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Abstract: -   In this work a heuristic for the problem multi-knapsack , based on directions of ascent is 
presented. These directions are generated from a center of the polyhedron and they conduct to good 
approximations of the integer solutions. For it a center of the polyhedron of the relaxed problem is 
obtained. Then an interior ellipse is constructed in this polyhedron and those eigenvectors of the ellipse 
that present the best objective ascent of the function are selected as ascent direction. For determine how 
many eigenvectors to use, an angle that relate the eigenvector with the objective function, was used. The 
heuristic algorithm has been proved with problems from the OR-library. Four groups of problems were 
proved with 30 instances every one, combining 100 and 250 variables with 5 and 10 constraints. The 
results show process time that are from a little seconds for little problems, to 400 seconds for bigger 
problems. The Cpu time average is 190 seconds. The errors of the best solution found measured using the 
integrality gap are in order to 3% in the worst case.  
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1  Introduction  

The NP-hard multidimensional knapsack 
problem (MKP) presented in [2] arises in several 
practical problems, such as capital budgeting, 
cargo loading, stock cutting and processor 
allocation. It can be defined as  

(MKP)

{ }{ }njxbacbAxxcMaxcbAP jjij
T ,...,1;1,0;0;0;0;:),,( =∈>≥>≤=

We will use a related program called the 
Relaxed program, which is obtained by 
replacing the binary variables with others 

between zero and one. Let ( )cbAPR ,,  be the 

relaxed problem; then,  

{ }ℜ∈=≤≤>≥>≤= jjjij
T

R xnjxbacbAxxccbAP ;,...,1;10;0;0;0;:),,(   

We propose a heuristic algorithm based on 
interior searching in the style of well-known 
interior point methods, like the projective 
method or the ellipsoid method. The main idea 
of the heuristic algorithm is to locate an interior 
point first and then find a “good” search 
direction, as in the Augmentation Algorithm 
proposed by Spille and Weismantel [3].  In 
addition, we propose using a set of vectors as 
search directions, which have a reasonable 
probability of finding the vertex of the unit 
hypercube defined by the binary values of the 
variable. While moving in augmentation 
directions will improve the quality of the 
solution because the goal is to find the best 
vertex of the unit hypercube in terms of the 
objective function. For this purpose, we fix an 
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ellipse at the center point of the interior of the 

polyhedron of the relaxed problem ( )cbAPR ,, . It 

is known that an ellipse’s Dikin has a similar 
form to the polyhedron defined by the matrix of 
the ellipse. This characteristic shows that there is 
a probability that the semi-axes of the ellipse 
pass through the vertex of the unit hypercube. If 
so, then we find an integer point, but if not, then 
we have a non-integer point over a facet of the 
unit hypercube. We found that this kind of 
points is to a distance bounded by a function of 

type ( )nf , thing that “may be” nearby to an 

integer point. Therefore, we use a simple 
rounding procedure, defining a limit value over 
which the fractional variable is rounded to one, 
and the feasibility is also checked. In the 
proposed heuristic algorithm, we use the 
eigenvectors of the matrix of the ellipse instead 
of the semi-axes, because they require less CPU 
time to calculate. The number of eigenvectors to 
be used is defined in terms of the size and 
complexity of the problem. This results in the 
following dilemma: using every eigenvector is 
sure to yield the best solution, but it will be very 
costly in CPU time. On the other hand, using 
only the best eigenvector in terms of the 
objective function requires very little CPU time, 
but will yield only one solution. Therefore, we 
adopt a solution for this dilemma that involves 
balancing the CPU time and the quality of the 
solution. We construct an empirical rule that 
takes into account the size and complexity of the 
problem.   

At this stage, we have a “good” integer point, 
but we are not sure if it is the optimal point. In 
many cases, we find that points of this kind do 
not use all available resources. For this reason, 
we implement a second stage of the algorithm to 
improve the solution using the slack in the 
constraints. The point obtained in the second 
stage definitely cannot be improved by only 

changing one component. Nevertheless, 
improved solutions can be obtained by 
interchanging components. Those components 
with a value of one must be set to zero in order 
to free up some resources, and then other 
components with a value of zero must be 
selected and set to the value of one. This 
computational procedure is relatively simple and 
does not require too much CPU time. 

This paper is organized as follows: the first 
section introduces the main aspects of the 
proposed heuristic, and the second explains how 
an interior ellipse representing the shape of the 
polyhedron and the eigenvector are good 
candidates to be used as augmentation directions. 
The heuristic algorithm is presented in the third 
section, including the first construction step and 
the subsequent improvement steps. Then, in the 
fourth section, we present the computational 
results showing that the average integrality gap 
is on the order of 1.98%.   Finally, the fifth 
section presents some concluding remarks. 

2 Problem Formulation 
Our methodology starts by fixing a central point 
and then moving across the chosen search 
directions. An augmentation direction is a 
direction such moving along it always increases 
the objective function. Based on the 
augmentation algorithm, we know that it is 
possible to find such directions in the interior of 
a polyhedron [3].  We found that some of the 
eigenvectors of the interiors of ellipses were of 
this type, and we constructed a procedure to find 
these directions. Next, we briefly review some 
background material.  
 
2.1  Eigenvectors of interior ellipses 

Let us define a Dikin’s ellipse in the interior of 

the polyhedron defined as ( )cbAPR ,, , to be  
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( ) ( ){ }1: 00 ≤−−ℜ∈= xxQxxxE E
Tn .          (1) 

The matrix of the ellipse E, QE   is 

AxDAxQ T
E

2002 )()( −=∇= ρ             (2)  

 with )()( 00 xbdiagxD T
ii α−= …          (3) 

The center 0x  may be defined in several ways. 

The best definition for our objective is to use the 
analytic center, which is defined based on a 

logarithmic barrier function.  Thus, 0x is the 

point that minimize 

  ( ) ( )∑
=

−−=
m

i

T
ii xbx

1
log αρ ,                        (4) 

where iα is the ith row of the matrix A and ib  is 

the ith component of vector b.  However, 

calculating 0x can take a lot of CPU time. For 

this reason, the pseudo-Chebyshev center will be 
used because it can be calculated rapidly [6]. 
This centre only requires a simple heuristic 
based on the resolution of a linear program. The 
pseudo-Chebyshev center is the center of the 
maximum volume sphere inscribed in the 
polyhedron. This center is obtained by solving 
the following linear problem:  









∀≤≤∀≤+∑ jxibtxat iijij ,10;,:max ….(5)  

The ellipse QE is contained in the polyhedron 
defined by the convex hull of the extreme points 

of ( )cbAPR ,, . Let  nµµ ,...,1  be the eigenvectors 

of the matrix QE . Then, we select those that are 

the best augmentation directions with respect to 
the objective function. To make this decision, 
we build a ranking of augmentation directions 
based on the following measure: 

       
2

c
c i

T

i
µβ = ,                                      ..(6) 

where iβ  is a measure of the amount of 

augmentation of the direction defined by iµ .  A 

direction may be very good from the point of 
view of augmentation, but can fail to lead to a 
integer feasible point.  For this reason, it is 
necessary to evaluate several augmentation 
directions. How many directions are necessary 
to evaluate to find the optimum solution remains 
an open question; however, we know that the 
answer is related to the size and complexity ratio 
τ  of the problem. The ratio τ is the maximum 
ratio between the right size and the sum of the 
coefficients of the constraints. We solve this 
question empirically by constructing a rule 
based on computational experiments.  First, we 
define the complexity ratio τ  as 









== ∑
=

n

j
ijiiii ab

1
:min τττ                      (7) 

Then, I can be defined as the number of 
augmentation search directions. 

     ( )mn
nI
−

=
τ

4
5

…                                      (8) 

This number I is the number of directions of the 
ranking that we will use to find a “good” 
approximation point. A “good” approximation 
point is a point near a vertex of the unit 
hypercube. We can be sure that a point obtained 
using an augmentation direction intersects a 
facet of the unit hypercube at a point near some 
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vertex of the same unit hypercube. The distance 
between any two points in a facet of the unit 
hypercube is bounded by a certain expression in 
terms of the dimension of the problem, as 
follows. 

Proposition 1:  Let y be a point of a facet of the 

unit hypercube. The Euclidean distance from 

point y to the nearest vertex of the unit 

hypercube is bounded by 
2

1−n .                  (9) 

Proof:  Let z be a vertex of the unitary 
hypercube. The components of this vector are 0 

or 1.  Let y be the most distant vector from the 

set of all possible vertices. This vector 

is ( )5.0,...,,...,5.0 iyy = . Note that the point y 

has a component that is 0 or 1 depending on 

whether it lies in the facet defined by 0=iy  

or 1=iy . Let ),( yzd denote the Euclidean 

distance between the two vectors z and y . Then, 

( ) ( ) ( ) ( )222
1 5.0...5.0, −+−++−= nii zyzzyzd  

The difference between any component jz  of 

the vector z  and the corresponding component 

yj, , 1,...,j i j n∀ ≠ = , is 0.5, because jz  can only 

be equal to 0 or 1. Moreover, ii yz = , because 

both are in the same facet. Thus, 

( ) ( ) ( ) ( ) ( )( )
2

15.015.0...5.0, 2222
1

−
=−=−+−++−=

nnzyzzyzd nii

If the coordinate vectors are used as  
augmentation vectors starting from the center of 

the unitary hypercube, the point obtained is of 

the form of the point y  in Proposition 1, and the 

distance to the nearest vertex is  
2

1−n .  

However, if we use vectors corresponding to the 
semi-axes of an ellipse’s Dikin, then there is a 
higher probability of finding a vertex of the 
unitary hypercube or of finding a non-integer 
point close to an integer point.  

Figure 1 shows the heuristic algorithm in six 
graphics. The first picture shows the center point 

0x  (Fig. 1a), and the second includes the ellipse 

EQ  (Fig. 1b).  

 

 

 

 

 

 

 

 

 

 

 

 

Then, we show the eigenvector 1µ y 2µ  of the 

matrix of the ellipse EQ  (Fig. 1c). The fourth 

picture illustrates how the eigenvectors are used 

0 x 

2 x Fig .   1a   

0 x 

2 x 

E Q 

Fig .   1b   
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as search directions (Fig. 1d). The fifth graphic 
shows the points found with the eigenvectors  

 

 

 

 

 

 

 

 

 

 

 

 

(Fig. 1e), and finally the approximation points 
are shown (Fig. 1f). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
2.2  Heuristic Algorithm 

The heuristic algorithm has three steps. The first 
is the most important, to find a point near the 
final integer point. The second step is to improve 
the solution obtained in the first step by using 
the right amount of slack. In the third step, a 
simple permutation is executed to improve the 
solution. The goal in steps 2 and 3 is to remove 
naive solutions that the first stage could generate. 
The heuristic algorithm uses two complementary 
subroutines, first to find a center point and then 
to round the solution to an integer point.   

 
SUBROUTINE: Find_Center  

INPUT: mxnA ℜ∈ , mb ℜ∈  

OUTPUT: the center point 0x  

Solve the linear program: 
max  t 

0
,0

≥
≤+

t
bteAx

 

where e  is the vector ( )T1,...,1 . 0x is the 

optimal solution of this program. 
 
SUBROUTINE: Round 

INPUT: [ ]nky 1,0∈  

OUTPUT: { }n
kz 1,0∈  

For every nj ,...,1=  

 If  ( ) 9.0≥jyk  

  Then  ( ) 1=jzk  

             Else  ( ) 0=jzk  

 End for 
 

0 x 

2 x 

E Q 

Fig .   1c   

1 x 

2 x 

E Q 

1 u  2 u  

Fig .   1d   

1 x 

2 x 

E Q 

1 u  2 u  

Fig .   1e   

1 x 

2 x 

E Q 

1 u  2 u  

Fig .   1f   

1 z 
2 z 
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MAIN ROUTINE: HEURISTIC  
ALGORITHM  

INPUT : matrix mxnA ℜ∈ , vector mb ℜ∈ , 

vector nc ℜ∈  

OUTPUT:  y (integer solution) 
Step 1, Output: nz Ζ∈1  
1. Call to Subroutine Find_Center (A,b) and 

return 0x . 

2. Let ( ) ( ) AxDAxxQ T 20020 )( −
=∇= ϕ , 

where )()( 00 xbdiagxD T
ii α−= . 

3. Let nµµ ,...,1 be the eigenvectors of the matrix 

( )0xQ  that will be used as search directions. 

4. Let nββ ,...,1 be measures of improvement 

along the search directions nµµ ,...,1 , calculated 

as i
c

c i
T

i ∀= ;*

2

µβ  . 

5. Let 








== ∑
=

n

j
ijiii ab

1
:min τττ . 

6. Let ( )mn
nI
−

=
τ

4
5

. 

7. Let S be a vector formed by iµ corresponding 

to the I  major measures of iβ . 

8. Let 0max =fo . 

9. For every Sk ∈µ , 

Solve two linear programs: 

  Max/Min k
T
k yµ  

             byA k ≤*  

  0≥ky , with n
ky ℜ∈  

 Call to Subroutine Round( ky ) and return 

{ }n
kz 1,0∈ . 

 If  ( bzA k ≤* ) and  max* fozc k
T > , 

then  

kk
T zzzcfo == 1

max ;*  

End for 

Step 2, Input: { }nz 1,01 ∈ , Output: { }nz 1,02 ∈  

10. Let 1* zAbh −= . 

11. Let { ( ) }0: 1 == jzjJ  and let I be a set of 

indices in J, ordered from the largest to the 
smallest values of the objective function.  

12. Let  12 zz = . 

13. For every   Ii∈    

   ( ) 12 =iz  

If 0≤h  

Then ( ) 02 =iz  

Else 
     End For 

  Step 3, Input: { }nz 1,02 ∈ , Output: { }nz 1,03 ∈  

14. Let  23 zz = . 

15. For every Jj∈  

            If ( ) 03 =jz  

Then 0Jj →  

Else 1Jj →  

     End For 
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16. Order the set 0J  from largest to smallest 

values of the objective function.  

17. For every   00 Jj ∈    

For every 11 Jj ∈  

                If  ( ) ( )10 jcjc >  

                Then  

                           If 0
01
≥−+ jj AAh  

                           Then        

1001 ; JjJj →→  

End For  
       End For 

18. For Every nj ,...,1=  

  If  1Jj ∈  

Then ( ) 13 =jz  

Else ( ) 03 =jz  

      End For 

Where jA  is the j-jth column of matrix A. 

A simple complexity analysis shows that the 
main routine makes n2  calls to the simplex 
algorithm in the first step, and in the second step 
it performs n  matrix operations. In the third step, 

n2  matrix operations are required.  

The subroutine round performs n  operations, 
and the subroutine find_center solves a simplex 
problem. Thus, we can say that the complexity is 

on the order of ( )nO 2  calls to the simplex 

problem.  

 

3. Computational Experiments 
The heuristic algorithm was tested using test 
problems taken from the public web OR-library 
[1] for instances of the MKP.  Nine groups of 30 
instances were tested, generating a total of  
 

Table 1. Results grouped by variables,  
constraints and tightness. 

 

 
 
270 instances. These groups were formed by 
combining three possible numbers of variables 
(100, 250, 500), three possible numbers of 
constraints (5, 10, 30) and three possible values 
for the ratio of tightness Γ (25%, 50%, 75%).  
The algorithm was implemented using a 
personal computer with a processor of 1.8 GHz 
and 1 GB RAM. The instances were solved 
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using Matlab software version R12. The results 
are shown in Table 1 in terms of the number of 
variables, restrictions, and tightness ratios. 
The results shown in Table 1 show an average 
integrality gap of 1.98%.  This means that the 
percent difference between the values obtained 
for the heuristic algorithm and the optimal 
solution is lower than 2%. This is a good value 
considering the values of the function objective. 
In particular, the average gap is less than the 
maximum coefficient of the objective function. 
Moreover, the CPU times are reasonable in 
comparison with the CPU times required for an 
optimal solution. The average CPU time is 
132.71 seconds, or equivalently, 2.2 minutes. 

 
3.1. CPU Time 
Graph 1 below shows the CPU times of the 
heuristic algorithm in seconds for the different 
numbers of variables, the ratio of the problems 
and the number of restrictions. Observe that the 
CPU times are inversely related to the 
complexity of the problem measured by τ , so 
in these cases, more CPU time is required for 
those problems that are geometrically more 
difficult in terms of tightness.   

This finding may be caused by the rule used in 
the heuristic algorithm. This rule calculates the 
number of eigenvectors that will be used as 
search vectors (I), such that the number of 
iterations is inversely proportional to the 
tightness of the problem. Moreover, the 
tightness increases the complexity of the 
problem of linear programming solved in every 
iteration. The graphics show small changes in 
the CPU time with respect to the number of 
constraints. This effect can be observed in Graph 
1, where the difference between a problem with 
30 constraints and another with only 5 
constraints is on the order of a few seconds.  

 
 

 
Graph 1: CPU time vs. tightness ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 2 clearly shows the dependence of the 
average CPU time on the dimension of the 
problem. This is due to the complexity of the 
larger problems, like those on the order of 500 
variables. Naturally, the larger times on the 
order of 550 seconds are associated with those 
problems of high dimensions and with tightness 
ratios of high complexity (25 %). 
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3.2. Integrality GAP  

The quality of the results obtained using the 
heuristic algorithm can be evaluated using the 
Integrality GAP, which is defined as the 
percentage difference between the optimum 
solution and the approximate solution, according 
to the following formula: 








 −
=

IP

HeuristicIP

Sol
SolSol

GAP *100(%)
. 

Graph 3 depicts the behavior of the Integrality 
GAP with respect to the tightness ratio. Looking 
at those graphs, we can observe that the best 
results obtained by the heuristic are those 
obtained for the problems with tightness ratios 
of 50% and 75%.  This may be due to the fact 
that higher complexity problems have fewer 
integer points. The obtained results stand out 
when the value of the tightness ratio is 75%, 
because the integrality GAP reaches 1%.  These 
results also show that the integrality GAP 
increases with respect to the number of 
restrictions.   

Observing the behavior of the integrality GAP in 
Graph 3, it is important to note that 
counterintuitively, the percentage difference 
between the approximate solution and the 

optimum value diminishes as the number of 
variables in the problem increases. 

 
Graph 3: Integrality GAP vs. tightness ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This can be explained by the fact that there are 
more eigenvectors used as searching directions, 
increasing the probability of finding an integer 
point.  

4 Conclusion 
Although the results of these experiments are 
preliminary, they show that the CPU time is 
improved in comparison with the CPU time of 
the optimal algorithms for integer programming. 
The heuristic algorithm finds good solutions for 
large problems in terms of the integrality gap. 
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For problems of 500 variables, the average 
integrality gap is 0.71% and the average CPU 
time is 352.81 seconds. In contrast, for smaller 
problems, the obtained results have an 
excessively large Integrality gap. For example, 
for problems of size 250 variables, the average 
integrality gap is 2.63% and the average CPU 
time is 39.34 seconds. The CPU time grows 
exponentially with the complexity of the 
instances of integer programming. The average 
integrality gap obtained for problems of 500 
variables is on the order of the average number 
of components of the vector of the objective 
function. This shows that our solution is lesser 
aside in average, in one article.  
 
This type of model is known to be very difficult 
to use in real situations because the CPU time 
for the optimal solution is prohibitive. For this 
reason, this heuristic algorithm appears to be 
very useful because for problems of 500 
variables; in the worst cases, it takes about ten 
minutes, and the integrality gap is 2.75%. All the 
results reported here were obtained using 
MATLAB in Windows Vista and a domestic PC. 
The heuristic developed here can be improved 
using other solvers and more powerful 
computers.  In the future, this work can be 

extended to other models in the context of 
integer programming. 
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