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Abstract: In this paper, we have sought to investigate the viability of a type of general linear methods called Almost
Runge-Kutta (ARK) methods, as a means of obtaining acceptable numerical approximations of the solution of
problems in continuous mathematics. We have outlined the derivation and implementation of this class of methods
up to order five. Extensive numerical experiments were carried out and the results clearly show that ARK methods
are indeed a viable alternative to existing traditional methods.
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1 Introduction
Ordinary differential equations (ODEs) can be used
to model many different types of physical behav-
iors, form chemical reactions to the notion of planets
around the sun. they are at the very heart of our un-
derstanding of the physical world today[see, 1–15].
Unfortunately, as the systems being modeled get more
complex, so do the solutions. This can mean that we
are left in the position of being unable to solve the
problem analytically. This is where the need for nu-
merical methods become obvious. Even though they
do not give exactly solutions, they do enable us to
find good approximations to the solution at any point
where it is required.

2 General Linear Methods

The name “General linear methods” applies to a large
family of numerical methods for ordinary differen-
tial equations. They were introduced in [9] to pro-
vide a unifying theory of the basic questions of con-
sistency, stability and convergence. Later they were
used as a framework for studying accuracy questions
and later the phenomena associated with nonlinear
convergence. They combine the multi-stage nature
of Runge-Kutta methods with the notion of passing
more than one piece of information between steps
that is used in linear multi-step methods. Their dis-
covery opened the possibility of obtaining essentially
new methods that were neither Runge-Kutta nor lin-
ear multi-step methods would exist which are practi-
cal and have advantages over the traditional methods.

These extremely broad class of methods, besides con-
taining Runge-Kutta and linear multi-step methods
as special cases also contain hybrid methods, cyclic
composite linear multi-step methods and pseudo
Runge-Kutta methods.

2.1 Examples of general linear methods

As noted above, this class of methods is a large one. It
includes the traditional methods such as Runge–Kutta
methods and linear multi-step methods, along with
methods that have been developed within the general
linear methods framework, such as DIMSIMs, IRKS
methods (with DESIRE and ESIRK as special cases)
and Almost Runge-Kutta (ARK) methods.

3 Almost Runge-Kutta Methods

Almost Runge-Kutta (ARK) methods are a very spe-
cial class of general linear methods introduced by
Butcher [10]. The basic idea of these methods, is to
retain the multi-stage nature of Runge-Kutta methods,
while allowing more than one value to be passed from
step to step. Hence, they have a multi-value nature.
These methods have advantages over traditional meth-
ods, which are to be found in low-cost local error es-
timation and dense output. These latter features will
be a consequence of the higher stage orders that are
possible because of the multi-value nature of the new
methods. This multi-value nature brings its own diffi-
culties.
The number of values passed between steps varies
among general linear methods; the number of val-
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ues is three for ARK methods. Of the three input
and output values in ARK methods, one approximates
the solution value i.e. y(xn) the second approxi-
mates the scaled first derivative (hy′(xn)) while the
third approximates second, derivatives respectively
(h2y′′(xn)). To simplify the starting procedure, the
second derivative is required to be accurate only to
within O(h3), where h as usual is the stepsize. In or-
der to ensure that this low order does not adversely
affect the solution value, the method has unbuilt an-
nihilation conditions. As a result of these extra input
values, we are able to obtain stage order two, unlike
explicit Runge-Kutta methods that are only able to ob-
tain stage order one. The advantage of this higher or-
der is that we are able to interpolate and obtain an er-
ror estimate at little extra cost [11].

3.1 Motivation for the Methods

When ARK methods were first proposed, it was hoped
to develop a method that retained the spirit of R-
K methods, but had advantages over the traditional
methods. The method was required to retain the sim-
ple stability functions of R-K methods as well as pass
through very little information between steps. The in-
formation that was passed from step to step was re-
quired to be easy to adjust for stepsize changes. The
main advantages that could be seen were a cheap error
estimator and dense output as well as the higher stage
order that could be achieved [11].

3.2 Structure of ARK Methods

The general form of ARK methods is given by



Y1

Y2
...
Ys

y
[n]
1

y
[n]
2

y
[n]
3




=
[

A U

B V

]




hF (Y1)
hF (Y2)
...
hF (Ys)

y
[n−1]
1

y
[n−1]
2

y
[n−1]
r




(1)

where s is the number of internal stages. A is an
s×s strictly lower triangular matrix, such that eT

s A =
bT which implies that the last row of the A matrix is the
same as the b vector in the first row of the B matrix.
s is the number of internal stages. The vector e is a
vector of ones, and is also of length s. es is a vector
of length s consisting entirely of zeros except the sth
component which is 1.

For an order p method the three output values are
given by the equations below

y
[n]
1 = y(xn) + O(hp+1),

y
[n]
1 = hy′(xn) + O(hp+2),

y
[n]
1 = h2y′′(xn) + O(h3).





(2)

In choosing the coefficients of the method, we are
careful to ensure that the simple stability properties
of Runge-Kutta methods are retained. In this intro-
ductory paper, we would focus on the case where the
matrix A is strictly lower triangular by which we mean
the methods are explicit.

Explicit ARK methods have the general form:




Y1

Y2
...
Ys

y
[n]
1

y
[n]
2

y
[n]
3




=




0 0 0 . . . 0 0
a21 0 0 . . . 0 0
a31 a32 0 . . . 0 0 e c−Ae c2

2 −Ac
...

...
...

. . .
...

...
as−1,1 as−1,2 as−1,3 . . . 0 0

b1 b2 b3 . . . bs−1 0
b1 b2 b3 . . . bs−1 0 1 b0 0
0 0 0 . . . 0 1 0 0 0
β1 β2 β3 . . . βs−1 βs 0 β0 0







hF (Y1)
hF (Y2)
...
hF (Ys)

y
[n−1]
1

y
[n−1]
2

y
[n−1]
r




(3)

As in traditional Runge-Kutta theory, b is a vector of
length s representing the weights and c is a vector of
length s representing the positions at which the func-
tion f is evaluated. The vector e is a vector of ones,
and is also of length s.

The form of the U matrix is given by a Taylor series
expansion of the internal stages. The internal stages
of an ARK method is given by

y(x0 + hci) = ui1y0 + ui2hy′0 + ui3h
2y′′0
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+h
i−1∑

j=1

–aijy
′(x0 + hcj) (4)

By carrying out the Taylor series expansion on
both sides of equation (4) and equate the coefficients
of y0, y

′
0 and y′′0 , we find

ui1 = 1, i = 1, 2, . . . , s
ui2 = ci −

∑
j aij

ui3 = c2i
2 −

∑
j aijcj

(5)

We must note some very important features of
ARK methods:

1. The first row of the B matrix is the same as the
last row of the A matrix, we denote this as bT

and the first row of the V matrix is the same as
the last row of the U matrix, because we wish
the final internal stage to give us the same quan-
tity that is to be exported as the first outgoing
approximation. It also means that cs = 1.

2. We also wish the second outgoing approxima-
tions to be h times the derivative of the final
stage. This means that the second row of the B
and V matrices consists of zeros, with the ex-
ception of a 1 in the (2, s) position of B that is
B is eT

s . The last row of B isβT .

There are three types of conditions to consider
when deriving Almost Runge-Kutta methods:

1. Order conditions.

2. Annihilation conditions.

3. Runge-Kutta stability conditions.

Detailed explanation of how these conditions are
implemented, can be found in [11], [12].

Theorem 3.1: An ARK method of order p with p
stages has RK- stability if and only if

βT (I + βsA) = βse
T
s (6)

(1 + 1
2βsc1)bT As−2c =

1
s!

(7)

c1 = − 2 exps(−βs)
βs exps−1(−βs)

(8)

Proof: A proof of this theorem can be found in a
number of literature including [11], [13].

3.3 Methods with s = p

This section, considers the derivation procedure for
methods which have the same number of stages as the
order of the method.

Methods with this property are considered so as to
minimize computational costs, and because, it is not
possible to satisfy all the order conditions for s < p.
Also, the stability function is always a polynomial of
degree s but the stability function is an approximation
to exp(z) with an error of (o{zp+1})as |z| → 0. This
means that the stability function must have degree at
least p and therefore s ≥ p.

3.3.1 Derivation of Methods With s = p = 4

The general form of a fourth order, four stage ARK
method is

[
A U

B V

]
=




0 0 0 0 1 c1
1
2c2

1

a21 0 0 0 1 c2 − a21
1
2c2

2 − a21c1

a31 a32 0 0 1 c3 − a31 − a32
1
2c2

3 − a31c1 − a32c2

b1 b2 b3 0 1 b0 0
b1 b2 b3 0 1 b0 0
0 0 0 1 0 0 0
β1 β2 β3 β4 0 β0 0




(9)

The order conditions for a fourth order method
are:

b0 + bT e = 1 (10)

bT c =
1
2

(11)

bT c2 =
1
3

(12)

bT c3 =
1
4

(13)

bT Ac =
1
6

(14)

bT Ac2 =
1
12

(15)

βT e + β0 = 0 (16)

βT (I + β4A) = β4e
T
4 (17)

c1 =
2 exp4(−β4)
β4 exp3(−β4)

(18)

WSEAS TRANSACTIONS on MATHEMATICS Abraham Ochoche, Peter Ndajah

ISSN: 1109-2769 161 Issue 5, Volume 10, May 2011



(1 +
1
2
β4c1)bT A2c =

1
4!

(19)

These methods have three free parameters, and
we will take them to be c2, c3 and β4. Once we as-
sign values for these parameters, the method can then
be uniquely defined using equations (10)-(19). c1 can
be calculated from equation (18), the bT vector can be
found from the quadrature conditions (11), (12) and
(13), from where we get

b1 =
3− 4c2 − 4c3 + 6c2c3

12c1(c1 − c2)(c1 − c3)
(20)

b2 =
3− 4c1 − 4c3 + 6c1c3

12c2(c2 − c1)(c2 − c3)
(21)

b3 =
3− 4c2 − 4c2 + 6c1c2

12c3(c3 − c1)(c3 − c2)
(22)

The next step is to obtain b0 from equation (10),
and a32 from the linear combination of equations (14)

and (15). Provided c1 6= c2,

a32 =
1− 2c1

12b3c2(c2 − c1)
(23)

From conditions (14) and (19),

a21 =
1

24b3a32c1(1 + 1
2β4c1)

(24)

a31 =
1
6 − b3a32c2 − b2a21c1

b3c1
(25)

Finally, βT can be found from equation (17).
Based on the complete classification of fourth or-

der methods with four stages given in [14], we present
two methods based on Case 4 (ark4a) and Case 5
(ark4b).

cT =
[
1, 1

2 , 0, 1
]
, b3 =

3
4
cT =

[
1, 1

2 , 1, 1
]
, β4 = 2

[
A U

B V

]
=




0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

− 1
18

4
9 0 0 1 − 7

18 −1
6

1
6

2
3

3
4 0 1 − 7

12 0
1
6

2
3

3
4 0 1 − 7

12 0
0 0 0 1 0 0 0
−1 0 −3 2 0 2 0




,




0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0
0 2

3
1
6 0 1 1

6 0
0 0 0 1 0 0 0
−1

3 0 −2
3 2 0 −1 0




(26)

3.3.2 Derivation of Methods with s = p = 5

A fifth order, five stage ARK method takes the form

[
A U

B V

]
=




0 0 0 0 0 1 c1
1
2c2

1

a21 0 0 0 0 1 c2 − a21
1
2c2

2 − a21c1

a31 a32 0 0 0 1 c3 − a31 − a32
1
2c2

3 − a31c1 − a32c2

a41 a42 a43 0 0 1 c4 − a41 − a42 − a43
1
2c2

4 − a41c1 − a42c2 − a43c3

b1 b2 b3 b4 0 1 b0 0
b1 b2 b3 b4 0 1 b0 0
0 0 0 0 1 0 0 0
β1 β2 β3 β4 β5 0 β0 0




(27)

with c = [c1, c2, c3c4, 1]T .

The order conditions for a fifth order five stage method
are:

b0 + bT e = 1 (28)

bT c =
1
2

(29)

bT c2 =
1
3

(30)

bT c3 =
1
4

(31)

bT c4 =
1
5

(32)

c4 = 1 (33)

bT A = bT (I − C) (34)

bT (I − C)Ac =
1
24

(35)

bT (I − C)Ac2 =
1
60

(36)
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βT e + β0 = 0 (37)
βT (I + β5A) = β5e

T
5 (38)

c1 =
2 exp5(−β5)
β5 exp4(−β5)

(39)

and
(1 +

1
2
β5c1)bT A3c =

1
5!

(40)

3.3.3 Some Derived Methods

Not much is known about the best choice of parame-
ters for order five methods; however we will attempt
to present some methods

ARK5a

cT = [ 52
165 , 1

4 , 1
2 , 1, 1], β5 = 3

[
A U

B V

]
=




0 0 0 0 0 1 52
165

1352
27225

− 26015
314496 0 0 0 0 1 104639

314496
65

1134
97687535
143121888 −1708

5461 0 0 0 1 433411
3328416 − 286

24003
−101976583885

4691749608
72320
3913

28702
5551 0 0 1 −1640741

1788696
572
3969

−49413375
15412748

352
129

254
183

91
678 0 1 − 7

156 0
−49413375

15412748
352
129

254
183

91
678 0 1 − 7

156 0
0 0 0 0 1 0 0 0

−781747725
15412748

2076
43

381
61

272
226 3 0 −291

52 0




(41)

and ARK5a

cT = [ 52
165 , 1

2 , 4
5 , 1, 1], β5 = 3

[
A U

B V

]
=




0 0 0 0 0 1 52
165

1352
27225

36905
78624 0 0 0 0 1 2407

78624 − 13
567

39160
49959

1792
3355 0 0 0 1 −23332

45045 −10088
51975

−23722655
65013312 −13108

3721
6215
3904 0 0 1 878117

266448
4238
3843

9882675
22939904

4
61

275
768

61
1356 0 1 251

2496 0
9882675
22939904

4
61

275
768

61
1356 0 1 251

2496 0
0 0 0 0 1 0 0 0

30490185
11469952 −171

61 −165
128 −183

452 3 0 −483
416 0




(42)

respectively.

3.4 Methods with s = p+1

From traditional Runge-Kutta theory, we know that
we can achieve enhanced performance if there are
more stages than are required for a particular order;
the same applies to ARK methods. The focus is on

the case where there exists one more stage than is re-
quired to attain the required order.

3.4.1 Methods with s = 5, p = 4

A fourth order method with five stages takes the form

[
A U

B V

]
=




0 0 0 0 0
a21 0 0 0 0
a31 a32 0 0 0 e c−Ae c2

2 −Ae
a41 a42 a43 0 0
b1 b2 b3 b4 0
b1 b2 b3 b4 0 1 b0 0
0 0 0 0 1 0 0 0
β1 β2 β3 β4 β5 0 β0 0




(43)

with stability function

R(z) = 1 + z +
z2

2
+

z3

3!
+

z4

4!
+ Kz5
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3.4.2 Order Conditions

The following conditions must be satisfied by an ARK
method with five stages to have order four

b0 = 1− bT e (44)

bT c =
1
2

(45)

bT c2 =
1
3

(46)

bT c3 =
1
4

(47)

c4 = 1 (48)

bT Ac =
1
6

(49)

bT Ac2 =
1
12

(50)

β0 = −βT e (51)

βT c = 1 (52)

βT Ac =
β5(θ + 1)− φ

θβ5
(53)

β5e
T
5 (I + θA) = βT (I + φA + β5θA

2) (54)

K(
1
2
β5c1θα4 − α5)

= (1 +
1
2
β5c1)(1+α1+

α2

2
+

α3

3!
+

α4

4!
) (55)

where the values of αi are determined by expanding

1 + (φ− β5)z
1 + φz + β5θz2

=
∞∑

i=0

αiz
i (56)

bT A2c− 1
24

= θ(bT A3c−K) (57)

and

β5(bT A2c2 −K) = (β5 − φ)(bT A3c−K) (58)

3.4.3 Some Examples

Two methods are presented here; ark45a and ark45b
respectively. We have chosen L = 1

5 and K = 1
120 for

both methods, ensuring zero error for both the bushy
tree and the tall tree.

cT = [14 , 1
2 , 3

4 , 1, 1], φ = 4, µ = 8, L = 1
5 , K = 1

120

[
A U

B V

]
=




0 0 0 0 0 1 1
4

1
32

2
5 0 0 0 0 1 1

10
1
40

3
140

75
112 0 0 0 1 33

560 − 33
560

543
245 −87

49 1 0 0 1 −108
245

41
190

16
45

2
15

16
45

7
90 0 1 7

90 0
16
45

2
15

16
45

7
90 0 1 7

90 0
0 0 0 0 1 0 0 0
−56

9
62
25 −784

225 −196
225

24
5 0 742

225 0




(59)

cT = [14 , 1
3 , 3

4 , 1, 1], φ = 4, µ = 8, L = 1
5 , K = 1

120

[
A U

B V

]
=




0 0 0 0 0 1 1
4

1
32

4
5 0 0 0 0 1 11

45
1
30

−57
65

675
416 0 0 0 1 1

231 − 21
520

6031
378 −2538

169 2 0 0 1 −1637
845

11
641

8
45

27
100

88
225

13
180 0 1 4

45 0
8
45

27
100

88
225

13
180 0 1 7

90 0
0 0 0 0 1 0 0 0

−3088
225

1137
125 −432

125 −182
225

24
5 0 307

75 0




(60)

4 Implementation of ARK Methods

The use of an ARK method is very similar to that
of an RK method, with the main difference being
that three pieces of information is now passed be-

tween steps. The first two starting values are y(x0)and
hf(y(x0))respectively and the third starting value is
obtained by taking a single Euler step forward and
then taking the difference between the derivatives at
these two points. Therefore, the starting vector is
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given by

[y(x0), hf(y(x0)), hf (y(x0) + hf(y(x0)))− hf(y(x0))]
(61)

This choice of starting method was chosen for its sim-
plicity, but it is adequate. The method for computing
the three starting approximations can be written in the
form of the generalized Runge–Kutta tableau

0
1 1
1 0 0
0 1 0
0 −1 1

where the zero in the first column of the last two rows
indicates the fact that the term yn−1 is absent from the
output approximation. This can be interpreted in the
same way as a Runge–Kutta method, but with three
output approximations.

To change the stepsize we simply scale the vector
in the same way we would scale a Nordsieck vector
[15]. Setting r = hj/hj−1 means the y vector needs
to be scaled by

[
1, r, r2

]
.

Once the starting vector is obtained from equation
(61), the next thing is to calculate the internal stages;

Y
[n]
i =

s∑

j=1

(hF (Y n
i )aij) + Uy

[n−1]
i (62)

as well as the output approximations;

y
[n]
i =

s∑

j=1

(hF (Y n
i )Bij) + V y

[n−1]
i (63)

5 Numerical Experiments

The problems that have been chosen are part of the
DETest set of problems [16]; a set of standard test
problems were suggested for testing ODE solvers. So-
lutions have all been done with variable stepsize.

A: Logistics Curve: Single Equations

y′ =
y

4
(1− y

20
); y(0) = 1

Exact Solution: yE(t) = 20e
t
4

19+e
t
4

B: The Radioactive Decay Chain: Moderate Sys-
tems




y′1
y′2
...

y′9
y′10




=




−1 0 · · · 0
1 −2 0 · · · 0

0 2
. . . . . .

...
...

. . . −9 0
0 0 · · · 9 0







y1

y2
...

y9

y10




;

(64)
with y(0) = [1, 0, 0, · · · , 0]T .

C: A Non-linear Chemical Reaction Problem

y′1 = −y1, y1(0) = 1,
y′2 = y1 − y2

2, y2(0) = 0,
y′3 = y2

2, y3(0) = 0.
(65)

D: A Problem Derived From Van der Pol’s Equa-
tion

y′1 = y2, y1(0) = 2,
y′2 = (1− y2

1)y2 − y1, y2(0) = 0.
(66)

6 Discussions of Results

Figures 1 to 12 (see, next pages) show the results
when the ARK methods we have derived in this pa-
per, are used to solve problems A – D. From the er-
rors given by these methods, they may be considered
as very good approximations of the exact results and
we can say that they performed very well.

7 Conclusion

In this paper an effort has been made to present this
unique class of methods and show that they are quite
viable and reliable for solving not just single ODEs
but large system as well. For a more detailed analysis
of Ark methods see [17].
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Figure 1: Solving Problem A using ark4a and ark4b
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Figure 2: Solving Problem A using ark45a and ark45b
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Figure 3: Solving Problem A using ARK5a and
ARK5b
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Figure 4: Solving Problem B using ARK4a and
ARK4b
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Figure 5: Solving Problem B using ARK45a and
ARK45b
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Figure 6: Solving Problem B using ARK5a and
ARK5b
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Figure 7: Solving Problem C using ARK4a and
ARK4b
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Figure 8: Solving Problem C using ARK45a and
ARK45b
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Figure 9: Solving Problem C using ARK5a and
ARK5b
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Figure 10: Solving Problem D using ARK4a and
ARK4b
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Figure 11: Solving Problem D using ARK45a and
ARK45b
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Figure 12: Solving Problem D using ARK5a and
ARK5b
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