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Abstract: In this paper, we analyze the spectra and stability of a system consisting of a working unit and repair unit,
in which the working unit consists of one main unit and one standby unit, while the standby unit may deteriorate in
its standby mode. Firstly, we formulate the problem into a suitable Banach space. And then we carry out a detailed
spectral analysis of the system operator. Based on the spectral analysis and C0-semigroup theory, we prove the
existence of positive solution and finite expansion of the solution according to its eigenvectors. As a consequence
we get that its dynamic solutions converges exponentially to the steady-state solution. Finally, we derive some
reliability indices of the system.

Key–Words: C0-semigroup theory, dynamic solution, steady-state, exponential stability, availability.

1 Introduction
With the development of the modern technology and
extensive use of electronic products, the reliability
problem of the reparable systems has been a hot topic.
It is well-known that reliability of a system is an im-
portant concept in engineering, it takes an essential
rule in the plan, design and operation strategy of vari-
ous complex systems. In order to increase the reliabil-
ity of a system, a repair unit is necessary for increas-
ing the performance and reducing the downtime or the
maintenance. Therefore, repairable system is not only
a kind of important system discussed in reliability the-
ory but also one of the main objects studied in relia-
bility mathematics. Many authors have worked in this
field, including system modeling (see, [1],[2],[3]) and
model analysis [4],[5],[6], [7],[8] and the references
therein.

We observe that reparability is not only applica-
ble in engineering, but also applicable to various is-
sue arisen other subject, for instance, the study of
medicament[11] and human health [12], electronic-
commerce, etc. Therefore, much more attention con-
centrate on the study of repairable system.

Different from the early study of reparable sys-
tem, in which the key point emphases the reliabil-
ity indices involving availability of the system, which
usually were obtained by steady state, the issue is to
obtain the time-dependent solution of the system gov-
ern by the partial differential equations. This is be-
cause we cannot wait for a long time in some cases,

for example, the cases of [11] and [12]. The change
of key point of the issue requires us to analyze com-
pletely the system including spectrum of the system
operator and finite expansion of solution. From ap-
plication point of view, the time we can observe the
steady state of the system becomes obviously an im-
portant index, which is especial important in the inves-
tigation of human health problem or recovery. There-
fore, after the mathematical modeling for the problem,
our task is mainly to solve the following questions:
(1) the system under consideration has a unique non-
negative time-dependent solution; (2) approximate of
solution; (3) the system has a steady state, and the dy-
namic solution of the system converges to the steady
state.

Let us recall the observation time issue. Let S be
a reparable system and P (t) be the state vector, which
describe the probability in the various states. Suppose
that the system has a steady state P̂0. If there is a time
τ0 such that ||P (t) − P̂0|| ≤ 0.25, t ≥ τ0, then it is
said that the steady state of S is observable at time τ0.
Obviously, the observable time τ0 is a more valuable
information in application. From the observation time
issue we see that it is not only an issue of existence
of the solution and steady state but also the quasi-
exponential decay issue of the system. How to deter-
mine the decay rate of the dynamic solution, however,
is hard work, which needs more detail spectral infor-
mation of the operator determined by the system. In
the present paper, we mainly study the spectrum of the
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system operator, from which we can obtain an answer
for the observe time issue. In the present paper, our
model under consideration after certain assumptions
is the same as the one in [9] although it has different
background.

Let us recall the model under consideration [9].
Suppose that a system consists of a working unit and
a repair unit, the work unit consists of one main unit
and one standby unit. Initially, the system is in good
condition, this state is denoted by state 0. The standby
unit can deteriorate in its standby mode and due to this
deteriorating process, it may fail in this mode with a
failure rate λ0. Upon the failure of the standby unit
in the state 0, the system goes to state 1. The fail-
ure of the operating unit in the state 0 brings the sys-
tem to state 2 where the standby unit starts to work
with an increased failure rate λ1. The failure of any
of the working units in state 1&2 brings the system
to a completely failed state F . Common cause failure
and critical human error can occur from all the three
working state which cause the complete failure of the
system and are denoted by C and H , respectively. A
repair facility is available in the states 1, 2 and all the
completely failed states. After repair, the system goes
to state 0. Repair rates from states 1 and 2 follow an
exponential distribution with µ1 and µ2, while from
states F , C and H , it follows a general distribution.

Denote by

pj(t) Probability that the system is in state j at
time t (j = 0, 1, 2, F, C, H);

pj(u, t) probability density w.r.t. repair time that
the failed system is in state j and has an elapsed repair
time lies u(u = x, y, z; j = F,C,H);

F/C/H system failed due to hardware fail-
ure/common cause failure/critical human error;

λ0 constant failure rate of the standby unit in its
standby mode;

λ constant failure rate of the working unit;

λ1 constant failure rate of the standby unit in its
operating mode;

λcj/λhj
constant failure rate from the state j to

the state C/H(j = 0, 1, 2);

µj constant repair rates from states j to state
0(j = 1, 2);

α(x)/β(y)/γ(z) repair rates from states F/H/C
to state 0.
Thus the dynamic behavior of the system is governed

by the partial differential equations

{ d
dt + λ + λ0 + λh0 + λc0}p0(t)

= µ1p1(t) + µ2p2(t) +
∫∞
0 α(x)pF (x, t)dx

+
∫∞
0 β(y)pH(y, t)dy +

∫∞
0 γ(z)pC(z, t)dz,

{ d
dt + λ + µ1 + λh1 + λc1}p1(t) = λ0p0(t),
{ d

dt + λ1 + µ2 + λh2 + λc2}p2(t) = λp0(t),
{ ∂

∂t + ∂
∂x + α(x)}pF (x, t) = 0,

{ ∂
∂t + ∂

∂y + β(y)}pH(y, t) = 0,

{ ∂
∂t + ∂

∂z + γ(z)}pC(z, t) = 0
(1)

with the boundary conditions

pF (0, t) = λp1(t) + λ1p2(t)

pH(0, t) =
2∑

j=0
λhj

pj(t)

pC(0, t) =
2∑

j=0
λcjpj(t)

(2)

and the initial condition is given by

(p0(0), p1(0), p2(0), pF (x, 0), pC(y, 0), pH(z, 0))

= (1, 0, 0, 0, 0, 0).

In the present paper, we shall analyze the system (1)
with (2).

The rest are organized as follows. In section 2,
we formulate the system (1) with (2) into a suitable
Banach space, and give the system operator A and its
dual operator A∗. In section 3, we carry out a com-
plete spectral analysis for the system operator A. In
section 4, we discuss the existence of positive solu-
tion and conservation property of the system, further
we get the finite expansion of the solution according
its eigenvectors. In section 5, we discuss the some
indices of the system, and give the estimate for the
observable time and availability of the system.

2 Formulation of the system
In this section, we formulate the system (1) and (2)
into a suitable Banach space, and define the system A
and find out its dual operator A∗. In the sequel, we
use natation R denote the real number set and R+ =
[0,∞). Based on the practice meaning of the problem,
we take space X as X = R3 × (L1(R+))3. For each
P = (p0, p1, p2, pF (x), pH(y), pC(z)) ∈ X, the norm
is defined as

‖P‖ =
2∑

i=0

|pi|+ ‖pF ‖L1 + |pH‖L1 + ‖pC‖L1 .

Obviously, X is a Banach space.
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Before we define the system operator, we make
the following assumptions:

1) The general distributions A(x) = 1 −
exp(−

∫ x
0 α(s)ds), B(y) = 1 − exp(−

∫ y
0 β(s)ds),

and Γ(z) = 1 − exp(−
∫ z
0 γ(s)ds), where

α(x), β(y), γ(z) are nonnegative and local integrable
on [0,∞), and

sup
x≥0

α(x), sup
y≥0

β(y), sup
z≥0

γ(z) < ∞; (3)

2) The functions α(x), β(y), γ(z) satisfy∫ ∞

0
α(x)dx =

∫ ∞

0
β(y)dy =

∫ ∞

0
γ(z)dz = ∞.

(4)
For simplification, we set I0 = λ+λ0+λh0 +λc0 ,

I1 = λ + µ1 + λh1 + λc1 , I2 = λ1 + µ2 + λh2 + λc2 .
Now we define the operator A in X by

A



p0

p1

p2

pF (x)
pH(y)
pC(z)


=



−I0p0 + µ1p1 + µ2p2

+
∫∞
0 α(x)pF (x)dx

+
∫∞
0 β(y)pH(y)dy

+
∫∞
0 γ(z)pC(z)dz

λ0p0 − I1p1

λp0 − I2p2

−p′F (x)− α(x)pF (x)
−p′H(y)− β(y)pH(y)
−p′C(z)− γ(z)pC(z)


(5)

with domain

D(A) =



(p0, p1, p2, pF , pH , pC) ∈ X
pF (x), pH(y), pC(z) ∈ L1(R+)
p′F (x), p′H(y), p′C(z) ∈ L1(R+)
pF (0) = λp1 + λ1p2;

pH(0) =
2∑

j=0
λhj

pj

pC(0) =
2∑

j=0
λcjpj


(6)

Obviously, A is a linear operator in X.
With the help of above notation, we can rewrite

(1) and (2) as an evolutionary equation in the Banach
space X {

dP (t)
dt = AP (t), t ≥ 0;

P (0) = P0
(7)

where P (t)=(p0(t),p1(t),p2(t),pF (,t),pH(,t),pC(,t))
∈ D(A) and P0 = (1, 0, 0, 0, 0, 0) ∈ X.

Firstly we have the following result.

Theorem 1. LetA be defined by (5) and (6). Then the
following statements are true

1) A is a closed and densely defined linear oper-
ator in X;

2) A is a dissipative operator in X.

Proof: The first assertion is a direct verification, we
omit the checking detail. We only prove the second
assertion.

For any real P ∈ D(A), we take a real vector

Q = (q0, q1, q2, qF (x), qH(y), qC(z)),

where q0 = ‖P‖sign(p0), q1 = ‖P‖sign(p1),q2 =
‖P‖sign(p2),qF = ‖P‖sign(pF (x)), qH =
‖P‖sign(pH(y)) and qC = ‖P‖sign(pC(z)).
Clearly, Q ∈ X∗, where X∗ = R3 × (L∞(R+))3 is
the dual space of X.

For given P and Q, we have 〈P,Q〉 = ||P ||2 =
||Q||2. Further, we have

〈AP,Q〉
‖P‖

= (−I0p0 + µ1p1 + µ2p2)sign(p0)

+sign(p0)
∫ ∞

0
α(x)pF (x)dx

+sign(p0)
∫ ∞

0
β(y)pH(y)dy

+sign(p0)
∫ ∞

0
γ(z)pC(z)dz

+(λ0p0−I1p1)sign(p1)+(λp0−I2p2)sign(p2)

+
∫ ∞

0
(−p′F (x)− α(x)pF (x))sign(pF (x))dx

+
∫ ∞

0
(−p′H(y)− β(y)pH(y))sign(pH(y))dy

+
∫ ∞

0
(−p′C(z)− γ(z)pC(z))sign(pC(z))dz

≤ −(I0 − λ0 − λ)|p0| − (I1 − µ1)|p1|
−(I2−µ2)|p1|+ |pF (0))|+ |pH(0)|+ |pC(0)|

where we have used an identity∫ ∞

0
p′(x)sign(p(x))dx = −|p(0)|.

Using the boundary conditions in D(A), we can get

|pF (0)|+ |pH(0)|] + |pC(0)|
≤ (λh0 + λc0)|p0|+ (λ + λh1 + λc1)|p1|

+(λ1 + λh2 + λc2)|p2|
= (I0−λ0−λ)|p0|+ (I1−µ1)|p1|+ (I2−µ2)|p1|.

Therefore, we have 〈AP,Q〉 ≤ 0, which means that
A is a dissipative operator in X. �
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SinceA is a closed and densely defined linear op-
erator in X, its dual operator A∗ exists and is also a
closed linear operator in X∗. To find out the expres-
sion of A∗, we let

P = (p0, p1, p2, pF (x), pH(y), pC(z)) ∈ D(A)

and

Q = (q0, q1, q2, qF (x), qH(y), qC(z)) ∈ D(A∗).

Using the equality 〈AP,Q〉 = 〈P,A∗Q〉, integration
by part, we have

〈AP,Q〉 = 〈P,A∗Q〉
= [−I0q0+λ0q1+λq2 + λh0qH(0)+λc0qC(0)]p0

+ [µ1q0−I1q1+λqF (0)+λh1qH(0)+λc1qC(0)]p1

+ [µ2q0−I2q2+λ1qF (0)+λh2qH(0)+λc2qC(0)]p2

+
∫ ∞

0
[q′F (x)−α(x)qF (x)+q0α(x)]pF (x)dx

+
∫ ∞

0
[q′H(x)−β(y)qH(y)+q0β(y)]pH(y)dy

+
∫ ∞

0
[q′C(z)−γ(z)qC(z)+q0γ(z)]pC(z)dz

.

Therefore, we get the expression of A∗

A∗



q0

q1

q2

qF (x)
qH(y)
qC(z)


=



−I0q0 + λ0q1 + λq2

+λh0qH(0) + λc0qC(0)
µ1q0 − I1q1 + λqF (0)
+λh1qH(0) + λc1qC(0)
µ2q0 − I2q2 + λ1qF (0)
+λh2qH(0) + λc2qC(0)

q′F (x)−α(x)qF (x)+q0α(x)
q′H(x)−β(y)qH(y)+q0β(y)
q′C(z)−γ(z)qC(z)+q0γ(z)


(8)

with domain

D(A∗)=


(q0, q1, q2, qF (x), qH(y), qC(z))
∈ R3 × (L∞(R+))3 = X∗
qF (x), qH(y), qC(z)
are absolutely continuous, and
q′F (x), q′H(y), q′C(z) ∈ L∞(R+)


(9)

3 Spectral analysis of A
In this section we shall carry out a complete spectral
analysis of A. In what follows we always regard X as
a complex Banach space.

3.1 Spectral analysis
Let s ∈ C. For any F ∈ X fixed, we consider
the resolvent equation [sI − A]P = F where P =
(p0, p1, p2, pF (x), pH(y), pC(z)) ∈ D(A). That is

(s+I0)p0−
2∑

j=1
µjpj−

∫∞
0 α(x)pF (x)dx

−
∫∞
0 β(y)pH(y)dy−

∫∞
0 γ(z)pC(z)dz = f0,

−λ0p0 + (s + I1)p1 = f1,
−λp0 + (s + I2)p2 = f2,
p′F (x) + (s + α(x))pF (x) = fF (x),
p′H(y) + (s + β(y))pH(y) = fH(y),
p′C(z) + (s + γ(z))pC(z) = fC(z),

(10)
and boundary conditions

pF (0) = λp1 + λ1p2,

pH(0) =
2∑

j=0
λhj

pj ,

pC(0) =
2∑

j=0
λcjpj .

(11)

Solving the differential equations in (10) we get the
formal solution

pF (x) = pF (0)e−
R x
0 (s+α(τ))dτ

+
∫ x
0 e−

R x
r (s+α(τ))dτfF (r)dr,

pH(y) = pH(0)e−
R y
0 (s+β(τ))dτ

+
∫ y
0 e−

R y
r (s+β(τ))dτfH(r)dr,

pC(z) = pC(0)e−
R z
0 (s+γ(τ))dτ

+
∫ z
0 e−

R z
r (s+γ(τ))dτfC(r)dr.

(12)
In order that pF (x), pH(y), pC(z) ∈ L1(R+), it

must hold that

e−
R x
0 (s+α(τ))dτ , e−

R y
0 (s+β(τ))dτ , e−

R z
0 (s+γ(τ))dτ ,∫ x

0 e−
R x

r (s+α(τ))dτfF (r)dr,
∫ y
0 e−

R y
r (s+β(τ))dτfH(r)dr,∫ z

0 e−
R z

r (s+γ(τ))dτfC(r)dr ∈ L1(R+).

These imply that s must satisfy conditions

supr≥0

∫∞
r e−

R x
r (<s+α(τ))dτdx < ∞,

supr≥0

∫∞
r e−

R y
r (<s+β(τ))dτdy < ∞,

supr≥0

∫∞
r e−

R z
r (<s+γ(τ))dτdz < ∞.

Therefore, we define non-negative real numbers µ̂α,
µ̂β and µ̂γ as follows

µ̂α = sup{η ≥ 0
∣∣ sup

r≥0

∫∞
0 eηx−

R x
0 α(τ+r)dτdx < ∞},

µ̂β = sup{η ≥ 0
∣∣ sup

r≥0

∫∞
0 eηy−

R y
0 β(τ+r)dτdy < ∞},

µ̂γ = sup{η ≥ 0
∣∣ sup

r≥0

∫∞
0 eηz−

R z
0 γ(τ+r)dτdz < ∞}, .
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Obviously, when η < µ̂α, then the integral for ∀r ≥ 0,∫ ∞

r
e−

R x
r (α(τ)−η)dτdx=

∫ ∞

0
e−

R x
0 (α(τ+r)−η)dτdx <∞,

while for η > µ̂α, it must be∫ ∞

r
e−

R x
r (α(τ)−η)dτdx = ∞.

For the other integrals, similar results hold true.
Note that real numbers µ̂α, µ̂β, µ̂γ are the mea-

sure of essential repair rate of the system. Set

µ̂ = min{µ̂α, µ̂β , µ̂γ}. (13)

Obviously, when Rs + µ̂ < 0, at least one of
pF (x), pH(y), pC(z) given in (12) is not in L1(R+).
Therefore, {s ∈ C

∣∣ <s + µ̂ < 0} ⊂ σ(A).
Without loss of generality we can assume that

the functions e−
R x
0 (α(τ+r)−bµα)dτ , e−

R y
0 (β(τ+r)−bµβ)dτ

and e−
R z
0 (γ(τ+r)−bµγ)dτ are uniformly bounded in

(x, r), (y, r) and (z, r), respectively. Set

Nα = supr,x≥0 e−
R x
0 (α(τ+r)−bµα)dτ ,

Nβ = supr,y≥0 e−
R y
0 (β(τ+r)−bµβ)dτ ,

Nγ = supr,z≥0 e−
R x
0 (γ(τ+r)−bµγ)dτ .

For Rs + µ̂ > 0, we have the following estimates∫ ∞

0
|pF (x)|dx

≤ |pF (0)|
∫ ∞

0
e−

R x
0 (<s+α(τ))dτdx

+
∫ ∞

0
|fF (r)|dr

∫ ∞

r
e−

R x
r (<s+α(τ))dτdx

≤ |pF (0)| Nα

<s + µ̂α
+

Nα

<s + µ̂α
||fF ||L1 ,

∫ ∞

0
|pH(y)|dy

≤ |pH(0)|
∫ ∞

0
e−

R y
0 (<s+β(τ))dτdy

+
∫ ∞

0
|fH(r)|dr

∫ ∞

r
e−

R y
r (<s+β(τ))dτdy

≤ |pH(0)|
Nβ

<s + µ̂β
+

Nβ

<s + µ̂β
||fH ||L1 ,

∫ ∞

0
|pC(z)|dz

≤ |pC(0)|
∫ ∞

0
e−

R z
0 (<s+γ(τ))dτdz

+
∫ ∞

0
|fC(r)|dr

∫ ∞

r
e−

R z
r (<s+γ(τ))dτdz

≤ |pC(0)| Nγ

<s + µ̂γ
+

Nγ

<s + µ̂γ
||fC ||L1 .

So we have pF (x), pH(y), pC(z) ∈ L1(R+). Note
that these functions are the formal solution of the dif-
ferential equations in (10). Substituting them into
the first equation in (10) and the boundary conditions
(11) lead to algebraic equations with unknown vari-
ants p0, p1, p2, pF (0), pH(0) and pC(0)

(s + I0)p0 − µ1p1 − µ2p2 − pF (0)(1− sGα(s))
−pH(0)(1− sGβ(s))− pC(0)(1− sGγ(s)) = f̂0,
−λ0p0 + (s + I1)p1 = f1,
−λp0 + (s + I2)p2 = f2,
−λp1 − λ1p2 + pF (0) = 0,
−λh0p0 − λh1p1 − λh2p2 + pH(0) = 0,
−λc0p0 − λc1p1 − λc2p2 + pC(0) = 0.

(14)
Eliminating pF (0), pC(0) and pH(0) from above
equations yield

[s + λ + λ0 + s(λh0Gβ(s) + λc0Gγ(s))]p0

+[s(λGα(s) + λh1Gβ(s) + λc1Gγ(s))− I1]p1

+[s(λ1Gα(s)+λh2Gβ(s)+λc2Gγ(s))−I2]p2 = f̂0,
−λ0p0 + (s + I1)p1 = f1,
−λp0 + (s + I2)p2 = f2

(15)
where

Gα(s) =
∫∞
0 e−

R x
0 (s+α(τ))dτdx,

Gβ(s) =
∫∞
0 e−

R y
0 (s+β(τ))dτdy,

Gγ(s) =
∫∞
0 e−

R z
0 (s+γ(τ))dτdz.

(16)

and the inhomogeneous term f̂0 is

f̂0 = f0 + Fα(s) + Fβ(s) + Fγ(s)

where

Fα(s) =
∫∞
0 α(x)dx

∫ x
0 fF (r)e−

R x
r [s+α(τ)]dτdr,

Fβ(s) =
∫∞
0 β(y)dy

∫ y
0 fH(r)e−

R y
r [s+β(τ)]dτdr,

Fγ(s) =
∫∞
0 γ(z)dz

∫ z
0 fC(r)e−

R z
r [s+γ(τ)]dτdr.

A direct calculation gives the determinant of the coef-
ficient matrix of (15)

D(s) = s{s2 + (I1 + I2 + λ + λ0)s
+(I1I2 + λI1 + λ0I2)
+Gα(s)[λ(λ0 + λ1)s + λ(λ0I2 + λ1I1)]
+Gβ(s)[λh0s

2 + (λh0I1+λh0I2 + λ0λh1 +λλh2)s
+λ0λh1I2 + λλh2I1 + λh0I1I2]
+Gγ(s)[λc0s

2 + (λc0I1 + λc0I2 + λ0λc1 + λλc2)s
+λ0λc1I2 + λλc2I1 + λc0I1I2]}.

(17)
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If s1 ∈ C such that D(s1) 6= 0, solving the alge-
braic equations (15) we can get

p
(s1)
0 = 1

D(s1) [d11(s1)f̂0 + d21(s1)f1 + d31(s1)f2],

p
(s1)
1 = 1

D(s1) [d12(s1)f̂0 + d22(s1)f1 + d32(s)f2],

p
(s1)
2 = 1

D(s1) [d13(s1)f̂0 + d23(s1)f1 + d33(s1)f2]
(18)

where dij(s1)(i, j = 1, 2, 3) are the algebraic cofactor
of D(s1), they are given by

d11(s1) = (s1 + I1)(s1 + I2),
d21(s1) = −(s1 + I2)
×[s1(λGα(s1) + λh1Gβ(s1) + λc1Gγ(s1))− I1],
d31(s1) = −(s1 + I1)
×[s1(λ1Gα(s1) + λh2Gβ(s1) + λc2Gγ(s1))− I2],
d12(s1) = λ0(s1 + I2),
d22(s1) = (s1 + I2)
×[s1 + λ + λ0 + s1(λh0Gβ(s1) + λc0Gγ(s1))]
+λ[s1(λ1Gα(s1) + λh2Gβ(s1)+λc2Gγ(s1))−I2],
d32(s1) = −λ0

×[s1(λ1Gα(s1) + λh2Gβ(s1) + λc2Gγ(s1))−I2],
d13(s1) = λ(s1 + I1),
d23(s1) = −λ
×[s1(λGα(s1) + λh1Gβ(s1) + λc1Gγ(s1))− I1],
d33(s1) = (s1 + I1)
×[s1 + λ + λ0 + s1(λh0Gβ(s1) + λc0Gγ(s1))]
+λ0[s1(λGα(s1)+λh1Gβ(s1)+λc1Gγ(s1))−I1].

(19)
From (11) we can get

p
(s1)
F (0)= λ

D(s1)[d12(s1)f̂0+d22(s1)f1+d32(s1)f2]

+ λ1
D(s1) [d13(s1)f̂0 + d23(s1)f1 + d33(s1)f2],

p
(s1)
H (0)= λh0

D(s1)[d11(s1)f̂0+d21(s1)f1+d31(s1)f2]

+ λh1
D(s1) [d12(s1)f̂0 + d22(s1)f1 + d32(s1)f2]

+ λh2
D(s1) [d13(s1)f̂0 + d23(s1)f1 + d33(s1)f2],

p
(s1)
C (0)= λc0

D(s1)[d11(s1)f̂0+d21(s1)f1+d31(s1)f2]

+λc1
1

D(s1) [d12(s1)f̂0 + d22(s1)f1 + d32(s1)f2]

+λc2
1

D(s1) [d13(s1)f̂0 + d23(s1)f1 + d33(s1)f2].
(20)

According to (12) we have

p
(s1)
F (x) = p

(s1)
F (0)e−

R x
0 (s1+α(τ))dτ

+
∫ x
0 e−

R x
r (s1+α(τ))dτfF (r)dr,

p
(s1)
H (y) = p

(s1)
H (0)e−

R y
0 (s1+β(τ))dτ

+
∫ y
0 e−

R y
r (s1+β(τ))dτfH(r)dr,

p
(s1)
C (z) = p

(s1)
C (0)e−

R z
0 (s1+γ(τ))dτ

+
∫ z
0 e−

R z
r (s1+γ(τ))dτfC(r)dr.

(21)

Thus we obtain unique a solution of (10) and (11) in
X whose entries are determined by (18) and (21). So

P = (p(s1)
0 , p

(s1)
1 , p

(s1)
2 , p

(s1)
F (x), p(s1)

H (y), p(s1)
C (z)) ∈

D(A) and (s1I −A)P = F . Therefore, s1 ∈ ρ(A).
For s ∈ C with <s+ µ̂ > 0, the functions Gα(s),

Gβ(s) and Gγ(s) defined by (16) have meaning. If
s0 ∈ C with <s0 + µ̂ > 0 such that D(s0) = 0, the
homogeneous algebraic equations for s = s0

(s + I0)p0 − µ1p1 − µ2p2 − pF (0)(1− sGα(s))
−pH(0)(1− sGβ(s))− pC(0)(1− sGγ(s)) = 0,
−λ0p0 + (s + I1)p1 = 0,
−λp0 + (s + I2)p2 = 0,
−λp1 − λ1p2 + pF (0) = 0,
−λh0p0 − λh1p1 − λh2p2 + pH(0) = 0,
−λc0p0 − λc1p1 − λc2p2 + pC(0) = 0

(22)
have a non-zero solution of the form

p
(s0)
0 = (s0 + I1)(s0 + I2),

p
(s0)
1 = λ0(s0 + I2),

p
(s0)
2 = λ(s0 + I1),

p
(s0)
F (0) = λλ0(s0 + I2) + λ1λ(s0 + I1),

p
(s0)
H (0) = λh0(s0 + I1)(s0 + I2)

+λh1λ0(s0 + I2) + λh2λ(s0 + I1),
p
(s0)
C (0) = λc0(s0 + I1)(s0 + I2)

+λc1λ0(s0 + I2) + λc2λ(s0 + I1).

(23)

Using (12) with fF (x) = fH(y) = fC(z) = 0 and
(23) we can show that the functions

p
(s0)
0 = (s0 + I1)(s0 + I2)

p
(s0)
1 = λ0(s0 + I2)

p
(s0)
2 = λ(s0 + I1)

p
(s0)
F (x) =

= [λλ0(s0 + I2) + λ1λ(s0 + I1)]e−
R x
0 (s0+α(τ))dτ

p
(s0)
H (y) =[λh0(s0+I1)(s0+I2)+λh1λ0(s0+I2)

+λh2λ(s0 + I1)]e−
R y
0 (s0+β(τ))dτ

p
(s0)
C (x) = [λc0(s0+I1)(s0+I2)+λc1λ0(s0+I2)

+λc2λ(s0 + I1)]e−
R z
0 (s0+γ(τ))dτ

(24)
satisfy the homogeneous equations (10) with f0 =
f1 = f2 = fF (x) = fH(y) = fC(z) = 0 and
(11) and p

(s0)
F (x), p(s0)

H (y), p(s0)
C (z) ∈ L1(R+) for

<z + µ̂ > 0. Set

P (s0) = (p(s0)
0 , p

(s0)
1 , p

(s0)
2 , p

(s0)
F (x), p(s0)

H (y), p(s0)
C (z)),

we have P (s0) ∈ D(A) and AP (s0) = s0P
(s0). So s0

is an eigenvalue of A.
Summarizing the discussion above, we have

proved the following result.
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Theorem 2. Let X and A be defined as before, and µ̂
be defined by (13). Then the following assertions are
true:

1) The half-plane {s ∈ C
∣∣ Rs + µ̂ < 0} are in

the spectrum of A;
2) The set {s ∈ C

∣∣ Rs + µ̂ > 0, D(s) 6= 0} is in
the resolvent set of A;

3) The set {s ∈ C
∣∣ <s + µ̂ > 0, D(s) = 0}

consists of all eigenvalues of A;
4) The spectrum σ(A) distributes symmetrically

with respect to the real axis.

Note that when s1 ∈ C with <s1 + µ̂ > 0 and
D(s1) 6= 0, we have s1 ∈ ρ(A). So the solution of
(10) and (11) is given by P = R(s1,A)F . In this
case, according to the previous calculation, we have
norm estimate

||P ||X =
2∑

i=0

|p(s1)
i |+

∫ ∞

0
|p(s1)

F (x)|dx

+
∫ ∞

0
|p(s1)

H (y)|dy +
∫ ∞

0
|p(s1)

C (z)|dz

≤
2∑

i=0

|p(s1)
i |

+ N
[|p(s1)

F (0)|+ |p(s1)
H (0)|+ |p(s1)

C (0)|]
<s1 + µ̂

+ N
[||fF ||L1 + ||fH ||L1 + ||fC ||L1 ]

<s1 + µ̂

where N = max{Nα, Nβ , Nγ}.
We estimate the term

2∑
i=0

|p(s1)
i |+N

[|p(s1)
F (0)|+|p(s1)

H (0)|+|p(s1)
C (0)|]

<s1 + µ̂

≤ (1 +
N(λh0 + λc0)
<s1 + µ̂

)|p(s1)
0 |

+(1 +
N(λ + λh1 + λc1)

<s1 + µ̂
)|p(s1)

1 |

+(1 +
N(λ1 + λh2 + λc2)

<s1 + µ̂
)|p(s1)

2 |

≤ N1

2∑
i=0

|p(s1)
i |

where N1 is the maximum value of (1+ N(λh0
+λc0 )

<s1+bµ ),

(1 + N(λ+λh1
+λc1 )

<s1+bµ ) and (1 + N(λ1+λh2
+λc2 )

<s1+bµ ). Ac-
cording to (18) it holds

2∑
i=0

|p(s1)
i | ≤

max
1≤i≤3

3∑
j=1

|dij(s1)|(|f̂0|+ |f1|+ |f2|)

|D(s1)|
,

while

|f̂0|+ |f1|+ |f2|
= |f0|+ |f1|+ |f2|+ |Fα(s1)|

+|Fβ(s1)|+ |Fγ(s1)|

≤ |f0|+ |f1|+ |f2|+ ||fF ||L1 [1 +
Nα|<s1|
<s1 + µ̂α

]

+||fH ||L1 [1 +
Nβ|<s1|
<s1 + µ̂β

]

+||fC ||L1 [1 +
Nγ |<s1|
<s1 + µ̂γ

]

≤ [1 +
N |<s1|
<s1 + µ̂

]||F ||X,

so we have
2∑

i=0

|p(s1)
i |

≤
max
1≤i≤3

3∑
j=1

|dij(s1)|

|D(s1)|

[
1 +

N |<s1|
<s1 + µ̂

]
||F ||X.

Using (19) we can get that there is a positive constant
M such that

max
1≤i≤3

3∑
j=1

|dij(s1)| ≤ M

(
|s1|3 +

N

(<s1 + µ̂)

)
for ∀<s1 + µ̂ > 0. Therefore, we have

||P ||X ≤
2∑

i=0

|p(s1)
i |

+
N

<s1 + µ̂

[
|p(s1)

F (0)|+ |p(s1)
H (0)|+ p

(s1)
C (0)

]
+

N

<s1 + µ̂
[||fF ||L1 + ||fH ||L1 + ||fC ||L1 ]

≤ N1

2∑
i=0

|p(s1)
i |+ N

||fF ||L1 +||fH ||L1 +||fC ||L1

<s1 + µ̂

≤ N1
M

|D(s1)|

(
|s1|3 +

N

(<s1 + µ̂)

)
×

[
1 +

N |<s1|
<s1 + µ̂

]
||F ||X +

N

<s1 + µ̂
||F ||X

≤ H(s1)||F ||X

where H(s1)= MN1
|D(s1)|

(
|s1|3+ N

(<s1+bµ)

) [
1+ N |<s1|

<s1+bµ
]
+

N
<s1+bµ .

Since D(s) is analysis in the half-plane <s+ µ̂ >

0, we have lim
=s→∞

D(s)
s3+I0I1I2

= 1, the limit is uni-

formly in the region <s + µ̂ ≥ δ > 0. So the
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term

“
|s1|3+ N

(<s1+bµ)

”
|D(s1)| is bounded as |=s1| → ∞ with

<s1 + µ̂ ≥ δ > 0. We can define the number

M(<s1) =
|D(s1)|

|s1|3 + I0I1I2
(<s1 + µ̂)H(s1).

Obviously, when <s1 + µ̂ ≥ δ > 0, M(<s1) is
bounded uniformly. In addition, A is a dissipative
operator in X, we also have ||R(s1, A)|| ≤ 1

<s1
as

<s1 > 0. So far we have proved the following result.

Theorem 3. Let X andA be defined as before, and let
D(s) be defined by (17). Then for any s ∈ {s ∈ C

∣∣
<s + µ̂ > 0, D(s) 6= 0}, there exists a nonnegative
function M(<s) such that

||R(s,A)|| ≤ (|s|3 + I0I1I2)M(<s)
|D(s)|(<s + µ̂)

.

In particular, when<s > 0, it holds that ||R(s,A)|| ≤
1
<s .

As a consequence of Theorem 3, we have the fol-
lowing corollary thank to the semigroup theory (see,
[13]).

Corollary 4. Let A be defined by (5)-(6), and let the
conditions (3) and (4) hold. Then A generates a C0-
semigroup on X of contraction. Hence the system (7)
is well-posed in X.

3.2 Eigenvalues of A and their distribution
From Theorem 2 we see that s ∈ C with <s + µ̂ > 0
is an eigenvalue of A if and only if D(s) = 0. Since
A is a dissipative operator, we have σ(A) ⊂ {s ∈
C

∣∣ <s ≤ 0}. Therefore, we only need to discuss
zero of D(s) in the region <s + µ̂ > 0 and <s ≤ 0.
In this subsection, we shall discuss the existence of
eigenvalues of A.

3.2.1 Eigenvalue 0
From (17) we see that s = 0 is a zero of D(s), denote
it γ0 = 0. The functions defined by (24) with s0 = 0
are the formal solution to the eigenvalue problem of
A. If µ̂ > 0, they are in L1(R+) and hence s0 = 0
is always an eigenvalue of A. If µ̂ = 0, we have the
following result.

Theorem 5. Let X and A be defined as before. If
α(x), β(y) and γ(z) satisfy the condition

e−
R x
0 α(τ)dτ , e−

R y
0 β(τ)dτ , e−

R z
0 γ(τ)dτ ∈ L1(R+).

(25)

then γ0 = 0 is a simple eigenvalue of A, and corre-
sponding an eigenvector is

P̂0 =
1
Z

(p(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
F (x), p(0)

H (y), p(0)
C (z))

(26)
where

p
(0)
0 = I1I2,

p
(0)
1 = λ0I2,

p
(0)
2 = λI1,

p
(0)
F (x)=[λλ0I2+λ1λI1]e−

R x
0 α(τ)dτ ,

p
(0)
H (y)=[λh0I1I2+λh1λ0I2+λh2λI1]e−

R y
0 β(τ)dτ ,

p
(0)
C (z)=[λc0I1I2+λc1λ0I2+λc2λI1]e−

R z
0 γ(τ)dτ

(27)
and

Z = I1I2 + λ0I2 + λI1 + [λλ0I2 + λ1λI1]Gα(0)
+[λh0I1I2 + λh1λ0I2 + λh2λI1]Gβ(0)
+[λc0I1I2 + λc1λ0I2 + λc2λI1]Gγ(0)

(28)
In particular, the entries of P̂0 are positive and
||P̂0||X = 1.

Proof: We verify all assertions by three steps.
Step 1: γ0 = 0 is an eigenvalue of A.
Under the condition (25) the functions defined in

(27) are in L1(R+). Hence

P̂0 =
1
Z

(p(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
F (x), p(0)

H (y), p(0)
C (z))

is element of D(A) whose entry are determined by
(27) and AP̂0 = 0. Therefore, 0 is an eigen-
value of A and P̂0 is an eigenvector. Obviously, the
p
(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
F (x), p(0)

H (y), p(0)
C (z) defined in (27)

are positive. Therefore, P̂0 is a positive vector in X.
In particular, the eigen-subspace corresponding to γ0

is one-dimensional.
Step 2. 0 is an eigenvalue of A∗ and Q0 =

(1, 1, 1, 1, 1, 1) ∈ D(A∗) is a corresponding eigen-
function.

From the expression of A∗ in (8)–(9) we see that
Q0 = (1, 1, 1, 1, 1, 1) ∈ D(A∗) and A∗Q = 0. So Q
is an eigenvector of A∗ corresponding of to 0.

Step 3: 0 is a simple eigenvalue of A.
Let P̂0 = 1

Z (p(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
F (x), p(0)

H (y), p(0)
C (z))

whose entry is determined by (27) and
Q0 = (1, 1, 1, 1, 1, 1). Then we have

〈P̂0, Q0〉 = 1
Z

2∑
i=0

p
(0)
i + 1

Z

∫∞
0 p

(0)
F (x)dx

+ 1
Z

∫∞
0 p

(0)
H (y)dy + 1

Z

∫∞
0 p

(0)
C (z)dz

= ||P̂0||X = 1

Therefore, 0 is a simple eigenvalue of A. �
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Theorem 6. If the functions α(x), β(y) and γ(z) sat-
isfy conditions

sup
r∈R+

∫∞
r e−

R x
r α(τ)dsdτ < ∞,

sup
r∈R+

∫∞
r e−

R y
r β(τ)dτdy < ∞,

sup
r∈R+

∫∞
r e−

R z
r γ(τ)dτdz < ∞,

(29)

then iR\{0} ⊂ ρ(A).

Proof If (29) hold, then (25) also hold. In this case,
0 always is an eigenvalue of A. So we only need to
prove that the condition (29) implies that iR\{0} ⊂
ρ(A).

For any b ∈ R,b 6= 0, the matrix ∆(ib) of coeffi-
cients of (22) is

0BBBBB@
ib + I0 −µ1 −µ2 −fα(ib) −fβ(ib) −fγ(ib)
−λ0 ib + I1 0 0 0 0
−λ 0 ib + I2 0 0 0
0 −λ −λ1 1 0 0

−λh0 −λh1 −λh2 0 1 0

−λc0 −λc1 −λc2 0 0 1

1CCCCCA (30)

where fα(s) = 1− sGα(s),fβ(s) = 1− sGβ(s) and
fγ(s) = 1− sGγ(s). Since

I0 = λ0 + λ + λh0 + λc0 <
√

I2
0 + b2 = |I0 + ib|,

I1 = λ + µ1 + λh1 + λc1 <
√

I2
1 + b2 = |I1 + ib|,

I2 = λ1 + µ2 + λh2 + λc2 <
√

I2
2 + b2 = |I2 + ib|,

|fα(ib)| < 1,|fβ(ib)| < 1 and |fγ(ib)| < 1, ∆1(ib)
is a strictly diagonal-dominant matrix about column,
which implies D(ib) = det ∆1(ib) 6= 0,∀b 6= 0, b ∈
R. Therefore, there is not the eigenvalue of A on the
imaginary axis besides s = 0. In this case, the equa-
tions (15) has uniquely a solution p

(s1)
0 , p

(s1)
1 , p

(s1)
2

satisfaction (18) with s1 = ib. Under the con-
ditions (29), we can verify that the functions de-
fined by (21) with s1 = ib(b 6= 0) are in L1(R+),
so (p(s1)

0 , p
(s1)
1 , p

(s1)
2 , p

(s1)
F (x), p(s1)

H (y), p(s1)
C (z)) ∈

D(A) is unique a solution of resolvent equation (ibI−
A)P = F. Therefore, ib ∈ ρ(A), that is iR\{0} ⊂
ρ(A). �

The condition (29) is necessary for iR\{0} ⊂
ρ(A). If one of them fails, then the imaginary axis
will be in σ(A). Let us consider the following exam-
ple.

Example 3.1. Let functions α(x), β(y) and γ(z) be
given by

α(x) = (α + 1)
[ln(1 + x)]α

1 + x
,

β(y) = (β + 1)
[ln(1 + y)]β

1 + y
,

γ(x) = (γ + 1)
[ln(1 + z)]γ

1 + z
.

Their distributions are A(x) = 1 − exp(−[ln(1 +
x)]α+1), B(y) = 1 − exp(−[ln(1 + y)]β+1) and
Γ(z) = 1− exp(−[ln(1 + z)]γ+1), respectively.

Obviously, it holds that, for each r > 0,

exp([ln(1+r)]α+1)
∫ ∞

r
exp(−[ln(1+x)]α+1)dx < ∞

and

lim
r→∞

exp([ln(1+r)]α+1)
∫∞
r exp(−[ln(1+x)]α+1)dx

= lim
r→∞

1+r
(α+1)[ln(1+r)]α = ∞.

For for any f ∈ L1(R+), f(x) ≥ 0,∫ ∞

0

∣∣∣∣∫ x

0
e−

R x
r (ib+α(s))dsf(r)e−ibrdr

∣∣∣∣ dx

=
∫ ∞

0

∣∣∣∣∫ x

0
e−

R x
r α(s))dsf(r)dr

∣∣∣∣ dx

=
∫ ∞

0

∫ x

0
e−

R x
r α(s))dsf(r)drdx

=
∫ ∞

0
f(r)dr

∫ ∞

r
e−

R x
r α(s))dsdx

=
∫ ∞

0
f(r) exp([ln(1 + r)]α+1)dr∫ ∞

r
exp(−[ln(1 + x)]α+1)dx

The uniformly bounded principle asserts that there
is at least one f0 ∈ L1(R+) such that∫∞
0 f0(r) exp([ln(1 + r)]α+1)dr

∫∞
r exp(−[ln(1 +

x)]α+1)dx = ∞. Therefore, iR ⊂ σ(A).

3.3 Other eigenvalues
Theorem 7. Let X and A be defined as before. Sup-
pose that µ̂ = min{µ̂α, µ̂β, µ̂γ} > 0. Then σ(A) has
the following properties

(1). ∀δ > 0, there are at most finitely many eigen-
values of A in the region {s ∈ C

∣∣ <s + µ̂ ≥ δ};
(2). There exists a constant ω1 > 0 such that the

region {s ∈ C
∣∣ <s > −ω1} has only one eigenvalue

γ0 = 0.

Proof In the half-plane <s + µ̂ > 0 we have proved
that there are eigenvalues ofA only, and s is an eigen-
value of A if and only if D(s) = 0. When µ̂ > 0
there is only one zero of D(s) on the imaginary axis
according to Theorem 6. We consider the zeros of
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D(s) in the region −µ̂+ δ ≤ Rs < 0. Observing that
the functions fα(s) =

∫∞
0 α(x)e−

R x
0 (s+α(r))drdx,

fβ(s) =
∫∞
0 β(y)e−

R y
0 (s+β(r))drdy and fγ(s) =∫∞

0 γ(z)e−
R z
0 (s+γ(r))drdz are analysis in the region.

The Riemann Lemma asserts that

lim
=s→∞

fα(s) = lim
=s→∞

fβ(s) = lim
=s→∞

fγ(s) = 0.

Therefore, lim
=s→∞

D(s)
s3 = 1 is uniformly in the region

−µ̂+ δ ≤ <s ≤ 0. So D(s) has at most finite number
of zeros in −µ̂ + δ ≤ <s ≤ 0. So A has at most finite
number eigenvalue in −µ̂ + δ ≤ <s ≤ 0.

Set H1(s) = D(s)
s . So s 6= 0 is a zero of D(s) if

and only if it is that of H1(s). Since H1(s) = H1(s),
its zeros are symmetrically with respect to the real
axis. Note that µ̂ > 0 implies H1(ib) 6= 0, b ∈ R. Let
the zeros of H1(s) in the region −µ̂ + δ ≤ <s ≤ 0 be
zk, k = 1, 2, · · · ,m. We can set

ω1 = min
1≤k≤m

|<zk|.

There is no zero of H1(s) as <s > −ω1. Hence there
is only one eigenvalue γ0 = 0 of A in the region {s ∈
C

∣∣ <s > −ω1}. �
Now let us estimate the real part of zeros of

H1(s). For any s ∈ C with −µ̂ < <s ≤ 0, we have

H1(s) = s2 + (I1 + I2 + λ + λ0)s
+(I1I2 + λI1 + λ0I2)
+Gα(s)[λ(λ0 + λ1)s + λ(λ0I2 + λ1I1)]
+Gβ(s)[λh0s

2+(λh0I1+λh0I2+λ0λh1 +λλh2)s
+λ0λh1I2 + λλh2I1 + λh0I1I2]

+Gγ(s)[λc0s
2+(λc0I1 + λc0I2+λ0λc1 +λλc2)s

+λ0λc1I2 + λλc2I1 + λc0I1I2]
= h0(s)s2+[(I1+I2)h0(s)+λ0h1(s)+λh2(s)]s
+I1I2h0(s) + λ0I2h1(s) + λI1h2(s)

where

h0(s) = 1 + λh0Gβ(s) + λc0Gγ(s),

h1(s) = 1 + λGα(s) + λh1Gβ(s) + λc1Gγ(s),

h2(s) = 1 + λ1Gα(s) + λh2Gβ(s) + λc2Gγ(s).

If h0(s) 6= 0, we define functions fj(s), j = 1, 2 by

f1(s) =
−[(I1+I2)h0(s)+λ0h1(s)+λh2(s)]+

√
∆1(s)

2h0(s)
(31)

and

f2(s) =
−[(I1+I2)h0(s)+λ0h1(s)+λh2(s)]−

√
∆1(s)

2h0(s)
(32)

where

41(s) = [(I1 + I2)h0(s) + λ0h1(s) + λh2(s)]2

−4h0(s)[I1I2h0(s) + λ0I2h1(s) + λI1h2(s)].

Clearly, H1(s) = h0(s)(s − f1(s))(s − f2(s)) and
<f2(s) ≤ <f1(s). Therefore, s ∈ C such that
H1(s) = 0 if and only if h0(s) 6= 0 and

s = f1(s), or s = f2(s).

If h0(s) = 0, then s is a zero of H1(s) if and
only if it satisfies λ0h1(s)s + λh2(s)s + λ0I2h1(s) +
λI1h2(s) = 0.

We now calculate the function ∆1(s)

41(s)
= [(I1 + I2)h0(s) + λ0h1(s) + λh2(s)]2

− 4h0(s)[I1I2h0(s)+λ0I2h1(s)+λI1h2(s)]
= (I1 − I2)2h2

0(s) + [λ0h1(s) + λh2(s)]2

+ 2(I1−I2)λ0h0(s)h1(s)−2(I1−I2)λh0(s)h2(s)
= [(I1 − I2)h0(s) + λ0h1(s) + λh2(s)]2

−4(I1 − I2)λh0(s)h2(s).

Thus we have

|
√

∆1(s)| ≤ |I1 − I2||h0(s)|+ λ0|h1(s)|+ λ|h2(s)|
≤ |I1 − I2|h0(<s) + λ0h1(<s) + λh2(<s)

and

<f1(s) ≤ −(I1 + I2)
2

−<
(

λ0h1(s) + λh2(s)
2h0(s)

)
+
|I1 − I2|h0(<s) + λ0h1(<s) + λh2(<s)

2|h0(s)|

≤ −min{I1, I2} − <
(

λ0h1(s) + λh2(s)
2h0(s)

)
+

λ0h1(<s) + λh2(<s)
2h0(<s)

In particular, h0(r), h1(r) and h2(r) are the real
functions for r ∈ (−µ̂, 0), we have <f1(r) ≤
−min{I1, I2}.

Note that the real functions Gα(r), Gβ(r) and
Gγ(r) are nonnegative decreasing functions in −µ̂ <
r ≤ 0, we assume without loss of generality that

lim
r→−bµ

∫ ∞

0
e−

R x
0 (r+α(τ))dτdx = ∞,

lim
r→−bµ

∫ ∞

0
e−

R y
0 (r+β(τ))dτdy = Gβ(−µ̂) < +∞,

lim
r→−bµ

∫ ∞

0
e−

R z
0 (r+γ(τ))dτdz = Gγ(−µ̂) < +∞.
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Thus we have lim
r→−bµ H1(r)

=
{
−∞, −(λ0 + λ)µ̂ + (λ0I2 + λI1) < 0
+∞, −(λ0 + λ)µ̂ + (λ0I2 + λI1) > 0.

Obviously, when −(λ0 + λ)µ̂ + (λ0I2 + λI1) > 0,
there is no real zero of H1(r); when −(λ0 + λ)µ̂ +
(λ0I2 + λI1) < 0, there is at most two negative real
zero of H1(r), whose zeros are given by

r1,2 =
−[(I1+I2)h0(r)+λ0h1(r)+λh2(r)]±

√
∆1(r)

2h0(r)

where ∆1(r) ≥ 0. When I1 = I2, we have r1 = −I1

and

r2 = −I1 −
[λ0h1(r) + λh2(r)]

h0(r)

3.4 Special case
In this subsection we discuss the special case that
α(x), β(y) and γ(z) are the constant functions. In
this case, µ̂ = min{α, β, γ} and Gα(s) = (s +
α)−1,Gβ(s) = (s + β)−1 and Gγ(s) = (s + γ)−1.
Hence

H1(s) =
H2(s)

(s + α)(s + β)(s + γ)

and

H2(s) = s5 + a4s
4 + a3s

3 + a2s
2 + a1s + a0

where aj , j = 0, 1, 2, 3, 4 are real coefficients that are
determined via H1(s). Clearly, H2(s) has five zeros.

4 Analysis of Stability
4.1 Existence of positive solutions and con-

servation

In this subsection, we shall prove the existence of pos-
itive solutions to (1) and (2) since it is a practice prob-
lem. We complete the proof by showing A generates
positive semigroup on X. Firstly we recall some no-
tion.

Definition 8. Let X = R3 × (L1(R+))3 be the real
Banach space, and let

X+ ={(p0, p1, p2, pF (x), pH(y), pC(z)) ∈ X|pk ≥ 0}.

The set X+ is called a positive cone in X.
A bounded linear operator T is said to be a pos-

itive operator if TX+ ⊂ X+. A positive operator T
is said to be positive conservation if for any P ∈ X+,
||TP || = ||P ||.

A linear operator L : D(L) ⊂ X → X is said
to be dispersive if for any P ∈ D(L) there exists a
Φ ∈ X∗+ with ||Φ||X∗ ≤ 1 such that 〈P,Φ〉 = ||P+||
and 〈LP,Φ〉 ≤ 0, where X∗+ is the dual positive cone
in X∗

Note that (X, X+) is a Banach lattice. In par-
ticular, X∗ = R3 × (L1(R+))3 and X∗+ = R3

+ ×
(L∞+ (R+))3 where L∞+ (R+) consists of all nonneg-
ative functions in L∞(R+). So we have the following
result.

Theorem 9. Let space X and operator A be defined
as before. Then A generates a positive C0-semigroup
of contractions on X.

Proof Let A be defined by (5) and (6). According to
theory of the positive semigroup (see, [14]), A gen-
erates a positive C0-semigroup of contractions if and
only if A is a dispersive and R(I − A) = X. Since
Theorem 2 has asserted that R(I −A) = X, we only
need to prove A is a dispersive operator.

For each P ∈ D(A), we defined a vector

Φ = (sign+(p0), sign+(p1), sign+(p2),
sign+(pF (x)), sign+(pH(y)), sign+(pC(z)))

where P = (p0, p1, p2, pF (x), pH(y), pC(z)) and

sign+(pk(x)) =
{

1, pk(x) > 0
0, pk(x) ≤ 0

Clearly, Φ ∈ X∗+ and ||Φ||X∗ ≤ 1. Further we have

〈P,Φ〉 = p+
0 + p+

1 + p+
2 +

∫ ∞

0
p+

F (x)dx

+
∫ ∞

0
p+

H(y)dy +
∫ ∞

0
p+

C(z)dz

= ||P+||
and

〈AP, Φ〉
= (−I0p0 + µ1p1 + µ2p2)sign+(p0)

+sign+(p0)
∫ ∞

0
α(x)pF (x)dx

+sign+(p0)
∫ ∞

0
β(y)pH(y)dy

+sign+(p0)
∫ ∞

0
γ(z)pC(z)dz

+ (λ0p0−I1p1)sign+(p1)+(λp0−I2p2)sign+(p2)

−
∫ ∞

0
(p′F (x) + α(x)pF (x))sign+(pF (x))dx

−
∫ ∞

0
(p′H(y) + β(y)pH(y))sign+(pH(y))dy

−
∫ ∞

0
(p′C(z) + γ(z)pC(z))sign+(pC(z))dz
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≤ −(I0 − λ0 − λ)p+
0 − (I1 − µ1)p+

1

−(I2−µ2)p+
1 +p+

F (0)+p+
H(0)+p+

C(0)

where we have used the equalities∫ ∞

0
p′(x)sign+(p(x))dx = −p+(0).

Using the boundary conditions in D(A), we get

p+
F (0) + p+

H(0) + p+
C(0)

≤ (λh0 + λc0)p
+
0 + (λ + λh1 + λc1)p

+
1

+(λ1 + λh2 + λc2)p
+
2

= (I0 − λ0 − λ)p+
0 + (I1 − µ1)p+

1

+(I2 − µ2)p+
1 .

Therefore, we have 〈AP, Φ〉 ≤ 0 that means that A
is a dispersive operator in X. Since A generates a C0

semigroup, so the semigroup is a positive semigroup
on X. �

Theorem 10. Let T (t) be the positive semigroup gen-
erated by A. Then T (t) is the positive conserva-
tion, i.e., ‖T (t)P0‖ = ‖P0‖, t ≥ 0 provided that
P0 ∈ D(A)

⋂
X+.

Proof Let P0 ∈ D(A) and P0 > 0. Since T (t) is
a positive C0-semigroup, T (t)P0 ∈ D(A) ∩ X+ is a
classical solution of system (7). Set P (t) = T (t)P0

and

P (t) = (p0(t), p1(t), p2(t), pF (x, t), pH(y, t), pC(z, t)).

Thus P (t) satisfy equations (1) and (2) and has norm

‖P (t)‖ = p0(t) + p1(t) + p2(t)

+
∫ ∞

0
pF (x, t)dx +

∫ ∞

0
pH(y, t)dy

+
∫ ∞

0
pC(z, t)dz.

Using the partial differential equations (1) and bound-
ary conditions (2), we have

d

dt
‖P (t)‖ =

dp0(t)
dt

+
dp1(t)

dt
+

dp2(t)
dt

+
d

dt

∫ ∞

0
pF (x, t)dx+

d

dt

∫ ∞

0
pH(y, t)dy

+
d

dt

∫ ∞

0
pC(z, t)dz = 0,

this means that ||P (t)|| is constant in t. Therefore,
‖P (t)‖ = ‖P (0)‖ = ‖P0‖. By the density of D(A)
in X and continuity of T (t), the relation also holds on
X+. The proof is then complete. �

Theorems 9 and 10 together the semigroup theory
yield the following result.

Corollary 11. The differential equations (1) and (2)
have uniquely a positive solution for initial data P0 =
(1, 0, 0, 0, 0, 0) ∈ X.

4.2 Finite expansion of solution

From now on we suppose that µ̂ > 0. According to
the result of Theorem 7, for any small δ > 0, the re-
gion {s ∈ C

∣∣ −µ̂ + δ ≤ <s ≤ 0} has only finitely
many number of eigenvalues of A. Without loss of
generality we assume that Γ1 : <s = −µ̂+ δ ∈ ρ(A).

Let T (t) be the C0 semigroup generated by A.
According to theory of linear operator semigroup, for
α > 0, it holds that

T (t)P =
1

2πi

∫ α+i∞

α−i∞
estR(s,A)Pds, P ∈ X.

Now let

SM (t)P =
1

2πi

∫ −bµ+δ+iM

−bµ+δ−iM
estR(s,A)Pds.

For sufficient large M we have

1
2πi

∫ α+iM

α−iM
estR(s,A)Pds

=
∑

si∈σp(A),<si≥−bµ+δ

1
2πi

∫
|s−si|=ε

estR(s,A)Pds

+
1

2πi

∫ α

−bµ+δ
e(iM+γ)tR(iM + γ,A)Pdγ

− 1
2πi

∫ α

−bµ+δ
e(−iM+γ)tR(−iM + γ,A)Pdγ

+SM (t)P

Using the estimates in Theorem 3, we can get that

lim
M→∞

1
2πi

∫ α

−bµ+δ
e(iM+γ)tR(iM + γ,A)Pdγ = 0

and

lim
M→∞

1
2πi

∫ α

−bµ+δ
e(−iM+γ)tR(−iM+γ,A)Pdγ = 0.

Therefore, we have

T (t)P =
∑

si∈σp(A),<si≥−bµ+δ

T (t)E(si, A)P + S(t)P

where

S(t)P = lim
M→∞

SM (t)P

=
1

2πi

∫ −bµ+δ+i∞

−bµ+δ−i∞
estR(s,A)Pds.
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Obviously this presentation implies that there exists a
constant C > 0 such that

||S(t)P || ≤ Ce(−bµ+δ)t||P ||, ∀P ∈ X.

Therefore, we have the following result.

Theorem 12. Let X and A be defined as before
and T (t) be the semigroup generated by A. Sup-
pose that, for δ > 0 small enough, the eigenval-
ues of A in the half-plane <s ≥ −µ̂ + δ are given
by γ0, s1, s1, s2, s2, · · · , sm, sm with <sj+1 < <sj .
Then we have the finite expansion of the semigroup
T (t)

T (t)P = 〈P,Q〉P̂0+
m∑

j=1
T (t)[E(sj , A)+E(sj , A)]P

+S(t)P
(33)

where P̂0 = 1
Z (p0

0,p
0
1,p

0
2, p

0
F (x),p0

H(y), p0
C(z)) whose

entries are determined by (28), and Q =
(1, 1, 1, 1, 1, 1).

From Theorem 5 we see that P̂0 is the steady-state
solution with ||P̂0|| = 1. Due to <sj < 0 we see
from Theorem 12 that for any P ∈ X, lim

t→∞
T (t)P =

〈P,Q〉P̂0. In particular, we have the following esti-
mate for its convergence.

Corollary 13. Let X and A be defined as before, and
let T (t) be the semigroup generated by A. Suppose
that µ̂ > 0 and 0 < ω1 < |<s1|. Then for any initial
P (0), we have

‖P (t)− 〈P (0), Q〉P̂0‖ ≤ 2e−ω1t‖P (0)‖,∀t ≥ 0
(34)

where P (t) = T (t)P (0).

Proof Since the Riesz spectral project corresponding
to γ0 is given by

E(γ0,A)F =
1

2πi

∫
|s|=ε

R(s,A)Fds = 〈F,Q〉P̂0

for ∀F ∈ X. This leads to ‖E(γ0,A)‖ = ‖Q‖‖P̂0‖ =
1. Since T (t) is a semigroup in the subspace (I −
E(γ0,A))X, we have

‖P (t)− 〈P (0), Q〉P̂0‖
= ‖T (t)(I − E(γ0,A))P (0)‖
≤ 2e−ω1t‖P (0)‖.

The desired result follows. �

Remark 14. In Corollary 11, usually we have−ω1 6=
<s1. If s1 is an eigenvalue ofA without the send order
root vector, then we can take −ω1 = <s1.

5 Some indices of the system
5.1 The observable time
Quasi-exponential decaying of the system means that
one can see the steady state of system in a relatively
short period. For the system under consideration,
the dynamic solution of system is given by P (t) =
T (t)P (0)

= (p0(t), p1(t), p2(t), pF (x, t), pH(y, t), pC(z, t)).

with initial date P (0) = (1, 0, 0, 0, 0, 0) and the
steady-state of system is 〈P (0), Q〉P̂0 = P̂0 where

P̂0 =
1
Z

(p(0)
0 , p

(0)
1 , p

(0)
2 , p

(0)
F (x), p(0)

H (y), p(0)
C (z)),

and

p
(0)
0 = I1I2,

p
(0)
1 = λ0I2,

p
(0)
2 = λI1,

p
(0)
F (x) = [λλ0I2 + λ1λI1]e−

R x
0 α(τ)dτ ,

p
(0)
H (y)=[λh0I1I2+λh1λ0I2+λh2λI1]e−

R y
0 β(τ)dτ ,

p
(0)
C (z)=[λc0I1I2+λc1λ0I2+λc2λI1]e−

R z
0 γ(τ)dτ

(35)
and

Z = I1I2 + λ0I2 + λI1 + [λλ0I2 + λ1λI1]Gα(0)
+[λh0I1I2 + λh1λ0I2 + λh2λI1]Gβ(0)
+[λc0I1I2 + λc1λ0I2 + λc2λI1]Gγ(0)

(36)
For a system S, whose dynamic solution is P (t)

with initial data ||P0|| = 1 and the steady state is P̂0,
if there is a time τ0 such that when t > τ0, it holds
that ||P (t)− P̂0|| ≤ 0.25, then we say that we can see
the steady state of the system at τ0.

According to Corollary 13, we have estimate
‖P (t) − P̂0‖ ≤ 2e−ω1t. Obviously, for τ0 = 3 ln 2

ω1
,

when t > τ0, we have ‖P (t) − P̂0‖ ≤ 0.25. There-
fore, we can see the steady-state at τ0 = 3 ln 2

ω1
.

5.2 The estimation of availability of the sys-
tem

The instantaneous availability of the system is the
probability of the system in work, which is defined
by

V (t) = p0(t) + p1(t) + p2(t).

Since

|p0(t)− p0
0|+ |p1(t)− p0

1|+ |p2(t)− p0
2|

≤ ||P (t)− P̂0|| ≤ 2e−ω1t,
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while p0
0 + p0

1 + p0
2 = I1I2+λ0I2+λI1

Z , we have

|V (t)−I1I2 + λ0I2 + λI1

Z
| ≤ ||P (t)−P̂0|| ≤ 2e−ω1t.

Thus when t > 3 ln 2
ω1

, we can get that V (t) =
I1I2+λ0I2+λI1

Z + O(t), |O(t)| ≤ 0.25. Obviously, the
probability of system failure is∫ ∞

0
pF (x, t)dx+

∫ ∞

0
pH(y, t)dy +

∫ ∞

0
pC(z, t)dz.

It has an estimate 1−V (t) = 1− I1I2+λ0I2+λI1
Z ±0.25.

Note that the Z defined as (36) is a decrease func-
tion with respect to the repair rate α(x), β(y), γ(y).
When the repair rates are strength, the availability of
the system increases. and hence the reliability of the
system is enhanced.
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