β_0 -excellent graphs

A. P. Pushpalatha, G. Jothilakshmi	S. Suganthi, V. Swaminathan
_	Ramanujan Research Centre
Thiagarajar College of Engineering	Saraswathi Narayanan College
Madurai - 625 015	Madurai - 625 022
India	India
Email: gjlmat@tce.edu, appmat@tce.edu	sulnesri@yahoo.com

Abstract: Claude Berge [1] in 1980, introduced B graphs. These are graphs in which every vertex in the graph is contained in a maximum independent set of the graph. Fircke et al [3] in 2002 made a beginning of the study of graphs which are excellent with respect to various graph parameters. For example, a graph is domination excellent if every vertex is contained in a minimum dominating set. The B-graph of Berge was called β_0 excellent graph. β_0 excellent trees were characterized [3]. A graph is just β_0 excellent if every vertex belongs to exactly one maximum independent set of the graph. This paper is devoted to the study of β_0 excellent graphs and just β_0 excellent graphs.

Key–Words: β_0 -excellent and just β_0 excellent, Harary graphs, Generalized Petersen graph

1 Introduction

Let μ be a parameter and let G = (V, E) be simple graph. A vertex $v \in V(G)$ is said to be μ -good if v belongs to a μ -minimum (μ -maximum) set of G according as μ is a super hereditary (hereditary) parameter. v is said to be μ -bad if it is not μ -good. A graph Gis said to be μ -excellent if every vertex of G is μ -good. G is μ -commendable if number of μ -good vertices in G is strictly greater than the number μ -bad vertices of G and there should be at least one μ -bad vertex in G. G is equal to the number of μ -good vertices in G is said to be μ -fair if number of μ -good vertices in G is said to be μ -poor if number of μ -bad vertices in Gis strictly greater than the number of μ -bad vertices in G is strictly greater than the number of μ -bad vertices in G is strictly greater than the number of μ -bad vertices in G is strictly greater than the number of μ -bad vertices in G is strictly greater than the number of μ -bad vertices in G is strictly greater than the number of μ -good vertices in G.

 γ -excellent trees and total domination excellent trees have been studied in [3], [8]. β_0 -excellent trees was also dealt with in some of the theorems in [3]. Continuing the study on γ -excellent graphs, N.Sridharan and Yamuna [4, 5, 6], made an extensive work in this area. They have defined excellent, very excellent, just total excellent, rigid very excellent graphs with respect to the domination parameter and made a substantial contribution in this area.

This paper starts with the definition of β_0 excellent graphs. In the first section, general results on β_0 - excellent graphs are proved. The second section is devoted to β_0 -excellence in Cartesian Product of graphs. The third section deals with β_0 -excellence of Harary graphs. The fourth section is devoted to the study of just β_0 -excellent graphs. **Definition 1.1.** *Double star* is a graph obtained by taking two stars and joining the vertices of maximum degrees with an edge. If the stars are $K_{1,r}$ and $K_{1,s}$, then the double star is denoted by $D_{r,s}$.

Definition 1.2. A fan F_n is defined as the graph join $P_{n-1} + K_1$, where $n \ge 3$ and P_{n-1} is the path graph on n - 1 vertices.

2 β_0 -excellent graphs

Definition 2.1. Let G = (V, E) be a simple graph. Let $u \in V(G)$. u is said to be β_0 -good if u is contained in a β_0 -set of G.

Definition 2.2. *u* is said to be β_0 -bad if there exists no β_0 -set of *G* containing *u*.

Definition 2.3. A graph G is said to be β_0 -excellent if every vertex of G is β_0 -good.

The β_0 -sets of G are $\{1,3,6,8\}$, $\{5,6,7,8\}$, $\{2,4,5,7\}$. Hence all the vertices are β_0 -good. Hence G is β_0 -excellent.

Theorem 2.5. (1) K_n is β_0 -excellent.

(2)The central vertex of $K_{1,n}$ is β_0 -bad and every other vertex is β_0 -good. (3) C_n is β_0 -excellent. (4) P_n is β_0 -excellent if and only if n is even.

(5) In a Double star $D_{r,s}$, all the pendent vertices are β_0 -good but the two supporting vertices are β_0 bad. Hence $D_{r,s}$ is not a β_0 -excellent graph.

(6) $K_{m,n}$ is β_0 -excellent if and only if m = n.

(7) In W_n , the central vertex is β_0 -bad, while other vertices are β_0 -good.

(8) $\overline{K_n}$ is a β_0 -excellent graph.

(9) $F_n, n \ge 3$ is not β_0 -excellent.

Remark 2.6. Suppose G has a unique β_0 -set. Then G is β_0 -excellent if and only if $G = \overline{K_n}$.

Remark 2.7. If G has a full degree vertex and if $G \neq K_n$, then G is not β_0 -excellent.

Theorem 2.8. For any graph G, $G \circ K_1$ is β_0 -excellent.

Definition 2.9. A graph is said to be β_0 -fair(β_0 -poor) graph if the number of β_0 -good vertices is greater than(less than) the number of β_0 -bad vertices.

Example 2.10. Let G be the graph obtained from $K_{1,3}$ by subdividing all pendent edges exactly once. Then G is β_0 -fair.

Example 2.11. In $G = K_4 - \{e\}$, exactly two vertices are β_0 -good and remaining vertices are β_0 -bad. If $n \ge 5$, then $G = K_n - \{e\}$ is β_0 -poor, since the number of β_0 -bad vertices is greater than number of β_0 -good vertices.

Theorem 2.12. Every non β_0 - excellent graph can be embedded in a β_0 -excellent graph.

If G is a non β_0 -excellent graph, then $G \circ K_1$ is a β_0 -excellent graph in which G is embedded.

Remark 2.13. Suppose $G = K_{n+1}$. Then $\beta_0(G \circ K_1) - \beta_0(G) = n$, which means the difference between the independence number of the graph, in which the given graph is embedded and the given graph is large.

Definition 2.14. A graph G is said to be vertex transitive if given any two vertices $u, v(u \neq v)$ of G, there is an automorphism ϕ of G such that $\phi(u) = v$. If G is vertex transitive, then it is regular.

Theorem 2.15. Any vertex transitive graph is β_0 -excellent.

Proof. Let G be a vertex transitive graph. Let S be a β_0 -set of G. Let $u \in V(G)$. Suppose $u \notin S$. Select any vertex $v \in S$. As G is vertex transitive, there exists an automorphism ϕ of G which maps v to u. Let $S' = \{\phi(w) : w \in S\}$. Since S is a β_0 -set and ϕ is an automorphism, S' is a β_0 -set. Since $v \in S$, $\phi(v) = u \in S'$. Therefore G is β_0 -excellent.

Theorem 2.16. Let G be a non β_0 -excellent graph. Then there exists a graph H in which the following conditions are true.

(i) H is β_0 -excellent.

(ii) G is an induced subgraph of H.

(*iii*) $\beta_0(H) = \beta_0(G)$. **Proof.** Let G be a non $-\beta_0$ -excellent graph. Let $B = \{b_1, b_2, \dots, b_k\}$ be the set of all β_0 -bad vertices of G. Let V_1, V_2, \dots, V_k be a set of independent sets of maximum cardinalities containing b_1, b_2, \dots, b_k re-

spectively. Let $|V_i| = t_i$, $1 \le i \le k$. Then $t_i < \beta_0(G)$, for all $i, 1 \leq i \leq k$. Let $W_i = \{w_{i_1}, w_{i_2}, \dots, w_{i_{\beta_0-t_i}}\},\$ $1 \leq i \leq k$. Add each element of W_i , $1 \leq i \leq k$ as a vertex to the vertex set of G. Let the new sets of vertices W_1, W_2, \ldots, W_k be made a complete kpartite graph. Join each vertex of W_i with every vertex of $V - V_i$, $1 \le i \le k$. Let H be the resulting graph. Then $V_i \cup W_i$ is an independent set of H of cardinality β_0 . Any β_0 -set of G continues to be an independent set of H of cardinality β_0 . There is no other independent set of H of cardinality greater than β_0 . Therefore $\beta_0(H) = \beta_0(G)$. Each new vertex added to G and each b_i is contained in a maximum independent set of H. Therefore H is a β_0 -excellent graph. Clearly, G is an induced subgraph of H and $\beta_0(H) = \beta_0(G)$.

Theorem 2.17. Let G, H be β_0 -excellent graphs with $V(G) \cap V(H) = \phi$. Then

(*i*) $G \cup H$ is β_0 -excellent.

(ii) G + H is β_0 -excellent if and only if $\beta_0(G) = \beta_0(H)$.

Proof. (i) Any β_0 -set of $G \cup H$ is of the form $S_1 \cup S_2$, where S_1 is a β_0 -set of G and S_2 is a β_0 -set of H. Hence $G \cup H$ is β_0 -excellent.

(ii) Let $\beta_0(G) < \beta_0(H)$. Then any β_0 -set of G + H is a β_0 -set of H and conversely. If $\beta_0(G) = \beta_0(H)$, then any β_0 -set of G and any β_0 -set of H are β_0 -sets of G + H and conversely. Therefore G + H is β_0 -excellent if and only if $\beta_0(G) = \beta_0(H)$.

Definition 2.18. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be any two graphs Then their **Cartesian Product** $G_1 \square G_2$ is defined to be the graph whose vertex set is $V_1 \square V_2$ and edge set is $\{((u_1, v_1), (u_2, v_2)) :$ either $u_1 = u_2$ and $v_1v_2 \in E_2$ or $v_1 = v_2$ and $u_1u_2 \in E_1\}$.

Theorem 2.19. *Let H be a graph.*

(i) Let $n \ge \chi(H)$. Then $\beta_0(K_n \Box H) = |V(H)|$ and $K_n \Box H$ is β_0 -excellent.

(ii) Let $n < \chi(H)$. Then $\beta_0(K_n \Box H) = t$, where t is the maximum cardinality of an union of n-disjoint independent sets in H.

Proof. (i) Let $n \ge \chi(H)$. Let $\prod = \{V_1, V_2, \ldots, V_{\chi(H)}\}$ be a chromatic partition of H. Let $V(K_n) = \{u_1, u_2, \ldots, u_n\}$. Then $S = \{(u_1, v) : v \in V_1\} \cup \{(u_2, v) : v \in V_2\} \cup \ldots \cup \{(u_{\chi(G)}, v) : v_{\chi(G)} \in V_{\chi(G)}\}$ is an independent set of $K_n \Box H$. Therefore $\beta_0(K_n \Box H) \ge |V(H)|$. But $\beta_0(K_n \Box H) \le \beta_0(K_n)|V(H)| = |V(H)|$. Therefore $\beta_0(K_n \Box H) = |V(H)|$. Any set of χ -vertices of K_n will produce a β_0 -set of $K_n \Box H$. Hence $K_n \Box H$ is β_0 -excellent.

(ii) Let $n < \chi(H)$. Let S_1, S_2, \ldots, S_n be disjoint independent sets in H such that $\sum_{i=1}^n |S_i|$ is maximum. Let $t = \sum_{i=1}^n |S_i|$. Then $T = \{(u_1, v) : v \in S_1\} \cup \{(u_2, v) : v \in S_2\} \cup \ldots \cup \{(u_n, v) : v \in S_n\}$ is an independent set of $K_n \Box H$. Therefore $\beta_0(K_n \Box H) \ge \sum_{i=1}^n |S_i| = |T| = t$. Let S be a maximum independent set of $K_n \Box H$. Let $X_i = S \cap (\{u_i\} \times V(H)), 1 \le i \le n$. Let $Y_i = \{v \in V(H) : (u_i, v) \in X_i, 1 \le i \le n)$. Then Y_i 's are independent and disjoint in H. $|S| = \sum_{i=1}^n |X_i| = \sum_{i=1}^n |Y_i| \le \sum_{i=1}^n |S_i| = |T|$. Therefore $t = |T| \ge \beta_0(K_n \Box H) = |T| = t$.

Illustration 2.20. Let H be $K_{5,3,5,2}$. Then $K_3 \Box H$ is not β_0 -excellent. (Here $\chi(H) = 4 > 3$).

Theorem 2.21. $K_n \Box H$ is β_0 -excellent if and only if every vertex of H belongs to the union of disjoint independent sets of H of maximum cardinality.

Proof. Suppose every vertex of H belongs to the union of disjoint independent sets of H of maximum cardinality. Let $V(K_n) = \{u_1, u_2, \ldots, u_n\}$. $(u_i, v) \in V(K_n \Box H), 1 \le i \le n$. Then $v \in V(H)$. Then there exist disjoint independent sets S_1, S_2, \ldots, S_n of H such that $\sum_{i=1}^n |S_i| = t$ is maximum and $v \in S_j$, for some $j, 1 \le j \le n$.

Then $T = \{(u_1, v) : v \in S_1\} \cup \{(u_2, v) : v \in S_2\} \dots \cup \{(u_i, v) : v \in S_j\} \cup \{(u_j, v) : v \in S_i\} \dots \cup \{(u_n, v) : v \in S_n\}$ is a maximum independent set of $K_n \Box H$ containing (u_i, v) . Therefore $K_n \Box H$ is β_0 -excellent.

Conversely, Suppose every vertex of H belongs to the union of disjoint independent sets of H of maximum cardinality. Then there exists a vertex $v \in H$ such that v does not belong to any union of n disjoint independent sets of H of maximum cardinality. Since any maximum independent set of $K_n \Box H$ is obtained from *n* disjoint independent sets of *H*, with the union having maximum cardinality, (u_i, v) , $1 \leq i \leq n$ will not belong to any maximum independent set of $K_n \Box H$. Therefore $K_n \Box H$ is not β_0 -excellent.

Theorem 2.22. Let *H* be a graph. Then $\overline{K_n} \Box H$ is β_0 -excellent if and only if *H* is β_0 -excellent.

Proof. Suppose H is β_0 -excellent. Then $\beta_0(\overline{K_n} \Box H) = n.\beta_0(H)$. Any β_0 -set of H gives rise to a β_0 -set of $\overline{K_n} \Box H$. Therefore $\overline{K_n} \Box H$ is β_0 -excellent. Suppose H is not β_0 -excellent. Let $u \in V(H)$ be such that u is not contained in any β_0 -set of H. Suppose S is a β_0 -set of $\overline{K_n} \Box H$ containing (v, u), for some $v \in V(\overline{K_n})$. Therefore $|S| = n.\beta_0(H)$. Also S is of the form $V(G) \times T$, where T is a β_0 -set of H. Therefore $u \in T$, a contradiction.

Theorem 2.23. Let $G \neq \overline{K_n}$ and let G be a β_0 excellent graph. Let $H = P_{2n}$. Then $G \Box H$ is β_0 -excellent if (i) or (ii) is satisfied. $G \Box H$ is not β_0 excellent if (iii) is satisfied.

(i) For any β_0 -set S of G, there exists a β_0 -set of G in V-S

(ii) Let the cardinality of the union of any two disjoint non-maximum independent set of $G \leq |S| + \beta_0 (\langle V - S \rangle)$, for any β_0 -set S of G. For every β_0 -set S of G, V - S does not contain β_0 -set of G and for any β_0 -set S of G, the maximum number of independent elements in V - S is the same.

(iii) If any two β_0 -sets of G are not disjoint and there exists a β_0 -set S of G such that the maximum number of independent elements in V - S is greater than the maximum number of independent elements in the complement of any other β_0 -set, then $G \Box H$ is not β_0 -excellent.

Proof. (i) Let G have two disjoint β_0 -sets. Then $\beta_0(G \Box P_{2n}) = 2n\beta_0(G)$. For: Let S_1, S_2 be two disjoint β_0 -sets of G. Let $V(P_{2n}) = \{v_1, v_2, \dots, v_{2n}\}$. $\{(x_i, v_i) : x_i \in S_1\} \cup \{(y_i, v_{i+1}) : y_i \in S_2\}$ is an independent set in $G \Box P_{2n}$. Thus $\{(x_i, v_1) : x_i \in S_1\} \cup \{(y_i, v_2) : y_i \in S_2\} \cup$ $\{(x_i, v_3) : x_i \in S_1\} \cup \{(y_i, v_4) : y_i \in S_2\} \cup$... \cup $\{(x_i, v_{2n-1}) : x_i \in S_1\} \cup \{(y_i, v_{2n}) : y_i \in S_2\}$ is an independent set of $G \Box P_{2n}$. Therefore $\beta_0(G \Box P_{2n}) \ge 2n\beta_0(G)$.

But $\beta_0(G \Box P_{2n}) \leq \beta_0(G)|V(P_{2n})| = 2n\beta_0(G)$. Hence $\beta_0(G \Box P_{2n}) = 2n\beta_0(G)$. Let $(x, y) \in V(G \Box P_{2n})$. Then there exists a β_0 -set S_1 of G containing x. Also by hypothesis, $V - S_1$ contains a β_0 -set of G,say S_2 . $\bigcup_{t=1}^n (S_1 \times \{v_{2t-1}\}) \cup \bigcup_{t=1}^n (S_2 \times \{v_{2t}\})$ and $\bigcup_{t=1}^n (S_2 \times \{v_{2t-1}\}) \cup \bigcup_{t=1}^n (S_1 \times \{v_{2t}\})$ are β_0 -sets of $G \Box P_{2n}$. Hence there exists a β_0 - set of $G \Box P_{2n}$ containing (x, y). Therefore $G \Box P_{2n}$ is β_0 -excellent.

(ii) It can be easily proved that $\beta_0(G \Box P_{2n}) = (\beta_0(G) + k)n$, where k is the maximum number of independent elements in the complement of any β_0 -set of G. In this case, $G \Box P_{2n}$ is β_0 -excellent.[For: Let (x, y) be any element of $V(G \Box P_{2n})$. Then there exists a β_0 -set S_1 of G containing x. Also $V - S_1$ contains an independent set of cardinality k. Let S_2 be a maximum independent set in $V - S_1$. $\bigcup_{t=1}^n (S_1 \times \{v_{2t-1}\}) \cup \bigcup_{t=1}^n (S_2 \times \{v_{2t}\})$ and $\bigcup_{t=1}^n (S_2 \times \{v_{2t-1}\}) \cup \bigcup_{t=1}^n (S_1 \times \{v_{2t}\})$ are the β_0 -elements of $G \Box P_{2n}$. Hence there exists a β_0 -set of $G \Box P_{2n}$ containing (x, y). Therefore $G \Box P_{2n}$ is β_0 -excellent.

(iii) Suppose there exists a β_0 -set S_1 of G such that the maximum number of independent elements say k in $V - S_1$ is greater than the maximum number of independent elements in the complement of any other β_0 -set of G.

 $\beta_0(G \Box P_{2n}) = (\beta_0(G) + k)n$. Let $u \in V(G) - S_1$. Then there exists a β_0 -set S_2 of G containing u. The maximum number of independent elements in $V(G) - S_2$ is less than k. Therefore (u, v), where $v \in V(P_{2n})$ is not contained in any β_0 -set of $G \Box P_{2n}$. Hence $G \Box P_{2n}$ is not β_0 -excellent.

Remark 2.24. There exist graphs in which the maximum number of independent elements in the complement of any β_0 -set of G is greater than the maximum number of independent elements in the complement of any other β_0 -set of G.

Example 2.25.

The β_0 -sets of G are $S_1 = \{1, 2, 3, 4, 5, 8, 9, 10\}$, $S_2 = \{3, 4, 5, 6, 7, 10, 11, 12\}$, $S_3 = \{8, 9, 10, 11, 12, 13, 14, 15\}$. Then $V - S_1 = \{6, 7, 11, 12, 13, 14, 15\}$, $V - S_2 = \{1, 2, 8, 9, 13, 14, 15\}$, $V - S_3 = \{1, 2, 3, 4, 5, 6, 7\}$. The set $\{11, 12, 13, 14, 15\}$ is a β_0 -set in $V - S_1 = \{1, 2, 3, 4, 5, 6, 7\}$.

The set $\{11, 12, 13, 14, 15\}$ is a β_0 -set in $V = S_1$; $\{8, 9, 13, 14, 15\}$ is a β_0 -set in $V = S_2$ and $\{2, 3, 4, 5, 6, 7\}$ is a β_0 -set in $V = S_3$. Hence S_3 satisfies the property described in the remark 2.24

Example 2.26.

The β_0 -sets of G are $S_1 = \{1, 2, 4, 6, 7\}, S_2 = \{1, 2, 8, 6, 7\}$. Clearly G is not β_0 - excellent. The maximum number of independent sets in $V - S_1$ and in $V - S_2$ is one. The sets $S_3 = \{1, 2, 4\}$ and $S_4 = \{8, 6, 7\}$ are not β_0 -sets. The maximum number of independent sets in $V - (S_3 \cup S_4)$ is one. That is, there exist two disjoint independent sets of cardinality 3 each and the maximum number of independent elements in complement of their union is one.

 $|S_3| + |S_4| + \beta_0(V - (S_3 \cup S_4)) = 7 > |S_1| + \beta_0(V - S_1) = |S_2| + \beta_0(V - S_2) = 6.$

Example 2.27.

The β_0 -set of G is $S = \{1, 2, 3, 6, 7, 8\}$. The 4-element disjoint independent sets are $\{1, 2, 3, 5\}$, $\{4, 6, 7, 8\}$. $\beta_0(G \Box P_{2n}) = 8n$. It can be shown that there is a β_0 -set of G and a set of maximum number of elements in the complement, such that independent set generated contains 7n elements.

Though G is not β_0 excellent, $G \Box P_{2n}$ is β_0 excellent here. For:

Example 2.28.

Let $V(P_{2n}) = \{u_1, u_2, \dots, u_{2n}\}$. Let $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 7, 8\}$. Two maximum independent sets of $G \Box P_{2n}$ are

 $\bigcup_{\substack{i \equiv 1 (mod2), 1 \leq i \leq 2n}} \{(u_i, 1), (u_i, 2), (u_i, 3), (u_i, 5)\}$ $\bigcup_{\substack{j \equiv 0 (mod-2), 2 \leq j \leq 2n}} \{(u_j, 4), (u_j, 6), (u_j, 7), (u_j, 8)\}$ and $\bigcup_{\substack{i \equiv 1 (mod2), 1 \leq i \leq 2n}} \{(u_i, 4), (u_i, 6), (u_i, 7), (u_i, 8)\}$

 $\bigcup_{\substack{j\equiv 0(mod \ 2), 2\leq j\leq 2n}} \{(u_j,1), (u_j,2), (u_j,3), (u_j,5)\}.$ Hence $G \Box P_{2n}$ is β_0 -excellent, but G is not β_0 -

Remark 2.29. Suppose G is a graph in which $V(G) = A \cup B$, where A, B are independent and disjoint subsets are V(G). Then $G \Box P_{2n}$ is β_0 -excellent. (or) equivalently if G is bipartite graph, then $G \Box P_{2n}$ is β_0 -excellent. Hence $T \Box P_{2n}$ is β_0 -excellent, for any tree T and $C_{2n} \Box P_{2n}$ is β_0 -excellent.

Theorem 2.30. Suppose G is of even order in which $V(G) = A \cup B$, $A \cap B = \phi$, A, B are independent and |A| = |B|. Then $G \Box P_{2n+1}$ is β_0 -excellent.

Proof. The following are β_0 -sets of $G \Box P_{2n+1}$.

$$\bigcup_{i\equiv 1(mod 2), \ 1\leq i\leq 2n+1} P \bigcup_{j\equiv 0(mod 2), \ 1\leq j\leq 2n} Q$$
 and

 $\begin{array}{c|c} \bigcup_{i\equiv 1(mod \ 2), \ 1\leq i\leq 2n+1} R \ \bigcup \ j\equiv 0(mod \ 2), \ 1\leq j\leq 2n} S, \\ \text{where } P = \{(v,u_i):v\in A)\}, \\ Q = \{(v,u_j):v\in B)\}, R = \{(v,u_i):v\in B)\} \text{ and } \\ S = \{(v,u_j):v\in A)\}. \\ \text{Hence } G \Box P_{2n+1} \text{ is } \beta_0 \text{-excellent.} \end{array}$

Corollary 2.31. If G is bipartite graph with equicardinal bipartition, then $G \Box P_{2n+1}$ is β_0 -excellent.

Corollary 2.32. (1) $C_n \Box P_{2n+1}$ is β_0 -excellent. (2) If T is a tree with equi-cardinal bipartition, then $T \Box P_{2n+1}$ is β_0 -excellent.

Example 2.33.

excellent.

The graph G is of even order in which $V(G) = A \cup B$, $A \cap B = \phi$, A, B are independent and |A| = |B|, where $A = \{1, 2, 3\}$, $B = \{4, 5, 6\}$. Here G is not β_0 -excellent (since $\beta_0(G) = 4$ and $\{1, 2, 3, 4\}$ is the unique β_0 -set of G).

Example 2.34. $D_{r,r}$ is a graph of even order in which $V(G) = A \cup B$, $A \cap B = \phi$, A, B are independent and |A| = |B|, where A, B are respectively the set of pendents adjacent to each of the two centers. $D_{r,r}$ is not β_0 -excellent, since the two centers are β_0 -bad vertices.

Remark 2.35. Consider the path P_t with each vertex of P_t as centers, add r-pendent vertices. Let the resulting graph be denoted by $M_{r,r,\dots,t-times}$. Then $M_{r,r,\dots,r} \Box P_{2n+1}$ is β_0 -excellent, but $M_{r,r,\dots,r}$ is not β_0 -excellent.

Illustration 2.36.

Theorem 2.37. $G \Box P_{2n}$ is β_0 -excellent if and only if there exists an independent partition $\pi = \{V_1, V_2, \dots, V_k\}$ of G such that $\max_{1 \le i, j \le k, i \ne j} \{|V_i \cup V_j|\}$ is attained for pairs (i, j) with $\bigcup_{|V_i \cup V_j|} \{i, j\} = \{1, 2, \dots, k\}.$

Proof. Any maximum independent subset of $G \Box P_{2n}$ is of the form $X_1 \cup X_2 \cup \cdots \cup X_{2n}$ where $X_i = A \times \{u_i\}$ if *i* is odd and $X_i = B \times \{u_i\}$ if *i* is even, *A*, *B* being disjoint independent sets of *G* such that $A \cup B$ has maximum cardinality. Suppose *G* has an independent partition satisfying the hypothesis. Then clearly, $G \Box P_{2n}$ is β_0 - excellent.

Conversely, suppose $G \Box P_{2n}$ is β_0 -excellent. Then every vertex $\{u, v\}, u \in V(G)$ and $v \in V(P_{2n})$ belongs to a β_0 -set of $G \Box P_{2n}$. The structure of β_0 -sets of $G \Box P_{2n}$ imply that there exist disjoint independent sets V_1, V_2, \ldots, V_k in G whose union is V(G), satisfying the condition in the theorem.

Corollary 2.38. Let $\chi(G) \geq 3$. Then $G \square P_{2n}$ is β_0 -excellent if there exists a chromatic partition $\pi = \{V_1, V_2, \dots, V_{\chi(G)}\}$ of G such that $\max_{1 \leq i,j \leq \chi, i \neq j} \{|V_i \cup V_j|\}$ is attained for pairs (i, j)with $\bigcup_{|V_i \cup V_j|} \{i, j\} = \{1, 2, \dots, \chi(G)\}.$

Remark 2.39. *The converse of the above corollary is not true. Consider the graph G.*

A chromatic partition of G is given by $\{\{2,4,5\},\{3,6\},\{1\}\}.$

Corollary 2.40. If G is a complete r-partite($r \ge 3$)graph with equi-cardinal partite sets, then $G \Box P_{2n}$ is β_0 -excellent.

Remark 2.41. Let $G = \overline{K_2} + \overline{K_3} + \overline{K_2}$. Then G is not β_0 -excellent, but $G \Box P_{2n}$ is β_0 -excellent.

Corollary 2.42. Q_n is β_0 -excellent, since $Q_n = Q_{n-1} \Box P_2$. Moreover $Q_n \Box P_{2n}$ is also β_0 -excellent.

Remark 2.43. Let $G = \overline{K_4} + \overline{K_3} + \overline{K_2}$. Then G and $G \Box P_{2n}$ are not β_0 -excellent.

Theorem 2.44. *There exists a regular graph which is not* β_0 *-excellent.*

For this graph G, the β_0 -set is $\{2, 5, 6, 8, 11, 13, 16\}$ consisting of 7 vertices. The remaining vertices are contained in the independent sets $\{1, 3, 6, 8, 12, 14\}$, $\{1, 3, 7, 9, 12, 14\}$, $\{1, 3, 7, 9, 12, 15\}$ of cardinality 6 each. Thus this graph is 3-regular but not β_0 -excellent.

Theorem 2.45. Let G be a bipartite graph with bipartition V_1, V_2 . Then $G \Box C_m$ is β_0 -excellent.

Proof. Case(i): Let m = 2n. Let $V(C_{2n}) = \{u_1, u_2, \dots, u_{2n}\}.$

The maximum independent sets of $G \Box C_{2n}$ are

 $P \cup$ U U Q $j \equiv 0 \pmod{2}, \ 1 \leq j \leq 2n$ $j \equiv 0 \pmod{2}, \ 2 \leq j \leq 2n$ and U U RU S, $j\equiv 0(mod2), 1\leq j\leq 2n$ $j\equiv 0(mod2), 2\leq j\leq 2n$ $\{(v_i, u_j) : v_i \in V_1\}, Q$ where P= $\{(v_i, u_j) : v_i \in V_2\}, R = \{(v_i, u_j) : v_i \in V_2\}$ and $S = \{(v_i, u_j) : v_i \in V_1\}$. Hence $G \square C_m$ is β_0 -excellent.

Case(ii): Let m = 2n + 1. Let $V(C_{2n+1}) = \{u_1, u_2, \dots, u_{2n+1}\}.$ $\beta_0(G \Box C_{2n+1}) = n |V(G)|.$ The following are β_0 -sets of $G \Box C_{2n+1}.$

$$\bigcup_{j\equiv 1 (mod 2), \ 1\leq j\leq 2n} P_1 \bigcup_{j\equiv 0 (mod 2), \ 2\leq j\leq 2n} P_2$$

$$\bigcup_{\substack{j\equiv 1(mod \ 2), \ 1\leq j\leq 2n \\ j\equiv 1(mod \ 2), \ 2\leq j\leq 2n+1 \\ j\equiv 0(mod \ 2), \ 2\leq j\leq 2n \\ j\equiv 0(mod \ 2), \ 2\leq j\leq 2n \\ R_2$$

and

Theorem 2.46. Let G be a β_0 -excellent graph. For any β_0 -set S of G, let V - S contain a β_0 -set of G. Then $G \Box C_{2n}$ is β_0 -excellent.

Proof. The proof follows from the fact that for any β_0 -set S of G and a β_0 -set S_1 of G in V - S, $\bigcup_{j\equiv 0(mod \ 2), \ 1\leq j\leq 2n}$ Q, where U $P \bigcup$ $i \equiv 1 (mod \ 2), \ 1 \leq i \leq 2n$ $P = \{(v, u_i) : v \in S)\}, Q = \{(v, u_j) : v \in S_1)\}$ and U R[]U S, $j \equiv 0 \pmod{2}, 1 \leq j \leq 2n$ $i\equiv 1(mod \ 2), \ 1\leq i\leq 2n$ where R = $\{(v, u_i) : v \in S_1\},\$ S= $\{(v, u_i) : v_i \in S\}$ are β_0 -sets of $G \square C_{2n}$.

Theorem 2.47. (i) $C_{2n} \Box C_{2k+1}$ is β_0 excellent. (ii) $C_{2n} \Box C_{2m}$ is β_0 -excellent. (iii) $C_{2k+1} \Box C_{2n+1}, n \leq k$ is β_0 -excellent.

Corollary 2.48. The following graphs are β_0 -excellent.

(i) $P_{2n} \Box P_{2k+1}$. Result follows from the fact that $G \Box P_{2k+1}$ is β_0 -excellent if G is of even order and $V(G) = A \cup B, A \cap B = \phi, |A| = |B|$ and A, B are independent.

(ii) $P_{2n} \square C_{2k+1}$. ($G \square C_m$ is β_0 -excellent if G is bipartite with partition V_1, V_2 .)

(*iii*) $P_{2n+1} \Box C_{2k+1}$.

(since $G \Box C_m$ is β_0 -excellent if G is bipartite with partition V_1, V_2 .)

(iv) $P_{2n} \Box C_{2k}$.

(since $G \Box C_m$ is β_0 -excellent if G is bipartite with partition V_1, V_2 .)

(v) $P_{2n+1} \Box C_{2k}$.

(since $G \Box C_m$ is β_0 -excellent if G is bipartite with partition V_1, V_2 .)

Definition 2.49. *Mycielski Graphs* Let G = (V, E) be a simple graph. The Mycielskian of G is the graph $\mu(G)$ with vertex set equal to the disjoint union $V \cup V' \cup \{u\}$ where $V' = \{x' : x \in V\}$ and the edge set $E \cup \{xy', x'y : xy \in E\} \cup \{y'u : y' \in V'\}$. The

vertex x' is called the twin of the vertex and the vertex u is called the root of $\mu(G)$.

Theorem 2.50. Let $G \neq K_2$ be a graph. Then $\mu(G)$ is not β_0 -excellent.

Proof. Let $V(G) = \{u_1, u_2, ..., u_n\}$. Let $V(\mu(G)) = \{u_1, u_2, ..., u_n, u'_1, ..., u'_n, v\}$. Then $E(\mu(G)) = \bigcup_{i=1}^n \{u'_i u_j : u_j \in N_G(u_i), 1 \le j \le n\} \cup \{u'_i v : 1 \le i \le n\}$. It has been proved that $\beta_0(\mu(G)) = \max \{2\beta_0(G), |V(G)|\}$.

Suppose $\beta_0(G) < \frac{|V(G)|}{2}$. Then $\{u'_1, u'_2, \dots, u'_n\}$ is the only β_0 -set of $\mu(G)$.

Suppose $\beta_0(G) > \frac{|V(G)|}{2}$.

Let $\left\{u_{i_1}, u_{i_2}, \dots, u_{i_{\beta_0}}\right\}$ be a β_0 -set of G. Then $\left\{u_{i_1}, u_{i_2}, \dots, u_{i_{\beta_0}}, u'_{i_1}, u'_{i_2}, \dots, u'_{i_{\beta_0}}\right\}$ is a β_0 -set of $\mu(G)$. Clearly v is not in any β_0 -set of $\mu(G)$.

Suppose $\beta_0(G) = \frac{|V(G)|}{2}$. Suppose $\beta_0(G) = 1$ and |V(G)| = 2. Then $G = K_2$ in which case $\mu(G) = C_5$ which is β_0 -excellent. Suppose $\beta_0(G) > 1$. Then for any β_0 -set $\left\{u_{i_1}, u_{i_2}, \ldots, u_{i_{\beta_0}}\right\}$ of G, $\left\{u_{i_1}, u_{i_2}, \ldots, u_{i_{\beta_0}}, u'_{i_1}, u'_{i_2}, \ldots, u'_{i_{\beta_0}}\right\}$ is a β_0 -set of $\mu(G)$. Also $\{u'_1, \ldots, u'_n\}$ is a β_0 -set of $\mu(G)$.

v does not belong to any of these β_0 -sets. Therefore $\mu(G)$ is not β_0 -excellent, when $G \neq K_2$.

Definition 2.51. Let G be a graph. G is said to be β_1 -excellent if every edge of G belongs to a β_1 -set of G.

Remark 2.52. *G* is β_1 -excellent if and only if L(G) is β_0 -excellent.

3 β_0 -excellence of Harary graphs

Definition 3.1. *Harary graphs* $H_{n,m}$ with n vertices and m < n is defined as follows:

Case(i): n is even and m = 2r. Then $H_{n,2r}$ has n vertices $0, 1, 2, \dots, n-1$ and i, j are joined if $i-r \leq j \leq i+r$, where the addition is taken under modulo n.

Case(ii):*m* is odd and *n* is even. Let m = 2r + 1. Then $H_{n,2r+1}$ is constructed by first drawing $H_{n,2r}$ and then adding edges joining vertex *i* to the vertex $i + \frac{n}{2}$, for $0 \le i \le \frac{n}{2}$.

Case(iii): m and n are odd. Let m = 2r + 1. Then $H_{n,2r+1}$ is constructed by drawing $H_{n,2r}$ and then adding edges joining vertex 0 to the vertices $\frac{n-1}{2}$ and $\frac{n-1}{2}$ and vertex i to $i + \frac{n+1}{2}$, for $1 \le i \le \frac{n-1}{2}$. **Theorem 3.2.** *Let* n > 2r*.*

$$\beta_0(H_{2r,n}) = \begin{cases} \frac{n-r}{r+1} & \text{if } r+1 \text{ divides } n-r \\ \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1 & \text{if } r+1 \text{ does not divide } n-r \end{cases}$$
Proof. Let $V(H_{2r,n}) = \{0, 1, 2, \dots, n-1\}.$

Case(i):

Let r + 1 divides n - r. Consider $S = \{i, r + i + 1, 2r + i + 2, \dots, tr + t + i\}$, where $t = \frac{n-r}{r+1} - 1$.

tr + t + i = (n - r) - r - 1 + i = n - 2r - 1 + i.Suppose n - 2r - 1 + i = i - s (or) i - s + n, according as $i - s \ge 0$ (or) otherwise. Then n - 2r - 1 = -s (or)n - s. That is 2r + 1 = s + n(or)s. Since $s \le r, 2r + 1 \ne s$. Therefore 2r + 1 = s + n. But s + n > 2r + 1. Since $s \ge 1, n > 2r$, a contradiction. Therefore S is an independent set in $H_{2r,n}$. Therefore $\beta_0(H_{(2r,n)}) \ge t + 1$. Suppose S_1 is an independent set of $H_{2r,n}$ of cardinality $t + l, l \ge 2$.

Let $S_1 = \{a_1, a_2, \dots a_{t+l}\}$. Let $a_1 < a_2 < \dots < a_{t+l}$.

$$t + l = \frac{n-r}{r+1} - 1 + l \ge \frac{n-r}{r+1} + 1$$
 (since $l \ge 2$).

Let $a_1 = i$. Then $a_2 > i + r, a_3 > i + 2r, \dots, a_{t+l} > i + (t+l-1)r$. That is $a_{t+l} > i + \left(\frac{n-r}{r+1}\right)r$.

Let $1 \le s \le r$. a_{t+l} is adjacent to a_1 if and only if i-s or $i-s+n > i + \left(\frac{n-r}{r+1}\right)r$. That is if and only if $s < -\left(\frac{n-r}{r+1}\right)r$, a contradiction since right hand side is negative and s is positive. (or) $i-s+n > i + \left(\frac{n-r}{r+1}\right)r$. This implies $n-s > \left(\frac{n-r}{r+1}\right)r$. $n-r = q(r+1) \Rightarrow q(r+1) + r - s > qr$.

qr + q + (r - s) > qr. Since $s \le r, r - s \ge 0$, one has qr + q + (r - s) > qr (since $q \ge 1$), which is true. a_{t+l} is adjacent to a_1 . Therefore S_1 is not independent. So $\beta_0(H_{2r,n}) \le t + 1$. Therefore $\beta_0(H_{2r,n}) = t + 1$.

Case(ii):

Let r + 1 do not divide n - r. Consider $S = \{i, r + 1 + i, 2r + 2 + i, \dots, tr + t + i\}$, where $t = \lfloor \frac{n-r}{r+1} \rfloor$. Let $n - r = q(r+1) + \alpha, \alpha > 0, \alpha < r + 1$. Therefore t = q.

 $tr+t+i = qr+q+i = q(r+1)+i = n-r-\alpha+i.$ Let $1 \le s \le r$.

If tr + t + i = i - s(or)i - s + n, according as $i - s \ge 0$ (or) otherwise, then $n - \alpha - r + i = i - s(or)i - s + n$. $n - \alpha - r + i = i - s$ (or)i - s + n. $n - \alpha - r = -s$ (or) $-\alpha - r = -s$. That implies $r + \alpha - n = s$ (or) $s = r + \alpha$ i.e, s < 0 or s > r(since $\alpha + r < n$), a contradiction. [$r + \alpha < n$, because
$$\begin{split} n &= r + q(r+1) + \alpha. \text{ If } q = 0 \text{, then } n = r + \alpha \text{, where} \\ \alpha &< r+1. \text{ That is } n \leq 2r \text{, a contradiction. So } q \geq 1. \\ \text{Therefore } n > r + \alpha. \text{] Thus } S \text{ is an independent set in} \\ H_{2r,n}. \text{ Therefore } \beta_0(H_{2r,n}) \geq t+1. \text{ Suppose } S_1 \text{ is an independent set of } H_{2r,n} \text{ of cardinality } t+l, l \geq 2. \text{ Let} \\ S_1 = \{a_1, a_2, \dots, a_{t+l}\}. \text{ Let } a_1 < a_2 < \dots < a_{t+l}. \\ t+l = q+l = \left\lfloor \frac{n-r}{r+1} \right\rfloor + l > \frac{n-r}{r+1} + 1. \end{split}$$

 $b_{1} = (a_{1}, a_{2}, \dots, a_{t+i}) + a_{1} + 1$ $t + l = q + l = \left\lfloor \frac{n-r}{r+1} \right\rfloor + l > \frac{n-r}{r+1} + 1.$ Let $a_{1} = i$. Then $a_{2} > i + r, a_{3} > i + 2r, \dots, a_{t+l} > i + (t + l - 1)r > i + \left(\frac{n-r}{r+1}\right)r.$ $a_{t+l} \text{ is adjacent to } a_{1} \text{ if and only if } i - s(\text{or})i - s + n$ is greater than $i + \left(\frac{n-r}{r+1}\right)r.$ That is if and only if -s $(\text{or})-s + n > \left(\frac{n-r}{r+1}\right)r.$

But $-s > \left(\frac{n-r}{r+1}\right)r$ is not possible, since the right hand side is positive and left hand side is negative. Therefore $-s+n > \left(\frac{n-r}{r+1}\right)r$. That is $n-s > \left(q+\frac{\alpha}{r+1}\right)r$. That leads to $q(r+1) + \alpha + r - s > qr + \frac{r\alpha}{r+1}$ which means $q(r+1) + r - s > qr + \frac{r\alpha}{r+1} - \alpha = qr - \frac{\alpha}{r+1}$. That is $q(r+1) + r - s \ge qr$ [since $\frac{\alpha}{r+1} < 1$], which is true, since $q(r+1) + r - s = qr + q + r - s \ge qr$, as $r - s \ge 0$. Therefore a_{t+l} is adjacent to a_1 . Therefore S_1 is not an independent set. Therefore $\beta_0(H_{2r,n}) \le t + 1$.

Theorem 3.3. Consider $H_{2r+1,n}$, where n is even.

Then (i) If
$$2(r + 1)$$
 does not divide n , then

$$\beta_0(H_{2r+1,n}) = \begin{cases} \frac{n-r}{r+1}, & \text{if } r+1 \text{ divides } n-r \\ \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1, & \text{otherwise} \end{cases}$$
(ii) If $2(r+1)$ divides n , then

$$\beta_0(H_{2r+1,n}) = \left\lfloor \frac{n-r}{r+1} \right\rfloor.$$

Proof. We observe the following

(i) Suppose 2(r+1) divides n. Then r+1 does not divide n-r.

Let r + 1 divide n - r. Let n = 2q(r + 1) and $n - r = q_1(r+1)$. Therefore $2q(r+1) = r + q_1(r+1)$. That is $(2q - q_1)(r + 1) = r$, a contradiction. Hence (i).

(ii) Suppose 2(r + 1) does not divide n. Then r + 1 divides n - r if and only if n = 2q(r + 1) + r, for some positive integer q.

Let $n = 2q(r+1) + \alpha$, where $0 < \alpha < 2(r+1)$. Then $n - r = 2q(r+1) + \alpha - r$.

Suppose r+1 divides n-r. Then $\alpha-r$ is divisible by r+1. Let $\alpha-r = k(r+1)$. If k < 0, $\alpha = r+k(r+1)$ implies that $\alpha < 0$, a contradiction. Hence $k \ge 0$. Thus $\alpha = k(r+1) + r$. Since $\alpha < 2(r+1)$, k = 1, one has $\alpha = 2r+1$. Therefore n = 2q(r+1)+2r+1. That means that n is odd, a contradiction. Therefore k = 0. That is, $\alpha = r$. Therefore n = 2q(r+1) + r.

Conversely, if n = 2q(r + 1) + r, then clearly n - r is divisible by r + 1.

Case(i):

Subcase (i): Suppose 2(r + 1) does not divide n and r + 1 divides n - r. Then by observation (ii), n = 2q(r + 1) + r, for some positive integer q. For any integer $i, i + \frac{n}{2}$ is of the form lr + l + i if and only if $l(r + 1) = \frac{n}{2}$. That is if and only if 2(r+1) divides n, a contradiction.

Let $S = \{i, r+1+i, 2r+2+i, \dots tr+t+i\}$, where $t = \frac{n-r}{r+1} - 1$. That is t = 2q - 1.

 $\begin{array}{l} tr+t+i=(n-r)-r-1+i=n-2r-1+i. \\ 1+i. \mbox{ Suppose } n-2r-1+i=i-s \mbox{ (or) } i-s+n \\ \mbox{ according as } i-s\geq 0 \mbox{ (or) otherwise. Then } n-2r-1=-s \mbox{ (or) } n-s. \\ 1=-s \mbox{ (or) } n-s. \\ \mbox{ That is } 2r+1=n+s \mbox{ (or) } s. \\ \mbox{ Since } s\leq r, 2r+1\neq s. \\ \mbox{ Therefore } 2r+1=n+s. \\ \mbox{ But } s+n>2r+1, \mbox{ since } s\geq 1 \mbox{ and } n>2r, \mbox{ a contradiction. Therefore } S \mbox{ is an independent set in } \\ \mbox{ } H_{2r+1,n}. \\ \mbox{ Therefore } \beta_0(H_{2r+1,n})\geq t+1=\frac{n-r}{r+1}. \\ \mbox{ Since } h_{2r+1,n} \mbox{ (or } s=1, \mbox{ (or$

Therefore $\beta_0(H_{2r+1,n}) = \frac{n-r}{r+1}$.

Subcase (ii): 2(r+1) does not divide n and r+1 does not divide n-r.

By observation (ii), $n = 2q(r+1) + \alpha$, where $0 < \alpha < 2(r+1)$ and $\alpha \neq r$. Proceeding as in case (*ii*) of theorem 3.2, we get that S = $\{i, r+1+i, 2r+2+i, \dots tr+t+i\}$, where t = $\lfloor \frac{n-r}{r+1} \rfloor$ is an independent set of $H_{2r+1,n}$. Therefore $\beta_0(H_{2r+1,n}) \geq \lfloor \frac{n-r}{r+1} \rfloor + 1$. But $\beta_0(H_{2r+1,n}) \leq$ $\beta_0(H_{(2r,n)}) = \lfloor \frac{n-r}{r+1} \rfloor + 1$. Therefore $\beta_0(H_{2r+1,n}) =$ $\lfloor \frac{n-r}{r+1} \rfloor + 1$.

Case (ii): 2(r+1) divides n.

By observation (i), r + 1 does not divide n - r. Let $\frac{n}{2(r+1)} = l$. Then *i* is adjacent to $i + \frac{n}{2}$ gives that *i* is adjacent to lr + l + i.

Let S be the set of all elements $i, r + 1 + i, 2r + 2 + i, \ldots, (l-1)(r+1) + i, l(r+1) + 1 + i, (l+1)(r+1) + 1 + i,$

$$\dots, t(r+1) + l + i$$
, where $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor - 1$.

Let $n - r = q(r + 1) + \alpha$, where $0 < \alpha < r + 1$. Therefore t = q - 1.

$$\begin{aligned} tr + t + 1 + i &= t(r+1) + 1 + i \\ &= (q-1)(r+1) + 1 + i \\ &= q(r+1) + i - r = n - r - \alpha + i \\ i - r &= n - 2r - \alpha + i. \end{aligned}$$

Let $1 \le s \le r$. If t(r+1) + 1 + i = i - s (or) i - s + n (according as $i - s \ge 0$ (or) otherwise), then $n - 2r - \alpha + i = i - s(\text{or}) i - s + n$. That is $n-2r-\alpha = -s$ (or) n-s. That is $n-2r-\alpha = -s$ (or) $n - 2r - \alpha = n - s$. If $n - 2r - \alpha = n - s$, then $s = 2r + \alpha$, a contradiction , since $s \leq r$. If $n-2r-\alpha = -s$, then $s = 2r + \alpha - n = 2r + \alpha - n$ $q(r+1) - \alpha - r$. That is s = r - q(r+1) < 0, a contradiction. Therefore S is an independent set in

 $\begin{aligned} H_{2r+1,n}. \text{ Therefore } \beta_0(H_{2r+1,n}) \geq \left\lfloor \frac{n-r}{r+1} \right\rfloor. \\ \text{Let } S_1 &= \{i, r+1+i, 2r+2+i, \dots, \\ (l-1)(r+1)+i, l(r+1)+1+i, (l+1)(r+1) + \end{aligned}$ $1 + i, \dots, t(r+1) + l + i$, where $t = \left| \frac{n-r}{r+1} \right|$. Let $n-r = q(r+1) + \alpha, 0 < \alpha < r+1$. Let $1 \le 1$ $s \leq r$. Then t = q. If t(r+1) + 1 + i = i - s (or) i - s + n (according as $i - s \ge 0$ (or) otherwise.). Then q(r+1) + 1 + i = i - s (or)i - s + n. That is q(r+1) + 1 = -s(or) n - s. If q(r+1) + 1 =-s, then a contradiction, since L.H.S is positive. If q(r+1) + 1 = n - s, then $n - r - \alpha + 1 = n - s$. That is $s = r + \alpha - 1$. But $s \leq r$. Therefore $\alpha \leq 1$. But $\alpha > 0$. Therefore $\alpha = 1$.

Therefore, n-r = q(r+1)+1 = t(r+1)+1. In this case, t(r+1)+1+i is adjacent with i. Therefore S_1 is not independent.

Therefore
$$\beta_0(H_{2r+1,n}) \leq \left\lfloor \frac{n-r}{r+1} \right\rfloor$$
.
Therefore $\beta_0(H_{2r+1,n}) = \left\lfloor \frac{n-r}{r+1} \right\rfloor$.

Observation 3.4.

(i) 2(r+1) can not divide both n+1, n-1.

This is because in such a case 2(r+1) divides 2, a contradiction, since $2(r+1) \ge 4$.

(ii) If 2(r+1) divides n-1, then r+1 does not divide n-r.

This is because if r+1 divides n-r, then n-r =a(r+1). n = a(r+1)+r. Let n-1 = 2(r+1)l. Then 2(r+1)l+1 = a(r+1)+r. 2(r+1)l = a(r+1)+r-1, a contradiction.

(iii) Suppose 2(r+1) divides n-1. Let r+1 do not divide n - r. Then t(r + 1) + 1 < n - r, where $t = \left| \frac{n-r}{r+1} \right|.$

Since r+1 does not divide n-r, $t(r+1)+1 \leq 1$ n - r.Suppose t(r + 1) + 1 = n - r. Let n - 1 = 12q(r+1). Therefore t(r+1)+r = n-1 = 2q(r+1). Thus r + 1 divides r, a contradiction.

(iv) Suppose 2(r+1) divides n+1. Then r+1divides n - r.

Let n+1 = 2q(r+1). Therefore n-r = 2q(r+1)(1) - r - 1 = (r + 1)(2q - 1). Therefore r + 1 divides n-r.

Theorem 3.5. Consider $H_{2r+1,n}$, where n is odd.

(i) 2(r+1) does not divide n-1 as well as n+1. Then

$$\beta_{0}(H_{2r+1,n}) = \begin{cases} \frac{n-r}{r+1}, & \text{if } r+1 \text{ divides } n-r \\ \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1, & \text{otherwise} \end{cases}$$

$$(ii) 2(r+1) \text{ divides } n-1 \text{ but not } n+1.$$

$$\beta_{0}(H_{2r+1,n}) = \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1.$$

$$(iii) 2(r+1) \text{ divides } n+1 \text{ but not } n-1.$$

$$Then \beta_{0}(H_{2r+1,n}) = \frac{n-r}{r+1}.$$

Proof. Case (i):

2(r+1) does not divide n-1 as well as n+1. Let $0 \le i \le n - 1$.

Let $S = \{i, r+1+i, 2(r+1)+i, \dots, t(r+1)+i\}.$ $l(r+1) + i = i + \frac{n+1}{2}, (i \ge 0)$. This implies r+1 divides $\frac{n+1}{2}$, a contradiction.

 $l(r+1) + 0 = 0 + \frac{n-1}{2}$. This implies r + 1divides $\frac{n-1}{2}$, a contradiction. l(r+1) + i is adjacent to m(r+1)+i, if $l(r+1)+i+(\frac{n+1}{2}) = m(r+1)+i$. This implies $(m-l)(r+1) = \frac{n+1}{2}$. This implies r+1divides $\frac{n+1}{2}$, a contradiction.

Subcase(i): Let r + 1 divide n - r. Let t = $\frac{n-r}{r+1} - 1.$

t(r+1) + i = n - r - r - 1 + i = n - 2r - 1 + i.

Suppose $t(r + 1) + i = i - s(\text{or}) \ i - s + n, (1 \le i \le n)$ $s \leq n$) according as $i - s \geq 0$ (or) otherwise. Then n-2r-1+i = i-s (or) i-s+n. That is n-2r-1 = i-s-s (or)n-s. Since n > 2r+1, n-(2r+1) is positive and -s is negative. Therefore n - 2r - 1 = -s is not possible. n - 2r - 1 = n - 1 gives $s = 2r + 1, 1 \le n - 1$ $s \leq n$, a contradiction. Therefore $|S| = t + 1 = \frac{n-r}{r+1}$. Therefore $\beta_0(H_{2r+1,n}) \geq \frac{n-r}{r+1}$. $H_{2r,n}$ is a spanning subgraph of $H_{2r+1,n}$.

 $\beta_0(H_{2r+1,n}) \leq \beta_0(H_{2r,n}) \leq \frac{n-r}{r+1}$. Therefore $\beta_0(H_{2r+1,n}) = \frac{n-r}{r+1}.$

Subcase(ii):

Let r + 1 do not divide n - r. Let $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor$. Proceeding as in case (ii) of theorem 3.3,

we get that $\beta_0(H_{2r+1,n}) \ge \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1$. $H_{2r,n}$ is a spanning subgraph of $H_{2r+1,n}$. Therefore $\beta_0(H_{2r+1,n}) \le \beta_0(H_{2r,n}) = \left| \frac{n-r}{r+1} \right| + 1$. Therefore $\beta_0(H_{2r+1,n}) = \left| \frac{n-r}{r+1} \right| + 1.$

Case (ii):

2(r+1) divides n-1 but not n+1. By observation(ii), r+1 does not divide n-r and t(r+1)+1 < rn-r, where $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor$. Let $0 \le i \le n-1$.

Let i > 0 and let $S = \{i, r+1+i, 2(r+1)+i, \dots, t(r+1)+i\}$, where $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor$.

 $\overline{l(r+1)} + i = i + \frac{n+1}{2}$. This implies r+1 divides $\frac{n+1}{2}$, a contradiction.

l(r+1) + i is adjacent to m(r+1) + i, if $l(r+1) + i + (\frac{n+1}{2}) =$

m(r+1)+i. This implies $(m-l)(r+1) = \frac{n+1}{2}$. This implies r+1 divides $\frac{n+1}{2}$, a contradiction. Proceeding as in Case(ii), we get that S is an independent set of cardinality $\left|\frac{n-r}{r+1}\right| + 1$.

Thus
$$\beta_0(H_{2r+1,n}) \ge \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1$$
.
 $H_{2r,n}$ is a spanning subgraph of $H_{2r+1,n}$.
Therefore $\beta_0(H_{2r+1,n}) \le \beta_0(H_{2r,n}) = \left\lfloor \frac{n-r}{r+1} \right\rfloor +$
Therefore $\beta_0(H_{2r+1,n}) = \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1$.

Case(iii):

1.

2(r+1) divides n + 1 but not n - 1. Then r + 1divides n - r. 0 is adjacent to $\frac{n-1}{2}$ and $\frac{n+1}{2}$. Let $l_1 = \frac{n+1}{2(r+1)}$. 0 is adjacent to $l_1(r+1)$ and $l_1(r+1)-1$. Let S_0 be the set of all elements $0, r + 1, \dots, (l_1 - 1)(r+1), l_1(r+1) + 1, \dots, t(r+1) + 1$. If $a(r+1) = b(r+1) + \frac{n+1}{2}$, where $a, b \le (l_1 - 1)$.

 $(a-b)(r+1) = \frac{n+1}{2}$. This implies $a-b = \frac{n+1}{2(r+1)} = l_1$, a contradiction.

If $a(r+1) + \frac{n+1}{2} = b(r+1) + 1$, where $a \le l_1 - 1, b \ge l_1$, then $(b-a)(r+1) = \frac{n-1}{2}$. That is r+1 divides $\frac{n-1}{2}$, a contradiction.

If $a(r+1)^2 + 1 = b(r+1) + 1 + \frac{n+1}{2}$, where $a, b \ge l_1$ and a > b, then $a - b = \frac{n+1}{2(r+1)} = l_1$. Therefore $a = b + l_1 \ge l_1 + l_1 = 2l_1 = \frac{n+1}{(r+1)}$. Therefore $a(r+1) \ge n+1$. That is $t(r+1) \ge a(r+1) \ge n+1$. Therefore $t \ge \frac{n+1}{(r+1)}$, a contradiction, since $t = \frac{n-r}{r+1} - 1$. Therefore S_0 is an independent set of cardinality $t + 1 = \frac{n-r}{r+1}$.

Let $i \neq 0$. *i* is adjacent to $\frac{n+1}{2} + i$.

Let $l_1 = \frac{n+1}{2(r+1)}$. Therefore \overline{i} is adjacent to $l_1(r+1) + i$.

Let $S_i = \{i, i + r + 1, i + 2(r + 1), \dots, (l_1 - 1)(r + 1) + i, l_1(r + 1) + 1 + i, \dots, t(r + 1) + 1 + i\}.$

If $a(r+1) + i = b(r+1) + i + \frac{n+1}{2}$ where $a, b \le l_1 - 1$, then $a - b(r+1) = \frac{n+1}{2}$. $a - b = \frac{n+1}{2(r+1)} = l_1$, a contradiction.

If $a(r+1) + i + \frac{n+1}{2} = b(r+1) + 1 + i$, where $a \le l_1 - 1, b \ge l_1$, then $(b-a)(r+1) = \frac{n-1}{2}$, a contradiction.

If $a(r+1) + 1 + i = b(r+1) + 1 + \frac{n+1}{2} + i$ where

 $a, b \ge l_1$ and a > b, then $(a - b)(r + 1) = \frac{n+1}{2}$. This implies $a - b = \frac{n+1}{2(r+1)} = l_1$.

Therefore $a = l_1 + b \ge l_1 + l_1 = 2l_1 = \frac{n+1}{r+1}$ and $a(r+1) \ge n+1$. That is $t(r+1) \ge a(r+1) \ge n+1$, which implies $t \ge \frac{n+1}{r+1}$, a contradiction, since $t = \frac{n-r}{r+1} - 1$. So S_i is independent set of cardinality $t+1 = \frac{n-r}{r+1}$. Therefore $\beta_0(H_{2r+1,n}) \ge \frac{n-r}{r+1}$. H_{2r,n} is a spanning subgraph of H_{2r+1,n}. Therefore $\beta_0(H_{2r+1,n}) \le \beta_0(H_{2r,n}) = \frac{n-r}{r+1}$. Therefore $\beta_0(H_{2r+1,n}) = \frac{n-r}{r+1}$.

Theorem 3.6. Consider $H_{2r+1,n}$, where n is odd. Let 2(r+1) divide (n-1) but not n+1. If $t(r+1) + 2 \ge n-r$, where $t = \frac{n-r}{r+1}$, then $H_{2r+1,n}$ is not β_0 -excellent.

Proof. 2(r+1) divides n-1 but not n+1. Let $l_1 = \frac{n-1}{2(r+1)}$. 0 is adjacent to $l_1(r+1)$. Also 0 is adjacent to $l_1(r+1)+1$, since $l_1(r+1)+1 = \frac{n-1}{2}+1 = \frac{n+1}{2}$. Let S_1 be the set of all elements $0, r+1, \ldots, (l_1-1)(r+1), l_1(r+1) = 2, (l_1+1)(r+1)+2, \ldots, t(r+1)+2$.

If t(r+1)+2 < n-r, then S_1 is an independent set of cardinality $\left\lfloor \frac{n-r}{r+1} \right\rfloor + 1$. Suppose t(r+1)+2 = n-r. Then S_1 is not independent. Let S_2 be the set of all elements $0, r+1, \ldots, (l_1-1)(r+1), l_1(r+1) + 2, (l_1+1)(r+1)+2, \ldots, (t-1)(r+1)+2$ be an independent set. Therefore $|S_2| = t = \left\lfloor \frac{n-r}{r+1} \right\rfloor < \beta_0$.

Let S'_1 be the set of all elements $0, -(r + 1), -2)r + 1), \dots, -(l_1 - 1)(r + 1), -l_1(r + 1) - 2, \dots,$

-t(r+1)-2. If t(r+1)+2 < n-r, then -t(r+1)-2 > r. Therefore -t(r+1)-2 is not adjacent to 0. Therefore S'_1 is an independent set of cardinality $\left|\frac{n-r}{r+1}\right|+1=\beta_0$.

Suppose t(r+1) + 2 = n - r. Then S'_1 is not independent.

Also S'_2 be the set of all elements

 $\begin{array}{l} 0,-(r+1),-2(r+1),\ldots,-(l_1-1)(r+1),-l_1(r+1),-l_2(r+1),\ldots,\\ -(t-1)(r+1)-2 \text{ is an independent set of cardinality}\\ \left\lfloor \frac{n-r}{r+1} \right\rfloor < \beta_0. \text{ Therefore 0 does not belong to any } \beta_0\text{-set.} \end{array}$

Illustration 3.7. Consider $H_{5,7}$. r = 2, n = 7, 2(r + 1) = 6 does not divide n + 1 = 8, but 6 divides n - 1 = 7 - 1 = 6.

 $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor = 1, \beta_0 = \left\lfloor \frac{n-r}{r+1} \right\rfloor + 1 = \left\lfloor \frac{5}{3} \right\rfloor = 2.$ $S_0 = \{0\} \text{ is a maximal independent set contain-}$

ing 0 and there is no β_0 -set containing 0. $S_1 = \{1, 4\}, S_2 = \{2, 5\}, S_3 = \{3, 6\}$ are the

 $S_1 = \{1, 4\}, S_2 = \{2, 5\}, S_3 = \{3, 6\}$ are the β_0 -sets of $H_{5,7}$.

Remark 3.8. $H_{2r,n}$ is β_0 -excellent. $H_{2r+1,n}$ is not β_0 -excellent if and only if n is odd and 2(r+1) divides n-1.

4 JUST β_0 - EXCELLENT GRAPHS

N. Sridharan and M. Yamuna [10] initiated the study of just excellence in graphs with respect to the domination parameter. A graph G is just γ excellent if every vertex is contained in a unique minimum dominating set. In this section, just β_0 - excellent graphs are defined and studied.

4.1 Introduction

Partition of V(G) into independent sets is the same as proper coloring of the graph. A chromatic partition is a partition of the vertex set into minimum number of independent sets. Such a partition may not contain a maximum independent set. For example, a double star contains a unique chromatic partition of cardinality two in which both the independent sets are not maximum. The question that naturally arises is that "'Does there exist a graph in which the vertex set can be partitioned into maximum independent sets ?"". This leads to the concept of just β_0 - excellent graphs. It is shown in this chapter that a graph of order n is just β_0 - excellent if and only if $\beta_0(G)$ divides n, G has exactly $\frac{n}{\beta_0}$ distict β_0 sets and the maximum cardinality of a partition of V(G) into independent sets is $\frac{n}{\beta_0}$. This section is devoted to the definition and properties of just β_0 excellent graphs, just β_0 excellence in product graphs, just β_0 excellence in Generalized Petersen graphs and just β_0 excellence in Harary graphs.

4.2 Definitions and Properties of just β_0 - excellent graphs

Definition 4.1. A graph G is said to be just β_0 excellent graph if for each $u \in V$, there exists a unique β_0 -set of G containing u.

Examples of just β_0 **-excellent graphs**

(1) C_{2n} (2) K_n (3) $K_{n,n}$ (4) $P_m \Box P_n$, if $mn \equiv 0 \pmod{2}$.

Examples of not just β_0 **-excellent graphs**

(1) C_{2n+1} (2) $K_{1,n}$ (3) P_n (4) The subdivision graph of $K_{1,n}$ (5) Petersen graph (6) W_n , $n \ge 5$ (7) $D_{r,s}$ (8) $G \circ K_1$, for any connected graph G. (9) $F_n = P_{n-1} + K_1$.

Properties of just β_0 **-excellent graphs**

1. Every just β_0 -excellent graph is a β_0 -excellent graph.

2. If G is just β_0 -excellent and $G \neq K_n$, then there is no vertex u such that $\langle V - N[u] \rangle$ contains at least two maximum independent sets.

Proof. Since G is just β_0 -excellent, given $u \in V(G)$, there exists a unique β_0 -set S of G containing u. Suppose V - N[u] contains at least two maximum independent sets. $G \neq K_n$.

Therefore $\beta_0(G) \ge 2$ and $\beta_0(< V - N[u] >) \ge 1$. $S - \{u\}$ is an independent set of < V - N[u] > and hence $\beta_0(< V - N[u] >) \ge \beta_0(G) - 1$.

If $\beta_0(\langle V - N[u] \rangle) = \beta_0(G)$, then any β_0 -set of $\langle V - N[u] \rangle$ together with u is an independent set of G of cardinality $\beta_0(G) + 1$, a contradiction. Let T_1, T_2 be two maximum independent sets of V - N[u]. Then $T_1 \cup \{u\}$ and $T_2 \cup \{u\}$ are maximum independent sets of G, a contradiction.

3. Let G be just β_0 -excellent. Then there exists a unique partition of V(G) into β_0 -sets of G.

Proof. Let $u \in V(G)$. Let S_1 be the unique β_0 -set of G containing u.

If $V-S_1 = \phi$, then there is nothing to prove. Otherwise consider a vertex $v \in V - S_1$. v is contained in a unique β_0 -set say S_2 of G. $S_1 \cap S_2 = \phi$, since G is just β_0 -excellent. If $V - (S_1 \cup S_2) = \phi$, the process stops. Otherwise there exists $w \in V - (S_1 \cup S_2)$. There exists a unique β_0 -set say S_3 of G containing w. Clearly $S_i \cap S_j = \phi$, $i \neq j$, $1 \leq i, j \leq 3$. Proceeding like this, we get a partition of V(G) into β_0 -sets of G.

4. $\beta_0(G)$ is a factor of n.

Proof. From the previous property, $n = m\beta_0(G)$, where *m* is the cardinality of the partition of V(G) into β_0 -sets.

5. Let G be a just β_0 -excellent graph. Let |V(G)| = n. Then $n = \chi(G)\beta_0(G)$.

From property 4, $n = d\beta_0(G)$. Also $\frac{n}{\beta_0(G)} \le \chi(G)$ and hence $d \le \chi(G)$. Clearly $\chi(G) \le d$. Hence $\chi(G) = d$.

6. In a just β_0 -excellent graph G, $|V(G)| = \beta_0(G) \cdot \chi(G)$. The converse is not true.

Consider P_6 . $\beta_0(P_6) = 3$, $\chi(P_6) = 2$. $|V(P_6)| = 6 = \beta_0(P_6) \cdot \chi(P_6)$. But P_6 is not a just β_0 -excellent graph.

7. $\delta(G) \geq \frac{n}{\beta_0(G)} - 1.$

Proof. Let $\Pi = \{S_1, S_2, \ldots, S_m\}$ be a β_0 -set partition of V(G). Let $u \in S_i$. Then u is adjacent to at least one vertex in each S_j , $j \neq i$. Therefore $deg(u) \geq m - 1$. Therefore $\delta(G) \geq m - 1 =$

$$\frac{n}{\beta_0(G)} - 1.$$

8. $\frac{n}{\beta_0(G)} = 1$ if and only if $G = \overline{K_n}.$

9. If G has two or more disjoint β_0 -sets, then G has no isolates.

Proof. Suppose G has two or more disjoint β_0 -sets. Let S_1, S_2, \ldots, S_t be the disjoint β_0 -sets. Then $t \ge 2$. Suppose G has an isolate, say u. Let $u \in S_1$. Then $S_2 \cup \{u\}$ is an independent set of cardinality $\beta_0(G)+1$, a contradiction. (or) [Equivalently, any isolate vertex is contained in every β_0 -set and hence if there are isolates, there can not be two or more disjoint β_0 -sets.] Thus, if G is just β_0 -excellent and G has an isolate, then $G = \overline{K_n}$ and conversely.

10. Let G be a just β_0 -excellent graph. If $G \neq K_2$ and $G \neq \overline{K_n}$, then $\delta(G) \geq 2$.

Proof. Since $G \neq \overline{K_n}$ and since G is a just β_0 -excellent graph, $\delta(G) \geq 1$.

Suppose u is a pendent vertex of G. Let $N(u) = \{v\}$. Since G is just β_0 -excellent, there exists a β_0 set of D containing v. Therefore $v \in D$ and $u \notin D$. Suppose $\beta_0(G) = 1$. Then G is a complete graph. Since $G \neq K_2$ and $\delta(G) \ge 1$, $G = K_n$, $n \ge 3$. Therefore $\delta(G) \ge 2$. Therefore u is not a pendent vertex, a contradiction. Suppose $\beta_0(G) \ge 2$. Then $|D| \ge 2$. Therefore there exist $w \in D$, $w \neq v$. Let $D_1 = (D - \{v\}) \cup \{u\}$. Then D_1 ia a β_0 -set of Gand w is contained in two β_0 -sets of G namely D and D_1 , a contradiction. Therefore $\delta(G) \ge 2$.

Remark 4.2. Any even cycle G is a just β_0 -excellent graph with $\delta(G) = 2$. Any tree is not a just β_0 -excellent graph.

11. A graph G has exactly two disjoint β_0 -sets whose union is V(G) say V_1, V_2 if and only if for every non empty proper subset A of V_1 or V_2 , |N(A)| > |A|.

Proof. Suppose G has exactly two disjoint β_0 -sets whose union is V(G) say V_1, V_2 . Let $A \subset V_1$. Suppose $|N(A)| \leq |A|$. Let $C = V_2 - N(A)$. If $C = \phi$, then $N(A) = V_2$. Thus $|A| \geq |N(A)| =$ $|V_2| = \beta_0(G)$. But $A \subset V_1$, a contradiction. Thus $C \neq \phi$. $A \cup C$ is an independent set of G and $|A \cup C| = |A| + |C| = |A| + \beta_0(G) - |N(A)| \geq \beta_0(G)$, a contradiction, since G has exactly two disjoint β_0 sets whose union is V(G). Therefore, |N(A)| > |A|. Conversely, let there be two disjoint β_0 -sets whose union is V(G) say V_1, V_2 and for any proper subset A of V_1 or V_2 , |N(A)| > |A|.

Let W be a β_0 -set of G. $W \neq V_1$, and $W \neq V_2$. Let $W \cap V_1 = W_1$, $W \cap V_2 = W_2$. Then $W_1 \neq \phi$, $W_2 \neq \phi$. $|N(W_1)| > |W_1|$. $N(W_1) \cap W_2 = \phi$. (For: if $x \in N(W_1) \cap W_2$, then $x \in N(W_1)$ and $x \in W_2$. That is x is adjacent to every vertex in W_1 and $x \in W_2$. But $W_1 \cup W_2 = W$ is an independent set, a contradiction.) $|W_1| + |W_2| = \beta_0(G)$. Therefore $|N(W_1)| + |W_2| > \beta_0(G)$. That is $|V_2| > \beta_0(G)$, a contradiction. Hence the theorem.

Corollary 4.3. A graph G has exactly two disjoint β_0 sets whose union is V(G) if G is of even order and contains a spanning cycle u_1, u_2, \ldots, u_{2n} such that whenever u_i, u_j are adjacent, then i, j are of opposite parity.

Proof. Suppose G is of even order and contains a spanning cycle u_1, u_2, \ldots, u_{2n} such that whenever u_i, u_j are adjacent, then i, j are of opposite parity. Then $\{u_1, u_3, \ldots, u_{2n-1}\}, \{u_2, u_4, \ldots, u_{2n}\}$ are the only β_0 -sets of G whose union is V(G). The converse is not true.

(i) Consider G.

There are exactly two disjoint β_0 -sets $\{1, 3, 5, 7, 9, 11, u'\}, \{2, 4, 6, 8, 10, 12, u\}$ whose union is V(G). G has no spanning cycle. For: consider $S = \{4, 8, 5, 11\}$. $\omega(G - S) = 5$ and the five components are $\{u\}, \{u'\}, \{9, 10\}, \{6, 7\}, \{1, 2, 3, 12\}.$

(If G has spanning cycle, then for any $S \subseteq V(G), \omega(G-S) \leq |S|$.)

(ii) Consider C_{2n} , (*n*) Let 6). \geq Add two more $V(C_{2n}) = \{u_1, u_2, \dots, u_{2n}\}.$ vertices u, u'. Join u with u_{2n-1}, u_{2n-3} and u' with u_{2n-4}, u_{2n-6} . Let G be the resulting graph. Let $S = \{u_{2n-1}, u_{2n-3}, u_{2n-4}, u_{2n-6}\}.$ The components of G_ Sare $\{u\}, \{u'\}, \{u_{2n-2}\}, \{u_{2n-5}\}, \{u_{2n}, 1, \dots, u_{2n-7}\}.$ Therefore $\omega(G - S)$ >|S|. Therefore G can not contain a spanning cy-But G has exactly two β_0 -sets namely cle. $\{1, 3, 5, \dots, (2n-1), u'\}, \{2, 4, \dots, 2n, u\}.$

12. Let G have two disjoint β_0 -sets V_1 , V_2 whose union is V(G). Then

- (a) G has no isolates.
- (b) $N(V_1) = V_2$ and $N(V_2) = V_1$.

(c) If $G \neq K_2$, then $\delta(G) \geq 2$.

Proof. (a) Suppose G has an isolate say u. Let $u \in V_1$. Then $V_2 \cup \{u\}$ is an independent set of cardinality $\beta_0(G) + 1$, a contradiction. Therefore G has no isolates.

(b) Suppose $N(V_1) \subset V_2$. Let $v \in V_2 - N(V_1)$. Then v is an isolate of G, a contradiction. Therefore $N(V_1) = V_2$. Similarly, $N(V_2) = V_1$.

(c) Let $u \in V_1$. (Similar proof holds if $u \in V_2$). If $|V_1| = 1$, then $G = K_2$, a contradiction. Therefore $|V_1| > 1$. Let $A = \{u\}$. Since |N(A)| > |A|, $|N(A)| \ge 2$. Therefore $deg(u) \ge 2$. Therefore $\delta(G) \ge 2$.

13. Let G have exactly two disjoint β_0 -sets $V_1(G)$ and $V_2(G)$ whose union is V(G). Then G is connected.

Proof. Suppose G is disconnected. Let G_1 be a component of G and

 $G_2 = \langle V(G) - V(G_1) \rangle$. Let $V_1 \cap V(G_1) = A$, $V_2 \cap V(G_1) = D$, $V_1 \cap V(G_2) = C$ and $V_2 \cap V(G_2) = B$.

Since $\phi \neq A \subset V_1$. Then |N(A)| > |A|, (using property 11). $N(A) \subset D$. Therefore $V_2 - N(A) \supset B$ (since $B \cup D = V_2$). Therefore $|V_2 - N(A)| \ge |B|$. $|V_2| = |N(A)| + |V_2 - N(A)|$ and hence $\beta_0(G) >$ |A|+|B|. Similarly, $|V_1| = \beta_0 > |C|+|D|$. Therefore $|A|+|B|+|C|+|D| < 2\beta_0(G)$. But $|V_1| = |A|+|C|$. $|V_2| = |B|+|D|$. $|V_1|+|V_2| = |A|+|B|+|C|+|D|$.

Then $2\beta_0(G) = |A| + |B| + |C| + |D|$, a contradiction. Therefore G is connected.

14. Every just β_0 -excellent graph $G \neq \overline{K_n}$ is connected.

Proof. Suppose G is not connected. Since $G \neq \overline{K_n}$, one of the connected components of G, say G_1 , has at least two vertices.

Claim: G_1 is a just β_0 -excellent graph.

Let $u \in V(G_1)$. Then there exists a unique β_0 -set say S of G containing u. Let $S_1 = S \cap V(G_1)$. Then S_1 is an independent set of G_1 containing u. Suppose S_1 is not a β_0 -set of G_1 . Then $|S_1| < \beta_0(G_1)$. Let $S_2 = S \cap V(G - G_1)$. Then $S = S_1 \cup S_2$ and S_1 and S_2 are disjoint. Therefore $\beta_0(G) = |S| = |S_1| +$ $|S_2| < \beta_0(G_1) + \beta_0(< G - G_1 >)$. But $\beta_0(G) =$ $\beta_0(G_1) + \beta_0(< G - G_1 >)$, a contradiction. Therefore S_1 is a β_0 -set of G. G_1 is β_0 -excellent graph.

Let $u \in V(G_1)$. Suppose A and B are β_0 -sets of G_1 containing u. Let C be any β_0 -set of $\langle G - G_1 \rangle$. Then $A \cup C, B \cup C$ are β_0 -sets of G containing u, a contradiction, since G is just β_0 -excellent. Therefore G_1 is just β_0 -excellent. Since G_1 is connected and of order ≥ 2 , there are at least two β_0 -sets in G_1 . Let A_1, B_1 be two β_0 -sets of G_1 . Let C be a β_0 -set of $< G - G_1 >$. Then $C \cup A_1, C \cup B_1$ are two β_0 -sets of G containing C which is non empty, a contradiction. Therefore G is connected.

15. Let G be a just β_0 -excellent graph.

Let $u \in V(G)$. Let S be the unique β_0 -set of G containing u. Then < pn[u, S] > is complete and $|pn[u, S]| \le \chi(G)$.

Proof. Let $x, y \in pn(u, S)$. Then u is adjacent to x, y. Also x, y are not adjacent to any vertex of $S - \{u\}$. If x, y are not adjacent, then $(S - \{u\}) \cup \{x, y\}$ is an independent set of G of cardinality $\beta_0(G) + 1$, a contradiction. Therefore N[u] is complete. Since Gis just β_0 -excellent, there exist at least $|N[u]| \beta_0$ -sets in G. Therefore $pn[u, S] \leq$ number of β_0 -sets of $G = \chi(G)$.

16. There are graphs for which $pn[u, S] = \chi(G)$.

Consider $K_{4,4,4}$. Let $V(K_{4,4,4})$ be the set of all elements $u_1, u_2, u_3, u_4, v_1, v_2, v_3, v_4, w_1, w_2, w_3, w_4$ where $\{u_1, u_2, u_3, u_4\}$, $\{v_1, v_2, v_3, v_4\}$, $\{w_1, w_2, w_3, w_4\}$ are β_0 -sets. Remove the edges $v_1u_2, v_1u_3, v_1u_4, w_1u_2, w_1u_3, w_1u_4$.

Let G be the resulting graph. G is just β_0 -excellent having the three β_0 sets, $\{u_1, u_2, u_3, u_4\}, \{v_1, v_2, v_3, v_4\}$, and $\{w_1, w_2, w_3, w_4\}$. Let $S = \{u_1, u_2, u_3, u_4\}$. $pn[u, S] = \{u_1, v_1, w_1\}$. Then $|pn[u, S]| = 3 = \chi(G)$.

17. Let G be a bipartite just β_0 -excellent graph and $G \neq K_2$. Let $u \in V(G)$. Let S be the unique β_0 -set of G containing u. Then $pn[u, S] = \{u\}$.

Proof. Since G is bipartite, $\chi(G) = 2$. Since G is just β_0 -excellent, number of β_0 -sets of $G = \chi(G) = 2$. If for any $u \in V(G)$, $pn[u, S] \supset \{u\}$, then there exists $u \in pn[u, S], v \neq u$. Also, if V_1, V_2 is the bipartition and if $u \in V_1$, then $(V_1 - \{u\}) \cup \{v\}$ is a β_0 -set, contradicting the fact that there are exactly two β_0 -sets. Therefore $pn[u, S] = \{u\}$.

Remark 4.4. $|pn[u, S]| = 1 < 2 = \chi(G).$

Example: 1

 G_1 is γ -excellent but not β_0 -excellent.

Example :2

Example:3

 G_3 is β_0 -excellent but not γ -excellent.

Example:4

 G_5 is just β_0 -excellent but not γ -just excellent.

Example:5

Example:6 C_9 is just γ -excellent but not just β_0 -excellent. C_9 is β_0 -excellent.

Example:7 K_n is both just γ -excellent and just β_0 -excellent.

Remark 4.5. Q_n is just β_0 -excellent ($\beta_0(Q_n) = 2^{n-1}$, each vertex is n-regular and $\chi(Q_n) = 2$).

Theorem 4.6. A graph G is just β_0 -excellent if and only if

(i) $\beta_0(G)$ divides n.

(ii) G has exactly $\frac{n}{\beta_0(G)}$ distinct β_0 -sets.

(iii) The maximum cardinality of a partition of V(G) into independent sets is $\frac{n}{\beta_0(G)}$.

Proof. Let G be a just β_0 -excellent. Let S_1, S_2, \ldots, S_m be the collection of distinct β_0 -sets of G. Since G is just β_0 -excellent, these sets are pairwise disjoint and their union is V(G). Therefore (i),(ii) and (iii) follows.

Conversely, let G be a graph satisfying the conditions (i), (ii) and (iii). Let $n = m\beta_0(G)$. By condition (iii), there exist independent sets V_1, V_2, \ldots, V_m such that they are pairwise disjoint and $V_1 \cup V_2 \cup \ldots \cup V_m = V$.

Therefore $n = \sum_{i=1}^{m} |V_i| \leq m\beta_0(G)$. Since $n = m\beta_0(G)$, each V_i is a maximum independent sets of G. Therefore $V = V_1 \cup V_2 \cup \ldots \cup V_m$ and V_i 's are pairwise disjoint β_0 -sets. Therefore G is β_0 -excellent. Since G has exactly $\frac{n}{\beta_0(G)}$ (= m) distinct β_0 -sets, V_1, V_2, \ldots, V_m are the only β_0 -sets of G. Therefore G is just β_0 -excellent.

Observation 4.7. Let G be a just β_0 -excellent graph. Then $\Delta(G) \leq (\chi(G) - 1)\beta_0(G)$.

Proof. Let $u \in V(G)$. Let $deg(u) > (\chi(G) - 1)\beta_0(G)$. u is not adjacent to at least $\beta_0(G) - 1$ vertices. $deg_G(u) + deg_{\overline{G}}(u) = n - 1$.

Therefore $n - 1 > (\chi(G) - 1)\beta_0(G) + \beta_0(G) - 1 = \chi(G)\beta_0(G) - 1 = n - 1$, a contradiction.

Therefore $deg_G(u) \leq (\chi(G) - 1)\beta_0(G)$. Therefore $\Delta(G) \leq (\chi(G) - 1)\beta_0(G)$.

Remark 4.8. The upper bound is reached in $G = K_{n_1,n_2,...,n_r}$, where $n_1 = n_2,... = n_r = n.(\chi(G) = r, \beta_0(G) = n, deg(u) = (r-1)n) = (\chi(G) - 1)\beta_0(G).$

Theorem 4.9. Let G, H be just β_0 -excellent graphs and $G \neq \overline{K_n}, H \neq \overline{K_n}$.

Then (i) $G \cup H$ is not just β_0 -excellent.

(ii) G + H is just β_0 -excellent if and only if $\beta_0(G) = \beta_0(H)$.

Proof. (i) Since $G \neq \overline{K_n}$, $H \neq \overline{K_n}$, G has at least two β_0 -sets and H has at least two β_0 -sets. Let $u \in V(G)$. Then there exists a unique β_0 -set S in G containing u. Let T_1, T_2 be two β_0 - sets of H. Then $S \cup T_1, S \cup T_2$ are two β_0 -sets of $G \cup H$ containing u. Therefore $G \cup H$ is not just β_0 -excellent.

(ii) Suppose G + H is just β_0 -excellent. Then G + H is β_0 -excellent. Therefore $\beta_0(G) = \beta_0(H)$.

Conversely, let $\beta_0(G) = \beta_0(H)$. Any β_0 -set of G + His either a β_0 -set of G or a β_0 -set of H. Since G, Hare just β_0 -excellent, we get that G + H is just β_0 excellent.

Theorem 4.10. Let G be a just β_0 -excellent and let $G \neq \overline{K_n}$ and G be not a bipartite graph. Then $\beta_0(G) \leq \frac{n}{3}$, where n = |V(G)|.

Proof. Since G is not bipartite and G is just β_0 -excellent, there are at least three β_0 -sets. Therefore $\frac{n}{\beta_0(G)} \ge 3 \Rightarrow \beta_0(G) \le \frac{n}{3}$.

Remark 4.11. $K_{r,r,r}$ is a just β_0 -excellent graph in which $\beta_0(G) = \frac{n}{3}$.

Theorem 4.12. Every graph is an induced subgraph of a just β_0 -excellent graph.

Proof. Let G be a graph. Let $S_{11}, S_{12}, \ldots, S_{1k_1}$ be disjoint β_0 -sets of G.

 $(k_1 \geq 1)$. Let $G_1 = G - (S_{11} \cup S_{12} \cup \ldots \cup S_{1k_1})$. Let $S_{21}, S_{22}, \ldots, S_{2k_2}$ be disjoint β_0 -sets of G_1 . Proceeding in this manner, we get a partition π of V(G) into independent sets such that the first set of k_1 independent sets are β_0 -sets of G. Add new vertices such that each partite set in π have cardinality $\beta_0(G) + 1$. Make the new vertices adjacent to all the vertices in the partite sets of π other than that in which they lie. It is easy to see that the resulting graph is just β_0 -excellent with independence number $\beta_0(G) + 1$.

Addition of vertices to G such that each partite set in π has cardinality $\beta_0(G)$ may not give a just β_0 excellent graph.

Example 4.13.

 β_0 -sets of G are $\{u_1, u_3, u_5\}$, $\{u_2, u_4, u_6\}, \{u_1, u_3, u_6\}.$

Here $\pi = \{\{u_1, u_3, u_5\}, \{u_2, u_4, u_6\}\}$ and $\bigcup_{S \in \pi} S = V(G)$. If we add no vertex, we get G itself which is β_0 -excellent but not just β_0 -excellent.

Definition 4.14. Let G be any graph. Suppose G is not just β_0 -excellent. Let H be a just β_0 -excellent graph of minimum order containing G as an induced subgraph. Then |V(H)| - |V(G)| is called just β_0 excellent embedding index of G and is denoted by $em_{\beta_0}(G)$.

Remark 4.15. $em_{\beta_0}(G) \le t(\beta_0 + 1) - n$.

Definition 4.16. Let G be a graph. Suppose G is not just β_0 -excellent graph. Let H be a just β_0 -excellent graph of minimum independence number containing G as an induced subgraph. Then $|\beta_0(H)| - |\beta_0(G)|$ is called just β_0 -excellent embedding independent index of G and is denoted by $emi_{\beta_0}(G)$. **Remark 4.17.** (1) Since G is an induced subgraph of H, $\beta_0(G) \le \beta_0(H)$. (2) $0 \le emi_{\beta_0}(G) \le 1$.

(3) There are graphs in which $emi_{\beta_0}(G) = 0$.

Example 4.18.

 $\beta_0(H_1) = 4$, $\beta_0(H_2) = 3$. *G* is an induced subgraph of both H_1 and H_2 . H_2 is a graph with minimum independence number containing *G* as an induced subgraph. Thus $emi_{\beta_0}(G) = 0$.

Remark 4.19. If G is not β_0 - excellent and G has a unique β_0 -set, then $emi_{\beta_0}(G) = 0$.

Remark 4.20. If G is just β_0 -excellent, then H = Gand hence $emi_{\beta_0}(G) = em_{\beta_0}(G) = 0$.

Remark 4.21. Let G be a non just β_0 -excellent graph. G is said to belong to $emi-C_1$ class if $emi_{\beta_0}(G) = 0$ and $emi-C_2$ class if $emi_{\beta_0}(G) = 1$.

Example 4.22. (1) $K_{1,n}$ belongs to $emi-C_1$ class. (2) C_{2n+1} belongs to $emi-C_2$ class.

Open Problem:

Characterize emi- C_1 class and emi- C_2 class.

Remark 4.23. Consider $D_{r,s}$. It has a unique β_0 -set. Any chromatic partition consists of two sets. If we consider a chromatic partition and add new vertices and edges as in the theorem, then we may not get a just β_0 -excellent graph.

Example 4.24.

 $\beta_0(H) = 7$ and $\{1, 2, 3, 6, 7, 8, 9\}$ is the unique β_0 -set of H. Then H is not even β_0 -excellent. Hence the partition of V(G) into independent sets is to be done in the manner described in the theorem.

Remark 4.25. Let π be the partition of V(G) as in the theorem. Then the number of new vertices added is $|\pi|(\beta_0(G) + 1) - n$.

Proof. Let $\pi = \{V_1, V_2, \dots, V_k, \dots, V_t\}$, where V_1, V_2, \dots, V_k are β_0 -sets $(k \ge 1)$ of G and the remaining sets are independent having cardinality $< \beta_0(G)$. The number of vertices added to $G = k + \sum_{i=k+1}^{t} (\beta_0(G) + 1 - |V_i|) = k + (t-k)(\beta_0 + 1) - (n - k\beta_0) = t\beta_0 + t - n = t(\beta_0 + 1) - n.$

Illustration 4.26.

The β_0 -sets of C_5 are $\{1,3\}, \{1,4\}, \{2,4\}, \{2,5\}$. Hence C_5 is not β_0 -excellent. But for H, the β_0 -sets are $\{1,3,7\}, \{2,4,8\}$ and $\{5,6,9\}$. H is just β_0 -excellent graph; $\beta_0(C_5) = 2, \beta_0(H) = 3$ and the number of new vertices added is 4.

4.3 Just β_0 excellence in Product graphs

Theorem 4.27. Let H be a graph. If $n = \chi(H)$, then $K_n \Box H$ is just β_0 -excellent and if $n > \chi(H)$, then $K_n \Box H$ is not just β_0 -excellent.

Proof follows from the theorem 2.19.

Observation 4.28. Let H be a graph. $\overline{K_n} \Box H$ is just β_0 -excellent if and only if H is just β_0 -excellent.

Theorem 4.29. If every vertex of H belongs to an union of disjoint independent sets of H of maximum cardinality, then $K_n \Box H$ is not just β_0 -excellent

Proof. Suppose every vertex of H belongs to an union of disjoint independent sets of H of maximum cardinality. Then by theorem 2.22, $K_n \Box H$ is β_0 -excellent. Suppose $\{S_1, S_2, \ldots, S_n\}$ and $\{X_1, X_2, \ldots, X_n\}$ are collections of disjoint independent sets of H with union having maximum cardinality. If $S_i \cap X_j \neq \phi$, for some i, j, then as seen in theorem 2.22, any element of $S_i \cap X_j$ is contained in two maximum independent sets and hence $K_n \Box H$ is not just β_0 -excellent. Suppose $S_i \cap X_j = \phi$, for every i, j.

Claim: For some order of $\{S_1, S_2, ..., S_n\}, |S_i| = |X_i|, 1 \le i \le n.$

Let $\sum_{i=1}^{n} |S_i| = t$. Then $\sum_{i=1}^{n} |X_i| = t$. Suppose $|S_i| < |X_i|$. Then $|S_1| + |S_2| + \ldots + |S_{i-1}| + |S_{i+1}| + \ldots + |S_n| > |X_1| + |X_2| + \ldots + |X_{i-1}| + |X_{i+1}| + \ldots + |X_n|$. Therefore $|X_i| + |S_1| + \ldots + |S_{i-1}| + |S_{i+1}| + \cdots + |S_n| > t$. Since $S_i \cap X_j = \phi$, we have disjoint independent sets of $H, X_i, S_1, S_2, \ldots, S_{i-1}, S_{i+1}, \ldots S_n$ such that $|X_i| + |S_1| + \ldots + |S_{i-1}| + |S_{i+1}| + \ldots + |S_n| > t$, a contradiction. Similarly, if $|S_i| > |X_i|$, we get a contradiction. Therefore $|S_i| = |X_i|, 1 \le i \le n$. Let $v \in S_1$. Then as seen in theorem 2.22, S_1, S_2, \ldots, S_n as well as S_1, X_2, \ldots, X_n give rise to β_0 -set of $K_n \Box H$ and (u_i, v) belongs to at least two β_0 -sets of $K_n \Box H$.

Theorem 4.30. Let G be a bipartite graph. $G \Box C_{2m}$ is just β_0 -excellent and $G \Box C_{2m+1}$ is not just β_0 -excellent.

Proof follows from theorem 2.46

Theorem 4.31. The following are just β_0 -excellent graphs.

(i) $P_{2n} \Box P_{2k+1}$ is just β_0 -excellent. (ii) $P_{2n} \Box C_{2k}$ is just β_0 -excellent. (iii) $P_{2n+1} \Box C_{2k}$ is just β_0 -excellent.

Proof follows from remark 2.30 and theorem 2.31.

Theorem 4.32. The following are not just β_0 -excellent graphs.

(*i*) $P_{2n} \Box C_{2k+1}$ (*ii*) $P_{2n+1} \Box C_{2k+1}$

4.4 Just β_0 -excellence in Generalized Petersen graphs P(n, k)

Definition 4.33. Generalised Petersen Graphs P(n,k): For each $n \ge 3$ and 0 < k < n, P(n,k) denotes the generalised Petersen graph with vertex set V(G) = $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ and the edge set $E(G) = \{u_i u_{i+1(mod n)}, u_i v_i, v_i v_{i+k(mod n)}\}, 1 \le$ $i \le n$.

Theorem 4.34. P(2n, k) is just β_0 -excellent if k is odd.

Proof. Let $\{u_1, u_2, \ldots, u_n\}$ be the vertices in the outer circle and $\{v_1, v_2, \ldots, v_n\}$ be the remaining vertices. Let $S_1 = \{v_1, u_2, v_3, u_4, \ldots, v_{2n-1}, u_{2n}\}$ and $S_2 = \{u_1, v_2, u_3, v_4, \ldots, u_{2n-1}, v_{2n}\}$. Then S_1, S_2 are disjoint β_0 -sets of P(2n, k). Clearly for any nonempty proper subset A of S_1 or S_2 , |N(A)| > |A|. Therefore P(2n, k) is just β_0 -excellent.

Illustration 4.35.

The β_0 -sets are

 $\{u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, u_9, v_{10}, u_{11}, v_{12}\},\$

 $\{v_1, u_2, v_3, u_4, v_5, u_6, v_7, u_8, v_9, u_{10}, v_{11}, u_{12}\}.$ Hence P(12, 3) is just β_0 -excellent.

Theorem 4.36. P(n, 1), *n* odd is β_0 -excellent but not just β_0 -excellent.

Proof. Let

$$\begin{split} V(P(n,1) &= \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}.\\ E(P(n,1)) &= \{u_i u_{i+1}, v_i v_{i+1}, u_i v_i, (mod \; n)\},\\ \text{where } 1 \leq i \leq n,\\ \beta_0(P(n,1)) &= n-1. \text{ The following are } \beta_0\text{-sets} \\ \{u_1, v_2, u_3, v_4, \dots, u_{n-2}, v_{n-1}\},\\ \{v_1, u_2, v_3, u_4, \dots, v_{n-2}, u_{n-1}\},\\ \{u_n, v_1, u_2, v_3, u_4, \dots, u_{n-3}, v_{n-2}\} & \text{and} \\ \{v_n, u_1, v_2, \dots, v_{n-3}, u_{n-2}\}. \text{ Therefore } P(n, 1), n \text{ is} \\ \text{odd is } \beta_0\text{-excellent. Clearly, it is not just } \beta_0\text{-excellent.} \end{split}$$

Illustration 4.37.

The β_0 -sets of P(11, 1) are $\{u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, u_9, v_{10}\},\$

 $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\},\$

 $\{u_{11}, v_1, u_2, v_3, u_4, v_5, u_6, v_7, u_8, v_9\}$ and

 $\{u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, u_9, v_{11}\}$. Hence all the vertices are in at least one β_0 -set. Hence P(11, 1) is β_0 -excellent, but clearly P(11, 1) is not just β_0 -excellent.

Theorem 4.38. P(n, 3), *n* odd is β_0 -excellent but not just β_0 -excellent

Proof. Let $V(P(n,3) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\},$ $E(P(n,3)) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\},$ $E(P(n,3)) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\},$

$$\begin{split} E(P(n,3)) &= \{u_i u_{i+1}, v_i v_{i+3}, u_i v_i, (mod \; n)\}\\ \text{where } 1 \leq i \leq n \; . \; \beta_0(P(n,3)) = n-2.\\ \text{The} & \text{following} & \text{are} & \beta_0\text{-sets}\\ \{u_1, v_2, u_3, v_4, \dots, u_{n-2}, v_{n-2}\},\\ \{v_1, u_2, v_3, u_4, \dots, v_{n-2}\},\\ \{u_{n-1}, v_n, u_1, v_2, \dots, u_{n-3}\},\\ \{u_{n-1}, u_n, v_1, u_2, \dots, v_{n-3}\},\\ \{u_n, v_1, u_2, \dots, u_{n-3}\},\\ \{v_n, u_1, v_2, \dots, u_{n-3}\},\\ \{v_n, u_1, v_2, \dots, u_{n-3}\}. \end{split}$$

Therefore P(n,3), n is odd is β_0 -excellent. Clearly, it is not just β_0 -excellent. Hence the result.

Illustration 4.39.

The β_0 -sets are

 $\{ u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, u_9, v_{10}, u_{11} \}, \\ \{ v_1, u_2, v_3, u_4, v_5, u_6, v_7, u_8, v_9, u_{10}, v_{11} \}, \\ \{ u_{12}, v_{13}, u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, u_9 \}, \\ \{ u_{13}, v_1, u_2, v_3, u_4, v_5, u_6, v_7, u_8, v_9, u_{10} \}.$

Therefore $P_{13,3}$ is β_0 -excellent. Clearly, $P_{13,3}$ is not just β_0 -excellent.

Theorem 4.40. P(n, 5), *n* odd is β_0 -excellent but not just β_0 -excellent

Proof. Let

 $\begin{array}{ll} V(P(n,5)=\{u_1,u_2,\ldots,u_n,v_1,v_2,\ldots,v_n\},\\ E(P(n,5)) &= \{u_iu_{i+1},v_iv_{i+5},u_iv_i,1 \leq i \leq n \ (mod \ n)\}, \ \beta_0(P(n,3))=n-3. \ \text{The following are} \\ \beta_0\text{-sets} & \{u_1,v_2,u_3,v_4,\ldots,v_{n-5},u_{n-4},u_{n-2}\}, \\ \{v_1,u_2,v_3,u_4,\ldots,u_{n-5},v_{n-4},v_{n-2}\}. & \text{Similar} \\ \beta_0\text{-sets} & \text{can be written starting with} \\ u_{n-1};v_{n-1};u_n;v_n;u_{n-3};v_{n-3}. \ \text{Therefore} \ P(n,5), n \\ \text{odd is} \ \beta_0\text{-excellent. Clearly, it is not just} \ \beta_0\text{-excellent.} \end{array}$

Illustration 4.41.

The β_0 -sets of P(15, 5) are

 $\{u_1, v_2, u_3, v_4, u_5, v_6, u_7, v_8, u_9, v_{10}, u_{11}, u_{13}\},\$

 $\{v_1, u_2, v_3, u_4, v_5, u_6, v_7, u_8, v_9, u_{10}, v_{11}, v_{13}\},\$

 $\{u_{15}, v_{14}, u_{13}, v_{12}, u_{10}, v_9, u_8, v_7, u_6, v_5, v_4, u_3, \}.$ Therefore P(15, 5) is β_0 -excellent and it is not just β_0 -excellent.

Theorem 4.42. P(n, 2), *n* odd is β_0 -excellent but not just β_0 -excellent

Proof. Let

$$V(P(n,2) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}, E(P(n,2)) = \{u_i u_{i+1}, v_i v_{i+2}, u_i v_i, (mod n)\}$$

where $1 \leq i \leq n$. $\beta_0(P(n, 2)) = [\frac{4n}{5}]$. The following are β_0 -sets $\{u_1, v_2, u_3, v_4, \dots, v_{n-4}, u_{n-3}, u_{n-1}\}, \{v_1, u_2, v_3, u_4, \dots, u_{n-4}, v_{n-3}, v_{n-1}\}$. Similar β_0 sets can be written starting with the remaining vertices of P(n, 2). Therefore P(n, 2), n is odd is β_0 excellent. Clearly, it is not just β_0 -excellent.

4.5 Just β_0 -excellence of Harary graphs

The β_0 -excellence of Harary graph has been discussed in the third section. Based on the results in that section, the just β_0 -excellence of Harary graphs are discussed here. **Observation 4.43.** The condition $\left\lfloor \frac{n-r}{r+1} \right\rfloor \neq \frac{j-i}{r+1}$ is not sufficient to ensure that $H_{2r,n}$ is not just β_0 - excellent.

Consider $H_{5,9}$. Here r = 2, n = 9, n - r = 7. $t = \frac{n-r}{r+1} = \frac{7}{3} = 2$. Let j = 3, i = 0. $\frac{j-i}{r+1} = \frac{3}{3} = 1 \neq \left| \frac{n-r}{r+1} \right|$.

But $S_3 = \{3, 6, 0\}, S_0 = \{0, 3, 6\}$ are not distinct. Here $3 \in S_0$ and $0 \in S_3$.

Remark 4.44. The condition $j \notin S_i$ (or) S'_i implies that $\left|\frac{n-r}{r+1}\right| \neq \frac{j-i}{r+1}$

Suppose $\left\lfloor \frac{n-r}{r+1} \right\rfloor = \frac{j-i}{r+1}$. Then $\frac{j-i}{r+1} = t$, where $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor$.

Therefore j - i = t(r + 1). Therefore j = t(r + 1) + i. Therefore $j \in S_i$, a contradiction.

Remark 4.45. The condition that $\left\lfloor \frac{n-r}{r+1} \right\rfloor \neq \frac{j-i}{r+1}$ need not imply that $j \notin S_i$ and S'_i .

Consider $H_{5,9}$. Here r = 2, n = 9, n - r = 7. $t = \frac{n-r}{r+1} = \frac{7}{3} = 2$. Let j = 3, i = 0. $S_0 = \{0, 3, 6\}, S'_0 = \{0, 3, 6\}$. $3 \in S_0$ and S'_0 . $\frac{j-i}{r+1} = \frac{3-0}{3} = 1 \neq \frac{n-r}{r+1}$. But $j \in S_i$ and $j \in S'_i$.

Theorem 4.46. Let j - i = q(r + 1), q > 0. Then $q \le 2t$ and q can be written as t - m, where $m \ge -t$, $t = \left\lfloor \frac{n-r}{r+1} \right\rfloor$.

Proof. Suppose r+1 divides j-i. Let j-i = (r+1)q. Write q = l - m, $l \le t$, where $t = \lfloor \frac{n-r}{r+1} \rfloor$. Suppose q > 2t and $n-r = q_1(r+1) + \alpha_1$, $0 \le \alpha_1 < r+1$. $2t(r+1) = 2 \lfloor \frac{n-r}{r+1} \rfloor (r+1) = 2 \lfloor \frac{q_1(r+1)+\alpha_1}{r+1} \rfloor (r+1) = 2q_1(r+1) = 2n - 2r - 2\alpha_1$.

 $2t(r+1) = n + (n - 2r - \alpha_1) - \alpha_1$. q > 2timplies that $q \ge 2t + 1$.

Therefore,

$$\begin{array}{rcl} q(r+1) & \geq & (2t+1)(r+1) \\ & = & 2t(r+1) + (r+1) \\ & = & n + (n-2r-\alpha_1) + (r+1-\alpha_1)). \end{array}$$

Since $n - r = q_1(r+1) + \alpha_1$, $n - 2r - \alpha_1 = q_1(r+1) - r$ ($q_1 = 0$ implies that $n - r = \alpha_1 < r+1$ implies that n < 2r + 1, a contradiction, since $n \ge 2r + 1$).

Therefore, $q_1 \ge 1$. Therefore, $n - 2r - \alpha_1 > 0$. Also, $\alpha_1 < r + 1$. Therefore, j - i = q(r + 1) > n, a contradiction. Thus, $q \le 2t$. Suppose $q \le t$. Then q = l - m, where $l = t, m \ge 0$. Suppose $t < q \le 2t$. Then q = t - m, where $m \ge -t$. Thus for j - i = q(r + 1) with q > 0, we can always write $q = l - m, l = t, m \ge -t$.

Theorem 4.47. $H_{2r,n}$ is not just β_0 -excellent if and only if there exist $i, j(i < j), 0 \leq i, j \leq$ n-1 such that r+1 divides j-i (or) j-ii - n and j does not belong to S_i or S'_i , where $S_i = \{i, r+1+i, \dots, t(r+1)+i\}$ and $S'_i =$ $\{i, i - (r+1), \dots, i - t(r+1)\}, where t = \left|\frac{n-r}{r+1}\right|.$ **Proof.** Suppose (r + 1) divides j - i. Then by the theorem 4.46, j - i = q(r + 1) and q = t - m, where $m \ge -t$. Therefore (t-m)(r+1) = j-i. Therefore t(r+1) + i = m(r+1) + j. The two β_0 -sets $S_i = \{i, r+1+i, \dots, t(r+1)+i\}, S'_i =$ $\{j, j - (r+1), \dots, m(r+1) + j, \dots, j - t(r+1)\}$ (or) $S_i = \{i, r+1+i, \ldots, t(r+1)+i\}, \text{ and } S_j =$ $\{j, j + (r+1), \dots, j + t(r+1)\}$ have a common element namely t(r+1) + i according as m < 0 (or) $m \ge 0$. $S_i = S'_i$ or $S_i = S_j$ implies $j \in S_i$, a contradiction. Therefore $S_i \neq \tilde{S'_j}$ or $S_i \neq S_j$. Therefore $H_{2r,n}$ is not just β_0 -excellent.

A similar proof holds when r + 1 divides j - i - n. Conversely, Suppose $H_{2r,n}$ is not just β_0 -excellent. Then there exist distinct β_0 -sets S_1, S_2 such that $S_1 \cap S_2 \neq \phi$. Without loss of generality, let $S_1 = \{i, r+1+i, \dots, t(r+1)+i\}, S_2 =$ $\{j, j + (r+1), \dots, j + t(r+1)\}$ (or) $S_1 = \{i, r+1+i, \dots, t(r+1)+i\}, S_2$ = $\{j, j - (r+1), \dots, m(r+1) + j, \dots, j - t(r+1)\}.$ Since S_1 and S_2 are distinct, *i* does not belong to S_2 and j does not belong to S_1 . Let l(r + 1) + i = m(r + 1) + j (or) l(r+1) + i = m(r+1) + j - n. Then $l \neq 0$, $m \neq 0$. That is (r+1)(l-m) = j - i (or) (r+1)(l-m) = j - i - n. Therefore (r+1) divides j - i (or)j - i - n.

Observation 4.48. If r+1 divides n-r and $\frac{n-r}{r+1}$ does not divide n, then $H_{2r,n}$ is not just β_0 -excellent.

Proof. Suppose r + 1 divides n - r, then $\beta_0(H_{2r,n}) = \frac{n-r}{r+1}$. If $H_{2r,n}$ is just β_0 -excellent, then β_0 divides n. But by hypothesis, $\frac{n-r}{r+1} = \beta_0$ does not divide n. Therefore $H_{2r,n}$ is not just β_0 -excellent.

Illustration 4.49. Consider $H_{5,11}$. Here r = 2, n = 11, n - r = 9, r + 1 = 3. $t = \frac{n-r}{r+1} - 1 = 3 - 1 = 2$. 2(r+1) = 6 divides n + 1 = 12. $\beta_0(G) = \frac{n-r}{r+1} = 3$. So $S_0 = \{0, 3, 7\}, S_1 = \{1, 4, 8\}, S_2 = \{2, 5, 9\}, S_3 = \{3, 6, 10\}, S_4 = \{4, 7, 0\}, S_5 = \{5, 8, 1\}, S_6 = \{6, 9, 2\}, S_7 = \{7, 10, 3\}, S_8 = \{8, 0, 4\}, S_9 = \{9, 1, 5\}, S_{10} = \{10, 2, 6\}, j = 10, i = 1$. r + 1 divides j - i. $S_i = S_1 = \{1, 9, 5\}, S'_i = S'_1 = \{1, 9, 5\}.$ $10 \notin S_1$ and S'_1 . Therefore $H_{5,11}$ is β_0 -excellent but not just β_0 -excellent.

References:

- C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, Lecture Notes in Computer Science, Graph Theory and Alogrithms, Proc. Symp. Res. Inst. Electr. Comm. Tohoku Univ.; Sendi, 1980, Vol. 108, 108–123, Berlin, 1987, Springer.
- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker. Inc., New York, 1998.
- [3] G. H. Fricke, T. W. Haynes, S. T. Hetniemi, S. M. Hedetniemi and R. C. Laskar, Excellent trees, *Bull. Inst. Combin. Appl.*, Vol. 34 (2002), pp 27– 38.
- [4] N. Sridharan and K. Subramanian, γ-graph of a graph, Bulletin of Kerala Mathematics Association, Vol.5, 1,(2008, June),17–34.
- [5] N. Sridharan and M. Yamuna, Excellent- Just Excellent -Very Excellent Graphs, *Journal of Math. Phy. Sci.*, Vol.14, No.5, 1980, 471-475.
- [6] N. Sridharan and M. Yamuna, A Note on Excellent graphs, ARS Combinatoria, 78(2006), pp. 267–276.
- [7] F. Harary, *Graph Theory*, Addison Wesley, Reading Mass (1972).
- [8] M. A. Henning anf T. W. Haynes, Total domination excellent trees, *Discrete Math.*, Vol .263, (2003), 93-104.
- [9] O. Ore, *Theory of Graphs*, Amer. Math. Soc. Colloq. Publication, 38, Providence, (1962).
- [10] M. Yamuna, Excellent Just Excellent Very Excellent Graphs, Ph.D Thesis, Alagappa University, 2003.