such that the number of
iterations is inversely proportional to the
tightness of the problem. Moreover, the
tightness increases the complexity of the
problem of linear programming solved in every
iteration. The graphics show small changes in
the CPU time with respect to the number of
constraints. This effect can be observed in Graph
1, where the difference between a problem with
30 constraints and another with only 5
constraints is on the order of a few seconds.

Graph 1: CPU time vs. tightness ratio.

Graph 2 clearly shows the dependence of the
average CPU time on the dimension of the
problem. This is due to the complexity of the
larger problems, like those on the order of 500
variables. Naturally, the larger times on the
order of 550 seconds are associated with those
problems of high dimensions and with tightness
ratios of high complexity (25 %).

0
1
2
3
4
5
6
7
8
9

10

25% 50% 75%

C
P

U
 T

im
e

 (
s)

Tightness Ratio (%)

CPU Time vs. Tightness Ratio
100 Variables

5 Constraints

10 Constraints

30 Constraints

Average Time

0

10

20

30

40

50

60

70

25% 50% 75%
C

P
U

 T
im

e
(s

)
Tighness Ratio (%)

CPU Time vs. Tightness Ratio
250 Variables

5 Constraints

10 Constraints

30 Constraints

Average Time

0

100

200

300

400

500

600

700

25% 50% 75%

C
P

U
 T

im
e

 (
s)

Tightness Ratio (%)

CPU Time vs. Tightness Ratio
500 Variables

5 Constraints

10 Constraints

30 Constraints

Average Time

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 102 Issue 3, Volume 10, March 2011

0

100

200

300

400

500

600

25% 50% 75%

C
P

U
 T

im
e

(s
)

Tightness Ratio (%)

100 Variables

250 Variables

500 Variables

Graph 2: Average CPU time vs. tightness ratio

3.2. Integrality GAP

The quality of the results obtained using the
heuristic algorithm can be evaluated using the
Integrality GAP, which is defined as the
percentage difference between the optimum
solution and the approximate solution, according
to the following formula:








 −
=

IP

HeuristicIP

Sol
SolSol

GAP *100(%)
.

Graph 3 depicts the behavior of the Integrality
GAP with respect to the tightness ratio. Looking
at those graphs, we can observe that the best
results obtained by the heuristic are those
obtained for the problems with tightness ratios
of 50% and 75%. This may be due to the fact
that higher complexity problems have fewer
integer points. The obtained results stand out
when the value of the tightness ratio is 75%,
because the integrality GAP reaches 1%. These
results also show that the integrality GAP
increases with respect to the number of
restrictions.

Observing the behavior of the integrality GAP in
Graph 3, it is important to note that
counterintuitively, the percentage difference
between the approximate solution and the

optimum value diminishes as the number of
variables in the problem increases.

Graph 3: Integrality GAP vs. tightness ratio.

This can be explained by the fact that there are
more eigenvectors used as searching directions,
increasing the probability of finding an integer
point.

4 Conclusion
Although the results of these experiments are
preliminary, they show that the CPU time is
improved in comparison with the CPU time of
the optimal algorithms for integer programming.
The heuristic algorithm finds good solutions for
large problems in terms of the integrality gap.

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

25% 50% 75%

In
te

g
ra

li
ty

 G
A

P
 (
%

)

Tightness Ratio (%)

Integrality GAP vs. Tightness Ratio
100 Variables

30 Constraints

10 Constraints

5 Constraints

Average GAP

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

25% 50% 75%

In
te

g
ra

li
ty

 G
A

P
 (
%

)

Tightness Ratio (%)

Integrality GAP vs. Tightness Ratio
250 Variables

30 Constraints

10 Constraints

5 Constraints

Average GAP

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

25% 50% 75%

In
te

g
ra

li
ty

 G
A

P
 (
%

)

Tightness Ratio (%)

Integrality GAP vs. Tightness Ratio
500 Variables

30 Constraints

10 Constraints

5 Constraints

Average GAP

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 103 Issue 3, Volume 10, March 2011

For problems of 500 variables, the average
integrality gap is 0.71% and the average CPU
time is 352.81 seconds. In contrast, for smaller
problems, the obtained results have an
excessively large Integrality gap. For example,
for problems of size 250 variables, the average
integrality gap is 2.63% and the average CPU
time is 39.34 seconds. The CPU time grows
exponentially with the complexity of the
instances of integer programming. The average
integrality gap obtained for problems of 500
variables is on the order of the average number
of components of the vector of the objective
function. This shows that our solution is lesser
aside in average, in one article.

This type of model is known to be very difficult
to use in real situations because the CPU time
for the optimal solution is prohibitive. For this
reason, this heuristic algorithm appears to be
very useful because for problems of 500
variables; in the worst cases, it takes about ten
minutes, and the integrality gap is 2.75%. All the
results reported here were obtained using
MATLAB in Windows Vista and a domestic PC.
The heuristic developed here can be improved
using other solvers and more powerful
computers. In the future, this work can be

extended to other models in the context of
integer programming.

References:
[1 J. E. Beasley OR-library, “Multi- dimensional
knapsack problems”, http://people. brunel.ac.uk/
~mastjjb/jeb/orlib/mknapinfo.html
[2] S. Martello and P. Toth., “Knapsack Problems:
Algorithms and Computer Implementations”, Series
in Discrete Mathematics and Optimization, Wiley
Interscience. 1990.
[3] B. Spille and R. Weismantel, Primal Integer
Programming In: K. Aardal, G. Nemhauser and R.
Weismantel, Discrete Optimization. Elseiver Science.
Vol.12, 2005 , pp.245-274.
[4] P. Chu and J. Beasley, A genetic algorithm for
the multidimensional knapsack problem, Journal of
Heuristics, Vol.4, 1998, pp.63–86.
[5] P. C. Gilmore and R. E. Gomory, The theory and
computation of knapsack functions, Operations
Research, Vol.14, 1966, pp.1045–1075.
[6] I. Derpich and J. Grandón, Some experimental
results from a comparison between analytical and
pseudo-Chebyshev center, In progress.

WSEAS TRANSACTIONS on MATHEMATICS Jose Grandon, Ivan Derpich

ISSN: 1109-2769 104 Issue 3, Volume 10, March 2011

