β_{0}-excellent graphs

A. P. Pushpalatha, G. Jothilakshmi
Thiagarajar College of Engineering Madurai - 625015
India
Email: gjlmat@tce.edu, appmat@tce.edu

S. Suganthi, V. Swaminathan
Ramanujan Research Centre
Saraswathi Narayanan College
Madurai - 625022 India
sulnesri@yahoo.com

Abstract

Claude Berge [1] in 1980, introduced B graphs. These are graphs in which every vertex in the graph is contained in a maximum independent set of the graph. Fircke et al [3] in 2002 made a beginning of the study of graphs which are excellent with respect to various graph parameters. For example, a graph is domination excellent if every vertex is contained in a minimum dominating set. The B-graph of Berge was called β_{0} excellent graph. β_{0} excellent trees were characterized [3]. A graph is just β_{0} excellent if every vertex belongs to exactly one maximum independent set of the graph. This paper is devoted to the study of β_{0} excellent graphs and just β_{0} excellent graphs.

Key-Words: β_{0}-excellent and just β_{0} excellent, Harary graphs, Generalized Petersen graph

1 Introduction

Let μ be a parameter and let $G=(V, E)$ be simple graph. A vertex $v \in V(G)$ is said to be μ-good if v belongs to a μ-minimum (μ-maximum) set of G according as μ is a super hereditary (hereditary) parameter. v is said to be μ-bad if it is not μ-good. A graph G is said to be μ-excellent if every vertex of G is μ-good. G is μ-commendable if number of μ-good vertices in G is strictly greater than the number μ-bad vertices of G and there should be at least one μ-bad vertex in G. G is said to be μ-fair if number of μ-good vertices in G is equal to the number of μ-bad vertices in G and G is said to be μ-poor if number of μ-bad vertices in G is strictly greater than the number of μ-good vertices in G.
γ-excellent trees and total domination excellent trees have been studied in [3], [8]. β_{0}-excellent trees was also dealt with in some of the theorems in [3]. Continuing the study on γ-excellent graphs, N.Sridharan and Yamuna [4, 5, 6] , made an extensive work in this area. They have defined excellent, very excellent, just total excellent, rigid very excellent graphs with respect to the domination parameter and made a substantial contribution in this area.

This paper starts with the definition of β_{0} excellent graphs. In the first section, general results on β_{0} - excellent graphs are proved.The second section is devoted to β_{0}-excellence in Cartesian Product of graphs. The third section deals with β_{0}-excellence of Harary graphs. The fourth section is devoted to the study of just β_{0}-excellent graphs.

Definition 1.1. Double star is a graph obtained by taking two stars and joining the vertices of maximum degrees with an edge. If the stars are $K_{1, r}$ and $K_{1, s}$, then the double star is denoted by $D_{r, s}$.

Definition 1.2. A fan F_{n} is defined as the graph join $P_{n-1}+K_{1}$, where $n \geq 3$ and P_{n-1} is the path graph on $n-1$ vertices.

$2 \beta_{0}$-excellent graphs

Definition 2.1. Let $G=(V, E)$ be a simple graph. Let $u \in V(G)$. u is said to be β_{0}-good if u is contained in a β_{0}-set of G.

Definition 2.2. u is said to be β_{0}-bad if there exists no β_{0}-set of G containing u.

Definition 2.3. A graph G is said to be β_{0}-excellent if every vertex of G is β_{0}-good.

Example 2.4.

The β_{0}-sets of G are $\{1,3,6,8\},\{5,6,7,8\}$, $\{2,4,5,7\}$. Hence all the vertices are β_{0}-good. Hence G is β_{0}-excellent.

Theorem 2.5. (1) K_{n} is β_{0}-excellent.
(2)The central vertex of $K_{1, n}$ is β_{0}-bad and every other vertex is β_{0}-good.
(3) C_{n} is β_{0}-excellent.
(4) P_{n} is β_{0}-excellent if and only if n is even.
(5) In a Double star $D_{r, s}$, all the pendent vertices are β_{0}-good but the two supporting vertices are β_{0} bad. Hence $D_{r, s}$ is not a β_{0}-excellent graph.
(6) $K_{m, n}$ is β_{0}-excellent if and only if $m=n$.
(7) In W_{n}, the central vertex is β_{0}-bad, while other vertices are β_{0}-good.
(8) $\overline{K_{n}}$ is a β_{0}-excellent graph.
(9) $F_{n}, n \geq 3$ is not β_{0}-excellent.

Remark 2.6. Suppose G has a unique β_{0}-set. Then G is β_{0}-excellent if and only if $G=\overline{K_{n}}$.

Remark 2.7. If G has a full degree vertex and if $G \neq$ K_{n}, then G is not β_{0}-excellent.
Theorem 2.8. For any graph $G, G \circ K_{1}$ is β_{0} excellent.

Definition 2.9. A graph is said to be β_{0}-fair(β_{0}-poor) graph if the number of β_{0}-good vertices is greater than(less than) the number of β_{0}-bad vertices.

Example 2.10. Let G be the graph obtained from $K_{1,3}$ by subdividing all pendent edges exactly once. Then G is β_{0}-fair.

Example 2.11. In $G=K_{4}-\{e\}$, exactly two vertices are β_{0}-good and remaining vertices are β_{0}-bad. If $n \geq 5$, then $G=K_{n}-\{e\}$ is β_{0}-poor, since the number of β_{0}-bad vertices is greater than number of β_{0}-good vertices.

Theorem 2.12. Every non β_{0} - excellent graph can be embedded in a β_{0}-excellent graph.

If G is a non β_{0}-excellent graph, then $G \circ K_{1}$ is a β_{0}-excellent graph in which G is embedded.

Remark 2.13. Suppose $G=K_{n+1}$. Then $\beta_{0}(G \circ$ $\left.K_{1}\right)-\beta_{0}(G)=n$, which means the difference between the independence number of the graph, in which the given graph is embedded and the given graph is large.

Definition 2.14. A graph G is said to be vertex transitive if given any two vertices $u, v(u \neq v)$ of G, there is an automorphism ϕ of G such that $\phi(u)=v$. If G is vertex transitive, then it is regular.

Theorem 2.15. Any vertex transitive graph is $\beta_{0}-$ excellent.
Proof. Let G be a vertex transitive graph. Let S be a β_{0}-set of G. Let $u \in V(G)$. Suppose $u \notin S$. Select any vertex $v \in S$. As G is vertex transitive, there exists an automorphism ϕ of G which maps v to u. Let $S^{\prime}=\{\phi(w): w \in S\}$. Since S is a β_{0}-set and ϕ is an automorphism, S^{\prime} is a β_{0}-set. Since $v \in S$, $\phi(v)=u \in S^{\prime}$. Therefore G is β_{0}-excellent.

Theorem 2.16. Let G be a non β_{0}-excellent graph. Then there exists a graph H in which the following conditions are true.
(i) H is β_{0}-excellent.
(ii) G is an induced subgraph of H.
(iii) $\beta_{0}(H)=\beta_{0}(G)$.

Proof. Let G be a non $-\beta_{0}$-excellent graph. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ be the set of all β_{0}-bad vertices of G. Let $V_{1}, V_{2}, \ldots, V_{k}$ be a set of independent sets of maximum cardinalities containing $b_{1}, b_{2}, \ldots, b_{k}$ respectively.

Let $\left|V_{i}\right|=t_{i}, 1 \leq i \leq k$. Then $t_{i}<\beta_{0}(G)$, for all $i, 1 \leq i \leq k$. Let $W_{i}=\left\{w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{\beta_{0}-t_{i}}}\right\}$, $1 \leq i \leq k$. Add each element of $W_{i}, 1 \leq i \leq k$ as a vertex to the vertex set of G. Let the new sets of vertices $W_{1}, W_{2}, \ldots, W_{k}$ be made a complete k partite graph. Join each vertex of W_{i} with every vertex of $V-V_{i}, 1 \leq i \leq k$. Let H be the resulting graph. Then $V_{i} \cup W_{i}$ is an independent set of H of cardinality β_{0}. Any β_{0}-set of G continues to be an independent set of H of cardinality β_{0}. There is no other independent set of H of cardinality greater than β_{0}. Therefore $\beta_{0}(H)=\beta_{0}(G)$. Each new vertex added to G and each b_{i} is contained in a maximum independent set of H. Therefore H is a β_{0}-excellent graph. Clearly, G is an induced subgraph of H and $\beta_{0}(H)=\beta_{0}(G)$.
Theorem 2.17. Let G, H be β_{0}-excellent graphs with $V(G) \cap V(H)=\phi$. Then
(i) $G \cup H$ is β_{0}-excellent.
(ii) $G+H$ is β_{0}-excellent if and only if $\beta_{0}(G)=$ $\beta_{0}(H)$.
Proof. (i) Any β_{0}-set of $G \cup H$ is of the form $S_{1} \cup S_{2}$, where S_{1} is a β_{0}-set of G and S_{2} is a β_{0}-set of H. Hence $G \cup H$ is β_{0}-excellent.
(ii) Let $\beta_{0}(G)<\beta_{0}(H)$. Then any β_{0}-set of $G+$ H is a β_{0}-set of H and conversely. If $\beta_{0}(G)=\beta_{0}(H)$, then any β_{0}-set of G and any β_{0}-set of H are β_{0}-sets of $G+H$ and conversely. Therefore $G+H$ is $\beta_{0}-$ excellent if and only if $\beta_{0}(G)=\beta_{0}(H)$.
Definition 2.18. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ $\left(V_{2}, E_{2}\right)$ be any two graphs Then their Cartesian Product $G_{1} \square G_{2}$ is defined to be the graph whose vertex set is $V_{1} \square V_{2}$ and edge set is $\left\{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)\right.$: either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E_{2}$ or $v_{1}=v_{2}$ and $\left.u_{1} u_{2} \in E_{1}\right\}$.
Theorem 2.19. Let H be a graph.
(i) Let $n \geq \chi(H)$. Then $\beta_{0}\left(K_{n} \square H\right)=|V(H)|$ and $K_{n} \square H$ is β_{0}-excellent.
(ii) Let $n<\chi(H)$. Then $\beta_{0}\left(K_{n} \square H\right)=t$, where t is the maximum cardinality of an union of n-disjoint independent sets in H.

Proof. (i) Let $n \geq \chi(H)$. Let $\Pi=$ $\left\{V_{1}, V_{2}, \ldots, V_{\chi(H)}\right\}$ be a chromatic partition of H. Let $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then $S=\left\{\left(u_{1}, v\right): v \in V_{1}\right\} \cup\left\{\left(u_{2}, v\right): v \in V_{2}\right\} \cup \ldots \cup$ $\left\{\left(u_{\chi(G)}, v\right): v_{\chi(G)} \in V_{\chi(G)}\right\}$ is an independent set of $K_{n} \square H$. Therefore $\beta_{0}\left(K_{n} \square H\right) \geq|V(H)|$. But $\beta_{0}\left(K_{n} \square H\right) \leq \beta_{0}\left(K_{n}\right)|V(H)|=|V(H)|$. Therefore $\beta_{0}\left(K_{n} \square H\right)=|V(H)|$. Any set of χ-vertices of K_{n} will produce a β_{0}-set of $K_{n} \square H$. Hence $K_{n} \square H$ is β_{0}-excellent.
(ii) Let $n<\chi(H)$. Let $S_{1}, S_{2}, \ldots, S_{n}$ be disjoint independent sets in H such that $\sum_{i=1}^{n}\left|S_{i}\right|$ is maximum. Let $t=\sum_{i=1}^{n}\left|S_{i}\right|$. Then $T=\left\{\left(u_{1}, v\right): v \in S_{1}\right\} \cup$ $\left\{\left(u_{2}, v\right): v \in S_{2}\right\} \cup \ldots \cup\left\{\left(u_{n}, v\right): v \in S_{n}\right\}$ is an independent set of $K_{n} \square H$. Therefore $\beta_{0}\left(K_{n} \square H\right) \geq$ $\sum_{i=1}^{n}\left|S_{i}\right|=|T|=t$. Let S be a maximum independent set of $K_{n} \square H$. Let $X_{i}=S \cap$ $\left(\left\{u_{i}\right\} \times V(H)\right), 1 \leq i \leq n$. Let $Y_{i}=$ $\left\{v \in V(H):\left(u_{i}, v\right) \in X_{i}, 1 \leq i \leq n\right)$. Then Y_{i}^{\prime} s are independent and disjoint in $H .|S|=\sum_{i=1}^{n}\left|X_{i}\right|=$ $\sum_{i=1}^{n}\left|Y_{i}\right| \leq \sum_{i=1}^{n}\left|S_{i}\right|=|T|$. Therefore $t=|T| \geq$ $\beta_{0}\left(K_{n} \square H\right)=|T|=t$.

Illustration 2.20. Let H be $K_{5,3,5,2}$. Then $K_{3} \square H$ is not β_{0}-excellent. (Here $\chi(H)=4>3$).

Theorem 2.21. $K_{n} \square H$ is β_{0}-excellent if and only if every vertex of H belongs to the union of disjoint independent sets of H of maximum cardinality.
Proof. Suppose every vertex of H belongs to the union of disjoint independent sets of H of maximum cardinality. Let $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} .\left(u_{i}, v\right) \in$ $V\left(K_{n} \square H\right), 1 \leq i \leq n$. Then $v \in V(H)$. Then there exist disjoint independent sets $S_{1}, S_{2}, \ldots, S_{n}$ of H such that $\sum_{i=1}^{n}\left|S_{i}\right|=t$ is maximum and $v \in S_{j}$, for some $j, 1 \leq j \leq n$.

Then $T=\left\{\left(u_{1}, v\right): v \in S_{1}\right\} \quad \cup$ $\left\{\left(u_{2}, v\right): v \in S_{2}\right\} \ldots \quad \cup \quad\left\{\left(u_{i}, v\right): v \in S_{j}\right\} \quad \cup$ $\left\{\left(u_{j}, v\right): v \in S_{i}\right\} \ldots \cup\left\{\left(u_{n}, v\right): v \in S_{n}\right\} \quad$ is \quad a maximum independent set of $K_{n} \square H$ containing $\left(u_{i}, v\right)$. Therefore $K_{n} \square H$ is β_{0}-excellent.

Conversely, Suppose every vertex of H belongs to the union of disjoint independent sets of H of maximum cardinality. Then there exists a vertex $v \in H$ such that v does not belong to any union of n disjoint independent sets of H of maximum cardinality. Since any maximum independent set of $K_{n} \square H$ is obtained
from n disjoint independent sets of H, with the union having maximum cardinality, $\left(u_{i}, v\right), 1 \leq i \leq n$ will not belong to any maximum independent set of $K_{n} \square H$. Therefore $K_{n} \square H$ is not β_{0}-excellent.

Theorem 2.22. Let H be a graph. Then $\overline{K_{n}} \square H$ is β_{0}-excellent if and only if H is β_{0}-excellent.
Proof. Suppose H is β_{0}-excellent. Then $\beta_{0}\left(\overline{K_{n}} \square H\right)=n . \beta_{0}(H)$. Any β_{0}-set of H gives rise to a β_{0}-set of $\overline{K_{n}} \square H$. Therefore $\overline{K_{n}} \square H$ is β_{0} excellent. Suppose H is not β_{0}-excellent. Let $u \in$ $V(H)$ be such that u is not contained in any β_{0}-set of H. Suppose S is a β_{0}-set of $\overline{K_{n}} \square H$ containing (v, u), for some $v \in V\left(\overline{K_{n}}\right)$. Therefore $|S|=n . \beta_{0}(H)$. Also S is of the form $V(G) \times T$, where T is a β_{0}-set of H. Therefore $u \in T$, a contradiction.

Theorem 2.23. Let $G \neq \overline{K_{n}}$ and let G be a $\beta_{0}-$ excellent graph. Let $H=P_{2 n}$. Then $G \square H$ is β_{0}-excellent if (i) or (ii)is satisfied. $G \square H$ is not β_{0} excellent if (iii) is satisfied.
(i) For any β_{0}-set S of G, there exists a β_{0}-set of G in $V-S$
(ii) Let the cardinality of the union of any two disjoint non-maximum independent set of $G \leq|S|+$ $\beta_{0}(<V-S>)$, for any β_{0}-set S of G. For every β_{0}-set S of $G, V-S$ does not contain β_{0}-set of G and for any β_{0}-set S of G, the maximum number of independent elements in $V-S$ is the same.
(iii) If any two β_{0}-sets of G are not disjoint and there exists a β_{0}-set S of G such that the maximum number of independent elements in $V-S$ is greater than the maximum number of independent elements in the complement of any other β_{0}-set, then $G \square H$ is not $\beta_{0}-$ excellent.
Proof. (i) Let G have two disjoint β_{0}-sets. Then $\beta_{0}\left(G \square P_{2 n}\right)=2 n \beta_{0}(G)$. For: Let S_{1}, S_{2} be two disjoint β_{0}-sets of G. Let $V\left(P_{2 n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$. $\left\{\left(x_{i}, v_{i}\right): x_{i} \in S_{1}\right\} \quad \cup \quad\left\{\left(y_{i}, v_{i+1}\right): y_{i} \in S_{2}\right\}$ is an independent set in $G \square P_{2 n}$. Thus $\left\{\left(x_{i}, v_{1}\right): x_{i} \in S_{1}\right\} \quad \cup \quad\left\{\left(y_{i}, v_{2}\right): y_{i} \in S_{2}\right\} \quad \cup$ $\left\{\left(x_{i}, v_{3}\right): x_{i} \in S_{1}\right\} \cup\left\{\left(y_{i}, v_{4}\right): y_{i} \in S_{2}\right\} \cup \ldots \cup$ $\left\{\left(x_{i}, v_{2 n-1}\right): x_{i} \in S_{1}\right\} \quad \cup \quad\left\{\left(y_{i}, v_{2 n}\right): y_{i} \in S_{2}\right\}$ is an independent set of $G \square P_{2 n}$. Therefore $\beta_{0}\left(G \square P_{2 n}\right) \geq 2 n \beta_{0}(G)$.

But $\beta_{0}\left(G \square P_{2 n}\right) \leq \beta_{0}(G)\left|V\left(P_{2 n}\right)\right|=2 n \beta_{0}(G)$. Hence $\beta_{0}\left(G \square P_{2 n}\right)=2 n \beta_{0}(G)$. Let $(x, y) \in$ $V\left(G \square P_{2 n}\right)$. Then there exists a β_{0}-set S_{1} of G containing x. Also by hypothesis, $V-S_{1}$ contains a β_{0} set of G,say $S_{2} . \bigcup_{t=1}^{n}\left(S_{1} \times\left\{v_{2 t-1}\right\}\right) \cup \bigcup_{t=1}^{n}\left(S_{2} \times\left\{v_{2 t}\right\}\right)$ and $\bigcup_{t=1}^{n}\left(S_{2} \times\left\{v_{2 t-1}\right\}\right) \cup \bigcup_{t=1}^{n}\left(S_{1} \times\left\{v_{2 t}\right\}\right)$ are β_{0}-sets
of $G \square P_{2 n}$. Hence there exists a $\beta_{0^{-}}$set of $G \square P_{2 n}$ containing (x, y). Therefore $G \square P_{2 n}$ is β_{0}-excellent.
(ii) It can be easily proved that $\beta_{0}\left(G \square P_{2 n}\right)=$ $\left(\beta_{0}(G)+k\right) n$, where k is the maximum number of independent elements in the complement of any β_{0-} set of G. In this case, $G \square P_{2 n}$ is β_{0}-excellent.[For: Let (x, y) be any element of $V\left(G \square P_{2 n}\right)$. Then there exists a β_{0}-set S_{1} of G containing x. Also $V-S_{1}$ contains an independent set of cardinality k. Let S_{2} be a maximum independent set in $V-S_{1}$. $\bigcup_{t=1}^{n}\left(S_{1} \times\left\{v_{2 t-1}\right\}\right) \cup \bigcup_{t=1}^{n}\left(S_{2} \times\left\{v_{2 t}\right\}\right)$ and $\bigcup_{t=1}^{n}\left(S_{2} \times\right.$ $\left.\left\{v_{2 t-1}\right\}\right) \cup \bigcup_{t=1}^{n}\left(S_{1} \times\left\{v_{2 t}\right\}\right)$ are the β_{0}-elements of $G \square P_{2 n}$. Hence there exists a β_{0}-set of $G \square P_{2 n}$ containing (x, y). Therefore $G \square P_{2 n}$ is β_{0}-excellent.
(iii) Suppose there exists a β_{0}-set S_{1} of G such that the maximum number of independent elements say k in $V-S_{1}$ is greater than the maximum number of independent elements in the complement of any other β_{0}-set of G.

$$
\beta_{0}\left(G \square P_{2 n}\right)=\left(\beta_{0}(G)+k\right) n . \text { Let } u \in V(G)-
$$ S_{1}. Then there exists a β_{0}-set S_{2} of G containing u. The maximum number of independent elements in $V(G)-S_{2}$ is less than k. Therefore (u, v), where $v \in V\left(P_{2 n}\right)$ is not contained in any β_{0}-set of $G \square P_{2 n}$. Hence $G \square P_{2 n}$ is not β_{0}-excellent.

Remark 2.24. There exist graphs in which the maximum number of independent elements in the complement of any β_{0}-set of G is greater than the maximum number of independent elements in the complement of any other β_{0}-set of G.

Example 2.25.

The β_{0}-sets of G are $S_{1}=\{1,2,3,4,5,8,9,10\}$, $S_{2}=\{3,4,5,6,7,10,11,12\}$,
$S_{3}=\{8,9,10,11,12,13,14,15\}$. Then $V-$ $S_{1}=\{6,7,11,12,13,14,15\}, \quad V-S_{2}=$ $\{1,2,8,9,13,14,15\}, V-S_{3}=\{1,2,3,4,5,6,7\}$. The set $\{11,12,13,14,15\}$ is a β_{0}-set in V $S_{1} ;\{8,9,13,14,15\}$ is a β_{0}-set in $V-S_{2}$ and $\{2,3,4,5,6,7\}$ is a β_{0}-set in $V-S_{3}$. Hence S_{3} satisfies the property described in the remark 2.24

Example 2.26.

The β_{0}-sets of G are $S_{1}=\{1,2,4,6,7\}, S_{2}=$ $\{1,2,8,6,7\}$. Clearly G is not β_{0}-excellent. The maximum number of independent sets in $V-S_{1}$ and in $V-S_{2}$ is one. The sets $S_{3}=\{1,2,4\}$ and $S_{4}=\{8,6,7\}$ are not β_{0}-sets. The maximum number of independent sets in $V-\left(S_{3} \cup S_{4}\right)$ is one. That is, there exist two disjoint independent sets of cardinality 3 each and the maximum number of independent elements in complement of their union is one.

$$
\left|S_{3}\right|+\left|S_{4}\right|+\beta_{0}\left(V-\left(S_{3} \cup S_{4}\right)\right)=7>\left|S_{1}\right|+
$$

$$
\beta_{0}\left(V-S_{1}\right)=\left|S_{2}\right|+\beta_{0}\left(V-S_{2}\right)=6
$$

Example 2.27.

The β_{0}-set of G is $S=\{1,2,3,6,7,8\}$. The 4 -element disjoint independent sets are $\{1,2,3,5\}$, $\{4,6,7,8\} . \beta_{0}\left(G \square P_{2 n}\right)=8 n$. It can be shown that there is a β_{0}-set of G and a set of maximum number of elements in the complement, such that independent set generated contains $7 n$ elements.

Though G is not β_{0} excellent, $G \square P_{2 n}$ is β_{0} excellent here. For:

Example 2.28.

Let $V\left(P_{2 n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$. Let $A=$ $\{1,2,3,5\}$ and $B=\{4,6,7,8\}$. Two maximum independent sets of $G \square P_{2 n}$ are

$$
\bigcup_{d 2), 1<i<2 n}\left\{\left(u_{i}, 1\right),\left(u_{i}, 2\right),\left(u_{i}, 3\right),\left(u_{i}, 5\right)\right\}
$$

$i \equiv 1(\bmod 2), 1 \leq i \leq 2 n$
$\bigcup \bigcup^{\bigcup}\left\{\left(u_{j}, 4\right),\left(u_{j}, 6\right),\left(u_{j}, 7\right),\left(u_{j}, 8\right)\right\}$ $j \equiv 0(\bmod 2), 2 \leq j \leq 2 n$ and
$\bigcup_{d 2), 1 \leq i \leq 2 n}\left\{\left(u_{i}, 4\right),\left(u_{i}, 6\right),\left(u_{i}, 7\right),\left(u_{i}, 8\right)\right\}$
$i \equiv 1(\bmod 2), 1 \leq i \leq 2 n$
$\bigcup \underset{j \equiv 0(\bmod 2), 2 \leq j \leq 2 n}{ }\left\{\left(u_{j}, 1\right),\left(u_{j}, 2\right),\left(u_{j}, 3\right),\left(u_{j}, 5\right)\right\}$. $j \equiv 0(\bmod 2), 2 \leq j \leq 2 n$
Hence $G \square P_{2 n}$ is β_{0}-excellent, but G is not β_{0} excellent.

Remark 2.29. Suppose G is a graph in which $V(G)=A \cup B$, where A, B are independent and disjoint subsets are $V(G)$. Then $G \square P_{2 n}$ is β_{0}-excellent. (or) equivalently if G is bipartite graph, then $G \square P_{2 n}$ is β_{0}-excellent. Hence $T \square P_{2 n}$ is β_{0}-excellent, for any tree T and $C_{2 n} \square P_{2 n}$ is β_{0}-excellent.

Theorem 2.30. Suppose G is of even order in which $V(G)=A \cup B, \quad A \cap B=\phi, A, B$ are independent and $|A|=|B|$. Then $G \square P_{2 n+1}$ is β_{0}-excellent.
Proof. The following are β_{0}-sets of $G \square P_{2 n+1}$.

$$
\bigcup_{i \equiv 1(\bmod 2), 1 \leq i \leq 2 n+1} P \cup_{j \equiv 0(\bmod 2),} \bigcup_{1 \leq j \leq 2 n} Q
$$

and

where $\left.P=\left\{\left(v, u_{i}\right): v \in A\right)\right\}$,
$\left.\left.Q=\left\{\left(v, u_{j}\right): v \in B\right)\right\}, R=\left\{\left(v, u_{i}\right): v \in B\right)\right\}$ and $\left.S=\left\{\left(v, u_{j}\right): v \in A\right)\right\}$.

Hence $G \square P_{2 n+1}$ is β_{0}-excellent.
Corollary 2.31. If G is bipartite graph with equicardinal bipartition, then $G \square P_{2 n+1}$ is β_{0}-excellent.

Corollary 2.32. (1) $C_{n} \square P_{2 n+1}$ is β_{0}-excellent. (2) If T is a tree with equi-cardinal bipartition, then $T \square P_{2 n+1}$ is β_{0}-excellent.

Example 2.33.

The graph G is of even order in which $V(G)=$ $A \cup B, A \cap B=\phi, A, B$ are independent and $|A|=$ $|B|$, where $A=\{1,2,3\}, B=\{4,5,6\}$. Here G is not β_{0}-excellent (since $\beta_{0}(G)=4$ and $\{1,2,3,4\}$ is the unique β_{0}-set of G).

Example 2.34. $D_{r, r}$ is a graph of even order in which $V(G)=A \cup B, A \cap B=\phi, A, B$ are independent and $|A|=|B|$, where A, B are respectively the set of pendents adjacent to each of the two centers. $D_{r, r}$ is not β_{0}-excellent, since the two centers are β_{0}-bad vertices.

Remark 2.35. Consider the path P_{t} with each vertex of P_{t} as centers, add r-pendent vertices. Let the resulting graph be denoted by $M_{r, r, \ldots, t-t i m e s}$. Then $M_{r, r, \ldots, r} \square P_{2 n+1}$ is β_{0}-excellent, but $M_{r, r, \ldots, r}$ is not β_{0}-excellent.

Illustration 2.36.

$A=\{1,2,3,5,10,11,12,13\}, \quad B=$ $\{4,6,7,8,9,14,15,16\}$ are two disjoint independent sets and $A \cup B=V(G) . \quad M_{3,3,3,3}$ is not β_{0}-excellent. But $M_{3,3,3,3} \square P_{2 n+1}$ is β_{0}-excellent.

Theorem 2.37. $G \square P_{2 n}$ is β_{0}-excellent if and only if there exists an independent partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of G such that $\max _{1 \leq i, j \leq k, i \neq j}\left\{\left|V_{i} \cup V_{j}\right|\right\}$ is attained for pairs (i, j) with $\bigcup_{\left|V_{i} \cup V_{j}\right|}\{i, j\}=\{1,2, \ldots, k\}$.
Proof. Any maximum independent subset of $G \square P_{2 n}$ is of the form $X_{1} \cup X_{2} \cup \cdots \cup X_{2 n}$ where $X_{i}=$ $A \times\left\{u_{i}\right\}$ if i is odd and $X_{i}=B \times\left\{u_{i}\right\}$ if i is even, A, B being disjoint independent sets of G such that $A \cup B$ has maximum cardinality. Suppose G has an independent partition satisfying the hypothesis. Then clearly, $G \square P_{2 n}$ is β_{0} - excellent.

Conversely, suppose $G \square P_{2 n}$ is β_{0}-excellent. Then every vertex $\{u, v\}, u \in V(G)$ and $v \in V\left(P_{2 n}\right)$ belongs to a β_{0}-set of $G \square P_{2 n}$. The structure of $\beta_{0}-$ sets of $G \square P_{2 n}$ imply that there exist disjoint independent sets $V_{1}, V_{2}, \ldots, V_{k}$ in G whose union is $V(G)$, satisfying the condition in the theorem.

Corollary 2.38. Let $\chi(G) \geq 3$. Then $G \square P_{2 n}$ is β_{0}-excellent if there exists a chromatic partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{\chi(G)}\right\}$ of G such that $\max _{1 \leq i, j \leq \chi, i \neq j}\left\{\left|V_{i} \cup V_{j}\right|\right\}$ is attained for pairs (i, j) with $\bigcup_{\left|V_{i} \cup V_{j}\right|}\{i, j\}=\{1,2, \ldots, \chi(G)\}$.
Remark 2.39. The converse of the above corollary is not true. Consider the graph G.

A chromatic partition of G is given by $\{\{2,4,5\},\{3,6\},\{1\}\}$.

Corollary 2.40. If G is a complete r-partite($r \geq$ 3)graph with equi-cardinal partite sets, then $G \square P_{2 n}$ is β_{0}-excellent.

Remark 2.41. Let $G=\overline{K_{2}}+\overline{K_{3}}+\overline{K_{2}}$. Then G is not β_{0}-excellent, but $G \square P_{2 n}$ is β_{0}-excellent.

Corollary 2.42. Q_{n} is β_{0}-excellent,since $Q_{n}=$ $Q_{n-1} \square P_{2}$. Moreover $Q_{n} \square P_{2 n}$ is also β_{0}-excellent.

Remark 2.43. Let $G=\overline{K_{4}}+\overline{K_{3}}+\overline{K_{2}}$. Then G and $G \square P_{2 n}$ are not β_{0}-excellent.

Theorem 2.44. There exists a regular graph which is not β_{0}-excellent.

For this graph G, the β_{0}-set is $\{2,5,6,8,11,13,16\}$ consisting of 7 vertices. The remaining vertices are contained in the independent sets $\{1,3,6,8,12,14\}$, $\{1,3,7,9,12,14\},\{1,3,7,9,12,15\}$ of cardinality 6 each. Thus this graph is 3 -regular but not β_{0} excellent.

Theorem 2.45. Let G be a bipartite graph with bipartition V_{1}, V_{2}. Then $G \square C_{m}$ is β_{0}-excellent.
Proof. Case(i): Let $m=2 n$. Let $V\left(C_{2 n}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$.

The maximum independent sets of $G \square C_{2 n}$ are

$$
j \equiv 0(\bmod 2), 1 \leq j \leq 2 n \quad j \equiv 0(\bmod 2), 2 \leq j \leq 2 n
$$

where $\left.P=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{1}\right)\right\}, Q=$ $\left.\left.\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{2}\right)\right\}, R=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{2}\right)\right\}$ and $\left.S=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{1}\right)\right\}$. Hence $G \square C_{m}$ is β_{0}-excellent.
Case(ii): Let $m=2 n+1$. Let $V\left(C_{2 n+1}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{2 n+1}\right\}$.
$\beta_{0}\left(G \square C_{2 n+1}\right)=n|V(G)|$.
The following are β_{0}-sets of $G \square C_{2 n+1}$.
$\bigcup_{j=1} P_{1} \cup \bigcup_{j=0(m)} P_{2}$;
$j \equiv 1(\bmod 2), 1 \leq j \leq 2 n \quad j \equiv 0(\bmod 2), 2 \leq j \leq 2 n$

and

where $\left.P_{1}=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{1}\right)\right\}, \quad P_{2}=$ $\left.\left.\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{2}\right)\right\}, Q_{1}=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{2}\right)\right\}$, $\left.Q_{2}=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{1}\right)\right\}, \quad R_{1}=$ $\left.\left.\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{1}\right)\right\}, \quad R_{2}=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{2}\right)\right\}$, $\left.S_{1}=\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{2}\right)\right\}$ and $S_{2}=$ $\left.\left\{\left(v_{i}, u_{j}\right): v_{i} \in V_{1}\right)\right\}$. Hence $G \square C_{m}$ is β_{0}-excellent.

Theorem 2.46. Let G be a β_{0}-excellent graph. For any β_{0}-set S of G, let $V-S$ contain a β_{0}-set of G. Then $G \square C_{2 n}$ is β_{0}-excellent.
Proof. The proof follows from the fact that for any β_{0}-set S of G and a β_{0}-set S_{1} of G in $V-S$,
$\cup P \bigcup \quad Q$, where
$i \equiv 1(\bmod 2), 1 \leq i \leq 2 n \quad j \equiv 0(\bmod 2), 1 \leq j \leq 2 n$
$\left.\left.P=\left\{\left(v, u_{i}\right): v \in S\right)\right\}, Q=\left\{\left(v, u_{j}\right): v \in S_{1}\right)\right\}$ and $\bigcup_{i \equiv 1(\bmod 2), 1 \leq i \leq 2 n} R \bigcup_{j \equiv 0(\bmod 2), 1 \leq j \leq 2 n} S$
where $\left.R=\left\{\left(v, u_{i}\right): v \in S_{1}\right)\right\}, \quad S=$ $\left.\left\{\left(v, u_{j}\right): v_{i} \in S\right)\right\}$ are β_{0}-sets of $G \square C_{2 n}$.

Theorem 2.47. (i) $\quad C_{2 n} \square C_{2 k+1} \quad$ is $\quad \beta_{0}-$ excellent. (ii) $C_{2 n} \square C_{2 m}$ is β_{0}-excellent. (iii) $C_{2 k+1} \square C_{2 n+1}, n \leq k$ is β_{0}-excellent.

Corollary 2.48. The following graphs are $\beta_{0}-$ excellent.
(i) $P_{2 n} \square P_{2 k+1}$. Result follows from the fact that $G \square P_{2 k+1}$ is β_{0}-excellent if G is of even order and $V(G)=A \cup B, A \cap B=\phi,|A|=|B|$ and A, B are independent.
(ii) $P_{2 n} \square C_{2 k+1} . ~\left(G \square C_{m}\right.$ is β_{0}-excellent if G is bipartite with partition V_{1}, V_{2}.)
(iii) $P_{2 n+1} \square C_{2 k+1}$.
(since $G \square C_{m}$ is β_{0}-excellent if G is bipartite with partition V_{1}, V_{2}.)
(iv) $P_{2 n} \square C_{2 k}$.
(since $G \square C_{m}$ is β_{0}-excellent if G is bipartite with partition V_{1}, V_{2}.)
(v) $P_{2 n+1} \square C_{2 k}$.
(since $G \square C_{m}$ is β_{0}-excellent if G is bipartite with partition V_{1}, V_{2}.)

Definition 2.49. Mycielski Graphs Let $G=(V, E)$ be a simple graph. The Mycielskian of G is the graph $\mu(G)$ with vertex set equal to the disjoint union $V \cup$ $V^{\prime} \cup\{u\}$ where $V^{\prime}=\left\{x^{\prime}: x \in V\right\}$ and the edge set $E \cup\left\{x y^{\prime}, x^{\prime} y: x y \in E\right\} \cup\left\{y^{\prime} u: y^{\prime} \in V^{\prime}\right\}$. The
vertex x^{\prime} is called the twin of the vertex and the vertex u is called the root of $\mu(G)$.

Theorem 2.50. Let $G \neq K_{2}$ be a graph. Then $\mu(G)$ is not β_{0}-excellent.
Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $V(\mu(G))=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}, v\right\}$. Then $E(\mu(G))=\bigcup_{i=1}^{n}\left\{u_{i}^{\prime} u_{j}: u_{j} \in N_{G}\left(u_{i}\right), 1 \leq j \leq n\right\} \cup$ $\left\{u_{i}^{\prime} v: 1 \leq i \leq n\right\}$. It has been proved that $\beta_{0}(\mu(G))=\max \left\{2 \beta_{0}(G),|V(G)|\right\}$.

Suppose $\beta_{0}(G)<\frac{|V(G)|}{2}$. Then $\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ is the only β_{0}-set of $\mu(G)$.

Suppose $\beta_{0}(G)>\frac{|V(G)|}{2}$.
Let $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{\beta_{0}}}\right\}$ be a β_{0}-set of G.Then $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{\beta_{0}}}, u_{i_{1}}^{\prime}, u_{i_{2}}^{\prime}, \ldots, u_{i_{\beta_{0}}}^{\prime}\right\} \quad$ is a β_{0}-set of $\mu(G)$. Clearly v is not in any β_{0}-set of $\mu(G)$.

Suppose $\beta_{0}(G)=\frac{|V(G)|}{2}$. Suppose $\beta_{0}(G)=1$ and $|V(G)|=2$. Then $G=K_{2}$ in which case $\mu(G)=C_{5}$ which is β_{0}-excellent. Suppose $\beta_{0}(G)>$ 1. Then for any β_{0}-set $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{\beta_{0}}}\right\}$ of G, $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{\beta_{0}}}, u_{i_{1}}^{\prime}, u_{i_{2}}^{\prime}, \ldots, u_{i_{\beta_{0}}}^{\prime}\right\}$ is a β_{0}-set of $\mu(G)$. Also $\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ is a β_{0}-set of $\mu(G)$.
v does not belong to any of these β_{0}-sets. Therefore $\mu(G)$ is not β_{0}-excellent, when $G \neq K_{2}$.

Definition 2.51. Let G be a graph. G is said to be β_{1}-excellent if every edge of G belongs to a β_{1}-set of G.

Remark 2.52. G is β_{1}-excellent if and only if $L(G)$ is β_{0}-excellent.

$3 \beta_{0}$-excellence of Harary graphs

Definition 3.1. Harary graphs $H_{n, m}$ with n vertices and $m<n$ is defined as follows:

Case(i): n is even and $m=2 r$. Then $H_{n, 2 r}$ has n vertices $0,1,2, \cdots, n-1$ and i, j are joined if $i-r \leq$ $j \leq i+r$, where the addition is taken under modulo n.

Case(ii): m is odd and n is even. Let $m=2 r+1$. Then $H_{n, 2 r+1}$ is constructed by first drawing $H_{n, 2 r}$ and then adding edges joining vertex i to the vertex $i+\frac{n}{2}$, for $0 \leq i \leq \frac{n}{2}$.

Case(iii): m and n are odd. Let $m=2 r+1$. Then $H_{n, 2 r+1}$ is constructed by drawing $H_{n, 2 r}$ and then adding edges joining vertex 0 to the vertices $\frac{n-1}{2}$ and $\frac{n-1}{2}$ and vertex i to $i+\frac{n+1}{2}$, for $1 \leq i \leq \frac{n-1}{2}$.

Theorem 3.2. Let $n>2 r$.
$\beta_{0}\left(H_{2 r, n}\right)= \begin{cases}\frac{n-r}{r+1} & \text { if } r+1 \text { divides } n-r \\ \left\lfloor\frac{n-r}{r+1}\right\rfloor+1 & \text { if } r+1 \text { does not divide n- } r\end{cases}$
Proof. Let $V\left(H_{2 r, n}\right)=\{0,1,2, \ldots, n-1\}$.
Case(i):
Let $r+1$ divides $n-r$. Consider $S=$ $\{i, r+i+1,2 r+i+2, \ldots, t r+t+i\}$, where $t=$ $\frac{n-r}{r+1}-1$.
$t r+t+i=(n-r)-r-1+i=n-2 r-1+i$.
Suppose $n-2 r-1+i=i-s$ (or) $i-s+n$, according as $i-s \geq 0$ (or) otherwise. Then $n-2 r-1=$ $-s$ (or) $n-s$. That is $2 r+1=s+n$ (or) s. Since $s \leq r, 2 r+1 \neq s$. Therefore $2 r+1=s+n$. But $s+n>2 r+1$. Since $s \geq 1, n>2 r$, a contradiction. Therefore S is an independent set in $H_{2 r, n}$. Therefore $\beta_{0}\left(H_{(2 r, n)}\right) \geq t+1$. Suppose S_{1} is an independent set of $H_{2 r, n}$ of cardinality $t+l, l \geq 2$.

Let $S_{1}=\left\{a_{1}, a_{2}, \ldots a_{t+l}\right\}$. Let $a_{1}<a_{2}<$ $\ldots,<a_{t+l}$.
$t+l=\frac{n-r}{r+1}-1+l \geq \frac{n-r}{r+1}+1($ since $l \geq 2)$.
Let $a_{1}=i$. Then $a_{2}>i+r, a_{3}>i+$ $2 r, \ldots, a_{t+l}>i+(t+l-1) r$. That is $a_{t+l}>$ $i+\left(\frac{n-r}{r+1}\right) r$.

Let $1 \leq s \leq r . a_{t+l}$ is adjacent to a_{1} if and only if $i-s$ or $i-s+n>i+\left(\frac{n-r}{r+1}\right) r$. That is if and only if $s<-\left(\frac{n-r}{r+1}\right) r$, a contradiction since right hand side is negative and s is positive. (or) $i-s+n>$ $i+\left(\frac{n-r}{r+1}\right) r$. This implies $n-s>\left(\frac{n-r}{r+1}\right) r$.
$n-r=q(r+1) \Rightarrow q(r+1)+r-s>q r$.
$q r+q+(r-s)>q r$. Since $s \leq r, r-s \geq 0$, one has $q r+q+(r-s)>q r$ (since $q \geq 1$), which is true. a_{t+l} is adjacent to a_{1}. Therefore S_{1} is not independent. So $\beta_{0}\left(H_{2 r, n}\right) \leq t+1$. Therefore $\beta_{0}\left(H_{2 r, n}\right)=t+1$.

Case(ii):

Let $r+1$ do not divide $n-r$. Consider $S=$ $\{i, r+1+i, 2 r+2+i, \ldots, t r+t+i\}$, where $t=$ $\left\lfloor\frac{n-r}{r+1}\right\rfloor$. Let $n-r=q(r+1)+\alpha, \alpha>0, \alpha<r+1$. Therefore $t=q$.
$t r+t+i=q r+q+i=q(r+1)+i=n-r-\alpha+i$.
Let $1 \leq s \leq r$.
If $t r+t+i=i-s(o r) i-s+n$, according as $i-s \geq 0$ (or) otherwise, then $n-\alpha-r+i=$ $i-s($ or $) i-s+n . n-\alpha-r+i=i-s$ (or) $i-s+n$. $n-\alpha-r=-s$ (or) $-\alpha-r=-s$. That implies $r+\alpha-n=s$ (or) $s=r+\alpha$ i.e, $s<0$ or $s>r$ (since $\alpha+r<n$), a contradiction. [$r+\alpha<n$, because
$n=r+q(r+1)+\alpha$. If $q=0$, then $n=r+\alpha$, where $\alpha<r+1$. That is $n \leq 2 r$, a contradiction. So $q \geq 1$. Therefore $n>r+\alpha$.] Thus S is an independent set in $H_{2 r, n}$. Therefore $\beta_{0}\left(H_{2 r, n}\right) \geq t+1$. Suppose S_{1} is an independent set of $H_{2 r, n}$ of cardinality $t+l, l \geq 2$. Let $S_{1}=\left\{a_{1}, a_{2}, \ldots, a_{t+l}\right\}$. Let $a_{1}<a_{2}<\ldots<a_{t+l}$. $t+l=q+l=\left\lfloor\frac{n-r}{r+1}\right\rfloor+l>\frac{n-r}{r+1}+1$.

Let $a_{1}=i . \quad$ Then $a_{2}>i+r, a_{3}>i+$ $2 r, \ldots, a_{t+l}>i+(t+l-1) r>i+\left(\frac{n-r}{r+1}\right) r$. a_{t+l} is adjacent to a_{1} if and only if $i-s($ or $) i-s+n$ is greater than $i+\left(\frac{n-r}{r+1}\right) r$. That is if and only if $-s$ (or) $-s+n>\left(\frac{n-r}{r+1}\right) r$.

But $-s>\left(\frac{n-r}{r+1}\right) r$ is not possible, since the right hand side is positive and left hand side is negative. Therefore $-s+n>\left(\frac{n-r}{r+1}\right) r$. That is $n-s>$ $\left(q+\frac{\alpha}{r+1}\right) r$. That leads to $q(r+1)+\alpha+r-s>$ $q r+\frac{r \alpha}{r+1}$ which means $q(r+1)+r-s>q r+\frac{r \alpha}{r+1}-$ $\alpha=q r-\frac{\alpha}{r+1}$. That is $q(r+1)+r-s \geq q r$ [since $\left.\frac{\alpha}{r+1}<1\right]$, which is true, since $q(r+1)+r-s=$ $q r+q+r-s \geq q r$, as $r-s \geq 0$. Therefore a_{t+l} is adjacent to a_{1}. Therefore S_{1} is not an independent set. Therefore $\beta_{0}\left(H_{2 r, n}\right) \leq t+1$. Therefore $\beta_{0}\left(H_{2 r, n}\right)=t+1$.

Theorem 3.3. Consider $H_{2 r+1, n}$, where n is even.
Then (i) If $2(r+1)$ does not divide n, then $\beta_{0}\left(H_{2 r+1, n}\right)=\left\{\begin{array}{ll}\frac{n-r}{r+1}, & \text { if } r+1 \text { divides } n-r \\ \left\lfloor\frac{n-r}{r+1}\right\rfloor+1, & \text { otherwise }\end{array}\right.$.
(ii)If $2(r+1)$ divides n, then
$\beta_{0}\left(H_{2 r+1, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.
Proof. We observe the following
(i) Suppose $2(r+1)$ divides n. Then $r+1$ does not divide $n-r$.

Let $r+1$ divide $n-r$. Let $n=2 q(r+1)$ and $n-r=q_{1}(r+1)$. Therefore $2 q(r+1)=r+q_{1}(r+1)$. That is $\left(2 q-q_{1}\right)(r+1)=r$, a contradiction. Hence (i).
(ii) Suppose $2(r+1)$ does not divide n. Then $r+1$ divides $n-r$ if and only if $n=2 q(r+1)+r$, for some positive integer q.

Let $n=2 q(r+1)+\alpha$, where $0<\alpha<2(r+1)$. Then $n-r=2 q(r+1)+\alpha-r$.

Suppose $r+1$ divides $n-r$. Then $\alpha-r$ is divisible by $r+1$. Let $\alpha-r=k(r+1)$. If $k<0, \alpha=r+k(r+$ 1) implies that $\alpha<0$, a contradiction. Hence $k \geq 0$. Thus $\alpha=k(r+1)+r$. Since $\alpha<2(r+1), k=1$, one has $\alpha=2 r+1$. Therefore $n=2 q(r+1)+2 r+1$.

That means that n is odd, a contradiction. Therefore $k=0$. That is, $\alpha=r$. Therefore $n=2 q(r+1)+r$.

Conversely, if $n=2 q(r+1)+r$, then clearly $n-r$ is divisible by $r+1$.
Case(i):
Subcase (i): Suppose $2(r+1)$ does not divide n and $r+1$ divides $n-r$. Then by observation (ii), $n=$ $2 q(r+1)+r$, for some positive integer q. For any integer $i, i+\frac{n}{2}$ is of the form $l r+l+i$ if and only if $l(r+1)=\frac{n}{2}$. That is if and only if $2(\mathrm{r}+1)$ divides n, a contradiction.

Let $S=\{i, r+1+i, 2 r+2+i, \ldots t r+t+i\}$, where $t=\frac{n-r}{r+1}-1$. That is $t=2 q-1$.
$t r+t+i=(n-r)-r-1+i=n-2 r-$ $1+i$. Suppose $n-2 r-1+i=i-s$ (or) $i-s+n$ according as $i-s \geq 0$ (or) otherwise. Then $n-2 r-$ $1=-s$ (or) $n-s$. That is $2 r+1=n+s$ (or) s. Since $s \leq r, 2 r+1 \neq s$. Therefore $2 r+1=n+s$. But $s+n>2 r+1$, since $s \geq 1$ and $n>2 r$, a contradiction. Therefore S is an independent set in $H_{2 r+1, n}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \geq t+1=\frac{n-r}{r+1}$. Since $H_{2 r, n}$ is a spanning subgraph of $H_{2 r+1, n}$, we get that $\beta_{0}\left(H_{2 r+1, n}\right) \leq \beta_{0}\left(H_{2 r, n}\right)=\frac{n-r}{r+1}$.

Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=\frac{n-r}{r+1}$.
Subcase (ii): $2(r+1)$ does not divide n and $r+1$ does not divide $n-r$.

By observation (ii), $n=2 q(r+1)+\alpha$, where $0<\alpha<2(r+1)$ and $\alpha \neq r$. Proceeding as in case $(i i)$ of theorem 3.2, we get that $S=$ $\{i, r+1+i, 2 r+2+i, \ldots t r+t+i\}$, where $t=$ $\left\lfloor\frac{n-r}{r+1}\right\rfloor$ is an independent set of $H_{2 r+1, n}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \geq\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$. But $\beta_{0}\left(H_{2 r+1, n}\right) \leq$ $\beta_{0}\left(H_{(2 r, n)}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=$ $\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.
Case (ii): $2(r+1)$ divides n.
By observation (i), $r+1$ does not divide $n-r$. Let $\frac{n}{2(r+1)}=l$. Then i is adjacent to $i+\frac{n}{2}$ gives that i is adjacent to $l r+l+i$.
Let S be the set of all elements $i, r+1+i, 2 r+2+$ $i, \ldots,(l-1)(r+1)+i, l(r+1)+1+i,(l+1)(r+$ 1) $+1+i$,
$\ldots, t(r+1)+l+i$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor-1$.
Let $n-r=q(r+1)+\alpha$, where $0<\alpha<r+1$.
Therefore $t=q-1$.

$$
\begin{gathered}
t r+t+1+i=t(r+1)+1+i \\
=(q-1)(r+1)+1+i \\
=q(r+1)+i-r=n-r-\alpha+ \\
i-r=n-2 r-\alpha+i .
\end{gathered}
$$

Let $1 \leq s \leq r$. If $t(r+1)+1+i=i-s$ (or) $i-s+n$ (according as $i-s \geq 0$ (or) otherwise), then $n-2 r-\alpha+i=i-s$ (or) $i-s+n$. That is $n-2 r-\alpha=-s$ (or) $n-s$. That is $n-2 r-\alpha=-s$ (or) $n-2 r-\alpha=n-s$. If $n-2 r-\alpha=n-s$, then $s=2 r+\alpha$, a contradiction, since $s \leq r$. If $n-2 r-\alpha=-s$, then $s=2 r+\alpha-n=2 r+\alpha-$ $q(r+1)-\alpha-r$. That is $s=r-q(r+1)<0$, a contradiction. Therefore S is an independent set in $H_{2 r+1, n}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \geq\left\lfloor\frac{n-r}{r+1}\right\rfloor$.

Let $S_{1}=\{i, r+1+i, 2 r+2+i, \ldots$, $(l-1)(r+1)+i, l(r+1)+1+i,(l+1)(r+1)+$ $1+i, \ldots, t(r+1)+l+i\}$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$. Let $n-r=q(r+1)+\alpha, 0<\alpha<r+1$. Let $1 \leq$ $s \leq r$. Then $t=q$. If $t(r+1)+1+i=i-s$ (or) $i-s+n$ (according as $i-s \geq 0$ (or) otherwise.). Then $q(r+1)+1+i=i-s$ (or) $i-s+n$. That is $q(r+1)+1=-s$ (or) $n-s$. If $q(r+1)+1=$ $-s$, then a contradiction, since L.H.S is positive. If $q(r+1)+1=n-s$, then $n-r-\alpha+1=n-s$. That is $s=r+\alpha-1$. But $s \leq r$. Therefore $\alpha \leq 1$. But $\alpha>0$. Therefore $\alpha=1$.

Therefore, $n-r=q(r+1)+1=t(r+1)+1$. In this case, $t(r+1)+1+i$ is adjacent with i. Therefore S_{1} is not independent.

Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \leq\left\lfloor\frac{n-r}{r+1}\right\rfloor$.
Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.

Observation 3.4.

(i) $2(r+1)$ can not divide both $n+1, n-1$.

This is because in such a case $2(r+1)$ divides 2 , a contradiction, since $2(r+1) \geq 4$.
(ii) If $2(r+1)$ divides $n-1$, then $r+1$ does not divide $n-r$.

This is because if $r+1$ divides $n-r$, then $n-r=$ $a(r+1) . n=a(r+1)+r$. Let $n-1=2(r+1) l$. Then $2(r+1) l+1=a(r+1)+r .2(r+1) l=a(r+1)+r-1$, a contradiction.
(iii) Suppose $2(r+1)$ divides $n-1$. Let $r+1$ do not divide $n-r$. Then $t(r+1)+1<n-r$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.

Since $r+1$ does not divide $n-r, t(r+1)+1 \leq$ $n-r$.Suppose $t(r+1)+1=n-r$. Let $n-1=$ $2 q(r+1)$. Therefore $t(r+1)+r=n-1=2 q(r+1)$. Thus $r+1$ divides r, a contradiction.
(iv) Suppose $2(r+1)$ divides $n+1$. Then $r+1$ divides $n-r$.

Let $n+1=2 q(r+1)$. Therefore $n-r=2 q(r+$ 1) $-r-1=(r+1)(2 q-1)$. Therefore $r+1$ divides $n-r$.

Theorem 3.5. Consider $H_{2 r+1, n}$, where n is odd.
(i) $2(r+1)$ does not divide $n-1$ as well as $n+1$.

Then
$\beta_{0}\left(H_{2 r+1, n}\right)$
$\begin{cases}\frac{n-r}{r+1}, & \text { if } r+1 \text { divides } n-r \\ \left\lfloor\frac{n-r}{r+1}\right\rfloor+1, & \text { otherwise }\end{cases}$
(ii) $2(r+1)$ divides $n-1$ but not $n+1$.
$\beta_{0}\left(H_{2 r+1, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.
(iii) $2(r+1)$ divides $n+1$ but not $n-1$.

Then $\beta_{0}\left(H_{2 r+1, n}\right)=\frac{n-r}{r+1}$.
Proof. Case (i):
$2(r+1)$ does not divide $n-1$ as well as $n+1$.
Let $0 \leq i \leq n-1$.
Let $S=\{i, r+1+i, 2(r+1)+i, \ldots, t(r+1)+i\}$.
$l(r+1)+i=i+\frac{n+1}{2},(i \geq 0)$. This implies $r+1$ divides $\frac{n+1}{2}$, a contradiction.
$l(r+1)+0=0+\frac{n-1}{2}$. This implies $r+1$ divides $\frac{n-1}{2}$, a contradiction. $l(r+1)+i$ is adjacent to $m(r+1)+i$, if $l(r+1)+i+\left(\frac{n+1}{2}\right)=m(r+1)+i$. This implies $(m-l)(r+1)=\frac{n+1}{2}$. This implies $r+1$ divides $\frac{n+1}{2}$, a contradiction.

Subcase(i): Let $r+1$ divide $n-r$. Let $t=$ $\frac{n-r}{r+1}-1$.
$t(r+1)+i=n-r-r-1+i=n-2 r-1+i$.
Suppose $t(r+1)+i=i-s$ (or) $i-s+n,(1 \leq$ $s \leq n$) according as $i-s \geq 0$ (or) otherwise. Then $n-2 r-1+i=i-s$ (or) $i-s+n$. That is $n-2 r-1=$ $-s(\mathrm{or}) n-s$. Since $n>2 r+1, n-(2 r+1)$ is positive and $-s$ is negative. Therefore $n-2 r-1=-s$ is not possible. $n-2 r-1=n-1$ gives $s=2 r+1,1 \leq$ $s \leq n$, a contradiction. Therefore $|S|=t+1=\frac{n-r}{r+1}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \geq \frac{n-r}{r+1} . H_{2 r, n}$ is a spanning subgraph of $H_{2 r+1, n}$.
$\beta_{0}\left(H_{2 r+1, n}\right) \leq \beta_{0}\left(H_{2 r, n}\right) \leq \frac{n-r}{r+1}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=\frac{n-r}{r+1}$.

Subcase(ii):

Let $r+1$ do not divide $n-r$. Let $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.
Proceeding as in case (ii) of theorem 3.3,
we get that $\beta_{0}\left(H_{2 r+1, n}\right) \geq\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.
$H_{2 r, n}$ is a spanning subgraph of $H_{2 r+1, n}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \leq \beta_{0}\left(H_{2 r, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.

Case (ii):

$2(r+1)$ divides $n-1$ but not $n+1$. By observation(ii), $r+1$ does not divide $n-r$ and $t(r+1)+1<$ $n-r$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$. Let $0 \leq i \leq n-1$.

Let $i>0$ and let $S=$ $\{i, r+1+i, 2(r+1)+i, \ldots, t(r+1)+i\}$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.
$l(r+1)+i=i+\frac{n+1}{2}$. This implies $r+1$ divides $\frac{n+1}{2}$, a contradiction.
$l(r+1)+i$ is adjacent to $m(r+1)+i$, if $l(r+$ 1) $+i+\left(\frac{n+1}{2}\right)=$
$m(r+1)+i$. This implies $(m-l)(r+1)=\frac{n+1}{2}$. This implies $r+1$ divides $\frac{n+1}{2}$, a contradiction. Proceeding as in Case(ii), we get that S is an independent set of cardinality $\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.

Thus $\beta_{0}\left(H_{2 r+1, n}\right) \geq\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.
$H_{2 r, n}$ is a spanning subgraph of $H_{2 r+1, n}$.
Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \leq \beta_{0}\left(H_{2 r, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor+$ 1. Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$.

Case(iii):

$2(r+1)$ divides $n+1$ but not $n-1$. Then $r+1$ divides $n-r . \quad 0$ is adjacent to $\frac{n-1}{2}$ and $\frac{n+1}{2}$. Let $l_{1}=\frac{n+1}{2(r+1)}$. 0 is adjacent to $l_{1}(r+1)$ and $l_{1}(r+1)-1$. Let S_{0} be the set of all elements $0, r+1, \ldots$,
$\left(l_{1}-1\right)(r+1), l_{1}(r+1)+1, \ldots, t(r+1)+1$. If $a(r+1)=b(r+1)+\frac{n+1}{2}$, where $a, b \leq\left(l_{1}-1\right)$. $(a-b)(r+1)=\frac{n+1}{2}$. This implies $a-b=\frac{n+1}{2(r+1)}=$ l_{1}, a contradiction.

If $a(r+1)+\frac{n+1}{2}=b(r+1)+1$, where $a \leq$ $l_{1}-1, b \geq l_{1}$, then $(b-a)(r+1)=\frac{n-1}{2}$. That is $r+1$ divides $\frac{n-1}{2}$, a contradiction.

If $a(r+1)+1=b(r+1)+1+\frac{n+1}{2}$, where $a, b \geq l_{1}$ and $a>b$, then $a-b=\frac{n+1}{2(r+1)}=l_{1}$. Therefore $a=b+l_{1} \geq l_{1}+l_{1}=2 l_{1}=\frac{n+1}{(r+1)}$. Therefore $a(r+1) \geq n+1$.That is $t(r+1) \geq a(r+$ $1) \geq n+1$. Therefore $t \geq \frac{n+1}{(r+1)}$, a contradiction, since $t=\frac{n-r}{r+1}-1$. Therefore S_{0} is an independent set of cardinality $t+1=\frac{n-r}{r+1}$.

Let $i \neq 0 . i$ is adjacent to $\frac{n+1}{2}+i$.
Let $l_{1}=\frac{n+1}{2(r+1)}$. Therefore i is adjacent to $l_{1}(r+$ 1) $+i$.

Let $S_{i}=\left\{i, i+r+1, i+2(r+1), \ldots,\left(l_{1}-\right.\right.$ 1) $(r+1)+i, l_{1}(r+1)+1+i, \ldots$,
$t(r+1)+1+i\}$.
If $a(r+1)+i=b(r+1)+i+\frac{n+1}{2}$ where $a, b \leq$ $l_{1}-1$, then $\left.a-b\right)(r+1)=\frac{n+1}{2} . a-b=\frac{n+1}{2(r+1)}=l_{1}$, a contradiction.

If $a(r+1)+i+\frac{n+1}{2}=b(r+1)+1+i$, where $a \leq l_{1}-1, b \geq l_{1}$, then $(b-a)(r+1)=\frac{n-1}{2}$, a contradiction.

If $a(r+1)+1+i=b(r+1)+1+\frac{n+1}{2}+i$ where
$a, b \geq l_{1}$ and $a>b$,then $(a-b)(r+1)=\frac{n+1}{2}$. This implies $a-b=\frac{n+1}{2(r+1)}=l_{1}$.

Therefore $a=l_{1}+b \geq l_{1}+l_{1}=2 l_{1}=\frac{n+1}{r+1}$ and $a(r+1) \geq n+1$. That is $t(r+1) \geq a(r+1) \geq$ $n+1$, which implies $t \geq \frac{n+1}{r+1}$, a contradiction, since $t=\frac{n-r}{r+1}-1$. So S_{i} is independent set of cardinality $t+1=\frac{n-r}{r+1}$. Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \geq \frac{n-r}{r+1}$.
$H_{2 r, n}$ is a spanning subgraph of $H_{2 r+1, n}$.
Therefore $\beta_{0}\left(H_{2 r+1, n}\right) \leq \beta_{0}\left(H_{2 r, n}\right)=\frac{n-r}{r+1}$.
Therefore $\beta_{0}\left(H_{2 r+1, n}\right)=\frac{n-r}{r+1}$.
Theorem 3.6. Consider $H_{2 r+1, n}$, where n is odd. Let $2(r+1)$ divide $(n-1)$ but not $n+1$. If $t(r+1)+$ $2 \geq n-r$, where $t=\frac{n-r}{r+1}$, then $H_{2 r+1, n}$ is not β_{0-} excellent.
Proof. $2(r+1)$ divides $n-1$ but not $n+1$. Let $l_{1}=$ $\frac{n-1}{2(r+1}$. 0 is adjacent to $l_{1}(r+1)$. Also 0 is adjacent to $l_{1}(r+1)+1$,since $l_{1}(r+1)+1=\frac{n-1}{2}+1=\frac{n+1}{2}$. Let S_{1} be the set of all elements $0, r+1, \ldots,\left(l_{1}-1\right)(r+$ $1), l_{1}(r+1)=2,\left(l_{1}+1\right)(r+1)+2, \ldots, t(r+1)+2$.

If $t(r+1)+2<n-r$, then S_{1} is an independent set of cardinality $\left\lfloor\frac{n-r}{r+1}\right\rfloor+1$. Suppose $t(r+1)+2=$ $n-r$. Then S_{1} is not independent. Let S_{2} be the set of all elements $0, r+1, \ldots,\left(l_{1}-1\right)(r+1), l_{1}(r+1)+$ $2,\left(l_{1}+1\right)(r+1)+2, \ldots,(t-1)(r+1)+2$ be an independent set. Therefore $\left|S_{2}\right|=t=\left\lfloor\frac{n-r}{r+1}\right\rfloor<\beta_{0}$.

Let S_{1}^{\prime} be the set of all elements $0,-(r+$ 1), -2$) r+1), \ldots,-\left(l_{1}-1\right)(r+1),-l_{1}(r+1)-$ $2, \ldots$,
$-t(r+1)-2$. If $t(r+1)+2<n-r$, then $-t(r+1)-2>r$. Therefore $-t(r+1)-2$ is not adjacent to 0 . Therefore S_{1}^{\prime} is an independent set of cardinality $\left\lfloor\frac{n-r}{r+1}\right\rfloor+1=\beta_{0}$.

Suppose $t(r+1)+2=n-r$. Then S_{1}^{\prime} is not independent.
Also S_{2}^{\prime} be the set of all elements
$0,-(r+1),-2(r+1), \ldots,-\left(l_{1}-1\right)(r+1),-l_{1}(r+$ 1) $-2, \ldots$,
$-(t-1)(r+1)-2$ is an independent set of cardinality $\left\lfloor\frac{n-r}{r+1}\right\rfloor<\beta_{0}$. Therefore 0 does not belong to any $\beta_{0^{-}}$ set.

Illustration 3.7. Consider $H_{5,7} \cdot r=2, n=7,2(r+$ 1) $=6$ does not divide $n+1=8$, but 6 divides $n-1=7-1=6$.
$t=\left\lfloor\frac{n-r}{r+1}\right\rfloor=1, \beta_{0}=\left\lfloor\frac{n-r}{r+1}\right\rfloor+1=\left\lfloor\frac{5}{3}\right\rfloor=2$.
$S_{0}=\{0\}$ is a maximal independent set containing 0 and there is no β_{0}-set containing 0 .
$S_{1}=\{1,4\}, S_{2}=\{2,5\}, S_{3}=\{3,6\}$ are the β_{0}-sets of $H_{5,7}$.

Remark 3.8. $H_{2 r, n}$ is β_{0}-excellent. $H_{2 r+1, n}$ is not β_{0}-excellent if and only if n is odd and $2(r+1)$ divides $n-1$.

4 Just β_{0} - EXCELLENT GRAPHS

N. Sridharan and M. Yamuna [10] initiated the study of just excellence in graphs with respect to the domination parameter. A graph G is just γ excellent if every vertex is contained in a unique minimum dominating set. In this section, just β_{0} - excellent graphs are defined and studied.

4.1 Introduction

Partition of $V(G)$ into independent sets is the same as proper coloring of the graph. A chromatic partition is a partition of the vertex set into minimum number of independent sets. Such a partition may not contain a maximum independent set. For example, a double star contains a unique chromatic partition of cardinality two in which both the independent sets are not maximum. The question that naturally arises is that " "Does there exist a graph in which the vertex set can be partitioned into maximum independent sets ?". This leads to the concept of just β_{0} - excellent graphs. It is shown in this chapter that a graph of order n is just β_{0} - excellent if and only if $\beta_{0}(G)$ divides n, G has exactly $\frac{n}{\beta_{0}}$ distict β_{0} sets and the maximum cardinality of a partition of $V(G)$ into independent sets is $\frac{n}{\beta_{0}}$. This section is devoted to the definition and properties of just $\beta_{0}-$ excellent graphs, just β_{0} excellence in product graphs, just β_{0} excellence in Generalized Petersen graphs and just β_{0} excellence in Harary graphs.

4.2 Definitions and Properties of just β_{0} - excellent graphs

Definition 4.1. A graph G is said to be just $\beta_{0}-$ excellent graph if for each $u \in V$, there exists a unique β_{0}-set of G containing u.

Examples of just β_{0}-excellent graphs
(1) $C_{2 n}$
(2) K_{n}
(3) $K_{n, n}$
(4) $P_{m} \square P_{n}$, if $m n \equiv 0(\bmod 2)$.

Examples of not just β_{0}-excellent graphs

(1) $C_{2 n+1}$ (2) $K_{1, n}$ (3) P_{n} (4) The subdivision graph of $K_{1, n}$ (5) Petersen graph (6) $W_{n}, n \geq 5$ (7) $D_{r, s}$ (8) $G \circ K_{1}$, for any connected graph G.
(9) $F_{n}=P_{n-1}+K_{1}$.

Properties of just β_{0}-excellent graphs

1. Every just β_{0}-excellent graph is a β_{0}-excellent graph.
2. If G is just β_{0}-excellent and $G \neq K_{n}$, then there is no vertex u such that $<V-N[u]>$ contains at least two maximum independent sets.
Proof. Since G is just β_{0}-excellent, given $u \in V(G)$, there exists a unique β_{0}-set S of G containing u. Suppose $V-N[u]$ contains at least two maximum independent sets. $G \neq K_{n}$.

Therefore $\beta_{0}(G) \geq 2$ and $\beta_{0}(<V-N[u]>) \geq$ 1. $S-\{u\}$ is an independent set of $<V-N[u]>$ and hence $\beta_{0}(<V-N[u]>) \geq \beta_{0}(G)-1$.
If $\beta_{0}(<V-N[u]>)=\beta_{0}(G)$, then any β_{0}-set of $<V-N[u]>$ together with u is an independent set of G of cardinality $\beta_{0}(G)+1$, a contradiction. Let T_{1}, T_{2} be two maximum independent sets of $V-N[u]$. Then $T_{1} \cup\{u\}$ and $T_{2} \cup\{u\}$ are maximum independent sets of G, a contradiction.
3. Let G be just β_{0}-excellent. Then there exists a unique partition of $V(G)$ into β_{0}-sets of G.
Proof. Let $u \in V(G)$. Let S_{1} be the unique β_{0}-set of G containing u.

If $V-S_{1}=\phi$, then there is nothing to prove. Otherwise consider a vertex $v \in V-S_{1} . v$ is contained in a unique β_{0}-set say S_{2} of G. $S_{1} \cap S_{2}=\phi$, since G is just β_{0}-excellent. If $V-\left(S_{1} \cup S_{2}\right)=\phi$, the process stops. Otherwise there exists $w \in V-\left(S_{1} \cup S_{2}\right)$. There exists a unique β_{0}-set say S_{3} of G containing w. Clearly $S_{i} \cap S_{j}=\phi, i \neq j, 1 \leq i, j \leq 3$. Proceeding like this, we get a partition of $V(G)$ into β_{0}-sets of G.
4. $\beta_{0}(G)$ is a factor of n.

Proof. From the previous property, $n=m \beta_{0}(G)$, where m is the cardinality of the partition of $V(G)$ into β_{0}-sets.
5. Let G be a just β_{0}-excellent graph. Let $|V(G)|=$ n. Then $n=\chi(G) \beta_{0}(G)$.

From property $4, n=d \beta_{0}(G)$. Also $\frac{n}{\beta_{0}(G)} \leq$ $\chi(G)$ and hence $d \leq \chi(G)$. Clearly $\chi(G) \leq d$. Hence $\chi(G)=d$.
6. In a just β_{0}-excellent graph $G,|V(G)|=$ $\beta_{0}(G) \cdot \chi(G)$. The converse is not true.
Consider $P_{6} . \quad \beta_{0}\left(P_{6}\right)=3, \chi\left(P_{6}\right)=2 .\left|V\left(P_{6}\right)\right|=$ $6=\beta_{0}\left(P_{6}\right) \cdot \chi\left(P_{6}\right)$. But P_{6} is not a just β_{0}-excellent graph.
7. $\delta(G) \geq \frac{n}{\beta_{0}(G)}-1$.

Proof. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be a β_{0}-set partition of $V(G)$. Let $u \in S_{i}$. Then u is adjacent to at least one vertex in each $S_{j}, j \neq i$. Therefore $\operatorname{deg}(u) \geq m-1$. Therefore $\delta(G) \geq m-1=$
$\frac{n}{\beta_{0}(G)}-1$.
8. $\frac{n}{\beta_{0}(G)}=1$ if and only if $G=\overline{K_{n}}$.
9. If G has two or more disjoint β_{0}-sets, then G has no isolates.
Proof. Suppose G has two or more disjoint β_{0}-sets. Let $S_{1}, S_{2}, \ldots, S_{t}$ be the disjoint β_{0}-sets. Then $t \geq 2$. Suppose G has an isolate, say u. Let $u \in S_{1}$. Then $S_{2} \cup\{u\}$ is an independent set of cardinality $\beta_{0}(G)+1$, a contradiction. (or) [Equivalently, any isolate vertex is contained in every β_{0}-set and hence if there are isolates, there can not be two or more disjoint β_{0}-sets.] Thus, if G is just β_{0}-excellent and G has an isolate, then $G=\overline{K_{n}}$ and conversely.
10. Let G be a just β_{0}-excellent graph. If $G \neq K_{2}$ and $G \neq \overline{K_{n}}$, then $\delta(G) \geq 2$.
Proof. Since $G \neq \overline{K_{n}}$ and since G is a just $\beta_{0}-$ excellent graph, $\delta(G) \geq 1$.

Suppose u is a pendent vertex of G. Let $N(u)=$ $\{v\}$. Since G is just β_{0}-excellent, there exists a $\beta_{0}-$ set of D containing v. Therefore $v \in D$ and $u \notin D$. Suppose $\beta_{0}(G)=1$. Then G is a complete graph. Since $G \neq K_{2}$ and $\delta(G) \geq 1, G=K_{n}, n \geq 3$. Therefore $\delta(G) \geq 2$. Therefore u is not a pendent vertex, a contradiction. Suppose $\beta_{0}(G) \geq 2$. Then $|D| \geq 2$. Therefore there exist $w \in D, w \neq v$. Let $D_{1}=(D-\{v\}) \cup\{u\}$. Then D_{1} ia a β_{0}-set of G and w is contained in two β_{0}-sets of G namely D and D_{1}, a contradiction. Therefore $\delta(G) \geq 2$.

Remark 4.2. Any even cycle G is a just β_{0}-excellent graph with $\delta(G)=2$. Any tree is not a just β_{0} excellent graph.
11. A graph G has exactly two disjoint β_{0}-sets whose union is $V(G)$ say V_{1}, V_{2} if and only if for every non empty proper subset A of V_{1} or $V_{2},|N(A)|>|A|$.
Proof. Suppose G has exactly two disjoint β_{0}-sets whose union is $V(G)$ say V_{1}, V_{2}. Let $A \subset V_{1}$. Suppose $|N(A)| \leq|A|$. Let $C=V_{2}-N(A)$. If $C=\phi$, then $N(A)=V_{2}$. Thus $|A| \geq|N(A)|=$ $\left|V_{2}\right|=\beta_{0}(G)$. But $A \subset V_{1}$, a contradiction. Thus $C \neq \phi . \quad A \cup C$ is an independent set of G and $|A \cup C|=|A|+|C|=|A|+\beta_{0}(G)-|N(A)| \geq \beta_{0}(G)$, a contradiction, since G has exactly two disjoint β_{0} sets whose union is $V(G)$. Therefore, $|N(A)|>|A|$. Conversely, let there be two disjoint β_{0}-sets whose union is $V(G)$ say V_{1}, V_{2} and for any proper subset A of V_{1} or $V_{2},|N(A)|>|A|$.

Let W be a β_{0}-set of $G . W \neq V_{1}$, and $W \neq V_{2}$. Let $W \cap V_{1}=W_{1}, W \cap V_{2}=W_{2}$. Then $W_{1} \neq$ $\phi, W_{2} \neq \phi .\left|N\left(W_{1}\right)\right|>\left|W_{1}\right| . N\left(W_{1}\right) \cap W_{2}=\phi$.
(For: if $x \in N\left(W_{1}\right) \cap W_{2}$, then $x \in N\left(W_{1}\right)$ and $x \in W_{2}$. That is x is adjacent to every vertex in W_{1} and $x \in W_{2}$. But $W_{1} \cup W_{2}=W$ is an independent set, a contradiction.) $\left|W_{1}\right|+\left|W_{2}\right|=\beta_{0}(G)$. Therefore $\left|N\left(W_{1}\right)\right|+\left|W_{2}\right|>\beta_{0}(G)$. That is $\left|V_{2}\right|>\beta_{0}(G)$, a contradiction. Hence the theorem.

Corollary 4.3. A graph G has exactly two disjoint β_{0-} sets whose union is $V(G)$ if G is of even order and contains a spanning cycle $u_{1}, u_{2}, \ldots, u_{2 n}$ such that whenever u_{i}, u_{j} are adjacent, then i, j are of opposite parity.
Proof. Suppose G is of even order and contains a spanning cycle $u_{1}, u_{2}, \ldots, u_{2 n}$ such that whenever u_{i}, u_{j} are adjacent, then i, j are of opposite parity. Then $\left\{u_{1}, u_{3}, \ldots, u_{2 n-1}\right\},\left\{u_{2}, u_{4}, \ldots, u_{2 n}\right\}$ are the only β_{0}-sets of G whose union is $V(G)$. The converse is not true.
(i) Consider G.

There are exactly two disjoint β_{0}-sets $\left\{1,3,5,7,9,11, u^{\prime}\right\},\{2,4,6,8,10,12, u\}$
whose union is $V(G) . \quad G$ has no spanning cycle. For: consider $S=\{4,8,5,11\}$. $\omega(G-S)=5$ and the five components are $\{u\},\left\{u^{\prime}\right\},\{9,10\},\{6,7\},\{1,2,3,12\}$.
(If G has spanning cycle, then for any $S \subseteq$ $V(G), \omega(G-S) \leq|S|$.)
(ii) Consider $C_{2 n},(n \geq 6)$ Let $V\left(C_{2 n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$. Add two more vertices u, u^{\prime}. Join u with $u_{2 n-1}, u_{2 n-3}$ and u^{\prime} with $u_{2 n-4}, u_{2 n-6}$. Let G be the resulting graph. Let $S=\left\{u_{2 n-1}, u_{2 n-3}, u_{2 n-4}, u_{2 n-6}\right\}$. The components of $G-S$ are $\{u\},\left\{u^{\prime}\right\},\left\{u_{2 n-2}\right\},\left\{u_{2 n-5}\right\},\left\{u_{2 n}, 1, \ldots, u_{2 n-7}\right\}$.

Therefore $\omega(G-S)>|S|$. Therefore G can not contain a spanning cycle. But G has exactly two β_{0}-sets namely $\left\{1,3,5, \ldots,(2 n-1), u^{\prime}\right\},\{2,4, \ldots, 2 n, u\}$.
12. Let G have two disjoint β_{0}-sets V_{1}, V_{2} whose union is $V(G)$. Then
(a) G has no isolates.
(b) $N\left(V_{1}\right)=V_{2}$ and $N\left(V_{2}\right)=V_{1}$.
(c)If $G \neq K_{2}$, then $\delta(G) \geq 2$.

Proof. (a) Suppose G has an isolate say u. Let $u \in V_{1}$. Then $V_{2} \cup\{u\}$ is an independent set of cardinality $\beta_{0}(G)+1$, a contradiction. Therefore G has no isolates.
(b) Suppose $N\left(V_{1}\right) \subset V_{2}$. Let $v \in V_{2}-N\left(V_{1}\right)$. Then v is an isolate of G, a contradiction. Therefore $N\left(V_{1}\right)=V_{2}$. Similarly, $N\left(V_{2}\right)=V_{1}$.
(c) Let $u \in V_{1}$. (Similar proof holds if $u \in V_{2}$). If $\left|V_{1}\right|=1$, then $G=K_{2}$, a contradiction. Therefore $\left|V_{1}\right|>1$. Let $A=\{u\}$. Since $|N(A)|>|A|$, $|N(A)| \geq 2$. Therefore $\operatorname{deg}(u) \geq 2$. Therefore $\delta(G) \geq 2$.
13. Let G have exactly two disjoint β_{0}-sets $V_{1}(G)$ and $V_{2}(G)$ whose union is $V(G)$. Then G is connected.
Proof. Suppose G is disconnected. Let G_{1} be a component of G and
$G_{2}=<V(G)-V\left(G_{1}\right)>$. Let $V_{1} \cap V\left(G_{1}\right)=A$, $V_{2} \cap V\left(G_{1}\right)=D, V_{1} \cap V\left(G_{2}\right)=C$ and $V_{2} \cap V\left(G_{2}\right)=$ B.
Since $\phi \neq A \subset V_{1}$. Then $|N(A)|>|A|$, (using property 11). $N(A) \subset D$. Therefore $V_{2}-N(A) \supset B$ (since $B \cup D=V_{2}$). Therefore $\left|V_{2}-N(A)\right| \geq|B|$. $\left|V_{2}\right|=|N(A)|+\left|V_{2}-N(A)\right|$ and hence $\beta_{0}(G)>$ $|A|+|B|$. Similarly, $\left|V_{1}\right|=\beta_{0}>|C|+|D|$. Therefore $|A|+|B|+|C|+|D|<2 \beta_{0}(G)$. But $\left|V_{1}\right|=|A|+|C|$. $\left|V_{2}\right|=|B|+|D| \cdot\left|V_{1}\right|+\left|V_{2}\right|=|A|+|B|+|C|+|D|$.

Then $2 \beta_{0}(G)=|A|+|B|+|C|+|D|$, a contradiction. Therefore G is connected.
14. Every just β_{0}-excellent graph $G \neq \overline{K_{n}}$ is connected.
Proof. Suppose G is not connected. Since $G \neq \overline{K_{n}}$, one of the connected components of G, say G_{1}, has at least two vertices.

Claim: G_{1} is a just β_{0}-excellent graph.
Let $u \in V\left(G_{1}\right)$. Then there exists a unique β_{0}-set say S of G containing u. Let $S_{1}=S \cap V\left(G_{1}\right)$. Then S_{1} is an independent set of G_{1} containing u. Suppose S_{1} is not a β_{0}-set of G_{1}. Then $\left|S_{1}\right|<\beta_{0}\left(G_{1}\right)$. Let $S_{2}=S \cap V\left(G-G_{1}\right)$. Then $S=S_{1} \cup S_{2}$ and S_{1} and S_{2} are disjoint. Therefore $\beta_{0}(G)=|S|=\left|S_{1}\right|+$ $\left|S_{2}\right|<\beta_{0}\left(G_{1}\right)+\beta_{0}\left(<G-G_{1}>\right)$. But $\beta_{0}(G)=$ $\beta_{0}\left(G_{1}\right)+\beta_{0}\left(<G-G_{1}>\right)$, a contradiction. Therefore S_{1} is a β_{0}-set of G. G_{1} is β_{0}-excellent graph.
Let $u \in V\left(G_{1}\right)$. Suppose A and B are β_{0}-sets of G_{1} containing u. Let C be any β_{0}-set of $<G-G_{1}>$. Then $A \cup C, B \cup C$ are β_{0}-sets of G containing u, a contradiction, since G is just β_{0}-excellent. Therefore G_{1} is just β_{0}-excellent. Since G_{1} is connected and of order ≥ 2, there are at least two β_{0}-sets in G_{1}. Let
A_{1}, B_{1} be two β_{0}-sets of G_{1}. Let C be a β_{0}-set of $<G-G_{1}>$. Then $C \cup A_{1}, C \cup B_{1}$ are two β_{0}-sets of G containing C which is non empty, a contradiction. Therefore G is connected.
15. Let G be a just β_{0}-excellent graph.

Let $u \in V(G)$. Let S be the unique β_{0}-set of G containing u. Then $<p n[u, S]>$ is complete and $|p n[u, S]| \leq \chi(G)$.
Proof. Let $x, y \in p n(u, S)$. Then u is adjacent to x, y. Also x, y are not adjacent to any vertex of $S-\{u\}$. If x, y are not adjacent, then $(S-\{u\}) \cup\{x, y\}$ is an independent set of G of cardinality $\beta_{0}(G)+1$, a contradiction. Therefore $N[u]$ is complete. Since G is just β_{0}-excellent, there exist at least $|N[u]| \beta_{0}$-sets in G. Therefore $p n[u, S] \leq$ number of β_{0}-sets of $G=$ $\chi(G)$.
16. There are graphs for which $p n[u, S]=\chi(G)$.

Consider $K_{4,4,4}$. Let $V\left(K_{4,4,4}\right)$ be the set of all elements $u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, v_{3}, v_{4}, w_{1}, w_{2}, w_{3}, w_{4}$ where $\quad\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, \quad\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ are β_{0}-sets. Remove the edges $v_{1} u_{2}, v_{1} u_{3}, v_{1} u_{4}, w_{1} u_{2}, w_{1} u_{3}, w_{1} u_{4}$.

Let G be the resulting graph. G is just β_{0}-excellent having the three β_{0} sets, $\quad\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, \quad$ and $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} . \quad$ Let $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. $p n[u, S]=\left\{u_{1}, v_{1}, w_{1}\right\}$. Then $|p n[u, S]|=3=$ $\chi(G)$.
17. Let G be a bipartite just β_{0}-excellent graph and $G \neq K_{2}$. Let $u \in V(G)$. Let S be the unique β_{0}-set of G containing u. Then $p n[u, S]=\{u\}$.
Proof. Since G is bipartite, $\chi(G)=2$. Since G is just β_{0}-excellent, number of β_{0}-sets of $G=\chi(G)=2$. If for any $u \in V(G), p n[u, S] \supset\{u\}$, then there exists $u \in p n[u, S], v \neq u$. Also, if V_{1}, V_{2} is the bipartition and if $u \in V_{1}$, then $\left(V_{1}-\{u\}\right) \cup\{v\}$ is a β_{0}-set, contradicting the fact that there are exactly two β_{0} sets. Therefore $p n[u, S]=\{u\}$.
Remark 4.4. $|p n[u, S]|=1<2=\chi(G)$.

Example: 1

G_{1} is γ-excellent but not β_{0}-excellent.

Example :2

G_{2} is neither γ nor β_{0}-excellent.

Example:3

G_{3} is β_{0}-excellent but not γ-excellent.

Example:4

G_{5} is just β_{0}-excellent but not γ-just excellent.

Example:5

G_{6} is neither just γ-excellent nor β_{0}-excellent.
Example:6 C_{9} is just γ-excellent but not just β_{0} excellent. C_{9} is β_{0}-excellent.
Example: $7 K_{n}$ is both just γ-excellent and just β_{0} excellent.

Remark 4.5. Q_{n} is just β_{0}-excellent $\left(\beta_{0}\left(Q_{n}\right)=\right.$ 2^{n-1}, each vertex is n-regular and $\chi\left(Q_{n}\right)=2$).

Theorem 4.6. A graph G is just β_{0}-excellent if and only if
(i) $\beta_{0}(G)$ divides n.
(ii) G has exactly $\frac{n}{\beta_{0}(G)}$ distinct β_{0}-sets.
(iii) The maximum cardinality of a partition of $V(G)$ into independent sets is $\frac{n}{\beta_{0}(G)}$.

Proof. Let G be a just β_{0}-excellent. Let $S_{1}, S_{2}, \ldots, S_{m}$ be the collection of distinct β_{0}-sets of G. Since G is just β_{0}-excellent, these sets are pairwise disjoint and their union is $V(G)$. Therefore (i),(ii) and (iii) follows.

Conversely, let G be a graph satisfying the conditions (i), (ii) and (iii). Let $n=m \beta_{0}(G)$. By condition (iii), there exist independent sets $V_{1}, V_{2}, \ldots, V_{m}$ such that they are pairwise disjoint and $V_{1} \cup V_{2} \cup \ldots \cup V_{m}=$ V.

Therefore $n=\sum_{i=1}^{m}\left|V_{i}\right| \leq m \beta_{0}(G)$. Since $n=$ $m \beta_{0}(G)$, each V_{i} is a maximum independent sets of G. Therefore $V=V_{1} \cup V_{2} \cup \ldots \cup V_{m}$ and V_{i} 's are pairwise disjoint β_{0}-sets. Therefore G is β_{0}-excellent. Since G has exactly $\frac{n}{\beta_{0}(G)}(=m)$ distinct β_{0}-sets, $V_{1}, V_{2}, \ldots, V_{m}$ are the only β_{0}-sets of G. Therefore G is just β_{0}-excellent.
Observation 4.7. Let G be a just β_{0}-excellent graph.
Then $\Delta(G) \leq(\chi(G)-1) \beta_{0}(G)$.
Proof. Let $u \in V(G)$. Let $\operatorname{deg}(u)>(\chi(G)-$ 1) $\beta_{0}(G) . u$ is not adjacent to at least $\beta_{0}(G)-1$ vertices. $\operatorname{deg}_{G}(u)+d e g_{\bar{G}}(u)=n-1$.

Therefore $n-1>(\chi(G)-1) \beta_{0}(G)+\beta_{0}(G)-$ $1=\chi(G) \beta_{0}(G)-1=n-1$, a contradiction.

Therefore $\operatorname{deg}_{G}(u) \leq(\chi(G)-1) \beta_{0}(G)$. Therefore $\Delta(G) \leq(\chi(G)-1) \beta_{0}(G)$.
Remark 4.8. The upper bound is reached in $G=$ $K_{n_{1}, n_{2}, \ldots, n_{r}}$, where $n_{1}=n_{2}, \ldots=n_{r}=n .($ $\left.\chi(G)=r, \beta_{0}(G)=n, \operatorname{deg}(u)=(r-1) n\right)=$ $(\chi(G)-1) \beta_{0}(G)$.

Theorem 4.9. Let G, H be just β_{0}-excellent graphs and $G \neq \overline{K_{n}}, H \neq \overline{K_{n}}$.

Then (i) $G \cup H$ is not just β_{0}-excellent.
(ii) $G+H$ is just β_{0}-excellent if and only if $\beta_{0}(G)=\beta_{0}(H)$.
Proof. (i) Since $G \neq \overline{K_{n}}, H \neq \overline{K_{n}}, G$ has at least two β_{0}-sets and H has at least two β_{0}-sets. Let $u \in V(G)$. Then there exists a unique β_{0}-set S in G containing u. Let T_{1}, T_{2} be two β_{0} - sets of H. Then $S \cup T_{1}, S \cup T_{2}$ are two β_{0}-sets of $G \cup H$ containing u. Therefore $G \cup H$ is not just β_{0}-excellent.
(ii) Suppose $G+H$ is just β_{0}-excellent. Then $G+H$ is β_{0}-excellent. Therefore $\beta_{0}(G)=\beta_{0}(H)$.
Conversely, let $\beta_{0}(G)=\beta_{0}(H)$. Any β_{0}-set of $G+H$ is either a β_{0}-set of G or a β_{0}-set of H. Since G, H are just β_{0}-excellent, we get that $G+H$ is just β_{0} excellent.
Theorem 4.10. Let G be a just β_{0}-excellent and let $G \neq \overline{K_{n}}$ and G be not a bipartite graph. Then $\beta_{0}(G) \leq \frac{n}{3}$, where $n=|V(G)|$.

Proof. Since G is not bipartite and G is just β_{0-} excellent, there are at least three β_{0}-sets. Therefore $\frac{n}{\beta_{0}(G)} \geq 3 \Rightarrow \beta_{0}(G) \leq \frac{n}{3}$.

Remark 4.11. $K_{r, r, r}$ is a just β_{0}-excellent graph in which $\beta_{0}(G)=\frac{n}{3}$.

Theorem 4.12. Every graph is an induced subgraph of a just β_{0}-excellent graph.
Proof. Let G be a graph. Let $S_{11}, S_{12}, \ldots, S_{1 k_{1}}$ be disjoint β_{0}-sets of G.
$\left(k_{1} \geq 1\right)$. Let $G_{1}=G-\left(S_{11} \cup S_{12} \cup \ldots \cup\right.$ $S_{1 k_{1}}$). Let $S_{21}, S_{22}, \ldots, S_{2 k_{2}}$ be disjoint β_{0}-sets of G_{1}. Proceeding in this manner, we get a partition π of $V(G)$ into independent sets such that the first set of k_{1} independent sets are β_{0}-sets of G. Add new vertices such that each partite set in π have cardinality $\beta_{0}(G)+$ 1. Make the new vertices adjacent to all the vertices in the partite sets of π other than that in which they lie. It is easy to see that the resulting graph is just β_{0}-excellent with independence number $\beta_{0}(G)+1$.

Addition of vertices to G such that each partite set in π has cardinality $\beta_{0}(G)$ may not give a just β_{0} excellent graph.

Example 4.13.

β_{0}-sets of $\quad G \quad$ are $\quad\left\{u_{1}, u_{3}, u_{5}\right\}$, $\left\{u_{2}, u_{4}, u_{6}\right\},\left\{u_{1}, u_{3}, u_{6}\right\}$.

Here $\pi=\left\{\left\{u_{1}, u_{3}, u_{5}\right\},\left\{u_{2}, u_{4}, u_{6}\right\}\right\}$ and $\cup_{S \in \pi} S=V(G)$. If we add no vertex, we get G itself which is β_{0}-excellent but not just β_{0}-excellent.

Definition 4.14. Let G be any graph. Suppose G is not just β_{0}-excellent. Let H be a just β_{0}-excellent graph of minimum order containing G as an induced subgraph. Then $|V(H)|-|V(G)|$ is called just $\beta_{0}-$ excellent embedding index of G and is denoted by $e m_{\beta_{0}}(G)$.

Remark 4.15. $\operatorname{em}_{\beta_{0}}(G) \leq t\left(\beta_{0}+1\right)-n$.
Definition 4.16. Let G be a graph. Suppose G is not just β_{0}-excellent graph. Let H be a just β_{0}-excellent graph of minimum independence number containing G as an induced subgraph. Then $\left|\beta_{0}(H)\right|-\left|\beta_{0}(G)\right|$ is called just β_{0}-excellent embedding independent index of G and is denoted by emi $i_{\beta_{0}}(G)$.

Remark 4.17. (1) Since G is an induced subgraph of $H, \beta_{0}(G) \leq \beta_{0}(H)$.
(2) $0 \leq e m i_{\beta_{0}}(G) \leq 1$.
(3) There are graphs in which emi $i_{\beta_{0}}(G)=0$.

Example 4.18.

$\beta_{0}\left(H_{1}\right)=4, \beta_{0}\left(H_{2}\right)=3 . G$ is an induced subgraph of both H_{1} and $H_{2} . H_{2}$ is a graph with minimum independence number containing G as an induced subgraph. Thus emi $\beta_{\beta_{0}}(G)=0$.

Remark 4.19. If G is not β_{0} - excellent and G has a unique β_{0}-set, then emi $\beta_{\beta_{0}}(G)=0$.

Remark 4.20. If G is just β_{0}-excellent, then $H=G$ and hence emi $i_{\beta_{0}}(G)=e m_{\beta_{0}}(G)=0$.

Remark 4.21. Let G be a non just β_{0}-excellent graph. G is said to belong to emi- C_{1} class if emi $i_{\beta_{0}}(G)=0$ and emi-C C_{2} class if $e m i_{\beta_{0}}(G)=1$.

Example 4.22. (1) $K_{1, n}$ belongs to emi- C_{1} class.
(2) $C_{2 n+1}$ belongs to emi- C_{2} class .

Open Problem:

Characterize emi- C_{1} class and $e m i-C_{2}$ class.
Remark 4.23. Consider $D_{r, s}$. It has a unique β_{0}-set. Any chromatic partition consists of two sets. If we consider a chromatic partition and add new vertices and edges as in the theorem, then we may not get a just β_{0}-excellent graph.

Example 4.24.

$\beta_{0}(H)=7$ and $\{1,2,3,6,7,8,9\}$ is the unique β_{0}-set of H. Then H is not even β_{0}-excellent. Hence the partition of $V(G)$ into independent sets is to be done in the manner described in the theorem.

Remark 4.25. Let π be the partition of $V(G)$ as in the theorem. Then the number of new vertices added is $|\pi|\left(\beta_{0}(G)+1\right)-n$.

Proof. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}, \ldots, V_{t}\right\}$, where $V_{1}, V_{2}, \ldots, V_{k}$ are β_{0}-sets $(k \geq 1)$ of G and the remaining sets are independent having cardinality $<$ $\beta_{0}(G)$. The number of vertices added to $G=k+$ $\sum_{i=k+1}^{t}\left(\beta_{0}(G)+1-\left|V_{i}\right|\right)=k+(t-k)\left(\beta_{0}+1\right)-(n-$
$\left.k \beta_{0}\right)=t \beta_{0}+t-n=t\left(\beta_{0}+1\right)-n$.

Illustration 4.26.

The β_{0}-sets of C_{5} are $\{1,3\},\{1,4\},\{2,4\},\{2,5\}$. Hence C_{5} is not β_{0}-excellent. But for H, the β_{0}-sets are $\{1,3,7\},\{2,4,8\}$ and $\{5,6,9\} . H$ is just $\beta_{0}-$ excellent graph; $\beta_{0}\left(C_{5}\right)=2, \beta_{0}(H)=3$ and the number of new vertices added is 4 .

4.3 Just β_{0} excellence in Product graphs

Theorem 4.27. Let H be a graph. If $n=\chi(H)$, then $K_{n} \square H$ is just β_{0}-excellent and if $n>\chi(H)$, then $K_{n} \square H$ is not just β_{0}-excellent.

Proof follows from the theorem 2.19.

Observation 4.28. Let H be a graph. $\overline{K_{n}} \square H$ is just β_{0}-excellent if and only if H is just β_{0}-excellent.

Theorem 4.29. If every vertex of H belongs to an union of disjoint independent sets of H of maximum cardinality, then $K_{n} \square H$ is not just β_{0}-excellent
Proof. Suppose every vertex of H belongs to an union of disjoint independent sets of H of maximum cardinality. Then by theorem $2.22, K_{n} \square H$ is β_{0}-excellent.

Suppose $\quad\left\{S_{1}, S_{2}, \ldots, S_{n}\right\} \quad$ and $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are collections of disjoint independent sets of H with union having maximum cardinality. If $S_{i} \cap X_{j} \neq \phi$, for some i, j, then as seen in theorem 2.22 , any element of $S_{i} \cap X_{j}$ is contained in two maximum independent sets and hence $K_{n} \square H$ is not just β_{0}-excellent. Suppose $S_{i} \cap X_{j}=\phi$, for every i, j.

Claim: For some order of $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\},\left|S_{i}\right|=$ $\left|X_{i}\right|, 1 \leq i \leq n$.

Let $\sum_{i=1}^{n}\left|S_{i}\right|=t$. Then $\sum_{i=1}^{n}\left|X_{i}\right|=t$. Suppose $\left|S_{i}\right|<\left|X_{i}\right|$. Then $\left|S_{1}\right|+\left|S_{2}\right|+\ldots+$ $\left|S_{i-1}\right|+\left|S_{i+1}\right|+\ldots+\left|S_{n}\right|>\left|X_{1}\right|+\left|X_{2}\right|+$ $\ldots+\left|X_{i-1}\right|+\left|X_{i+1}\right|+\ldots+\left|X_{n}\right|$. Therefore $\left|X_{i}\right|+\left|S_{1}\right|+\ldots+\left|S_{i-1}\right|+\left|S_{i+1}\right|+\cdots+\left|S_{n}\right|>t$. Since $S_{i} \cap X_{j}=\phi$, we have disjoint independent sets of $H, X_{i}, S_{1}, S_{2}, \ldots, S_{i-1}, S_{i+1}, \ldots S_{n}$ such that $\left|X_{i}\right|+\left|S_{1}\right|+\ldots+\left|S_{i-1}\right|+\left|S_{i+1}\right|+\ldots+\left|S_{n}\right|>t$, a contradiction. Similarly, if $\left|S_{i}\right|>\left|X_{i}\right|$, we get a contradiction. Therefore $\left|S_{i}\right|=\left|X_{i}\right|, 1 \leq i \leq n$. Let $v \in$ S_{1}. Then as seen in theorem $2.22, S_{1}, S_{2}, \ldots, S_{n}$ as well as $S_{1}, X_{2}, \ldots, X_{n}$ give rise to β_{0}-set of $K_{n} \square H$ and $\left(u_{i}, v\right)$ belongs to at least two β_{0}-sets of $K_{n} \square H$. Therefore $K_{n} \square H$ is not just β_{0}-excellent.

Theorem 4.30. Let G be a bipartite graph. $G \square C_{2 m}$ is just β_{0}-excellent and $G \square C_{2 m+1}$ is not just β_{0} excellent.
Proof follows from theorem 2.46
Theorem 4.31. The following are just β_{0}-excellent graphs.
(i) $P_{2 n} \square P_{2 k+1}$ is just β_{0}-excellent.
(ii) $P_{2 n} \square C_{2 k}$ is just β_{0}-excellent.
(iii) $P_{2 n+1} \square C_{2 k}$ is just β_{0}-excellent.

Proof follows from remark 2.30 and theorem 2.31.

Theorem 4.32. The following are not just β_{0} excellent graphs.
(i) $P_{2 n} \square C_{2 k+1}$
(ii) $P_{2 n+1} \square C_{2 k+1}$

4.4 Just β_{0}-excellence in Generalized Petersen graphs $P(n, k)$

Definition 4.33. Generalised Petersen Graphs $P(n, k)$: For each $n \geq 3$ and $0<k<n, P(n, k)$ denotes the generalised Petersen graph with vertex set $V(G)=$ $\left\{u_{1}, u_{2}, \cdots, u_{n}, v_{1}, v_{2}, \cdots, v_{n}\right\}$ and the edge set $E(G)=\left\{u_{i} u_{i+1(\bmod n)}, u_{i} v_{i}, v_{i} v_{i+k(\bmod n)}\right\}, 1 \leq$ $i \leq n$.

Theorem 4.34. $P(2 n, k)$ is just β_{0}-excellent if k is odd.
Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices in the outer circle and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the remaining vertices. Let $S_{1}=\left\{v_{1}, u_{2}, v_{3}, u_{4}, \ldots, v_{2 n-1}, u_{2 n}\right\}$ and $S_{2}=\left\{u_{1}, v_{2}, u_{3}, v_{4}, \ldots, u_{2 n-1}, v_{2 n}\right\}$. Then S_{1}, S_{2} are disjoint β_{0}-sets of $P(2 n, k)$. Clearly for any nonempty proper subset A of S_{1} or $S_{2},|N(A)|>|A|$. Therefore $P(2 n, k)$ is just β_{0}-excellent.

Illustration 4.35.

The β_{0}-sets are
$\left\{u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, u_{9}, v_{10}, u_{11}, v_{12}\right\}$,

$$
\left\{v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, v_{9}, u_{10}, v_{11}, u_{12}\right\}
$$

Hence $P(12,3)$ is just β_{0}-excellent.
Theorem 4.36. $P(n, 1)$, n odd is β_{0}-excellent but not just β_{0}-excellent.

Proof. Let

$$
\begin{aligned}
& V\left(P(n, 1)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}\right. \\
& E(P(n, 1))=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i},(\bmod n)\right\}
\end{aligned}
$$ where $1 \leq i \leq n$,

$\beta_{0}(P(n, 1))=n-1$. The following are β_{0}-sets $\left\{u_{1}, v_{2}, u_{3}, v_{4}, \ldots, u_{n-2}, v_{n-1}\right\}$, $\left\{v_{1}, u_{2}, v_{3}, u_{4}, \ldots, v_{n-2}, u_{n-1}\right\}$, $\left\{u_{n}, v_{1}, u_{2}, v_{3}, u_{4}, \ldots, u_{n-3}, v_{n-2}\right\} \quad$ and $\left\{v_{n}, u_{1}, v_{2}, \ldots, v_{n-3}, u_{n-2}\right\}$. Therefore $P(n, 1), n$ is odd is β_{0}-excellent. Clearly, it is not just β_{0}-excellent.

Illustration 4.37.

The β_{0}-sets of $P(11,1)$ are
$\left\{u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, u_{9}, v_{10}\right\}$, $\left\{v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, v_{9}, u_{10}\right\}$, $\left\{u_{11}, v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, v_{9}\right\}$ and
$\left\{u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, u_{9}, v_{11}\right\}$. Hence all the vertices are in at least one β_{0}-set. Hence $P(11,1)$ is β_{0}-excellent, but clearly $P(11,1)$ is not just β_{0} excellent.

Theorem 4.38. $P(n, 3)$, n odd is β_{0}-excellent but not just β_{0}-excellent

Proof. Let

$$
V\left(P(n, 3)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}\right.
$$

$E(P(n, 3))=\left\{u_{i} u_{i+1}, v_{i} v_{i+3}, u_{i} v_{i},(\bmod n)\right\}$
where $1 \leq i \leq n . \beta_{0}(P(n, 3))=n-2$.
The following are β_{0}-sets $\left\{u_{1}, v_{2}, u_{3}, v_{4}, \ldots, u_{n-2}, v_{n-2}\right\}$, $\left\{v_{1}, u_{2}, v_{3}, u_{4}, \ldots, v_{n-2}\right\}$,
$\left\{u_{n-1}, v_{n}, u_{1}, v_{2}, \ldots, u_{n-3}\right\} \quad$ and $\left\{v_{n-1}, u_{n}, v_{1}, u_{2}, \ldots, v_{n-3}\right\}$,
$\left\{u_{n}, v_{1}, u_{2}, \ldots, u_{n-3}\right\},\left\{v_{n}, u_{1}, v_{2}, \ldots, v_{n-3}\right\}$.
Therefore $P(n, 3), n$ is odd is β_{0}-excellent. Clearly, it is not just β_{0}-excellent. Hence the result.

Illustration 4.39.

The β_{0}-sets are

$$
\begin{aligned}
& \left\{u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, u_{9}, v_{10}, u_{11}\right\}, \\
& \left\{v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, v_{9}, u_{10}, v_{11}\right\}, \\
& \left\{u_{12}, v_{13}, u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, u_{9}\right\}, \\
& \left\{u_{13}, v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, v_{9}, u_{10}\right\} .
\end{aligned}
$$

Therefore $P_{13,3}$ is β_{0}-excellent. Clearly, $P_{13,3}$ is not just β_{0}-excellent.

Theorem 4.40. $P(n, 5)$, n odd is β_{0}-excellent but not just β_{0}-excellent

Proof. Let

$V\left(P(n, 5)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}\right.$, $E(P(n, 5))=\left\{u_{i} u_{i+1}, v_{i} v_{i+5}, u_{i} v_{i}, 1 \leq i \leq\right.$ $n(\bmod n)\} . \beta_{0}(P(n, 3))=n-3$. The following are β_{0}-sets $\quad\left\{u_{1}, v_{2}, u_{3}, v_{4}, \ldots, v_{n-5}, u_{n-4}, u_{n-2}\right\}$, $\left\{v_{1}, u_{2}, v_{3}, u_{4}, \ldots, u_{n-5}, v_{n-4}, v_{n-2}\right\}$. Similar β_{0}-sets can be written starting with $u_{n-1} ; v_{n-1} ; u_{n} ; v_{n} ; u_{n-3} ; v_{n-3}$. Therefore $P(n, 5), n$ odd is β_{0}-excellent. Clearly, it is not just β_{0}-excellent.

Illustration 4.41.

The β_{0}-sets of $P(15,5)$ are
$\left\{u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}, u_{7}, v_{8}, u_{9}, v_{10}, u_{11}, u_{13}\right\}$, $\left\{v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}, v_{7}, u_{8}, v_{9}, u_{10}, v_{11}, v_{13}\right\}$, $\left\{u_{15}, v_{14}, u_{13}, v_{12}, u_{10}, v_{9}, u_{8}, v_{7}, u_{6}, v_{5}, v_{4}, u_{3},\right\}$. Therefore $P(15,5)$ is β_{0}-excellent and it is not just β_{0}-excellent.

Theorem 4.42. $P(n, 2)$, n odd is β_{0}-excellent but not just β_{0}-excellent

Proof. Let

$$
\begin{aligned}
& V\left(P(n, 2)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}\right. \\
& E(P(n, 2))=\left\{u_{i} u_{i+1}, v_{i} v_{i+2}, u_{i} v_{i},(\bmod n)\right\}
\end{aligned}
$$

where $1 \leq i \leq n . \beta_{0}(P(n, 2))=\left[\frac{4 n}{5}\right]$. The following are β_{0}-sets $\left\{u_{1}, v_{2}, u_{3}, v_{4}, \ldots, v_{n-4}, u_{n-3}, u_{n-1}\right\}$, $\left\{v_{1}, u_{2}, v_{3}, u_{4}, \ldots, u_{n-4}, v_{n-3}, v_{n-1}\right\}$. Similar β_{0-} sets can be written starting with the remaining vertices of $P(n, 2)$. Therefore $P(n, 2), n$ is odd is $\beta_{0}-$ excellent. Clearly, it is not just β_{0}-excellent.

4.5 Just β_{0}-excellence of Harary graphs

The β_{0}-excellence of Harary graph has been discussed in the third section. Based on the results in that section, the just β_{0}-excellence of Harary graphs are discussed here.

Observation 4.43. The condition $\left|\frac{n-r}{r+1}\right| \neq \frac{j-i}{r+1}$ is not sufficient to ensure that $H_{2 r, n}$ is not just β_{0} - excellent.

Consider $H_{5,9}$. Here $r=2, n=9, n-r=7$. $t=\frac{n-r}{r+1}=\frac{7}{3}=2$. Let $j=3, i=0 . \frac{j-i}{r+1}=\frac{3}{3}=1 \neq$ $\left\lfloor\frac{n-r}{r+1}\right\rfloor$.

But $S_{3}=\{3,6,0\}, S_{0}=\{0,3,6\}$ are not distinct. Here $3 \in S_{0}$ and $0 \in S_{3}$.

Remark 4.44. The condition $j \notin S_{i}$ (or) S_{i}^{\prime} implies that $\left\lfloor\frac{n-r}{r+1}\right\rfloor \neq \frac{j-i}{r+1}$

Suppose $\left\lfloor\frac{n-r}{r+1}\right\rfloor=\frac{j-i}{r+1}$. Then $\frac{j-i}{r+1}=t$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.

Therefore $j-i=t(r+1)$. Therefore $j=t(r+$ $1)+i$. Therefore $j \in S_{i}$, a contradiction.

Remark 4.45. The condition that $\left\lfloor\frac{n-r}{r+1}\right\rfloor \neq \frac{j-i}{r+1}$ need not imply that $j \notin S_{i}$ and S_{i}^{\prime}.

Consider $H_{5,9}$. Here $r=2, n=9, n-r=7$. $t=\frac{n-r}{r+1}=\frac{7}{3}=2$.

Let $j=3, i=0 . S_{0}=\{0,3,6\}, S_{0}^{\prime}=\{0,3,6\}$. $3 \in S_{0}$ and S_{0}^{\prime}.
$\frac{j-i}{r+1}=\frac{3-0}{3}=1 \neq \frac{n-r}{r+1}$. But $j \in S_{i}$ and $j \in S_{i}^{\prime}$.
Theorem 4.46. Let $j-i=q(r+1), q>0$. Then $q \leq 2 t$ and q can be written as $t-m$, where $m \geq-t$, $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.

Proof. Suppose $r+1$ divides $j-i$. Let $j-i=(r+1) q$. Write $q=l-m, l \leq t$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.Suppose $q>2 t$ and $n-r=q_{1}(r+1)+\alpha_{1}, 0 \leq \alpha_{1}<r+1$. $2 t(r+1)=2\left\lfloor\frac{n-r}{r+1}\right\rfloor(r+1)=2\left\lfloor\frac{q_{1}(r+1)+\alpha_{1}}{r+1}\right\rfloor(r+$ 1) $=2 q_{1}(r+1)=2 n-2 r-2 \alpha_{1}$.
$2 t(r+1)=n+\left(n-2 r-\alpha_{1}\right)-\alpha_{1} . q>2 t$ implies that $q \geq 2 t+1$.

Therefore,

$$
\begin{aligned}
q(r+1) & \geq(2 t+1)(r+1) \\
& =2 t(r+1)+(r+1) \\
& \left.=n+\left(n-2 r-\alpha_{1}\right)+\left(r+1-\alpha_{1}\right)\right)
\end{aligned}
$$

Since $n-r=q_{1}(r+1)+\alpha_{1}, n-2 r-\alpha_{1}=q_{1}(r+$ 1) $-r\left(q_{1}=0\right.$ implies that $n-r=\alpha_{1}<r+1$ implies that $n<2 r+1$, a contradiction, since $n \geq 2 r+1$).

Therefore, $q_{1} \geq 1$. Therefore, $n-2 r-\alpha_{1}>0$. Also, $\alpha_{1}<r+1$. Therefore, $j-i=q(r+1)>$ n, a contradiction. Thus, $q \leq 2 t$. Suppose $q \leq t$. Then $q=l-m$, where $l=t, m \geq 0$. Suppose
$t<q \leq 2 t$. Then $q=t-m$, where $m \geq-t$. Thus for $j-i=q(r+1)$ with $q>0$, we can always write $q=l-m, l=t, m \geq-t$.

Theorem 4.47. $H_{2 r, n}$ is not just β_{0}-excellent if and only if there exist $i, j(i<j), 0 \leq i, j \leq$ $n-1$ such that $r+1$ divides $j-i$ (or) $j-$ $i-n$ and j does not belong to S_{i} or S_{i}^{\prime}, where $S_{i}=\{i, r+1+i, \ldots, t(r+1)+i\}$ and $S_{i}^{\prime}=$ $\{i, i-(r+1), \ldots, i-t(r+1)\}$, where $t=\left\lfloor\frac{n-r}{r+1}\right\rfloor$.
Proof. Suppose $(r+1)$ divides $j-i$. Then by the theorem 4.46, $j-i=q(r+1)$ and $q=t-m$, where $m \geq-t$. Therefore $(t-m)(r+1)=j-i$. Therefore $t(r+1)+i=m(r+1)+j$. The two β_{0}-sets $S_{i}=\{i, r+1+i, \ldots, t(r+1)+i\}, S_{j}^{\prime}=$ $\{j, j-(r+1), \ldots, m(r+1)+j, \ldots, j-t(r+1)\}$ (or) $S_{i}=\{i, r+1+i, \ldots, t(r+1)+i\}$, and $S_{j}=$ $\{j, j+(r+1), \ldots, j+t(r+1)\}$ have a common element namely $t(r+1)+i$ according as $m<0$ (or) $m \geq 0 . S_{i}=S_{j}^{\prime}$ or $S_{i}=S_{j}$ implies $j \in S_{i}$, a contradiction. Therefore $S_{i} \neq S_{j}^{\prime}$ or $S_{i} \neq S_{j}$. Therefore $H_{2 r, n}$ is not just β_{0}-excellent.

A similar proof holds when $r+1$ divides $j-i-n$. Conversely, Suppose $H_{2 r, n}$ is not just β_{0}-excellent. Then there exist distinct β_{0}-sets S_{1}, S_{2} such that $S_{1} \cap S_{2} \neq \phi$. Without loss of generality, let $S_{1}=\{i, r+1+i, \ldots, t(r+1)+i\}, S_{2}=$ $\{j, j+(r+1), \ldots, j+t(r+1)\} \quad$ (or) $S_{1}=\{i, r+1+i, \ldots, t(r+1)+i\}, \quad S_{2}=$ $\{j, j-(r+1), \ldots, m(r+1)+j, \ldots, j-t(r+1)\}$. Since S_{1} and S_{2} are distinct, i does not belong to S_{2} and j does not belong to S_{1}. Let $l(r+1)+i=m(r+1)+j$ (or) $l(r+1)+i=m(r+1)+j-n$. Then $l \neq 0$, $m \neq 0$. That is $(r+1)(l-m)=j-i$ (or) $(r+1)(l-m)=j-i-n$. Therefore $(r+1)$ divides $j-i$ (or) $j-i-n$.

Observation 4.48. If $r+1$ divides $n-r$ and $\frac{n-r}{r+1}$ does not divide n, then $H_{2 r, n}$ is not just β_{0}-excellent.
Proof. Suppose $r+1$ divides $n-r$, then $\beta_{0}\left(H_{2 r, n}\right)=$ $\frac{n-r}{r+1}$. If $H_{2 r, n}$ is just β_{0}-excellent, then β_{0} divides n. But by hypothesis, $\frac{n-r}{r+1}=\beta_{0}$ does not divide n. Therefore $H_{2 r, n}$ is not just β_{0}-excellent.

Illustration 4.49. Consider $H_{5,11}$. Here $r=2, n=$ $11, n-r=9, r+1=3 . t=\frac{n-r}{r+1}-1=3-1=2$. $2(r+1)=6$ divides $n+1=12 . \beta_{0}(G)=\frac{n-r}{r+1}=3$. So $S_{0}=\{0,3,7\}, S_{1}=\{1,4,8\}, S_{2}=\{2,5,9\}$, $S_{3}=\{3,6,10\}, S_{4}=\{4,7,0\}, S_{5}=\{5,8,1\}$, $S_{6}=\{6,9,2\}, S_{7}=\{7,10,3\}, S_{8}=\{8,0,4\}, S_{9}=$ $\{9,1,5\}, S_{10}=\{10,2,6\} . j=10, i=1 . r+1 d i-$ vides $j-i . S_{i}=S_{1}=\{1,9,5\} . S_{i}^{\prime}=S_{1}^{\prime}=\{1,9,5\}$.
$10 \notin S_{1}$ and S_{1}^{\prime}. Therefore $H_{5,11}$ is β_{0}-excellent but not just β_{0}-excellent.

References.

[1] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and Bgraphs, Lecture Notes in Computer Science, Graph Theory and Alogrithms, Proc. Symp. Res. Inst. Electr. Comm. Tohoku Univ.; Sendi, 1980, Vol. 108, 108-123, Berlin, 1987, Springer.
[2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker. Inc., New York, 1998.
[3] G. H. Fricke, T. W. Haynes, S. T. Hetniemi, S. M. Hedetniemi and R. C. Laskar, Excellent trees, Bull. Inst. Combin. Appl., Vol. 34 (2002), pp 2738.
[4] N. Sridharan and K. Subramanian, γ-graph of a graph, Bulletin of Kerala Mathematics Association, Vol.5, 1,(2008, June),17-34.
[5] N. Sridharan and M. Yamuna, Excellent- Just Excellent -Very Excellent Graphs, Journal of Math. Phy. Sci., Vol.14, No.5, 1980, 471-475.
[6] N. Sridharan and M. Yamuna, A Note on Excellent graphs, ARS Combinatoria, 78(2006), pp. 267-276.
[7] F. Harary, Graph Theory, Addison Wesley, Reading Mass (1972).
[8] M. A. Henning anf T. W. Haynes, Total domination excellent trees, Discrete Math., Vol .263, (2003), 93-104.
[9] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publication, 38, Providence, (1962).
[10] M. Yamuna, Excellent Just Excellent Very Excellent Graphs, Ph.D Thesis, Alagappa University, 2003.

