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Abstract: Claude Berge [1] in 1980, introduced B graphs. These are graphs in which every vertex in the graph is
contained in a maximum independent set of the graph. Fircke et al [3] in 2002 made a beginning of the study of
graphs which are excellent with respect to various graph parameters. For example, a graph is domination excellent
if every vertex is contained in a minimum dominating set. The B-graph of Berge was called (3 excellent graph. (3
excellent trees were characterized [3]. A graph is just 3y excellent if every vertex belongs to exactly one maximum
independent set of the graph.This paper is devoted to the study of 3y excellent graphs and just 3y excellent graphs.
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1 Introduction

Let 1 be a parameter and let G = (V| E) be simple
graph. A vertex v € V(G) is said to be p-good if
v belongs to a y-minimum (u-maximum) set of G ac-
cording as y is a super hereditary (hereditary) parame-
ter. v is said to be p-bad if it is not p-good. A graph G
is said to be p-excellent if every vertex of G is p-good.
G is p-commendable if number of p-good vertices in
G is strictly greater than the number p-bad vertices of
G and there should be at least one p-bad vertex in G.
( is said to be u-fair if number of p-good vertices in
( is equal to the number of p-bad vertices in G and G
is said to be p-poor if number of p-bad vertices in G
is strictly greater than the number of p-good vertices
in G.

~v-excellent trees and total domination excellent
trees have been studied in [3], [8]. [p-excellent
trees was also dealt with in some of the theorems
in [3]. Continuing the study on 7-excellent graphs,
N.Sridharan and Yamuna [4, 5, 6] , made an exten-
sive work in this area. They have defined excellent,
very excellent, just total excellent, rigid very excel-
lent graphs with respect to the domination parameter
and made a substantial contribution in this area.

This paper starts with the definition of Jg-
excellent graphs. In the first section, general results
on (- excellent graphs are proved.The second sec-
tion is devoted to Gyp-excellence in Cartesian Product
of graphs. The third section deals with (3p-excellence
of Harary graphs. The fourth section is devoted to the
study of just Fy-excellent graphs.
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Definition 1.1. Double star is a graph obtained by
taking two stars and joining the vertices of maximum
degrees with an edge. If the stars are K1, and K1 g,
then the double star is denoted by D, .

Definition 1.2. A fan F,, is defined as the graph join
P,_1 + Ky ,wheren > 3 and P,,_1 is the path graph
onn — 1 vertices.

2 [y-excellent graphs

Definition 2.1. Let G = (V, E) be a simple graph.
Let w € V(G). w is said to be [(y-good if u is con-
tained in a [y-set of G.

Definition 2.2. v is said to be (y-bad if there exists
no Po-set of G containing u.

Definition 2.3. A graph G is said to be By-excellent if
every vertex of G is (y-good.

Example 2.4. 1 9
G:

5 6 7 8
The [p-sets of G are {1,3,6,8}, {5,6,7,8},
{2,4,5,7}. Hence all the vertices are (3y-good. Hence
G is (p-excellent.

Theorem 2.5. (1) K, is By-excellent.

(2)The central vertex of K1, is Bo-bad and every
other vertex is By-good.

(3) Cy, is Bo-excellent.
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(4) Py, is Bo-excellent if and only if n is even.

(5) In a Double star D, s, all the pendent vertices
are (3y-good but the two supporting vertices are -
bad. Hence D, , is not a (y-excellent graph.

(6) Ky, is Bo-excellent if and only if m = n.

(7) In W, the central vertex is (y-bad, while
other vertices are (3y-good.

(8) K, is a Bo-excellent graph.

(9) F,,n > 3 is not Py-excellent.

Remark 2.6. Suppose G has a unique (y-set. Then G
is Bo-excellent if and only if G = K.

Remark 2.7. If G has a full degree vertex and if G #
K, then G is not By-excellent.

Theorem 2.8. For any graph G, G o Ky is (-
excellent.

Definition 2.9. A graph is said to be By-fair(By-poor)
graph if the number of (y-good vertices is greater
than(less than) the number of (By-bad vertices.

Example 2.10. Let G be the graph obtained from

K1 3 by subdividing all pendent edges exactly once.
Then G is [By-fair.

Example 2.11. In G = K4—{e}, exactly two vertices
are (By-good and remaining vertices are By-bad. If
n > b, then G = K, — {e} is [By-poor, since the
number of Bo-bad vertices is greater than number of
Bo-good vertices.

Theorem 2.12. Every non 3y- excellent graph can be
embedded in a By-excellent graph.

If G is a non (3p-excellent graph, then G o K7 is a
Bo-excellent graph in which G is embedded.

Remark 2.13. Suppose G = K,1+1. Then By(G o
K1) — Bo(G) = n, which means the difference be-
tween the independence number of the graph, in which
the given graph is embedded and the given graph is
large.

Definition 2.14. A graph G is said to be vertex tran-
sitive if given any two vertices u, v(u # v) of G, there
is an automorphism ¢ of G such that ¢(u) = v. If G
is vertex transitive, then it is regular.

Theorem 2.15. Any vertex transitive graph is -

excellent.
Proof. Let G be a vertex transitive graph. Let S be a

Bo-set of G. Let u € V(G). Suppose u ¢ S. Select
any vertex v € S. As G is vertex transitive, there
exists an automorphism ¢ of G which maps v to u.
Let S = {¢(w) : w € S}. Since S is a [p-set and
¢ is an automorphism, S’ is a By-set. Since v € S,
¢(v) = u € S'. Therefore G is (y-excellent.
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Theorem 2.16. Let G be a non [y-excellent graph.
Then there exists a graph H in which the following
conditions are true.

(i) H is By-excellent.

(ii) G is an induced subgraph of H.

(iii) Bo(H) = Bo(G).

Proof. Let G be a non -fy-excellent graph. Let
B = {b1,b,...,bx} be the set of all 5y-bad vertices
of G. Let V1, Vs, ..., V} be a set of independent sets
of maximum cardinalities containing b, ba, . . . , by, re-
spectively.

Let |[V;] = t;, 1 <4 < k. Then t; < Bo(Q), for
allz, 1 <1 < k. Let Wi = Wiy, Wigy - -+ 7wir80_ti S
1 <4 < k. Add each element of W;, 1 < ¢ < k
as a vertex to the vertex set of (G. Let the new sets
of vertices Wy, Wa, ..., , Wy be made a complete k-
partite graph. Join each vertex of W; with every vertex
of V.—V;, 1 <4 < k. Let H be the resulting graph.
Then V; UW; is an independent set of H of cardinality
Bo. Any [p-set of G continues to be an independent
set of H of cardinality (3y. There is no other indepen-
dent set of H of cardinality greater than (3y. Therefore
Bo(H) = Bo(G). Each new vertex added to G' and
each b; is contained in a maximum independent set of
H. Therefore H is a By-excellent graph. Clearly, G is
an induced subgraph of H and 5y(H) = (o (G).

Theorem 2.17. Let G, H be By-excellent graphs with
V(G)NV(H) = ¢. Then

(i) G U H is By-excellent.

(ii) G + H is Bo-excellent if and only if 5o(G) =
Bo(H).
Proof. (i) Any fg-set of G U H is of the form S; U S5,
where Sp is a (g-set of GG and Sy is a (y-set of H.
Hence G U H is [By-excellent.

(ii) Let 5o(G) < Bo(H). Then any [y-set of G +
H is a y-set of H and conversely. If 5y(G) = (o(H),
then any fg-set of G and any (y-set of H are [3y-sets
of G + H and conversely. Therefore G + H is [3p-
excellent if and only if 8y(G) = Bo(H).

Definition 2.18. Let G; = (Vl,El) and Go =
(Va, E3) be any two graphs Then their Cartesian
Product G1L1G5 is defined to be the graph whose ver-
tex set is V1OV, and edge set is {((u1,v1), (ug,v2)) :
either u; = w9 and vijv9 € FE5 or v; = w9 and
Urug € El}.

Theorem 2.19. Let H be a graph.

(i) Let n > x(H). Then By(K,0H) = |V(H)|
and K,L1H is By-excellent.

(ii) Let n < x(H). Then Bo(K,OH) = t, where
t is the maximum cardinality of an union of n-disjoint
independent sets in H.
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Proof. (i) Let n > x(H). Let [[ =
{Vl,VQ,...,VX(H)} be a chromatic partition of
H. Let V(K,) = {ui,uz,...,un}. Then

S = {(u1,v) :ve Vit U{(ug,v) :veVr}U...U
{(ur(@),v) : vy() € Vy(c)} is an independent set of
K,0H. Therefore fo(K,0H) > |V(H)|. But
Bo(K,OH) < fo(K)|V(H)| = [V(H)]. There-
fore Bo(K,00H) = |V(H)|. Any set of x-vertices of
K, will produce a y-set of K,,.L1H. Hence K,,[1H
is Bp-excellent.

(ii) Let n < x(H). Let S1, 59, . ..,S, be disjoint in-

n
dependent sets in H such that > |S;| is maximum.
i=1
n

Lett = > |Si|. Then T = {(uj,v):v € S1} U
i=1

{(ug,v) :v € Sa}U...U{(un,v) :v € S,}isanin-

dependent set of K,,[(JH. Therefore Gy(K,0H) >

n
IS = |T| = t. Let S be a maximum
i=1
independent set of K,L0H. Let X; = SN

{wi} xV(H)),1 < ¢ < n. LetY, =
{veV(H): (u;,v) € X;,1 <i<mn). Then Y/s are

n
independent and disjoint in H. |S| = Y |X;| =
i=1

n n
Y < >3 |Si| = |T|. Therefore t = |T| >
=1 =1

Go(K,OH) = |T| =t.

Ilustration 2.20. Let H be K53 592. Then K3[1H is
not [y-excellent. (Here x(H) = 4 > 3).

Theorem 2.21. K,,L1H is By-excellent if and only if
every vertex of H belongs to the union of disjoint in-
dependent sets of H of maximum cardinality.

Proof. Suppose every vertex of H belongs to the
union of disjoint independent sets of H of maximum

cardinality. Let V (K,,) = {u1, u2, ..., un}. (ui,v) €
V(K,O0H),1 < i < n. Then v € V(H). Then
there exist disjoint independent sets S1, 52, . .., S, of
n
H such that ) |.S;| = ¢ is maximum and v € S}, for
=1
some j, 1 S}'gn.
Then T = {(ur,v) ;v e S} U
{(ug,v) ;v e Sa}... U {(u,v):ves;} U

{(uj,v):veSi}... U {(up,v):veS,} is a
maximum independent set of K,[1JH containing
(u;,v). Therefore K,,[1H is [y-excellent.
Conversely, Suppose every vertex of I belongs
to the union of disjoint independent sets of H of max-
imum cardinality. Then there exists a vertex v € H
such that v does not belong to any union of n disjoint
independent sets of H of maximum cardinality. Since
any maximum independent set of K,,[1H is obtained
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from n disjoint independent sets of H, with the union
having maximum cardinality, (u;,v), 1 < ¢ < n
will not belong to any maximum independent set of
K,0H. Therefore K,[1H is not 3y-excellent.

Theorem 2.22. Let H be a graph. Then K,[0H is
Bo-excellent if and only if H is By-excellent.

Proof. Suppose H is [g-excellent. Then
Bo(K,OH) = n.Bo(H). Any f[o-set of H gives
rise to a By-set of K,,[1H. Therefore K,[0H is -
excellent. Suppose H is not fp-excellent. Let u €
V' (H) be such that u is not contained in any (y-set of
H. Suppose S is a 3y-set of K,,[1H containing (v, u),
for some v € V(K,). Therefore |S| = n.Bo(H).
Also S is of the form V(G) x T, where T is a (y-set
of H. Therefore v € T, a contradiction.

Theorem 2.23. Let G # K, and let G be a (-
excellent graph. Let H = Ps,. Then GUH is
Bo-excellent if (i) or (ii)is satisfied. GUH is not (-
excellent if (iii) is satisfied.

(i) For any By-set S of G, there exists a By-set of
GinV -8

(ii) Let the cardinality of the union of any two
disjoint non-maximum independent set of G < |S| +
Bo(< V =8 >), for any (By-set S of G. For every
Bo-set S of G, V' — S does not contain Py-set of G
and for any (y-set S of G, the maximum number of
independent elements in V — S is the same.
(iii) If any two (y-sets of G are not disjoint and there
exists a By-set S of G such that the maximum num-
ber of independent elements in V' — S is greater than
the maximum number of independent elements in the
complement of any other [3y-set, then GUH is not By-
excellent.
Proof. (i) Let G have two disjoint Fy-sets. Then
Bo(GOPs,) = 2nfy(G). For: Let Sq, S2 be two dis-

joint By-sets of G. Let V(Pay,) = {v1,v2,...,v2,}.
{(zs,v5) : @ € S1} U {(i,vig1) s yi € Sa}
is an independent set in GUPy,. Thus

{(xi,vl) 1 x; € Sl} U {(yi,vg) LY € 52} U
{(zj,v3) rz; € S1} U {(yi,v4) :y; € So} U ... U
{(wi,von—1) r 2 € S1} U {(¥i,v2n) 1 yi € S2}
is an independent set of GUP,. Therefore
Bo(GOPay,) > 2n00(G).

But ﬁo(GDPQn) < ﬁo(G)|V(P2n)| = 2nﬁ0(G)
Hence (p(GOP2,) = 2n0o(G). Let (z,y) €
V(GOPyy,). Then there exists a Jy-set S; of G con-
taining x. Also by hypothesis, V' — Sy contains a (-
set of G,say So. |J (S1 x {var—1}) UtU1<S2 x {vat})

t=1
n

and {J (S2 x {v2—1})

t=1

U Lnj (S1 x {va}) are By-sets
=1
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of GOP,,. Hence there exists a Gy- set of GL1P,,
containing (x, y). Therefore GO Py, is By-excellent.
(ii) It can be easily proved that Gy(GOPy,) =
(6o(G) + k)n, where k is the maximum number of
independent elements in the complement of any (-
set of GG. In this case, GLP,, is (y-excellent.[For:
Let (z,y) be any element of V(GOP,,). Then
there exists a fg-set S; of G containing x. Also
V' — S; contains an independent set of cardinality k.
Let S5 be a maximum independent set in V' — 5.

n

U (St % {oar1}) U tL:Jl(Sg x {va:}) and tQ(sQ x

t=1
{var—1}) U U (S1 x {vy}) are the [y-elements of
t

GUPy,. Hencle there exists a (3y-set of GL1P,,, con-
taining (x, y). Therefore GO Py, is (y-excellent.

(iii) Suppose there exists a Gy-set S1 of G such
that the maximum number of independent elements
say k in V — Sy is greater than the maximum num-
ber of independent elements in the complement of any
other (y-set of G.

Bo(GOPyy,) = (Bo(G) + k)n. Letu € V(G) —
S1. Then there exists a [y-set So of G containing
u. The maximum number of independent elements
in V(G) — Sy is less than k. Therefore (u, v), where
v € V(Pay,) is not contained in any [y-set of GLIPy,,.
Hence GP,, is not 3y-excellent.

Remark 2.24. There exist graphs in which the max-
imum number of independent elements in the comple-
ment of any Bo-set of G is greater than the maximum
number of independent elements in the complement of
any other [3y-set of G.

Example 2.25.

The (y-sets of G are S1 = {1,2,3,4,5,8,9,10},
S, ={3,4,5,6,7,10,11,12},
Sy = {8,9,10,11,12,13,14,15}. Then V —
Sy = {6,7,11,12,13,14,15}, V — Sy =
{1,2,8,9,13,14,15}, V — S5 = {1,2,3,4,5,6,7}.
The set {11,12,13,14,15} is a f[p-set in V —
S1; {8,9,13,14,15} is a [p-set in V' — Sy and
{2,3,4,5,6,7}is a fp-setin V — S3. Hence S5 satis-
fies the property described in the remark 2.24

Example 2.26.
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The f[p-sets of G are S1 = {1,2,4,6,7},5, =
{1,2,8,6,7}. Clearly G is not 3y - excellent. The
maximum number of independent sets in V' — S7 and
in V. — Sy is one. The sets S5 = {1,2,4} and
Sy = {8, 6, 7} are not By-sets. The maximum number
of independent sets in V' — (S3 U Sy) is one. That is,
there exist two disjoint independent sets of cardinal-
ity 3 each and the maximum number of independent
elements in complement of their union is one.

|S5] 4+ [Sal + Bo(V — (S3US84)) =7 > [S1| +
Bo(V —51) = |S2| + Bo(V — S2) = 6.

Example 2.27.

S
3o~

The (p-set of G is S = {1,2,3,6,7,8}. The

4-element disjoint independent sets are {1,2,3,5},

{4,6,7,8}. Bo(GOPyy,) = 8n. It can be shown that

there is a (p-set of G and a set of maximum number

of elements in the complement, such that independent
set generated contains 7n elements.

Though G is not [pexcellent, GUPs, is
(Boexcellent here. For:
Example 2.28.
1 6
G:
2 A & 7
3 8
Let V(Pzn) = {ul, U, ... ,UQn}. Let A =

{1,2,3,5} and B = {4, 6,7, 8}. Two maximum
independent sets of GL1P,, are

U {(uiﬂl)v(ui72)7(ui73)7(ui75)}

i=1(mod2),1<i<2n

U U {(wj,4), (u;,6), (u;, 7), (u;,8)}

§=0(mod 2),2<j<2n

and
U {(uia4>v(uiv6)7(uiv7)’(uiv8)}

i=1(mod2),1<i<2n
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{(uy, 1), (uj,2), (uj,3), (uz,5)}

j=0(mod 2),2<j<2n
Hence GOP,, is Bp-excellent, but G is not [y-
excellent.

Remark 2.29. Suppose G is a graph in which
V(G) = AU B, where A, B are independent and dis-
joint subsets are V (G). Then GO Py, is [By-excellent.
(or) equivalently if G is bipartite graph, then GUPs),
is Bp-excellent. Hence TU Py, is Bo-excellent, for any
tree T and Co, [Py, is (By-excellent.

Theorem 2.30. Suppose G is of even order in which
V(G)=AUB, AnNB=¢, A,B are independent
and |A| = |B|. Then GO Pay, 41 is fo-excellent.

Proof. The following are Sy-sets of GL Py, 1.

U ry U Q
i=1(mod 2), 1<i<2n+1 j=0(mod 2), 1<5<2n
and
U kU U S,

i=1(mod 2), 1<i<2n+1
where P = {(v,u;) : v € A)},
Q= {(v,u;) :veB)},R={(v,u;) :v e B)}and
S={(v,uj):ve A}

Hence GU Py, 41 is Bp-excellent.

j=0(mod 2), 1<j<2n

Corollary 2.31. If G is bipartite graph with equi-
cardinal bipartition, then GO Py, 11 is [By-excellent.

Corollary 2.32. (1) C,l0Psy, 11 is Bo-excellent. (2)
If T is a tree with equi-cardinal bipartition, then
T Poy 41 is Po-excellent.

Example 2.33.

The graph G is of even order in which V(G) =
AUB, AN B = ¢, A, B are independent and |A| =
|B|, where A = {1,2,3},B = {4,5,6}. Here G is
not p-excellent (since By(G) = 4 and {1,2,3,4} is
the unique Gy-set of G).

Example 2.34. D, ;. is a graph of even order in which
V(G) = AUB, AN B = ¢, A, B are independent
and |A| = |B|, where A, B are respectively the set
of pendents adjacent to each of the two centers. D,.,
is not (y-excellent, since the two centers are (3y-bad
vertices.
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Remark 2.35. Consider the path P, with each ver-
tex of P; as centers, add r-pendent vertices. Let the
resulting graph be denoted by M., . i times. Then
M, . . +OPoy 1 is Bo-excellent, but M, . . is not
Bo-excellent.

Illustration 2.36.

14 15

A = {1,2,3,510,11,12,13}, B =
{4,6,7,8,9,14,15,16} are two disjoint inde-
pendent sets and A U B = V(G). Ms333 is not
Bo-excellent. But M3 3 3 301 Py, 41 is (o-excellent.

Theorem 2.37. GUP, is fg-excellent if
and only if there exists an independent par-
tition ™ = A{V1,Va,...,Vi} of G such that

maxi<; j<kizj 1|Vi UVj|} is attained for pairs
(i, 5) with Uyyov; {3533 = {1,2,. ., k}.

Proof. Any maximum independent subset of GUPs,,
is of the form X; U Xo U --- U X9, where X; =
A x {u;} ifiis odd and X; = B x {u;} if i is even,
A, B being disjoint independent sets of G such that
A U B has maximum cardinality. Suppose G has an
independent partition satisfying the hypothesis. Then
clearly, GL1 P, is (3y- excellent.

Conversely, suppose GUP;, is [fp-excellent.
Then every vertex {u,v},u € V(G) and v € V(Pay,)
belongs to a Gy-set of GLIPs,. The structure of [g-
sets of GL1P,,, imply that there exist disjoint indepen-
dent sets V1, Vo, ..., V} in G whose union is V(G),
satisfying the condition in the theorem.

Corollary 2.38. Let x(G) > 3. Then GOP,,
is [Bg-excellent if there exists a chromatic parti-
tion m = {Vl,VQ,...,VX(G)} of G such that
maxi<; j<vy,i#;j 1|Vi U V;|} is attained for pairs (i, j)
with U\Viuvj\ {i,5} ={1,2,....,x(G)}.

Remark 2.39. The converse of the above corollary is
not true. Consider the graph G.

3
A chromatic partition of G

{{2,4,5},{3,6}, {1}}.

is given by
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Corollary 2.40. If G is a complete r-partite(r >
3)graph with equi-cardinal partite sets, then GUPsy,
is By-excellent.

Remark 2.41. Let G = Ky + K3 + Ks. Then G is
not By-excellent, but GO Py, is By-excellent.

Corollary 2.42. Q, is [p-excellent,since @, =
Q.,—10Ps. Moreover Q1 Py, is also (By-excellent.

Remark 2.43. Let G = K4 + K3 + Ko. Then G and
GUOPsy, are not By-excellent.

Theorem 2.44. There exists a regular graph which is
not By-excellent.

For this graph G, the [y-set is {2,5,6,8,11,13,16}
consisting of 7 vertices. The remaining vertices are
contained in the independent sets {1,3,6,8,12,14},
{1,3,7,9,12,14}, {1,3,7,9,12,15} of cardinality
6 each. Thus this graph is 3-regular but not (-
excellent.

Theorem 2.45. Let G be a bipartite graph with bipar-
tition V1, Va. Then GUC,, is By-excellent.
Proof. Case(i): Let m = 2n. Let V(Cy,) =

{ul, Uy v v vy UQn}.
The maximum independent sets of GL1CY5,, are

U Py U Q

j=0(mod2), 1<j<2n j=0(mod2), 2<j<2n

and U R U U S,
j=0(mod2), 1<j<2n j=0(mod2), 2<j<2n
where P = {(vi,uj) VS Vl)},Q =

{(vi,uj) :v; € Va)}, R = {(vi,uy) 1 v € Vo) }
and S = {(v;,u;):v; € Vi)}. Hence GOC,, is
(Bo-excellent.
Case(ii): Let m =
{Ul, Uy v o vy u2n+1}.
Po(GOCon+1) = n|V(G)].
The following are [Bg-sets of GLICo), 1.

U P U U

j=1(mod 2), 1<5j<2n j=0(mod 2), 2<j<2n

2n + 1. Let V(CQn—l—l) =

Py;
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U Q11U U

j=1(mod 2), 1<j<2n j=0(mod 2), 2<j<2n

U R U U

j=1(mod 2), 2<j<2n+1 j=0(mod 2), 2<j<2n

Q2;
Ry

and

U Sa,

S1U

j=1(mod 2), 2<j<2n+1 j=0(mod 2), 2<j<2n
where P; = {(Ui,uj‘) tU; € Vl)}, Py
{(viu) rvi € Vo), @1 = {(vi,u)) 1 v; € V2)
Q> = {(vi,uj) 1 v; € V1)}, Ry
{(Ui,u]' v; € Vl)}, Ry = {(U,‘,u]') Tv; € VQ)
S1 {(vi,uj) T € Vg)} and Sy
{(vi,u;) : v; € V1)}. Hence GOC,, is Fy-excellent.

B

2

| Eanadl [Eanadl|

l:
):

Theorem 2.46. Let G be a (y-excellent graph. For
any [o-set S of G, let V. — S contain a [By-set of G.
Then GUCy, is By-excellent.

Proof. The proof follows from the fact that for
any fg-set S of G and a fy-set S; of G in V — S,

U PU U @, where

i=1(mod 2), 1<i<2n j=0(mod 2), 1<j<2n
P={(v,u;) :veS)}Q={(v,uj) :veS)}and
U kU U S,
i=1(mod 2), 1<i<2n j=0(mod 2), 1<j<2n
where R = {(v,u;) :v € S},
{(v,uj) : v; € S)} are By-sets of GOC,,.

Theorem 2.47. (i) C9,0C %41 is
excellent. (ii)Co,[dC,, is [(g-excellent.
Cor10Co, 11, n < k is By-excellent.

S =

Bo-
(iii)

Corollary 2.48. The following graphs are [3y-
excellent.

(i) Po, L Pok 1. Result follows from the fact that
GO Py 1 is Po-excellent if G is of even order and
V(G)=AUB,ANB = ¢,|A| = |B| and A, B are
independent.

(it) Po,L1Cok11. (GOC, is Bo-excellent if G is
bipartite with partition V1, Vs.)

(iii) Pop10Cok 4 1.

(since GUC,, is Po-excellent if G is bipartite with
partition V1, Vs.)

(iv) P2, L0Cs.

(since GUC,, is Po-excellent if G is bipartite with
partition V1, V5.)

(v) Pop10C.

(since GUC,, is Bo-excellent if G is bipartite with
partition V1, Vs.)

Definition 2.49. Mycielski Graphs Let G = (V, E)
be a simple graph. The Mycielskian of G is the graph
(@) with vertex set equal to the disjoint union V' U
V' U{u} where V' = {2/ : & € V'} and the edge set
Eu{zy 2y : 2y € E} U{y'u : 3y € V'}. The
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vertex 2’ is called the twin of the vertex and the vertex
u is called the root of u(G).

Theorem 2.50. Let G # Ko be a graph. Then u(G)
is not By-excellent.

Proof. Let V(G) = {uj,ug,...,u,}. Let
V((G)) = {ur,ug,...,up,ul,... ,ul,,v}. Then

E(n(@)) = U {ufuy 1y € No(u). 1< j <) U

{ufv:1<4 gin}. It has been proved that
Bo(i(@)) = max {260(G), [V (G)[}.

Suppose [p(G) < ‘ng)‘. Then {u},ub, ..., ul}
is the only [p-set of 1u(G).

Suppose [Gp(G) > @

Let  qwip, Wig, .-, Uiy be a [y-set of
G.Then{uil,uig,...,uiﬁo,ugl,ugy...,ugﬁo is

a Bo-set of u(G).
u(G). .
Suppose (y(G) = |V(2 A

Clearly v is not in any [y-set of

=", Suppose (p(G) = 1
and |V(G)| = 2. Then G = K> in which case
u(G) = C5 which is y-excellent. Suppose (y(G) >
,uiﬂo} of G,

1. Then for any [p-set {uil,uiQ,...

/ /
uil,uh,...,uiﬁo,u u; , U

T Wiy e e ;50 is a fp-set of
w(G). Also {u), ..., ul} is a fo-set of u(G).
v does not belong to any of these 3y-sets. There-
fore 14(G) is not fp-excellent, when G # K.

Definition 2.51. Let G be a graph. G is said to be

B1-excellent if every edge of G belongs to a (1-set of
G.

Remark 2.52. G is [1-excellent if and only if L(G)
is By-excellent.

3 [y-excellence of Harary graphs

Definition 3.1. Harary graphs H,, ,, with n vertices
and m < n is defined as follows:

Case(i): n is even and m = 2r. Then H,, 2, hasn
vertices 0,1,2,--- .n—1and 1, j are joined if i —r <
7 < @+ r, where the addition is taken under modulo
n.

Case(ii):m is odd and n is even. Let m = 2r + 1.
Then H,, 2,41 is constructed by first drawing H,, o,
and then adding edges joining vertex i to the vertex
i+%,f0r()§i§ %

Case(iii): m and n are odd. Let m = 2r + 1.
Then Hy, 2,41 is constructed by drawing Hy, o, and
then adding edges joining vertex 0 to the vertices %‘1
and "Tfl and vertex i to 1 + "Tﬂ,for 1< < "Tfl
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Theorem 3.2. Let n > 2r.

" T if r+1 divides n-r
BolHarn) = LZ;IJ + 1 ifr+l does not divide n-r

Proof. Let V(Ha,,) = {0,1,2,...,n —1}.
Case(i):

Let » + 1 divides n — r. Consider S =
{i,r+i+1,2r+i+2,...,tr +t+i}, where t =
B 1,

tr+t+i=mn-r)—r—1+i=n—-2r—1+i.
Suppose n—2r—1-+1¢ = i—s (or) i — s+n, according
as i — s > 0 (or) otherwise. Thenn — 2r — 1 =
—s (or)n — s. Thatis 2r + 1 = s + n(or)s. Since
s < r,2r +1 # s. Therefore 2r + 1 = s + n. But
s+mn > 2r+1. Since s > 1,n > 2, a contradiction.
Therefore S is an independent set in Hs,.,,. Therefore
Bo(H2rny) > t+ 1. Suppose S is an independent
set of Ha, ,, of cardinality ¢ + 1,1 > 2.

Let S1 = {ai,a2,...a1}. Letay < as <

ey, < Qg
t+l:§};{—1+lzf;{+1(sincel22).
Let ag = ¢ Then ay > ¢+ r,az > i +

2r . yapy > i+ (E+ 1= D).
i+ (’;’_?1" r.
Let 1 < s < r. agyy is adjacent to a; if and only

e ) ) n—r
1fz—sorz—s+n>z+<r+1)

That is azy; >

r. That is if and only

r—+1
side is negative and s is positive. (or) ¢ — s +n >

i+ (’;:{) r. This implies n — s > (’;:{) T.
n—r=q(r+1)=q(r+1)+r—s>qr.
qgr+q+ (r—s) >qr. Sinces <r,r—s >0,

one has qr + q + (r — s) > qr (since ¢ > 1), which

is true. a;y; is adjacent to a;. Therefore S; is not
independent. So [o(Harn) < t + 1. Therefore

/BO(HQT,TL) =t+1.

if s < — (”_T> r, a contradiction since right hand

Case(ii):
Let » + 1 do not divide n — r. Consider S =
{i,r+14+4,2r+2+4,...,tr +t+i}, where t =

L"”’J.Letn—r:q(r+1)+a,a>O,a<r+1.

r+1
Therefore t = q.

tr+t+i = qr+q+i = q(r+1)+i = n—r—a+i.

Letl <s<r.

If tr +t+ i = i — s(or)i — s + n, according
as i — s > O(or) otherwise , thenn — o — r + 1 =
i—s(or)i—s+n.n—a—r+i=1i—s(or)i—s+n.
n—a—1r = —s(or) —a —r = —s. That implies
r+a—n=s(or)s=r+aie, s < 0ors > r(since
a + r < n), a contradiction. [ 7 + o < n, because
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n=r+q(r+1)+a.If¢ =0, thenn = r+ «a, where
a < r+ 1. Thatis n < 2r, a contradiction. So ¢ > 1.
Therefore n > r+ «.] Thus S is an independent set in
Hy,. . Therefore By(Hay,n,) > t+1. Suppose S is an
independent set of Hy,.,, of cardinality ¢+, > 2. Let
S1 = {al,ag, .. atH} Leta; <az <...< apqq-
thl=q+l= { J+l>” Y

r+1 r+1
Let ag = ¢ Then ay > ¢+ r,az > i +
2, ae > i+ G+ -Dr > i+ (T-I-l

a4 1s adjacent to ap if and only if ¢ — s(or)i — s +n

)r

is greater than ¢ + ) r. That is if and only if —s

+1

-
)

>(n

(or)—s +n > (

But —s

71 ) I 18 not possible, since the

right hand side is positive and left hand side is neg-
ative. Therefore —s + n > ( ) r. Thatisn — s >

r+1
(q+%)r That leads to g(r + 1) + a« + 7 — s >

qr+ ;77 which means q(r +1) +r—s > gqr+ ;75 —
o =qr— ;5. Thatis ¢(r + 1) +r — s > qr [ since
+57 < 11, which is true, since g(r + 1) + 17— s =
qgr +q+1r —s > qgr,asr —s > 0. Therefore
a4 is adjacent to a;. Therefore S; is not an inde-

pendent set. Therefore 5y(Hay,) < t + 1. Therefore
/BO(HQT,TL) =1+ 1.

Theorem 3.3. Consider Ha, 1, where n is even.
Then (i) If 2(r 4+ 1) does not divide n, then

Go(H - o if r+1 divides n-r
OVt U‘;IJ + 1, otherwise
(i))If 2(r + 1) divides n,then
Bo(Har+1,0) = | 257 |-

Proof. We observe the following

(i) Suppose 2(r + 1) divides n. Then r + 1 does
not divide n — r.

Let r + 1 divide n — r. Let n = 2¢(r 4+ 1) and

—r = q1(r+1). Therefore 2¢(r+1) = r+q (r+1).
That is (2¢ — q1)(r + 1) = r, a contradiction. Hence
().

(ii) Suppose 2(r + 1) does not divide n. Then
r + 1 divides n — r if and only if n = 2¢(r + 1) + r,
for some positive integer q.

Letn =2q(r+1)4+a, where 0 < a < 2(r +1).
Thenn —r =2q(r+1)+a—r.

Suppose r+1 divides n—r. Then a—r is divisible
byr+1. Leta—r = k(r+1). Ifk < 0, = r+k(r+
1) implies that o < 0, a contradiction. Hence k£ > 0.
Thus a« = k(r + 1) + 7. Sincea < 2(r + 1), k = 1,
one has & = 2r+1. Therefore n = 2¢(r+1)+2r+1.
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That means that n is odd, a contradiction. Therefore
k = 0. That is, & = r. Therefore n = 2q(r + 1) + 7.
Conversely, if n = 2¢(r + 1) + r, then clearly
n — r is divisible by r + 1.
Case(i):
Subcase (i): Suppose 2(r + 1) does not divide n and
r 4+ 1 divides n — r. Then by observation (ii), n =
2q(r + 1) + r, for some positive integer ¢q. For any
integer 4,7 + 5 is of the form Ir + [ + i if and only if
I[(r 4+ 1) = 5. That is if and only if 2(r+1) divides n ,
a contradiction.
LetS={i,r+1+i2r+2+1,..
where t = {7
tr+t+i=Mm-r)—r—14+i=n-—2r—
1+ Supposen —2r—1+i=i—s(r)t—s+n
according as ¢ — s > 0 (or) otherwise. Then n — 27 —
1 = —s(or)n —s. Thatis 2r +1 = n + s (or) s.
Since s < 7,2r + 1 # s. Therefore 2r + 1 = n + s.
Buts+n > 2r+1,since s > landn > 2r, a
contradiction. Therefore S is an independent set in
Hyy 41 . Therefore By(Hopy1,n) > t+1=
Hs,. p, is a spanning subgraph of Hoy41 4, , We get that
Bo(Har+1,0) < Bo(Harn) = 757
Therefore So(Har41,n) = %
Subcase (ii): 2(r + 1) does not divide n and r + 1
does not divide n — 7.

tr A+t 4},

By observation (ii), n = 2¢(r + 1) + « , where
0 < a < 2(r+ 1) and a # r. Proceeding
as in case (ii) of theorem 3.2, we get that S =
{i,7r+1+4,2r+2+4,...tr +t+1i}, where t =

L"#J is an independent set of Ho, 1 ,. Therefore

r+1
Bo(Hort1m) > LJF J + 1. But fo(Hory1,n) <
Bo(H (2r,n)) { TJ + 1. Therefore By(Hary1,n) =
\j’—&—lJ + L

Case (ii): 2(r + 1) divides n.
By observation (i), 7 + 1 does not divide n — r.
Let (r = = [. Then ¢ is adjacent to i + 5 gives that
1 is adjacent to Ir + [ + 1.
Let S be the set of all elements ¢, + 1 +¢,2r + 2 +
LU=+ +il(r+)+1+4,(+1)(r+
1)+ 141,
Jt(r+1)+1+1i, wheret = LT“J — 1.
Letn—r:q(r—l—l)—i—a,whereo<a<r—|—1.
Therefore t = q¢ — 1.
tr+t+14+i=tlr+1)+141i
=(@-1)(r+1)+1+i
=q(r+1)+i—-r=n—r—a+
i—r=n—2r—a+:.
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Letl <s<r. Ift(r+1)+14i=1i—s(or)
i — s + n (according as ¢ — s > 0 (or) otherwise),
thenn — 2r — a4+t =i — s(or) © — s + n. That is
n—2r—a=—s(or)n—s. Thatisn—2r—a = —s
(o)n—2r—a=n—s.Ifn—2r—a=n-—s,
then s = 2r + «, a contradiction , since s < r. If
n—2r—a=-s,thens=2r+a—-n=2r+a —
g(r+1) —a—r. Thatiss = r —q(r+1) < 0,
a contradiction. Therefore S is an independent set in
H2r+1,n- Therefore ﬁO(HQT‘+1,n) > L?;{J .

LetS; ={i,r+1+4+4,2r+2+1i,...,
(-D(r+1)+il(r+1)+1+4,(0+1)(r+1)+
1+4,...,t(r+1)+1+1i}, where t = U‘:{J Let
n—r=qr+1)+a0<a<r+1 Letl <
s<r.Thent=gq Ift(r+1)+1+i=17—s(or)
1 — s + n (according as ¢ — s > 0 (or) otherwise.).
Then ¢(r + 1)+ 1+ i =i — s (or)i — s + n. That
isqgir+1)+1=—s(or)n—s. Ifqglr+1)+1=
—s, then a contradiction , since L.H.S is positive. If
gr+1)+1=n—sthenn—r—a+1=n-—s.
Thatis s = r + o — 1. But s < r. Therefore o < 1.
But a > 0. Therefore @ = 1.

Therefore, n—r = q(r+1)+1=1¢(r+1)+1.In
this case , t(r+ 1)+ 141 is adjacent with ¢. Therefore
S1 is not independent.

Therefore 5o(Har+1,n) < ULH J
Therefore 3o (Har+1.n) = U:{ J .

Observation 3.4.

(i) 2(r + 1) can not divide both n + 1,n — 1.

This is because in such a case 2(r + 1) divides 2,
a contradiction, since 2(r + 1) > 4.

(i) If 2(r + 1) divides n — 1, then r + 1 does not
divide n — 7.

This is because if r+ 1 divides n—7r, thenn—1r =
a(r+1). n = a(r+1)+r. Letn—1 = 2(r+1)l. Then
2(r+1)l41 = a(r+1)+r. 2(r+1)l = a(r+1)+r—1,
a contradiction.

(iii) Suppose 2(r + 1) divides n — 1. Let r + 1 do
not divide n — r. Then ¢(r + 1) + 1 < n — r, where

==

Since 7 + 1 does not divide n —r , t(r+ 1) +1 <
n —r.Suppose t(r +1)+1=n—7r. Letn—1 =
2q(r+1). Therefore t(r+1)+r =n—1 = 2q(r+1).
Thus r + 1 divides r, a contradiction.

(iv) Suppose 2(r + 1) divides n + 1. Then r + 1
divides n — 7.

Letn+1 = 2¢q(r+1). Therefore n —r = 2¢q(r +
1)—r—1=(r+1)(2¢—1). Therefore r + 1 divides
n—r.
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Theorem 3.5. Consider Hoy 1, where n is odd.
(i) 2(r + 1) does not divide n— 1 as well as n+ 1.
Then
/80 (H2r+1,n) -
o if r+1 divides n-r
LTHJ + 1, otherwise
(ii) 2(r + 1) divides n — 1 but not n + 1.

50(H2r+1,n) — LT+1J + 1.
(iii) 2(r + 1) divides n + 1 but not n — 1.
Then ﬁO(HQTJan) = BT

n—r
r41°
Proof. Case (i):

2(r 4+ 1) does not divide n — 1 as well as n + 1.

Let0<:i<n-—1
LetS ={i,r+1+¢2(r+1)+4,....t(r+1)+i}.

I(r+1)+i=i+ 2, (i > 0). This implies
r + 1 divides "H , a contradiction.

I(r+1) —|— 0 = 0+ 25 This implies r + 1
divides %1, a contradiction. I(r + 1) + 4 is adjacent
tom(r+1)+4,if [(r+1)+i+ (241) = m(r+1)+i.
This implies (m—1)(r+1) = L. This implies r+1
divides ”;1 , a contradiction.

Subcase(i): Let » + 1 divide n — r.
2 -1

tr+1)+i=n—r—r—1+i=n—2r—1-+1.

Suppose t(r + 1) +i=1i—s(or)i—s+mn, (1l <
s < n) according as i — s > 0 (or) otherwise. Then
n—2r—1+i=1i—s(or)i—s+n. Thatisn—2r—1 =
—s(or)n—s. Since n > 2r+1,n—(2r+1) is positive
and —s is negative. Therefore n — 2r —1 = —sis not
possible. n —2r —1 =n—1givess =2r+ 1,1 <
s < n, a contradiction. Therefore [S| =7+ 1= 7.
Therefore Go(Hopt1n) > 2 r+1 Hy, p, is a spanning
subgraph of Hoy 11 .

Bo(Hart1,n) < Bo(Harm) < 757
60(H2r+1,n) = :};I

Subcase(ii):

Letr 4+ 1 donotdivide n — r. Lett = UL:{J .

Proceeding as in case (ii) of theorem 3.3,

we get that (o (Hap1,0) = | 255 | + 1.
Hs,. , is a spanning subgraph of Ha, 1 . There-

fore Bo(Har+1n) < Bo(Harn) = UL;IJ + 1. There-

fore Bo(Har1,n) = LTHJ + 1.
Case (ii):

2(r +1) divides n — 1 but not n + 1. By observa-
tion(ii), r + 1 does not divide n —r and t(r + 1) +1 <
| Leto<i<n-1.

Lett =

Therefore

_ n—r
n — r, where t = LT“
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and let S =
,t(r+1)+i}, where

Let 4 > 0
{i,7+1+12(r+1)+1,

t= Lr—&-fJ

I(r+1)+i =i+ 2L Thisimplies r + 1 divides

, a contradiction.

I(r 4+ 1) +1is adjacent to m(r + 1) + 4, if {(r +

D +i+ (") =
m(r+1)+i. This implies (m—1)(r+1) = . This

implies r+1 divides ”;1 , a contradiction. Proceeding

as in Case(u) we get that S is an independent set of

| 1

Thus 50(H2r+1,n) > LHJ + 1.
Hs,. p, is a spanning subgraph of Ho41 .

Therefore fo(Hari1,) < Bo(Harn) = | %%

1. Therefore Go(Hart1.n) = L’HJ + 1.
Case(iii):

2(r + 1) divides n + 1 but not n — 1. Then r + 1
divides n — r. 0 is adjacent to ”; and ”H. Let
L= (7'+1) 0 is adjacent to ll(r+1) and l1(7’+1)

Let Sp be the set of all elements 0,7 + 1,...,
L= +1),Lhr+1)+1,...,t(r+1)+1.
Ifa(r+1) =b(r+1)+ 2 where a,b < (I; —
(a—0b)(r+1) = 2L This 1mp11es a—b= 5"
{1, a contradiction.

Ifa(r +1) + 2 = b(r + 1) +1wherea <
l1 —1,b > Iy, then (b —a)(r+1) = 2. Thatis
r + 1 divides "5, a contradiction.

2
fa(r+1)+1=b(r+1)+1+ 22, where

n+1
2

n+1
2

cardinality

_l’_

—_

+1
2(r+1)

1).

CL,b > ll and a > b, then a — b = 28111) = ll.
Therefore a = b+ 1y > Iy +11 = 2l; = (Zill)'

Therefore a(r +1) > n+ 1.Thatis t(r +1) > a(r +
1) > n + 1. Therefore t > . a contradiction,

r+1
since t = 7 +1 — 1. Therefore Si) is iln independent set
of cardinality t +1 = 7 +1

Let ¢ # 0. ¢ is adjacent to ’%rl + 4.

Letl; = 2(’;71211) Therefore i is adjacent to 1 (r +
1) +i.

Let S; = {i,i+r+ 1,3+ 2(r+1),...
Dr+1)+ibLr+1)+1+4,...,
t(r+1)+1+7i}.

Ifa(r+1)+i=>b(r+1)+i+ " wherea,b <
i —1,thena—b)(r+1) =21 qa—b = (T;fl)
a contradiction.

Ifa(r+1)+i+ " =b(r+1) + 1 + 4, where
a <ly—1,b > I, then (b —a)(r+1) = %,a
contradiction.

Ifa(r+1)+1+4=b(r+1)+1+ = +i where

7(ll -

=1,
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a,b >l and a > b,then (a — b)(r +
b= n+1
2(r+1)

Thereforea =11 +b> 11 + 11 =21 = %and
a(r +1) > n+ 1. Thatis t(r +1) > a(r +1) >

n -+ 1, which implies ¢ > "TJrll, a contradiction, since

1) = 2. This

implies a — =1.

t=7 +1 — 1. So S; is independent set of cardinality
t+1= T+1 Therefore Bo(Har41,n) > ﬁ’{

Hyj, ,, is a spanning subgraph of Ha, 1 .
Therefore Bo(Har+1,n) < Bo(Harpn) = 25

r+1
Therefore Bo(Hart+1,n) = 2

r+1°

Theorem 3.6. Consider Ho, 1 .5,, where n is odd. Let
2(r + 1) divide (n — 1) but notn+ 1. Ift(r +1) +
2>n—r wheret = then Hoy 1y, is not (3y-
excellent.

Proof 2(r +1) dividesn — 1 butnotn + 1. Let [} =
0 is adjacent to {1 (r 4+ 1). Also 0 is adjacent to

r+1’

(r+1
Li(r+1)+1sincely(r+1)+1 =21 +1 = 2L et
S1 be the set of all elements 0,7+ 1,...,(l1 —1)(r+
D, 0(r+1)=2,(1+1)(r+1)+2,...,t(r+1)+2.

If t(r+1)+2 < n—r, then S is an independent
J + 1. Suppose t(r +1)+2 =
n—r. Then S is not 1ndependent. Let S5 be the set of
all elements 0,7 +1,. .., (l1 —D(r4+1),54(r+1)+

2,(h+1)(r+1)+2,...,(t—1)(r+ 1)+ 2be an
independent set. Therefore |So| =t = L" +1J < Bo.

Let S| be the set of all elements 0, —(r +
1),-2yr+1),...,—(lh = D(r +1),=l1i(r +1) —
2,...,

—tr+1)—2. Ift(r+1)+2 < n—r, then
—t(r + 1) — 2 > r. Therefore —t(r + 1) — 2 is not
adjacent to 0. Therefore S is an independent set of

set of cardinality

cardinality | 255 | +1 = fh.
Suppose t(r + 1) + 2 = n — r. Then S} is not
independent.

Also S be the set of all elements
0,—(r+1),=2(r+1),...,—(lL=1)(r+1), =l (r+
1)—-2,...,
—(t=1)(r+1)—
n—r
r+1
set.

2 is an independent set of cardinality

J < [p. Therefore 0 does not belong to any (-

Ilustration 3.7. Consider Hs 7. r = 2,n = 7,2(r +
1) = 6 does not divide n + 1 = 8, but 6 divides
n—1=7—-1=6.

t= LHJ =160 = Lr+1J +1= L*J =2

So = {0} is @ maximal independent set contain-
ing 0 and there is no (3y-set containing 0.

S1 ={1,4},5 = {2,5},53 = {3,6} are the
Bo-sets of Hs 7.
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Remark 3.8. Hs, ,, is Bo-excellent. Hay 1, is not
Bo-excellent if and only if n is odd and 2(r+1) divides
n— 1.

4 JUST [3)- EXCELLENT GRAPHS

N. Sridharan and M. Yamuna [10] initiated the study
of just excellence in graphs with respect to the dom-
ination parameter. A graph G is just v excellent if
every vertex is contained in a unique minimum dom-
inating set. In this section, just (3y- excellent graphs
are defined and studied.

4.1 Introduction

Partition of V' (G) into independent sets is the same as
proper coloring of the graph. A chromatic partition is
a partition of the vertex set into minimum number of
independent sets. Such a partition may not contain a
maximum independent set. For example, a double star
contains a unique chromatic partition of cardinality
two in which both the independent sets are not maxi-
mum. The question that naturally arises is that ”‘Does
there exist a graph in which the vertex set can be parti-
tioned into maximum independent sets ?”’. This leads
to the concept of just 3y- excellent graphs. It is shown
in this chapter that a graph of order n is just Jy- excel-
lent if and only if §o(G) divides n, G has exactly 5
distict 3y sets and the maximum cardinality of a parti-
tion of V(G) into independent sets is 5. This section
is devoted to the definition and properties of just G-
excellent graphs, just 3y excellence in product graphs,
just By excellence in Generalized Petersen graphs and
just Bp excellence in Harary graphs.

4.2 Definitions and Properties of just (3,- ex-
cellent graphs

Definition 4.1. A graph G is said to be just [o-
excellent graph if for each uw € V, there exists a
unique y-set of G containing u.

Examples of just 5y-excellent graphs
1 Con 2) Ky 3) Knp (B PR, if
mn = 0(mod2).

Examples of not just Fy-excellent graphs

(1) Cont1 (2) K1, 3)P, (4) The subdivision
graph of K, (5) Petersen graph (6) W,,, n > 5 (7)
D,  (8) G o Kj, for any connected graph G.

) Fn = P+ K.

Properties of just 5y-excellent graphs
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1. Every just [g-excellent graph is a (p-excellent
graph.

2. If G is justfy-excellent and G # K, then there is
no vertex u such that < V' — N[u] > contains at least
two maximum independent sets.
Proof. Since G is just Fy-excellent, given u € V(G),
there exists a unique (p-set S of G containing u. Sup-
pose V' — NJu] contains at least two maximum inde-
pendent sets. G # K.

Therefore 5p(G) > 2 and Go(< V — N[u] >)
1. S — {u} is an independent set of < V' — N|[u]
and hence Go(< V — N[u| >) > 5o(G) — 1.
If Bo(< V — N[u] >) = [(o(G), then any [y-set of
< V' —NJu] > together with u is an independent set of
G of cardinality By(G)+1, a contradiction. Let 77, T
be two maximum independent sets of V' — N[u]. Then
Ty U{u} and ToU{u} are maximum independent sets
of GG, a contradiction.

2
>

3. Let G be just Bp-excellent. Then there exists a
unique partition of V(G) into [y-sets of G.

Proof. Let u € V(G). Let S; be the unique (Gy-set of
G containing u.

If V—S1 = ¢, then there is nothing to prove. Oth-
erwise consider a vertex v € V — S;. v is contained
in a unique Fy-set say Ss of G. 51 NSy = ¢, since G
is just Gp-excellent. If V' — (51 U S2) = ¢, the pro-
cess stops. Otherwise there exists w € V' — (51U S2).
There exists a unique Jy-set say S5 of GG containing w.
Clearly S; N S; = ¢,1 # j, 1 < 4,5 < 3. Proceeding
like this, we get a partition of V' (G) into y-sets of G.

4. 5y(G) is a factor of n.

Proof. From the previous property, n = mfy(G),
where m is the cardinality of the partition of V(G)
into (3y-sets.

5. Let G be a just yp-excellent graph. Let |V (G)| =
n. Then n = x(G)Bo(G).

From property 4, n = dfy(G). Also ﬂo?G) <
X(G) and hence d < x(G). Clearly x(G) < d. Hence
X(G) =d.

6. 1In a just fp-excellent graph G, |V(G)| =
Bo(G).x(G). The converse is not true.

Consider Pﬁ. BQ(P(;) = 3, X(P(,) = 2. |V(P6)’ =
6 = Bo(Ps).x(Fs). But Py is not a just Fy-excellent
graph.

7.6(G) > #G) — 1.

Proof. Let II = {S},S59,...,S5,,} be a (y-set par-
tition of V(G). Let u € S;. Then w is adjacent to
at least one vertex in each S;, j # 4. Therefore
deg(u) > m — 1. Therefore §(G) > m — 1 =
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% -1
8. %
9. If GG has two or more disjoint p-sets, then G has
no isolates.

Proof. Suppose G has two or more disjoint Fy-sets.
Let 51,59, ..., 5 be the disjoint 3y-sets. Thent > 2.
Suppose G has an isolate, say u. Let u € S7. Then
SaoU{u} is an independent set of cardinality 5y(G)+1,
a contradiction. (or) [ Equivalently, any isolate vertex
is contained in every Jy-set and hence if there are iso-
lates, there can not be two or more disjoint Gy-sets.]
Thus, if G is just Gg-excellent and G has an isolate,
then G = K,, and conversely.

10. Let G be a just Fg-excellent graph. If G # Ko
and G # K, then §(G) > 2.

Proof. Since G # K, and since G is a just -
excellent graph, 6(G) > 1.

Suppose u is a pendent vertex of G. Let N (u) =
{v}. Since G is just [p-excellent, there exists a [Fp-
set of D containing v. Therefore v € D and u ¢ D.
Suppose (p(G) = 1. Then G is a complete graph.
Since G # Ky and 6(G) > 1, G = K,, n > 3.
Therefore §(G) > 2. Therefore u is not a pendent
vertex, a contradiction. Suppose Gp(G) > 2. Then
|D| > 2. Therefore there exist w € D, w # v. Let
Dy = (D — {v}) U {u}. Then D; ia a Bp-set of G
and w is contained in two (3p-sets of G namely D and
D, a contradiction. Therefore 6(G) > 2.

= 1if and only if G = K,,.

Remark 4.2. Any even cycle G is a just By-excellent
graph with 6(G) = 2. Any tree is not a just (-
excellent graph.

11. A graph G has exactly two disjoint Fy-sets whose
union is V' (G) say Vi, V4 if and only if for every non
empty proper subset A of V; or Va, |[N(A)| > |A].
Proof. Suppose G has exactly two disjoint (3y-sets
whose union is V(G) say Vi, Va. Let A C Vj. Sup-
pose |[N(A)| < |A|. Let C = Vo — N(A). If
C = ¢, then N(A) = V,. Thus |[A] > |[N(4)| =
[Va] = Bo(G). But A C V4, a contradiction. Thus
C # ¢. AU C is an independent set of G and
AUC] = |A+]C] = | A[+6o(G)—IN(4)] > fo(G),
a contradiction, since G has exactly two disjoint (3p-
sets whose union is V' (G). Therefore, |[N(A)| > |A].
Conversely, let there be two disjoint (Fp-sets whose
union is V(G) say Vi, V5 and for any proper subset
Aof Vi or Vo, IN(A)| > |A|.

Let W be a fp-set of G. W # Vi, and W # V5.
Let WnNV, = W, WnNVy = Wy, Then Wy #
¢, Wo 75 @. ’N(Wl)’ > |W1‘ N(Wl) NWy = ¢.
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(For: if x € N(Wy) N Wy, then x € N(W;) and
x € Wy, That is z is adjacent to every vertex in Wy
and z € Ws. But W7 U Wy = W is an independent
set, a contradiction.) |Wy |+ |Ws| = (o (G). Therefore
‘N(Wl)‘ + ‘WQ‘ > ,Bo(G) That is ’VQ’ > ﬁQ(G), a
contradiction. Hence the theorem.

Corollary 4.3. A graph G has exactly two disjoint By-
sets whose union is V(G) if G is of even order and
contains a spanning cycle ui, us, ..., us, such that
whenever u;, u; are adjacent, then i, j are of opposite
parity.

Proof. Suppose G is of even order and contains a
spanning cycle uj,us,...,us, such that whenever
u;,u; are adjacent, then 4, j are of opposite parity.
Then {u1,us,...,uon—1}, {u2,uq,...,uz,} are the
only [3p-sets of G whose union is V' (G). The converse
is not true.

(i) Consider G.
1 }\2 N

. G:

G: 11 u Z

10 U
9 5 4 6 81012
8 6

There are exactly two disjoint [gy-sets

{1,3,5,7,9,11,u'} ,{2,4,6,8,10,12,u}
whose union is V/(G). G has no spanning
cycle. For:  consider S = {4,8,5,11}.
w(G — S) = 5 and the five components are
{u},{u'},{9,10},4{6,7},{1,2,3,12}.

(If G has spanning cycle, then for any S C
V(G),w(G = 5) <5])

(ii)) Consider Cyy, (n > 6). Let
V(Ca) = A{ui,uz,...,uzp}. Add two more
vertices u, u’. Join uw with ws9p,_1,us,_3 and
u' with uop,_4,u2,_6. Let G be the resulting

graph. Let S = {ugn_1,U2n—3, U2n—4, U2n—6}-
The components of G - S are
{u}, {u'} {ugn—2} , {uon—s} , {uan,1,..., ugn_7}.

Therefore w(G — S) > |S]. There-
fore G can not contain a spanning cy-
cle. But G has exactly two (p-sets namely

{1,3,5,...,(2n —1),u'} ,{2,4,...,2n,u}.

12. Let G have two disjoint Gy-sets Vi, Vo whose
union is V(G). Then

(a) G has no isolates.

(b) N(V1) = Vo and N (V) = V4.
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(OIf G # Ko, then 6(G) > 2.

Proof. (a) Suppose G has an isolate say u. Letu € V.
Then V5 U {u} is an independent set of cardinality
Bo(G) + 1, a contradiction. Therefore G has no iso-
lates.

(b) Suppose N(Vy) C Va. Letv € Vo — N (V7).
Then v is an isolate of (G, a contradiction. Therefore
N (V1) = Va. Similarly, N (V2) = V7.

(c) Let w € V1. (Similar proof holds if v € V5).
If [V1] = 1, then G = K, a contradiction. There-
fore [V1| > 1. Let A = {u}. Since |[N(A)| > |A4|,
IN(A)| > 2. Therefore deg(u) > 2. Therefore
(G) > 2.

13. Let G have exactly two disjoint Fp-sets V1 (G) and
V2(G) whose union is V' (G). Then G is connected.
Proof. Suppose G is disconnected. Let G; be a com-
ponent of G and
Gy =< V(G) — V(Gl) >. Let V1 N V(G1> = A,
VQﬂV(Gl) =D, VlﬁV(GQ) = (C'and VQﬂV(GQ) =
B.
Since ¢ # A C Vi. Then |[N(A)| > |A|, (using
property 11). N(A) C D. Therefore Vo —N(A) D B
(since BU D = V3). Therefore |Vo — N(A)| > |B|.
[Val = [N(A)] + [V — N(A)] and hence fo(G) >
|A|+|B]|. Similarly, |V1| = By > |C|+|D|. Therefore
|A|+B|+|C|+|D] < 260(G). But [Vi| = |4]+|C].
[Va| = |BI+ D|. [Vi| +|Va| = |A|+|B| +[C| + D
Then 260(G) = |A| + |B| + |C| + | D|, a contra-
diction. Therefore G is connected.

14. Every just (y-excellent graph G # K, is con-
nected.

Proof. Suppose G is not connected. Since G # K,
one of the connected components of GG, say (g1, has at
least two vertices.

Claim: G is a just Fg-excellent graph.

Let u € V(G1). Then there exists a unique (y-set
say S of G containing u. Let S; = SN V(G1). Then
S is an independent set of G; containing u. Suppose
Sy is not a fy-set of G1. Then |S1| < Bp(G1). Let
So = SN V(G — Gl) Then S = S; U Sy and S
and S5 are disjoint. Therefore 5y(G) = |S| = |S1| +
|SQ‘ < ﬁo(G1) +,30(< G -Gy >). But ﬂo(G) =
Bo(G1)+6o(< G—G1 >), acontradiction. Therefore
S1is a Bg-set of G. G is [By-excellent graph.

Let u € V(G1). Suppose A and B are [3y-sets of Gy
containing u. Let C be any Gyp-set of < G — Gy >.
Then AU C, B U C are 3y-sets of G containing u, a
contradiction, since G is just Fp-excellent. Therefore
(71 is just Bp-excellent. Since (G is connected and of
order > 2, there are at least two (p-sets in GG;. Let
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A1, By be two Fg-sets of G1. Let C be a (y-set of
< G—G1 >. Then CU A1, C'U By are two (3p-sets of
G containing C which is non empty, a contradiction.
Therefore G is connected.

15. Let GG be a just [y-excellent graph.

Let u € V(G). Let S be the unique [Fp-set of
G containing u. Then < pn[u, S] > is complete and
[pnfu, S1| < X(G).
Proof. Let z, y € pn(u, S). Then u is adjacent to z, y.
Also x,y are not adjacent to any vertex of S — {u}.
If =,y are not adjacent, then (S — {u}) U {z,y} is
an independent set of G of cardinality 5o(G) + 1, a
contradiction. Therefore Nu| is complete. Since G
is just Jp-excellent, there exist at least | N[u]| Bp-sets
in G. Therefore pn[u, S] < number of [y-sets of G =
X(G).
16. There are graphs for which pnju, S| = x(G).

Consider K4 44. Let V(K44.4) be the set of all
elements w1, ug,us, ugq, V1, Vs, V3, Vg, Wi, W, W3, W4
where {uy,ug,ug, uq}, {v1, v2,v3,v4},
{wy, we, w3, ws} are [p-sets. Remove the edges
V1u2, V1U3, V14, W1U2, W1UZ, W1U4.

Let G be the resulting graph. G
is just [p-excellent having the three [Jg-
sets, {u1, ug, us, ug} , {v1,ve,v3, 04}, and
{wl,wg,wg,w4}. Let S = {ul,UQ,U3,U4}.
pnlu, S] = {ui,v1,wi}. Then |pnfu,S]| = 3 =

X(G).

17. Let G be a bipartite just Gp-excellent graph and
G # Ks. Letu € V(G). Let S be the unique [y-set
of G containing u. Then pnlu, S| = {u}.

Proof. Since G is bipartite, x(G) = 2. Since G is just
Bo-excellent, number of Fy-sets of G = x(G) = 2. If
for any u € V(G), pn[u, S] D {u}, then there exists
u € pnlu, S],v # w. Also, if V1, V3 is the bipartition
and if w € Vi, then (Vi —{u}) U {v} is a [p-set,
contradicting the fact that there are exactly two (-
sets. Therefore pnfu, S| = {u}.

Remark 4.4. |pn[u, S| =1 <2 = x(G).
Example: 1

Gy :

4 3

(71 is y-excellent but not Fy-excellent.

Example :2

Issue 2, Volume 10, February 2011



WSEAS TRANSACTIONS on MATHEMATICS

Goy:

5 6 7
G is neither «y nor [Fy-excellent.

Example:3

Gs:

4 5 6
(3 is Pp-excellent but not y-excellent.

Example:4

Gs:

G5 is just [Bp-excellent but not ~y-just excellent.

Example:5

Gg :

] 7

G is neither just y-excellent nor Fy-excellent.

Example:6 Cy is just y-excellent but not just Fp-
excellent. Cy is By-excellent.

Example:7 K, is both just y-excellent and just (-
excellent.

Remark 4.5. Q, is just [o-excellent (By(Qn) =
2"=1 each vertex is n-regular and x(Qy,) = 2).

Theorem 4.6. A graph G is just (By-excellent if and
only if

(i) Bo(G) divides n.

(ii) G has exactly % distinct (3y-sets.

(iii) The maximum cardinality of a partition of
V(G) into independent sets is %
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Proof. Let G be a just [y-excellent. Let
51,99, ..., 5, be the collection of distinct 3y-sets of
G. Since G is just Fg-excellent, these sets are pairwise
disjoint and their union is V' (G). Therefore (i),(ii) and
(ii1) follows.

Conversely, let G be a graph satisfying the condi-
tions (i), (ii) and (iii). Let n = my(G). By condition
(iii), there exist independent sets Vi, V5, ..., V,,, such
that they are pairwise disjoint and V1 UVaU. ..UV, =
V.

m
Therefore n = > |Vi| < mfBy(G). Since n =
i=1

mBo(G), each V; is a maximum independent sets of
G. Therefore V =V, U Vo U ... UV, and V;’s are
pairwise disjoint 3y-sets. Therefore G is Fp-excellent.
Since G has exactly % (= m) distinct (3y-sets,
Vi,Va, ...,V are the only (yp-sets of G. Therefore
G is just Bg-excellent.

Observation 4.7. Let G be a just By-excellent graph.
Then A(G) < (x(G) — 1)(G).
Proof. Let u € V(G). Let deg(u) > (x(G) —
1)5o(G). w is not adjacent to at least 5y(G) — 1 ver-
tices. degg(u) + degg(u) =n — 1.
Therefore n — 1 > (x(G) — 1)Bo(G) + Bo(G) —
1 =x(G)Bo(G) —1 =n — 1, a contradiction.
Therefore degg(u) < (x(G) — 1)Bo(G). There-
fore A(G) < (X(G) — 1)Bo(G).

Remark 4.8. The upper bound is reached in G =
Ky no,..n,, Where ny = na,... = n, = n(
X(G) = r,Bo(G) = n,deg(u) = (r — 1)n) =
(X(G) = 1)fo(G).
Theorem 4.9. Let G, H be just (y-excellent graphs
and G # K, H # K,,.

Then (i) G U H is not just By-excellent.

(ii) G + H is just [g-excellent if and only if
Bo(G) = Bo(H). .
Proof. (i) Since G # K,,, H # K, G has at least two
Bo-sets and H has at least two y-sets. Letu € V(G).
Then there exists a unique Gp-set S in G containing .
Let 17,5 be two Gy- sets of H. Then S U T7, S U T5
are two (Jp-sets of G U H containing u. Therefore
G U H is not just $p-excellent.
(ii) Suppose GG + H is just Bg-excellent. Then G + H
is fp-excellent. Therefore 5y (G) = Go(H).
Conversely, let 5o(G) = Bo(H). Any [Bo-set of G+ H
is either a [y-set of GG or a (y-set of H. Since G, H
are just Jg-excellent, we get that G + H is just [g-
excellent.

Theorem 4.10. Let G be a just [o-excellent and let
G # K, and G be not a bipartite graph. Then
Bo(G) < 5, wheren = |V (G)|.
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Proof. Since G is not bipartite and G is just [g-
excellent, there are at least three (y-sets. Therefore

Fotay 23 = Ho(G) < 5.

Remark 4.11. K, , . is a just Bo-excellent graph in
which 3o(G) = 3.

Theorem 4.12. Every graph is an induced subgraph
of a just By-excellent graph.

Proof. Let G be a graph. Let Si1, 572, ..
disjoint Gy-sets of G.

(ki > 1. Let Gy = G- (S;1USp2U... U
Sik,). Let Sa1,S29, ..., Sok, be disjoint Fy-sets of
(71. Proceeding in this manner, we get a partition 7 of
V(@) into independent sets such that the first set of k;
independent sets are [p-sets of G. Add new vertices
such that each partite set in 7 have cardinality 5o (G)+
1. Make the new vertices adjacent to all the vertices
in the partite sets of 7 other than that in which they
lie. It is easy to see that the resulting graph is just
Bo-excellent with independence number 5 (G) + 1.

Addition of vertices to G such that each partite
set in 7 has cardinality 5y(G) may not give a just Gp-
excellent graph.

. Slk’1 be

Example 4.13.
Uy U9 . ue
G :
Ugq us
Bg-sets of G are {u1,us,us},
{U27U47U6},{U17U37u6}-
Here 7 = {{ui,us,us},{ue,uq,us}} and

UserS = V(G). If we add no vertex, we get G it-
self which is Gyp-excellent but not just Fp-excellent.

Definition 4.14. Let G be any graph. Suppose G is
not just Bo-excellent. Let H be a just Py-excellent
graph of minimum order containing G as an induced
subgraph. Then |V (H)| — |V(QG)| is called just [o-
excellent embedding index of G and is denoted by
emg, (G).

Remark 4.15. emg,(G) < t(6o+1) —n.

Definition 4.16. Let G be a graph. Suppose G is not
Jjust Bo-excellent graph. Let H be a just By-excellent
graph of minimum independence number containing
G as an induced subgraph. Then |By(H)| — |5o(G)|
is called just By-excellent embedding independent in-
dex of G and is denoted by emig,(G).
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Remark 4.17. (1) Since G is an induced subgraph of

H, 5y(G) < Bo(H).
(2) 0 < emig,(G) < 1.
(3) There are graphs in which emig,(G) = 0.

Example 4.18.

Bo(H1) = 4, Bo(H2) = 3. G is an induced sub-
graph of both H, and Hy . H» is a graph with min-
imum independence number containing G as an in-
duced subgraph. Thus emig,(G) = 0.

Remark 4.19. If G is not By- excellent and G has a
unique [y-set, then emig,(G) = 0.

Remark 4.20. If G is just Gy-excellent, then H = G
and hence emig,(G) = emg,(G) = 0.

Remark 4.21. Let G be a non just By-excellent graph.
G is said to belong to emi-C\ class if emig,(G) = 0
and emi-Cy class if emig (G) = 1.

Example 4.22. (1) K1 ,, belongs to emi-C1 class.
(2) Cap11 belongs to emi-Cs class .

Open Problem:
Characterize emi-C1 class and emi-Co class.

Remark 4.23. Consider D, . It has a unique (o-set.
Any chromatic partition consists of two sets. If we
consider a chromatic partition and add new vertices
and edges as in the theorem, then we may not get a
Jjust By-excellent graph.

Example 4.24.
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1 6
G 7

2 4 5

3

Bo(H) = 7 and {1,2,3,6,7,8,9} is the unique
Bo-set of H. Then H is not even (3y-excellent. Hence
the partition of V(G) into independent sets is to be
done in the manner described in the theorem.

Remark 4.25. Let m be the partition of V(G) as in
the theorem. Then the number of new vertices added
is [71(G0(G) + 1) — .

Proof. Let 7 = {Vi,Vo,..., Vk,...,Vi}, where
Vi, Va, ...,V are [p-sets (k > 1) of G and the re-
maining sets are independent having cardinality <

Bo(G). The number of vertices added to G = k +
t

> (Bo(G)+1-Vi|) = k+(t—k)(Bo+1) —(n—
i=k+1

kBo) =tBo+t—n=1t(B+1) —n.

Illustration 4.26.

The (y-sets of C5 are {1, 3}, {1,4},{2,4}.{2,5}.
Hence C5 is not [y-excellent. But for H, the (yp-sets
are {1,3,7}, {2,4,8} and {5,6,9}. H is just G-
excellent graph; (y(C5) = 2, fo(H) = 3 and the
number of new vertices added is 4.

4.3 Just 5, excellence in Product graphs

Theorem 4.27. Let H be a graph. If n = x(H), then
K,OH is just fy-excellent and if n > x(H), then
K,OH is not just By-excellent.

Proof follows from the theorem 2.19.
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Observation 4.28. Let H be a graph. K,[0H is just
Bo-excellent if and only if H is just By-excellent.

Theorem 4.29. If every vertex of H belongs to an
union of disjoint independent sets of H of maximum
cardinality, then K,[H is not just 3y-excellent

Proof. Suppose every vertex of H belongs to an union
of disjoint independent sets of H of maximum cardi-
nality. Then by theorem 2.22, K,,l]1H is [Jy-excellent.

Suppose {S1,852,...,5,} and
{X1,X2,...,X,} are collections of disjoint in-
dependent sets of H with union having maximum
cardinality. If S; N X; # ¢, for some 4, j, then as seen
in theorem 2.22, any element of S; N X is contained
in two maximum independent sets and hence K,[1H
is not just [p-excellent. Suppose S; N X; = ¢, for
every ¢, j.

Claim: For some order of {S1,95%,...,5,}, |Si| =
‘Xi’, 1 § 7 S n.
Let >0 |Si] = t. Then > ,|X;| = t

Suppose |S;] < |X;|. Then [Si| + |Sa] + ... +
[Si—1| + [Sit1] + ... + |Su]l > [ Xu| + | Xo| +
coo + | Xz + | Xiga] + ... + | Xn|. Therefore
| X + S0+ ...+ [Siz1| + |Siga] + - +1Sn] > ¢
Since S; N X; = ¢, we have disjoint independent
sets of H, X;,51,59,...,8-1,Si+1, . . . Sp, such that
| X+ S+ A+ [Sica |+ [Siga] +. ..+ [Sn| > t,a
contradiction. Similarly, if |S;| > |X;|, we get a con-
tradiction. Therefore |.S;| = |X;|,1 < i < n. Letv €
S1. Then as seen in theorem 2.22, S1,59,...,S5, as
well as Sp, Xo,..., X, give rise to fFy-set of K,,(JH
and (u;,v) belongs to at least two [p-sets of K,,[JH.
Therefore K,,[1H is not just Gp-excellent.

Theorem 4.30. Let GG be a bipartite graph. GOCo,,
is just Po-excellent and GUCom41 is not just [Bo-
excellent.

Proof follows from theorem 2.46

Theorem 4.31. The following are just [By-excellent
graphs.

(i) Por L0 Psy 1 is just By-excellent.

(ii) Po,,[(0C5y, is just Py-excellent.

(iii) Pop100C, is just Bo-excellent.

Proof follows from remark 2.30 and theorem
2.31.

Theorem 4.32. The following are not just [o-
excellent graphs.

(i) PopJCo%41

(it) Pop10C, 11
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4.4 Just [y-excellence in Generalized Pe-
tersen graphs P(n, k)

Definition 4.33. Generalised Petersen
Graphs P(n,k):  For each n > 3 and
0 < k < n, P(nk) denotes the gener-

alised Petersen graph with vertex set V(G) =

{ug,ug, -+ ,up,v1,v2, -+ ,v,} and the edge set
E(G) = {uiui—l—l(mod n)s WiVis ViVipk(mod n)}a 1 <
1< n.

Theorem 4.34. P(2n, k) is just By-excellent if k is
odd.

Proof. Let {uj,us,...,u,} be the vertices in the
outer circle and {vy, vo, . .., v, } be the remaining ver-
tices. Let S = {7)1, U, V3, Ug,y -« ., V2p—1, UQn} and
Sy = {u1,v2,u3,v4, ..., U2n—1,V2,}. Then Sy, S5
are disjoint Gy-sets of P(2n, k). Clearly for any non-
empty proper subset A of S; or Sz, |[N(A)| > |A].
Therefore P(2n, k) is just Fp-excellent.

Ilustration 4.35.
u12
P(12,3) : 4y,
U104
U9
ug

The [y-sets are
{Ul, V2, U3, V4, Us, V6, UT, US, U9, V10, UL1, U12},
{1, u2, v3,u4, vs, ug, v7, ug, Vg, 10, V11, Ur2 }.
Hence P(12,3) is just Fp-excellent.

Theorem 4.36. P(n, 1), n odd is By-excellent but not
Jjust Bo-excellent.
Proof. Let
V(P(n,1) = {ui,ug, ..., up,v1,02,...,0,}.
E(P(n,1)) = {uiy1,v:ivip1, wvs, (mod n)},
where 1 <7 < n,
Bo(P(n,1)) =n — 1. The following are [y-sets
{ur,v2,u3,v4, ..., Un—2,Vn-1},
{vla U2, V3, U4, - - -, Un—2, un—l},
{Un, V1, U2, V3, Usg, ..., Up—3,Vp—2} and
{Un,u1,v2,...,0n_3,up—2}. Therefore P(n,1), nis
odd is Bp-excellent. Clearly, it is not just Fp-excellent.

Illustration 4.37.
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The [y-sets of P(11,1) are
{ula U2, U3, V4, Us, U6, U7, U8, U9, le}’
{Ub U2, V3, U4, Us, U6, V7, U8, V9, ulO}’
{u11,v1, u2, v3, uq, vs, ug, V7, Us, V9 } and

{u1,ve, us, vq, us, vg, u7, vs, ug, v11 }. Hence all
the vertices are in at least one (3-set. Hence P(11,1)
is fJo-excellent, but clearly P(11,1) is not just (-
excellent.

Theorem 4.38. P(n,3), n odd is (y-excellent but not

Jjust Bo-excellent
Proof. Let

V(P(n,3) = {ui,ug, ..., Un,01,02,...,0n},
E(P(n,3)) = {wiuit+1, 0013, uv;, (mod n)}
where 1 <i<n.[y(P(n,3)) =n—2.

The following are Bo-sets
{ul,vz,u3,v4,---,Unf2vvn72},
{vly U2,V3, U4, ..., Uan},
{Un—1,Vn,u1,v2,...,Up_3} and
{vn—1,Un,v1,u2,...,0n_3},
{un,vi,u2, ..., upn—3}, {vn,u1,ve,...,vh_3}.

Therefore P(n,3), n is odd is [p-excellent.
Clearly, it is not just Sp-excellent. Hence the result.

Illustration 4.39.

The (y-sets are
{u1,v2, u3,v4, us, ve, Uz, V8, Ug, V10, U1 },
{v1,u2,v3, us, vs, up, v7, U, V9, U10, v11},
{u127 13, U1, V2, U3, V4, U5, Vg, U7, U, u9}7
{u13, v1, u2, v3, ug, V5, U, V7, U, V9, U10 }-
Therefore Pi33 is Bo-excellent. Clearly, P33 is
not just fp-excellent.
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Theorem 4.40. P(n,5), n odd is (y-excellent but not
Jjust Bo-excellent

Proof. Let
V(P(n,5) = {u1,ug, ..., U, v1,02,...,0n},
E(P(n,5)) = {uiuit1,vvi45,uv;,1 < 0 <

n (modn)}. Bo(P(n,3)) = n — 3. The following are

ﬁO'SetS {U1,1}2,U3,’U4, s ,vn_5,un_4,un_2},
{Ul,UQ,Ug,U4,. .- aun75avn74avn72}- Sim-
ilar (p-sets can be written starting with

Up—1; Un—1; Un; Un; Up—3; Up—3. Therefore P(n,5), n
odd is Bg-excellent. Clearly, it is not just Sg-excellent.

Illustration 4.41.
(151
P(15,5)
U1
v
U5 15 ; u2
2
v
U4 1 3 u3
v v
U3 13 = Uy
U5
Up2p— Y12 U5
v 6
Uy 11 .
U7
V10 |
u10 Vg I 3 7
ug us

The (p-sets of P(15,5) are
{u1,v2, us, va, us, v, uz, v, ug, V10, U11, U13},
{v1, u2, v3, us, vs, ug, v7, ug, V9, U10, V11, V13 },

{U15, V14, U13, V12, U410, V9, U8, U7, UG, VU5, V4, U3, }

Therefore P(15,5) is [p-excellent and it is not just
Bo-excellent.

Theorem 4.42. P(n,2), n odd is By-excellent but not
just Bo-excellent

Proof. Let

V(P(n,2) = {u1,ug, ..., Up,v1,02,...,0n},

E(P(n,2)) = {uitiy1, viviy2, uv;, (mod n)}
where 1 < i < n. y(P(n,2)) = [22]. The following
are  [o-sets {uy,va, U3, Vg, ..., Vp—a, Up—3, Upn—1},
{1)1, U2, V3, Uqy . yUp—4,Un—-3, Un—l}- Similar ﬂ()—
sets can be written starting with the remaining ver-
tices of P(n,2). Therefore P(n,2), n is odd is (y-
excellent. Clearly, it is not just Fy-excellent.

4.5 Just (y-excellence of Harary graphs

The [y-excellence of Harary graph has been discussed
in the third section. Based on the results in that sec-
tion, the just (Bp-excellence of Harary graphs are dis-
cussed here.
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Observation 4.43. The condition M_T_{ J # ﬂﬁ is not

sufficient to ensure that Ho,. ,, is not just (3y- excellent.

Consider Hsg. Here r = 2, n = 9n —r = 7.
_n—r _ 7 _ C o i3
t=T7=3=2Letj=3,i=07=5=1#

n—r
[H—IJ'
But S5 = {3,6,0},Sy = {0,3,6} are not dis-
tinct. Here 3 € Sy and 0 € S3.

Remark 4.44.

The condition j ¢ S; (or) S. implies
that | 25 | # 35

j—1
r41

i j=i _
. Then o=

Suppose U’;IJ = t, where

t= 2]
1
Therefore j — i = t(r + 1). Therefore j = t(r +
1) 4 4. Therefore j € S;, a contradiction.

Remark 4.45. The condition that {”_I

s | # 5 need
not imply that j ¢ S; and S.

Consider Hsg. Herer = 2, n = 9n —r = 7.
t=0t=I1=2
T or+1 T 3 7 %

Letj =3,i=0.5 = {0,3,6},5, ={0,3,6}.

3 €Sy and Sj.

Jj=i _ 3-0

r+1 = 3

=1%# 77.Butj € S;and j € S.

Theorem 4.46. Let j —i = q(r + 1), ¢ > 0. Then
q < 2t and q can be written as t — m, where m > —t,

t= |5
Proof. Suppose r+1 divides j—i. Let j—i = (r+1)q.
Write g =1 —m, | < t, where t = “;{J .Suppose
g>2tandn—r=q(r+1)+a;,0<a; <r+1.
2t(r+1) =2 U:IJ (r+1) =2 {%J (r+
1) =2q(r+1)=2n—2r —2a;.

20 r+ 1) =n+n—-2r—ay1) —ai. ¢ > 2t

implies that ¢ > 2¢ + 1.
Therefore,

gir+1) > (2t+1)(r+1)
2(r +1) + (r + 1)

= n+n—2r—a1)+(r+1-a)).

Sincen—r=q(r+1)+a;,n—2r—a; =q(r+
1)—7r (g1 = Oimplies thatn—r = a; < r+1implies
that n < 2r + 1, a contradiction, since n > 2r + 1).
Therefore, q; > 1. Therefore, n — 2r — a1 > 0.
Also, oy < r + 1. Therefore, j —i = q(r +1) >
n, a contradiction. Thus, ¢ < 2¢. Suppose ¢ < t.
Then ¢ = [ — m, where | = ¢,m > 0. Suppose
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t < q < 2t. Then ¢ =t — m, where m > —t. Thus
for j —i = q(r + 1) with ¢ > 0, we can always write
g=l—m,l=t,m > —t.

Theorem 4.47. Ho., is not just [(y-excellent if
and only if there exist i,j5(i < j),0 < i,j <
n — 1 such that r + 1 divides j — i (or) j —

i — n and j does not belong to S; or S., where
S; = {i,r+1+id,....t(r+1)+i} and S, =
{i,i—(r+1),...,i—t(r+1)}, where t = VZIJ'

Proof. Suppose (r + 1) divides j — i. Then by the
theorem 4.46, j — i = q(r + 1) and ¢ = t — m,
where m > —t. Therefore (t — m)(r + 1) = j — i.
Therefore t(r + 1) +i = m(r + 1) + j. The two
fo-sets S; = {i,r+1+4,....t(r +1)+i}, S) =
{g—O+1),...omr+1)+4,....5 —t(r+1)} (or)
S; = {i,r+144,...,t(r+1)+4}, and 5; =
{j,7+(r+1),...,5+t(r+ 1)} have acommon el-
ement namely ¢(r 4+ 1) + ¢ according as m < 0 (or)
m>0.85; = S;- or S; = S; implies j € S;, a con-
tradiction. Therefore S; # S} or §; # Sj. Therefore
Hy, ,, is not just 3p-excellent.

A similar proof holds when r + 1 divides
Jj — t© — n. Conversely, Suppose H>;, is not just
Bo-excellent. Then there exist distinct Gy-sets S7, 5o
such that S7 N Se # ¢. Without loss of generality,
let S1 = {i,r+1+d,...,t(r+1)+i},S2 =
g+ +1),..,5+tr+1)} (or)
S1 = {ir+1+id,...,t(r+1)+i}, S92 =
{,j—0+1),....om(r+1)+7,...
Since S7 and Sy are distinct, 7 does not be-
long to So and j does not belong to 5.
Let I(r + 1) + 4 = m(r + 1) + j (or)
lr+1)+i=m(r+1)+j—mn Then! # 0,
m # 0. Thatis (r + 1)(l — m) = j — i (or)
(r+1)(I—m) = j —i—n. Therefore (r 4+ 1) divides
j—i(or)j—i—n.
Observation 4.48. Ifr+1 divides n—r and |1 does
not divide n, then Ho,. ,, is not just By-excellent.
Proof. Suppose r+ 1 divides n —r, then By(Ha, ) =
’7};{ If Ho,p is just Bp-excellent, then §y divides
n. But by hypothesis, J=¢ = B does not divide n.
Therefore Ho, ,, is not just Fp-excellent.

n—r

Ilustration 4.49. Consider Hs11. Here r = 2,n =

in—r=9r+1=3t=7"7-1=3-1=2

2(r +1) = 6 divides n + 1 = 12. fo(G) = 757 = 3.
So Sop = {0,3,7}, S1 = {1,4,8}, S2 = {2,5,9},

S3 = {3,6,10}, Sy = {4,7,0}, S5 = {5,8,1},
Sg = {6,9,2}, 7 = {7,10,3}, S = {8,0,4}, Sy —
{9,1,5), S10 = {10,2,6}. j = 10,i = 1. r + 1 di-
vides j—i. S; = 51 ={1,9,5}. S; =51 ={1,9,5}.
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10 ¢ Sy and S}. Therefore Hs 11 is [Bo-excellent but
not just By-excellent.
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