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Abstract: Minimax single facility location problems in multidimensional space with Chebyshev distance are
examined within the framework of idempotent algebra. The aim of the study is twofold: first, to give a new
algebraic solution to the location problems, and second, to extend the area of application of idempotent algebra. A
new algebraic approach based on investigation of extremal properties of eigenvalues for irreducible matrices is de-
veloped to solve multidimensional problems that involve minimization of functionals defined on idempotent vector
semimodules. Furthermore, an unconstrained location problem is considered and then represented in the idempo-
tent algebra settings. A new algebraic solution is given that reduces the problem to evaluation of the eigenvalue
and eigenvectors of an appropriate matrix. Finally, the solution is extended to solve a constrained location problem.
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1 Introduction

Location problems [1] form one of the classical re-
search domains in optimization that has its origin dat-
ing back to XVIIth century and classical works by
P. Fermat, E. Torricelli, J. J. Sylvester, J. Steiner, and
A. Weber. Over many years a large body of research
on this topic contributed to the development in vari-
ous areas including integer programming, combinato-
rial and graph optimization (see, e.g. [1–6]).

Among other solution approaches to location
problems are models and methods of idempotent al-
gebra [7–12], which find expanding applications in
the analysis of actual problems in engineering, man-
ufacturing, information technology, and other fields.
Expressed in terms of idempotent algebra, a range of
problems that are nonlinear in the ordinary sense, be-
come linear and so allow more simple analysis and so-
lution techniques. Specifically, many classical prob-
lems in graph optimization and dynamic program-
ming reduce to solving linear vector equations, find-
ing eigenvalues and eigenvectors of matrices, and to
similar computational procedures.

A single facility one-dimensional location prob-
lem on a graph is examined in [8, 13], where it is

turned into a problem of minimizing a rational func-
tion in the idempotent algebra sense. However, the
proposed solution deals with polynomial and rational
functions of one variable, and becomes less or no ap-
plicable in the multidimensional case.

In [14, 15], a multidimensional constrained loca-
tion problem on a graph is reduced to minimization
of a max-separable objective function that can be rep-
resented as a maximum of functions each depending
only on one variable. An efficient computational pro-
cedure is proposed which, however, seems to have
limited application only to location problems where
the objective function appears to be max-separable.

In this paper, we further develop the algebraic ap-
proach proposed in [16–18]. We consider a multidi-
mensional minimax single facility location problem
with Chebyshev distance, and show how the problem
can be solved based on new results in the spectral the-
ory of matrices in idempotent algebra. The aim of the
paper is twofold: first, to give a new algebraic solution
to the location problem, and second, to extend the area
of application of idempotent algebra.

The rest of the paper is as follows. We begin with
an overview of preliminary definitions and results in
idempotent algebra, including basic concepts of scalar
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and matrix algebra, and elements of the spectral the-
ory of matrices. Furthermore, a new algebraic ap-
proach based on investigation of extremal properties
of eigenvalues for irreducible matrices is developed
to solve multidimensional problems that involve min-
imization of functionals defined on idempotent vector
semimodules.

We examine an unconstrained minimax location
problem and represent it in terms of idempotent alge-
bra. A new solution is given that reduces the problem
to evaluation of the eigenvalue and eigenvectors of an
irreducible matrix. Finally, the solution is extended to
solve a constrained location problem.

2 Preliminary Results
We start with a brief overview of definitions, notation
and preliminary results of idempotent algebra that un-
derlie the solution approach developed in subsequent
sections. Further details can be found in [7–12].

2.1 Idempotent Semifield
Let X be a set with two operations, addition ⊕ and
multiplication ⊗ , and their respective neutral ele-
ments, zero 0 and identity 1 . We suppose that
(X,0,1,⊕,⊗) is a commutative semiring where ad-
dition is idempotent and multiplication is invertible.
Since the nonzero elements of the semiring form a
group under multiplication, the semiring is usually re-
ferred to as idempotent semifield.

The integer power is defined in the ordinary way.
Let us put X+ = X\{0} . For any x ∈ X+ and integer
p > 0 , we have x0 = 1 , 0p = 0 , and

xp = xp−1 ⊗ x = x⊗ xp−1, x−p = (x−1)p.

We assume that the integer power can naturally be
extended to the case of rational and real exponents.

In what follows, we omit, as is customary, the
multiplication sign ⊗ . The power notation is used in
the sense of idempotent algebra.

The idempotent addition allows one to define a
relation of partial order ≤ such that x ≤ y if and
only if x⊕ y = y . From the definition it follows that

x ≤ x⊕ y, y ≤ x⊕ y,

as well as that the addition and multiplication are both
isotonic. Below the relation symbols and the operator
min are thought of as referring to this partial order.

It is easy to verify that the binomial identity now
takes the form

(x⊕ y)α = xα ⊕ yα

for all real α ≥ 0 .
As an example, one can consider the idempotent

semifield of real numbers

Rmax,+ = (R ∪ {−∞},−∞, 0,max,+).

In the semifield Rmax,+ , there are the null and
identity elements defined as 0 = −∞ and 1 = 0 .
For each x ∈ R , there exists its inverse x−1 equal to
the opposite number −x in conventional arithmetic.
For any x, y ∈ R , the power xy corresponds to the
arithmetic product xy . The partial order induced by
the idempotent addition coincides with the natural lin-
ear order defined on R .

2.2 Vectors and Matrices
Vector and matrix operations are routinely introduced
based on the scalar addition and multiplication defined
on X . Consider the Cartesian power Xn with its el-
ements represented as column vectors. For any two
vectors x = (xi) and y = (yi) , and a scalar c ∈ X ,
vector addition and multiplication by scalars follow
the rules

{x⊕ y}i = xi ⊕ yi, {cx}i = cxi.

A vector with all zero elements is referred to as
zero vector and denoted by 0 .

The set Xn with these operations is a vector semi-
module over the idempotent semifield X .

A vector y ∈ Xn is linearly dependent on vectors
x1, . . . ,xm ∈ Xn , if there are scalars c1, . . . , cm ∈ X
such that

y = c1x1 ⊕ · · · ⊕ cmxm.

In particular, the vector y is collinear with x , if
y = cx . The zero vector is dependent on any vector.

For any column vector x = (xi) ∈ X
n
+ , we

define a row vector x− = (x−i ) with its elements
x−i = x−1i . For all x,y ∈ X

n
+ , the componentwise

inequality x ≤ y implies x− ≥ y− .
For conforming matrices A = (aij) , B = (bij) ,

and C = (cij) , matrix addition and multiplication to-
gether with multiplication by a scalar c ∈ X are per-
formed according to the formulas

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj ,

{cA}ij = caij .
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A matrix with all zero entries is a zero matrix
which is denoted by 0 .

Consider the set of square matrices X
n×n . The

matrix that has all diagonal entries equal to 1 and off-
diagonal entries equal to 0 is an identity matrix de-
noted by I .

With respect to matrix addition and multiplica-
tion, the set Xn×n forms idempotent semiring with
identity.

For any matrix A 6= 0 and an integer p > 0 , the
power notation is routinely defined as

A0 = I, Ap = Ap−1A = AAp−1.

The trace of the matrix A = (aij) is calculated as

trA =

n⊕
i=1

aii.

A matrix is called irreducible if and only if it can-
not be put in a block triangular form by simultaneous
permutations of rows and columns. Otherwise the ma-
trix is reducible.

2.3 Eigenvalues and Eigenvectors
A scalar λ ∈ X is eigenvalue of a matrix A ∈ X

n×n

if there exists a nonzero vector x ∈ Xn such that

Ax = λx.

Any vector x 6= 0 that satisfies the above equality is
an eigenvector of A , corresponding to λ .

If the matrix A is irreducible, then it has only one
eigenvalue given by

λ =
n⊕

m=1

tr1/m(Am). (1)

The corresponding eigenvectors of A have no
zero entries and are found as follows. First we evalu-
ate the matrix

A× = λ−1A⊕ · · · ⊕ (λ−1A)n.

Let a×i be column i in A× , and a×ii be its diag-
onal element. Now each column a×i is replaced with
that defined as

a+
i =

{
a×i , if a×ii = 1,

0, otherwise.

Furthermore, the set of columns a+
i is reduced

by removing those columns, if any, that are linearly

dependent on others. Finally, the rest columns are put
together to form a matrix A+ .

The set of all eigenvectors of A corresponding to
λ (together with zero vector) coincides with the linear
span of the columns of A+ , whereas each vector takes
the form

x = A+v,

where v is a nonzero vector of appropriate size.

3 Extremal Property of Eigenvalues
Suppose A ∈ X

n×n is an irreducible matrix with an
eigenvalue λ . For each x ∈ Xn+ consider a function

ϕ(x) = x−Ax.

It has been shown in [19, 20] that ϕ(x) has a min-
imum equal to λ and attained at any eigenvector of A .

Now we improve this result by extending the set
of vectors that provide the minimum of ϕ(x) .

First we revise the above result as follows.

Lemma 1. Let A = (aij) ∈ Xn×n be an irreducible
matrix with an eigenvalue λ . Suppose u = (ui) and
v = (vi) are eigenvectors of the respective matrices
A and AT . Then it holds that

min
x∈Xn

+

x−Ax = λ, (2)

where the minimum is attained at u and (v−)T .

Proof. It is easy to verify that any vector x with
nonzero elements satisfies the inequality x−Ax ≥ λ .
Indeed, let us take the eigenvector u and note that
xu− ≥ (x−u)−1I . Furthermore, we have

x−Ax = x−Axu−u ≥ x−Au(x−u)−1 = λ.

It remains to present particular vectors x that turn
the inequality into an equality. With x = u we have

x−Ax = u−Au = λu−u = λ.

Similarly, when x = (v−)T , we get the equality

x−Ax = xTAT (x−)T = v−ATv = λv−v = λ,

which completes the proof.

Assuming that a matrix A = (aij) ∈ X
n×n is

irreducible and has an eigenvalue λ , we denote the
set of vectors x that give minimum of x−Ax = λ by

XA = arg min
x∈Xn

+

x−Ax.

Now we show that the set XA is closed under
main operations on vectors in X

n .
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Lemma 2. Suppose that x,y ∈ XA and c ∈ X . Then
the following statements are valid:

(a) cx ∈ XA ;

(b) x⊕ y ∈ XA ;

(c) (x− ⊕ y−)− ∈ XA .

Proof. The first statement is obvious. To verify the
next one, we take vectors x = (xi) and y = (yi) ,
and consider a vector z = (zi) defined as z = x⊕y .
With the condition x,y ∈ XA , we have

λ = x−Ax⊕ y−Ay

=
n⊕
i=1

n⊕
j=1

x−1i aijxj ⊕
n⊕
i=1

n⊕
j=1

y−1i aijyj

≥
n⊕
i=1

n⊕
j=1

(xi ⊕ yi)−1aij(xj ⊕ yj)

=

n⊕
i=1

n⊕
j=1

z−1i aijzj = z−Az.

Hence we arrive at the inequality λ ≥ z−Az .
Since the opposite inequality is always valid, we con-
clude that λ = z−Az . Therefore, z = x⊕ y ∈ XA .

The last statement is verified in much the same
way. We put z = (x− ⊕ y−)− and then note that

λ = x−Ax⊕ y−Ay

=

n⊕
i=1

n⊕
j=1

x−1i aijxj ⊕
n⊕
i=1

n⊕
j=1

y−1i aijyj

≥
n⊕
i=1

n⊕
j=1

(x−1i ⊕ y
−1
i )aij(x

−1
j ⊕ y

−1
j )−1

=
n⊕
i=1

n⊕
j=1

z−1i aijzj = z−Az.

The rest of the proof is as before.

Note that with the first and second statements of
Lemma 2, the set XA appears to be a vector subsemi-
module in the semimodule X .

Lemma 3. Suppose vectors x = (xi) and y = (yi)
satisfy the condition x,y ∈ XA . Then for all real α
such that 0 ≤ α ≤ 1 , it holds that xα1 y

1−α
1
...

xαny
1−α
n

 ∈ XA.

Proof. Assuming that z = (xα1 y
1−α
1 , . . . , xαny

1−α
n )T ,

where 0 ≤ α ≤ 1 , we have

λ = (x−Ax)α(y−Ay)1−α

=
n⊕
i=1

n⊕
j=1

x−αi aαijx
α
j

n⊕
k=1

n⊕
l=1

y
−(1−α)
k a1−αkl y1−αl

≥
n⊕
i=1

n⊕
j=1

x−αi y
−(1−α)
i aijx

α
j y

1−α
j

=

n⊕
i=1

n⊕
j=1

z−1i aijzj = z−Az.

Using the same arguments as in the previous
lemma, we arrive at the desired result z ∈ XA .

Consider a particular matrix A that has the form

A =


0 a12 . . . a1n
a21 0 . . . 0

...
...

. . .
...

an1 0 . . . 0

 , (3)

where all entries a12, . . . , a1n and a21, . . . , an1 are
assumed to be nonzero.

Denote the first column and row of A as follows:

a = (0, a21, . . . , an1)
T ,

b− = (0, a12, . . . , a1n).

Note that now we can write

x−Ax = x−a⊕ b−x.

It is not difficult to see that matrix (3) is irre-
ducible. In the case of this matrix, the result of
Lemma 3 can be refined as follows.

Lemma 4. Suppose vectors x = (xi) and y = (yi)
satisfy the condition x,y ∈ XA for matrix (3). Then
for all real αi such that 0 ≤ αi ≤ 1 , it holds that xα1

1 y1−α1
1
...

xαn
n y1−αn

n

 ∈ XA.

Proof. For each i = 1, . . . , n we take a number αi
such that 0 ≤ αi ≤ 1 , and define vectors

z =

 xα1
1 y1−α1

1
...

xαn
n y1−αn

n

 , zi =

 xαi
1 y

1−αi
1
...

xαi
n y

1−αi
n

 .
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It follows from Lemma 3 that z1, . . . ,zn ∈ XA .
Furthermore, we write

λ =

n⊕
i=1

z−i Azi =

n⊕
i=1

(z−i a⊕ b−zi)

=

n⊕
i=1

n⊕
j=1

(
x−αi
j y

−(1−αi)
j pj ⊕ q−1j xαi

j y
1−αi
j

)
≥

n⊕
i=1

(
x−αi
i y

−(1−αi)
i pi ⊕ q−1i xαi

i y
1−αi
i

)
= z−a⊕ b−z = z−Az.

The rest of the proof goes through as before.

By combining the results of Lemmas 1 and 4, we
can arrive at the following statement.

Lemma 5. Let A be a matrix defined as (3) with an
eigenvalue λ . Suppose u = (ui) and v = (vi) are
eigenvectors of the respective matrices A and AT .
Then (2) is valid for any vector

x =

 uα1
1 vα1−1

1
...

uαn
n vαn−1

n

 , 0 ≤ α1, . . . , αn ≤ 1.

Proof. It follows from Lemma 1, that u ∈ XA and
(v−)T ∈ XA . It remains to apply Lemma 4 so as to
complete the proof.

4 Unconstrained Location Problem
In this section we examine a minimax single facility
location problem with Chebyshev distance when no
constraints are imposed on the feasible location area.

Consider any two vectors r = (r1, . . . , rn)
T and

s = (s1, . . . , sn)
T in R

n . The Chebyshev distance
(L∞ or maximum metric) is calculated as

ρ(r, s) = max
1≤i≤n

|ri − si|. (4)

Given m ≥ 2 vectors ri = (r1i, . . . , rni)
T ∈ Rn

and constants wi ∈ R , i = 1, . . . ,m , the location
problem under examination is to determine the vectors
x = (x1, . . . , xn)

T ∈ Rn that provide the minimum

min
x∈Rn

max
1≤i≤m

(ρ(ri,x) + wi). (5)

Note that such problems are known as un-
weighted Rawls problems with addends [5]. Follow-
ing the terminology of [4], the problem can also be

referred to as the multidimensional Chebyshev Mes-
senger Boy Problem.

It is not difficult to solve the problem on the plane
by using geometric arguments (see, eg, [3, 6]). Below
we give a new algebraic solution that is based on rep-
resentation of the problem in terms of the idempotent
semifield Rmax,+ , and application of the result from
the previous section.

4.1 Algebraic Representation
First we rewrite (4) as follows

ρ(r, s) = s−r ⊕ r−s.

Denote the objective function in problem (5) by
ϕ(x) and write

ϕ(x) =
m⊕
i=1

wiρ(ri,x).

With the vectors

p = w1r1 ⊕ · · · ⊕ wmrm,
q− = w1r

−
1 ⊕ · · · ⊕ wmr

−
m,

we have

ϕ(x) =
m⊕
i=1

wi(x
−ri ⊕ r−i x) = x−p⊕ q−x,

and then represent problem (5) as

min
x∈Rn

ϕ(x). (6)

Furthermore, we introduce a vector

y =


y0
y1
...
yn

 =

(
1

x

)
,

and a matrix of order n+ 1

A =

(
0 q−

p 0

)
.

Since we now have

ϕ(x) = x−p⊕ q−x = y−Ay,

problem (6) reduces to that of the form

min
y∈Rn+1

y−Ay. (7)

Note that the vectors y ∈ Rn+1 that solve (7) do
not always have an appropriate form to give a solution
to (6). Specifically, to be consistent to (6), the vector
y must have the first element equal to 1 .
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4.2 Algebraic Solution
Consider problem (7), and note that the matrix A has
the form of (3) and it is irreducible. It follows from
Lemma 5 that

min
y∈Rn+1

y−Ay = λ,

where λ is the eigenvector of A , and the minimum is
attained at a vector that is obtained from eigenvectors
u = (ui) and v = (vi) of matrices A and AT .

First we evaluate λ . For all k = 1, 2, . . . we have

A2k−1 = (q−p)k−1
(

0 q−

p 0

)
,

A2k = (q−p)k−1
(

q−p 0

0 pq−

)
,

and therefore,

tr(A2k−1) = 0,

tr(A2k) = (q−p)k.

Finally, application of (1) gives

λ =
n⊕

m=1

tr1/m(Am) = (q−p)1/2.

To get vectors that produce the minimum in (7),
we need to derive the eigenvectors of the matrices A
and AT . Note that AT is obtained from A by replace-
ment of p with (q−)T and q− with pT . Therefore,
it will suffice to find the eigenvectors for A , and then
turn them into those for AT by the above replacement.

To obtain the eigenvectors of A , we consider the
matrix

λ−1A = (q−p)−1/2
(

0 q−

p 0

)
.

Since for any k = 1, 2, . . . it holds that

(λ−1A)2k−1 = (q−p)−1/2
(

0 q−

p 0

)
,

(λ−1A)2k = (q−p)−1
(

q−p 0

0 pq−

)
,

we arrive at the matrix A× in the form

A× = λ−1A⊕ · · · ⊕ (λ−1A)n+1

=

(
1 (q−p)−1/2q−

(q−p)−1/2p (q−p)−1pq−

)
.

It is not difficult to verify that in the matrix A× ,
any column that has 1 on the diagonal is collinear
with the first column. Indeed, suppose that the sub-
matrix (q−p)−1pq− has a diagonal element equal to
1 , say the element in its first column (that corresponds
to the second column of A× ). In this case, we have
q−p = q−11 p1 . The matrix A× takes the form

A× =

(
1 q

1/2
1 p

−1/2
1 q−

q
1/2
1 p

−1/2
1 p q1p

−1
1 pq−

)

=

(
1 q

−1/2
1 p

−1/2
1 . . .

q
1/2
1 p

−1/2
1 p p−11 p . . .

)
,

where the second column obviously proves to be
collinear with the first one.

Let us construct a matrix A+ that includes such
columns of A× that have the diagonal element equal
to 1 and are independent on each other. Since all the
columns with 1 on the diagonal are collinear with the
first one, they can be omitted.

With the matrix A+ formed from the first column
of A× , we finally represent any eigenvector of A as

u =

(
1

(q−p)−1/2p

)
s, s ∈ R.

By replacing p with (q−)T and q− with pT , we
get the eigenvectors of AT

v =

(
1

(q−p)−1/2(q−)T

)
t, t ∈ R.

Application of Lemma 5 gives a solution of (7) in
the form

y =


sα0t1−α0

(q−p)1/2−α1(p1s)
α1(q1t)

1−α1

...
(q−p)1/2−αn(pns)

αn(qnt)
1−αn

 ,

s, t ∈ R, 0 ≤ α0, . . . , αn ≤ 1.

With the condition that the first element of y must
be equal to 1 , we have to ensure the equation

sα0tα0−1 = 1

to be valid for all α0 such that 0 ≤ α0 ≤ 1 . Since the
only solution to the equation is s = t = 1 , we arrive
at the solution of (6) given by

x =

 (q−p)1/2−α1pα1
1 q1−α1

1
...

(q−p)1/2−αnpαn
n q1−αn

n

 ,

0 ≤ α1, . . . , αn ≤ 1.
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4.3 Summary of Results
We summarize the above results in the form of the
following statements.

Lemma 6. Suppose that p = (pi) and q = (qi) are
vectors such that

p = w1r1 ⊕ · · · ⊕ wmrm,
q− = w1r

−
1 ⊕ · · · ⊕ wmr

−
m.

Then the minimum in problem (6) is given by

λ = (q−p)1/2,

and it is attained at the vector

x =

 λ1−2α1pα1
1 q1−α1

1
...

λ1−2αnpαn
n q1−αn

n


for all αi such that 0 ≤ αi ≤ 1 , i = 1, . . . , n .

With the usual notation, we can reformulate the
statement of Lemma 6 as follows.

Corollary 1. Suppose that for each i = 1, . . . , n

pi = max(ri1 + w1, . . . , rim + wm),

qi = min(ri1 − w1, . . . , rim − wm).

Then the minimum in (5) is given by

λ = max(p1 − q1, . . . , pn − qn)/2,

and it is attained at the vector

x =

 α1(p1 − λ)
...

αn(pn − λ)

+

 (1− α1)(q1 + λ)
...

(1− αn)(qn + λ)


for all αi such that 0 ≤ αi ≤ 1 , i = 1, . . . , n .

An illustration of the solution is demonstrated in
Fig. 1–3. We start with two examples in Fig. 1 that
present solutions in the plane R

2 when wi = 0 for
all i = 1, . . . ,m . In both examples, the given points
are shown with thick dots, whereas the solution set is
shown with a thick line segment.

In geometric terms, the solution is obtained as fol-
lows. Construct a minimal upright rectangle enclosing
all given points. Then trace two lines that are oriented
at a 45◦ angle to the horizontal axis and go through
the lower left and upper right vertices of the rectan-
gle. The solution is the inner segment that these lines

-
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Figure 1: Solutions in R
2 when all wi = 0 .

are cut off from the line drawn across the rectangle
through the center points of its long sides.

Examples of solution in the space R3 are given in
Fig. 2, where the solution sets take the form of rectan-
gles depicted by thick lines.

Fig. 3 illustrates the solution of a problem with
arbitrary constants wi . First we present solution to an
auxiliary problem obtained from the initial problem
by setting wi = 0 for all i (top picture). To get solu-
tion in the case of nonzero constants wi , we replace
each given point with two new points. Furthermore,
the minimal rectangle is built for the new points and
then the solution is derived in the same way as above
(bottom picture).

5 Constrained Location Problems
Suppose that there is a set S ∈ Rn given to specify a
feasible location area in problem (5) and consider the

WSEAS TRANSACTIONS on MATHEMATICS Nikolai Krivulin

ISSN: 1109-2769 197 Issue 6, Volume 10, June 2011



�
��

�
��

�
��

�
��

B
B
B
B
B
B
B
B
BN

B
B
B
B
B
B
B
B
BM�

�
��

�
�

��

�
�

�� �
�
��

�
�
��

�
�
��

s
s s

ss
s

�
�
�

�
�
�

�
�
�

�
�
�

B
B
B
B
B
BBN

B
B
B
B
B
BBM������

������

s
ss

ss s

Figure 2: Solutions in R
3 when all wi = 0 .

constrained problem

min
x∈S

max
1≤i≤m

(ρ(ri,x) + wi). (8)

Representation in terms of the semifield Rmax,+

leads to the problem

min
x∈S

m⊕
i=1

wiρ(ri,x). (9)

To solve the last problem we put it in the form of
(6) by including the area constraints into the objective
function of a normalized unconstrained problem.

5.1 A Normalized Problem
First, problem (6) is transformed into a normalized
form to enable subsequent accommodation of the con-
straints in a natural way. We introduce new notation
with a subscript

p0 = w1r1 ⊕ · · · ⊕ wmrm,
q−0 = w1r

−
1 ⊕ · · · ⊕ wmr

−
m,

λ0 = (q−0 p0)
1/2,

and then define a normalized objective function

ϕ0(x) = λ−10 (x−p0 ⊕ q−0 x).
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Figure 3: Solution to a problem with nonzero wi .

Instead of problem (6), we consider the problem

min
x∈Rn

ϕ0(x).

It follows from Lemma 6 that the normalized
problem has its minimum equal to 1 = 0 , whereas
its solution set obviously coincides with that of (6).

5.2 Maximum Distance Constraints
Suppose that there are constraints imposed on the
maximum Chebyshev distance from the facility loca-
tion point to each given points. The constraints deter-
mine the feasible location set in the form

S = {x ∈ Rn|ρ(ri,x) ≤ di, i = 1, . . . ,m}.

For each i = 1, . . . ,m , the inequality

x−ri ⊕ r−i x = ρ(ri,x) ≤ di

can be rewritten in an equivalent form as

d−1i x−ri ⊕ d−1i r−i x ≤ 1.
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With the notation

p1 = d−11 r1 ⊕ · · · ⊕ d−1m rm,

q−1 = d−11 r−1 ⊕ · · · ⊕ d
−1
m r−m,

all constraints are replaced with one inequality

x−p1 ⊕ q−1 x ≤ 1.

Furthermore, we introduce a function

ϕ1(x) = x−p1 ⊕ q−1 x

and note that ϕ1(x) ≤ 1 if and only if the maximum
distance constraints are satisfied.

Finally, we put

p = λ−10 p0 ⊕ p1,

q− = λ−10 q−0 ⊕ q−1 ,

and define the objective function

ϕ(x) = ϕ0(x)⊕ ϕ1(x) = x−p⊕ q−x.

Now we can replace problem (9) by an un-
constrained problem that has the form of problem
(6) where the objective function ϕ(x) is defined as
above. It is clear that both problems give the same
solution set provided that the solution of the uncon-
strained problem has nonempty intersection with the
feasible set. At the same time, the new problem allows
one to get approximate solutions in the case when the
intersection is empty.

Based on the results offered by Lemma 6, we can
give a solution to the problem under the maximum dis-
tance constraints in the following form.

Lemma 7. Suppose that p = (pi) and q = (qi) are
vectors such that

p = λ−10 p0 ⊕ p1,

q− = λ−10 q−0 ⊕ q−1 ,

where

p0 = w1r1 ⊕ · · · ⊕ wmrm,
q−0 = w1r

−
1 ⊕ · · · ⊕ wmr

−
m,

λ0 = (q−0 p0)
1/2,

and

p1 = d−11 r1 ⊕ · · · ⊕ d−1m rm,

q−1 = d−11 r−1 ⊕ · · · ⊕ d
−1
m r−m.

Then the minimum in problem (9) is given by

λ = (q−p)1/2,

and it is attained at the vector

x =

 λ1−2α1pα1
1 q1−α1

1
...

λ1−2αnpαn
n q1−αn

n


for all αi such that 0 ≤ αi ≤ 1 , i = 1, . . . , n .

Going back to the usual notation, we arrive at the
following result.

Corollary 2. Suppose that for each i = 1, . . . , n

pi = max(p0i − λ0, p1i),
qi = min(q0i + λ0, q1i),

where

p0i = max(ri1 + w1, . . . , rim + wm),

q0i = min(ri1 − w1, . . . , rim − wm),
p1i = max(ri1 − d1, . . . , rim − dm),
q1i = min(ri1 + d1, . . . , rim + dm),

and

λ0 = max(p01 − q01, . . . , p0n − q0n)/2.

Then the minimum in (9) is given by

λ = max(p1 − q1, . . . , pn − qn)/2,

and it is attained at the vector

x =

 α1(p1 − λ)
...

αn(pn − λ)

+

 (1− α1)(q1 + λ)
...

(1− αn)(qn + λ)


for all αi such that 0 ≤ αi ≤ 1 , i = 1, . . . , n .

Fig. 4 gives an example of solution to a problem
with maximum distance constraints in R

2 . The entire
thick line segment represents the solution of the cor-
responding unconstrained problem, whereas the part
of the segment inside the inner rectangle indicates the
solution of the constrained problem.
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