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Abstract: Claude Berge [1] in 1980, introduced B graphs. These are graphs in which every vertex in the graph is
contained in a maximum independent set of the graph. Fircke et al [3] in 2002 made a beginning of the study of
graphs which are excellent with respect to various graph parameters. For example, a graph is domination excellent
if every vertex is contained in a minimum dominating set. The B-graph of Berge was called β0 excellent graph. β0

excellent trees were characterized [3]. A graph is just β0 excellent if every vertex belongs to exactly one maximum
independent set of the graph.This paper is devoted to the study of β0 excellent graphs and just β0 excellent graphs.

Key–Words: β0-excellent and just β0 excellent, Harary graphs, Generalized Petersen graph

1 Introduction
Let µ be a parameter and let G = (V,E) be simple
graph. A vertex v ∈ V (G) is said to be µ-good if
v belongs to a µ-minimum (µ-maximum) set of G ac-
cording as µ is a super hereditary (hereditary) parame-
ter. v is said to be µ-bad if it is not µ-good. A graph G
is said to be µ-excellent if every vertex of G is µ-good.
G is µ-commendable if number of µ-good vertices in
G is strictly greater than the number µ-bad vertices of
G and there should be at least one µ-bad vertex in G.
G is said to be µ-fair if number of µ-good vertices in
G is equal to the number of µ-bad vertices in G and G
is said to be µ-poor if number of µ-bad vertices in G
is strictly greater than the number of µ-good vertices
in G.

γ-excellent trees and total domination excellent
trees have been studied in [3], [8]. β0-excellent
trees was also dealt with in some of the theorems
in [3]. Continuing the study on γ-excellent graphs,
N.Sridharan and Yamuna [4, 5, 6] , made an exten-
sive work in this area. They have defined excellent,
very excellent, just total excellent, rigid very excel-
lent graphs with respect to the domination parameter
and made a substantial contribution in this area.

This paper starts with the definition of β0-
excellent graphs. In the first section, general results
on β0- excellent graphs are proved.The second sec-
tion is devoted to β0-excellence in Cartesian Product
of graphs. The third section deals with β0-excellence
of Harary graphs. The fourth section is devoted to the
study of just β0-excellent graphs.

Definition 1.1. Double star is a graph obtained by
taking two stars and joining the vertices of maximum
degrees with an edge. If the stars are K1,r and K1,s,
then the double star is denoted by Dr,s.

Definition 1.2. A fan Fn is defined as the graph join
Pn−1 + K1 ,where n ≥ 3 and Pn−1 is the path graph
on n− 1 vertices.

2 β0-excellent graphs
Definition 2.1. Let G = (V,E) be a simple graph.
Let u ∈ V (G). u is said to be β0-good if u is con-
tained in a β0-set of G.

Definition 2.2. u is said to be β0-bad if there exists
no β0-set of G containing u.

Definition 2.3. A graph G is said to be β0-excellent if
every vertex of G is β0-good.

Example 2.4. s s s s
ssss

1 2 3 4

5 6 7 8

G :

The β0-sets of G are {1, 3, 6, 8}, {5, 6, 7, 8},
{2, 4, 5, 7}. Hence all the vertices are β0-good. Hence
G is β0-excellent.

Theorem 2.5. (1) Kn is β0-excellent.
(2)The central vertex of K1,n is β0-bad and every

other vertex is β0-good.
(3) Cn is β0-excellent.
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(4) Pn is β0-excellent if and only if n is even.
(5) In a Double star Dr,s, all the pendent vertices

are β0-good but the two supporting vertices are β0-
bad. Hence Dr,s is not a β0-excellent graph.

(6) Km,n is β0-excellent if and only if m = n.
(7) In Wn, the central vertex is β0-bad, while

other vertices are β0-good.
(8) Kn is a β0-excellent graph.
(9) Fn, n ≥ 3 is not β0-excellent.

Remark 2.6. Suppose G has a unique β0-set. Then G
is β0-excellent if and only if G = Kn.

Remark 2.7. If G has a full degree vertex and if G 6=
Kn, then G is not β0-excellent.

Theorem 2.8. For any graph G, G ◦ K1 is β0-
excellent.

Definition 2.9. A graph is said to be β0-fair(β0-poor)
graph if the number of β0-good vertices is greater
than(less than) the number of β0-bad vertices.

Example 2.10. Let G be the graph obtained from
K1,3 by subdividing all pendent edges exactly once.
Then G is β0-fair.

Example 2.11. In G = K4−{e}, exactly two vertices
are β0-good and remaining vertices are β0-bad. If
n ≥ 5, then G = Kn − {e} is β0-poor, since the
number of β0-bad vertices is greater than number of
β0-good vertices.

Theorem 2.12. Every non β0- excellent graph can be
embedded in a β0-excellent graph.

If G is a non β0-excellent graph, then G ◦ K1 is a
β0-excellent graph in which G is embedded.

Remark 2.13. Suppose G = Kn+1. Then β0(G ◦
K1) − β0(G) = n, which means the difference be-
tween the independence number of the graph, in which
the given graph is embedded and the given graph is
large.

Definition 2.14. A graph G is said to be vertex tran-
sitive if given any two vertices u, v(u 6= v) of G, there
is an automorphism φ of G such that φ(u) = v. If G
is vertex transitive, then it is regular.

Theorem 2.15. Any vertex transitive graph is β0-
excellent.
Proof. Let G be a vertex transitive graph. Let S be a
β0-set of G. Let u ∈ V (G). Suppose u /∈ S. Select
any vertex v ∈ S. As G is vertex transitive, there
exists an automorphism φ of G which maps v to u.
Let S′ = {φ(w) : w ∈ S}. Since S is a β0-set and
φ is an automorphism, S′ is a β0-set. Since v ∈ S,
φ(v) = u ∈ S′. Therefore G is β0-excellent.

Theorem 2.16. Let G be a non β0-excellent graph.
Then there exists a graph H in which the following
conditions are true.

(i) H is β0-excellent.
(ii) G is an induced subgraph of H .
(iii) β0(H) = β0(G).

Proof. Let G be a non -β0-excellent graph. Let
B = {b1, b2, . . . , bk} be the set of all β0-bad vertices
of G. Let V1, V2, . . . , Vk be a set of independent sets
of maximum cardinalities containing b1, b2, . . . , bk re-
spectively.

Let |Vi| = ti, 1 ≤ i ≤ k. Then ti < β0(G), for
all i, 1 ≤ i ≤ k. Let Wi =

{
wi1 , wi2 , . . . , wiβ0−ti

}
,

1 ≤ i ≤ k. Add each element of Wi, 1 ≤ i ≤ k
as a vertex to the vertex set of G. Let the new sets
of vertices W1,W2, . . . , , Wk be made a complete k-
partite graph. Join each vertex of Wi with every vertex
of V − Vi, 1 ≤ i ≤ k. Let H be the resulting graph.
Then Vi∪Wi is an independent set of H of cardinality
β0. Any β0-set of G continues to be an independent
set of H of cardinality β0. There is no other indepen-
dent set of H of cardinality greater than β0. Therefore
β0(H) = β0(G). Each new vertex added to G and
each bi is contained in a maximum independent set of
H . Therefore H is a β0-excellent graph. Clearly, G is
an induced subgraph of H and β0(H) = β0(G).

Theorem 2.17. Let G, H be β0-excellent graphs with
V (G) ∩ V (H) = φ. Then

(i) G ∪H is β0-excellent.
(ii) G + H is β0-excellent if and only if β0(G) =

β0(H).
Proof. (i) Any β0-set of G∪H is of the form S1∪S2,
where S1 is a β0-set of G and S2 is a β0-set of H .
Hence G ∪H is β0-excellent.

(ii) Let β0(G) < β0(H). Then any β0-set of G +
H is a β0-set of H and conversely. If β0(G) = β0(H),
then any β0-set of G and any β0-set of H are β0-sets
of G + H and conversely. Therefore G + H is β0-
excellent if and only if β0(G) = β0(H).

Definition 2.18. Let G1 = (V1, E1) and G2 =
(V2, E2) be any two graphs Then their Cartesian
Product G1�G2 is defined to be the graph whose ver-
tex set is V1�V2 and edge set is {((u1, v1), (u2, v2)) :
either u1 = u2 and v1v2 ∈ E2 or v1 = v2 and
u1u2 ∈ E1}.

Theorem 2.19. Let H be a graph.
(i) Let n ≥ χ(H). Then β0(Kn�H) = |V (H)|

and Kn�H is β0-excellent.
(ii) Let n < χ(H). Then β0(Kn�H) = t, where

t is the maximum cardinality of an union of n-disjoint
independent sets in H .
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Proof. (i) Let n ≥ χ(H). Let
∏

={
V1, V2, . . . , Vχ(H)

}
be a chromatic partition of

H . Let V (Kn) = {u1, u2, . . . , un}. Then
S = {(u1, v) : v ∈ V1} ∪ {(u2, v) : v ∈ V2} ∪ . . . ∪{
(uχ(G), v) : vχ(G) ∈ Vχ(G)

}
is an independent set of

Kn�H . Therefore β0(Kn�H) ≥ |V (H)|. But
β0(Kn�H) ≤ β0(Kn)|V (H)| = |V (H)|. There-
fore β0(Kn�H) = |V (H)|. Any set of χ-vertices of
Kn will produce a β0-set of Kn�H . Hence Kn�H
is β0-excellent.
(ii) Let n < χ(H). Let S1, S2, . . . , Sn be disjoint in-

dependent sets in H such that
n∑

i=1
|Si| is maximum.

Let t =
n∑

i=1
|Si|. Then T = {(u1, v) : v ∈ S1} ∪

{(u2, v) : v ∈ S2}∪ . . .∪{(un, v) : v ∈ Sn} is an in-
dependent set of Kn�H . Therefore β0(Kn�H) ≥
n∑

i=1
|Si| = |T | = t. Let S be a maximum

independent set of Kn�H . Let Xi = S ∩
({ui} × V (H)) , 1 ≤ i ≤ n. Let Yi =
{v ∈ V (H) : (ui, v) ∈ Xi, 1 ≤ i ≤ n). Then Y ′

i s are

independent and disjoint in H . |S| =
n∑

i=1
|Xi| =

n∑
i=1

|Yi| ≤
n∑

i=1
|Si| = |T |. Therefore t = |T | ≥

β0(Kn�H) = |T | = t.

Illustration 2.20. Let H be K5,3,5,2. Then K3�H is
not β0-excellent. (Here χ(H) = 4 > 3).

Theorem 2.21. Kn�H is β0-excellent if and only if
every vertex of H belongs to the union of disjoint in-
dependent sets of H of maximum cardinality.
Proof. Suppose every vertex of H belongs to the
union of disjoint independent sets of H of maximum
cardinality. Let V (Kn) = {u1, u2, . . . , un}. (ui, v) ∈
V (Kn�H), 1 ≤ i ≤ n. Then v ∈ V (H). Then
there exist disjoint independent sets S1, S2, . . . , Sn of

H such that
n∑

i=1
|Si| = t is maximum and v ∈ Sj , for

some j, 1 ≤ j ≤ n.
Then T = {(u1, v) : v ∈ S1} ∪

{(u2, v) : v ∈ S2} . . . ∪ {(ui, v) : v ∈ Sj} ∪
{(uj , v) : v ∈ Si} . . . ∪ {(un, v) : v ∈ Sn} is a
maximum independent set of Kn�H containing
(ui, v). Therefore Kn�H is β0-excellent.

Conversely, Suppose every vertex of H belongs
to the union of disjoint independent sets of H of max-
imum cardinality. Then there exists a vertex v ∈ H
such that v does not belong to any union of n disjoint
independent sets of H of maximum cardinality. Since
any maximum independent set of Kn�H is obtained

from n disjoint independent sets of H , with the union
having maximum cardinality, (ui, v), 1 ≤ i ≤ n
will not belong to any maximum independent set of
Kn�H . Therefore Kn�H is not β0-excellent.

Theorem 2.22. Let H be a graph. Then Kn�H is
β0-excellent if and only if H is β0-excellent.
Proof. Suppose H is β0-excellent. Then
β0(Kn�H) = n.β0(H). Any β0-set of H gives
rise to a β0-set of Kn�H . Therefore Kn�H is β0-
excellent. Suppose H is not β0-excellent. Let u ∈
V (H) be such that u is not contained in any β0-set of
H . Suppose S is a β0-set of Kn�H containing (v, u),
for some v ∈ V (Kn). Therefore |S| = n.β0(H).
Also S is of the form V (G)× T , where T is a β0-set
of H . Therefore u ∈ T , a contradiction.

Theorem 2.23. Let G 6= Kn and let G be a β0-
excellent graph. Let H = P2n. Then G�H is
β0-excellent if (i) or (ii)is satisfied. G�H is not β0-
excellent if (iii) is satisfied.

(i) For any β0-set S of G, there exists a β0-set of
G in V − S

(ii) Let the cardinality of the union of any two
disjoint non-maximum independent set of G ≤ |S| +
β0(< V − S >), for any β0-set S of G. For every
β0-set S of G, V − S does not contain β0-set of G
and for any β0-set S of G, the maximum number of
independent elements in V − S is the same.
(iii) If any two β0-sets of G are not disjoint and there
exists a β0-set S of G such that the maximum num-
ber of independent elements in V − S is greater than
the maximum number of independent elements in the
complement of any other β0-set, then G�H is not β0-
excellent.
Proof. (i) Let G have two disjoint β0-sets. Then
β0(G�P2n) = 2nβ0(G). For: Let S1, S2 be two dis-
joint β0-sets of G. Let V (P2n) = {v1, v2, . . . , v2n}.
{(xi, vi) : xi ∈ S1} ∪ {(yi, vi+1) : yi ∈ S2}
is an independent set in G�P2n. Thus
{(xi, v1) : xi ∈ S1} ∪ {(yi, v2) : yi ∈ S2} ∪
{(xi, v3) : xi ∈ S1} ∪ {(yi, v4) : yi ∈ S2} ∪ . . . ∪
{(xi, v2n−1) : xi ∈ S1} ∪ {(yi, v2n) : yi ∈ S2}
is an independent set of G�P2n. Therefore
β0(G�P2n) ≥ 2nβ0(G).

But β0(G�P2n) ≤ β0(G)|V (P2n)| = 2nβ0(G).
Hence β0(G�P2n) = 2nβ0(G). Let (x, y) ∈
V (G�P2n). Then there exists a β0-set S1 of G con-
taining x. Also by hypothesis, V − S1 contains a β0-

set of G,say S2.
n⋃

t=1
(S1×{v2t−1})∪

n⋃
t=1

(S2×{v2t})

and
n⋃

t=1
(S2 × {v2t−1}) ∪

n⋃
t=1

(S1 × {v2t}) are β0-sets
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of G�P2n. Hence there exists a β0- set of G�P2n

containing (x, y). Therefore G�P2n is β0-excellent.
(ii) It can be easily proved that β0(G�P2n) =

(β0(G) + k)n, where k is the maximum number of
independent elements in the complement of any β0-
set of G. In this case, G�P2n is β0-excellent.[For:
Let (x, y) be any element of V (G�P2n). Then
there exists a β0-set S1 of G containing x. Also
V − S1 contains an independent set of cardinality k.
Let S2 be a maximum independent set in V − S1.
n⋃

t=1
(S1 × {v2t−1}) ∪

n⋃
t=1

(S2 × {v2t}) and
n⋃

t=1
(S2 ×

{v2t−1}) ∪
n⋃

t=1
(S1 × {v2t}) are the β0-elements of

G�P2n. Hence there exists a β0-set of G�P2n con-
taining (x, y). Therefore G�P2n is β0-excellent.

(iii) Suppose there exists a β0-set S1 of G such
that the maximum number of independent elements
say k in V − S1 is greater than the maximum num-
ber of independent elements in the complement of any
other β0-set of G.

β0(G�P2n) = (β0(G) + k)n. Let u ∈ V (G) −
S1. Then there exists a β0-set S2 of G containing
u. The maximum number of independent elements
in V (G) − S2 is less than k. Therefore (u, v), where
v ∈ V (P2n) is not contained in any β0-set of G�P2n.
Hence G�P2n is not β0-excellent.

Remark 2.24. There exist graphs in which the max-
imum number of independent elements in the comple-
ment of any β0-set of G is greater than the maximum
number of independent elements in the complement of
any other β0-set of G.

Example 2.25.

s s s s s s s
ssssssss

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

G :

The β0-sets of G are S1 = {1, 2, 3, 4, 5, 8, 9, 10},
S2 = {3, 4, 5, 6, 7, 10, 11, 12},
S3 = {8, 9, 10, 11, 12, 13, 14, 15}. Then V −
S1 = {6, 7, 11, 12, 13, 14, 15}, V − S2 =
{1, 2, 8, 9, 13, 14, 15}, V − S3 = {1, 2, 3, 4, 5, 6, 7}.
The set {11, 12, 13, 14, 15} is a β0-set in V −
S1; {8, 9, 13, 14, 15} is a β0-set in V − S2 and
{2, 3, 4, 5, 6, 7} is a β0-set in V −S3. Hence S3 satis-
fies the property described in the remark 2.24

Example 2.26.

t

t
t t t

t

tt

1

2

3 4 5

6

78

G :

The β0-sets of G are S1 = {1, 2, 4, 6, 7} , S2 =
{1, 2, 8, 6, 7}. Clearly G is not β0 - excellent. The
maximum number of independent sets in V − S1 and
in V − S2 is one. The sets S3 = {1, 2, 4} and
S4 = {8, 6, 7} are not β0-sets. The maximum number
of independent sets in V − (S3 ∪ S4) is one. That is,
there exist two disjoint independent sets of cardinal-
ity 3 each and the maximum number of independent
elements in complement of their union is one.

|S3|+ |S4|+ β0(V − (S3 ∪ S4)) = 7 > |S1|+
β0(V − S1) = |S2|+ β0(V − S2) = 6.

Example 2.27.s
s
s

s s s
s

s
@

@
@@

1

2

3

4 5

6

7

8

G :

The β0-set of G is S = {1, 2, 3, 6, 7, 8}. The
4-element disjoint independent sets are {1, 2, 3, 5},
{4, 6, 7, 8}. β0(G�P2n) = 8n. It can be shown that
there is a β0-set of G and a set of maximum number
of elements in the complement, such that independent
set generated contains 7n elements.

Though G is not β0excellent, G�P2n is
β0excellent here. For:

Example 2.28.s
s
s

s s s
s

s
@

@
@@

1

2

3

4 5

6

7

8

G :

Let V (P2n) = {u1, u2, . . . , u2n}. Let A =
{1, 2, 3, 5} and B = {4, 6, 7, 8}. Two maximum
independent sets of G�P2n are⋃
i≡1(mod2),1≤i≤2n

{(ui, 1), (ui, 2), (ui, 3), (ui, 5)}⋃ ⋃
j≡0(mod 2),2≤j≤2n

{(uj , 4), (uj , 6), (uj , 7), (uj , 8)}

and ⋃
i≡1(mod2),1≤i≤2n

{(ui, 4), (ui, 6), (ui, 7), (ui, 8)}
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⋃ ⋃
j≡0(mod 2),2≤j≤2n

{(uj , 1), (uj , 2), (uj , 3), (uj , 5)}.

Hence G�P2n is β0-excellent, but G is not β0-
excellent.

Remark 2.29. Suppose G is a graph in which
V (G) = A∪B, where A,B are independent and dis-
joint subsets are V (G). Then G�P2n is β0-excellent.
(or) equivalently if G is bipartite graph, then G�P2n

is β0-excellent. Hence T�P2n is β0-excellent, for any
tree T and C2n�P2n is β0-excellent.

Theorem 2.30. Suppose G is of even order in which
V (G) = A ∪B, A ∩B = φ, A,B are independent
and |A| = |B|. Then G�P2n+1 is β0-excellent.

Proof. The following are β0-sets of G�P2n+1.⋃
i≡1(mod 2), 1≤i≤2n+1

P
⋃ ⋃

j≡0(mod 2), 1≤j≤2n

Q

and ⋃
i≡1(mod 2), 1≤i≤2n+1

R
⋃ ⋃

j≡0(mod 2), 1≤j≤2n

S,

where P = {(v, ui) : v ∈ A)},
Q = {(v, uj) : v ∈ B)} , R = {(v, ui) : v ∈ B)} and
S = {(v, uj) : v ∈ A)}.

Hence G�P2n+1 is β0-excellent.

Corollary 2.31. If G is bipartite graph with equi-
cardinal bipartition, then G�P2n+1 is β0-excellent.

Corollary 2.32. (1) Cn�P2n+1 is β0-excellent. (2)
If T is a tree with equi-cardinal bipartition, then
T�P2n+1 is β0-excellent.

Example 2.33.

t t t
ttt

�
�

�
�

1 2 3

4 5 6

G :

The graph G is of even order in which V (G) =
A ∪ B, A ∩ B = φ, A,B are independent and |A| =
|B|, where A = {1, 2, 3} , B = {4, 5, 6}. Here G is
not β0-excellent (since β0(G) = 4 and {1, 2, 3, 4} is
the unique β0-set of G).

Example 2.34. Dr,r is a graph of even order in which
V (G) = A ∪ B, A ∩ B = φ, A,B are independent
and |A| = |B|, where A,B are respectively the set
of pendents adjacent to each of the two centers. Dr,r

is not β0-excellent, since the two centers are β0-bad
vertices.

Remark 2.35. Consider the path Pt with each ver-
tex of Pt as centers, add r-pendent vertices. Let the
resulting graph be denoted by Mr,r,...,t−times. Then
Mr,r,...,r�P2n+1 is β0-excellent, but Mr,r,...,r is not
β0-excellent.

Illustration 2.36.

r r r r
r r r

r r r
rr r

rrr5 6 7 11 12 13

1
2

8 9 10

3
4

14 15 16

M(3,3,3,3) :

A = {1, 2, 3, 5, 10, 11, 12, 13}, B =
{4, 6, 7, 8, 9, 14, 15, 16} are two disjoint inde-
pendent sets and A ∪ B = V (G). M3,3,3,3 is not
β0-excellent. But M3,3,3,3�P2n+1 is β0-excellent.

Theorem 2.37. G�P2n is β0-excellent if
and only if there exists an independent par-
tition π = {V1, V2, . . . , Vk} of G such that
max1≤i,j≤k,i6=j {|Vi ∪ Vj |} is attained for pairs
(i, j) with

⋃
|Vi∪Vj | {i, j} = {1, 2, . . . , k}.

Proof. Any maximum independent subset of G�P2n

is of the form X1 ∪ X2 ∪ · · · ∪ X2n where Xi =
A × {ui} if i is odd and Xi = B × {ui} if i is even,
A,B being disjoint independent sets of G such that
A ∪ B has maximum cardinality. Suppose G has an
independent partition satisfying the hypothesis. Then
clearly, G�P2n is β0- excellent.

Conversely, suppose G�P2n is β0-excellent.
Then every vertex {u, v}, u ∈ V (G) and v ∈ V (P2n)
belongs to a β0-set of G�P2n. The structure of β0-
sets of G�P2n imply that there exist disjoint indepen-
dent sets V1, V2, . . . , Vk in G whose union is V (G),
satisfying the condition in the theorem.

Corollary 2.38. Let χ(G) ≥ 3. Then G�P2n

is β0-excellent if there exists a chromatic parti-
tion π =

{
V1, V2, . . . , Vχ(G)

}
of G such that

max1≤i,j≤χ,i6=j {|Vi ∪ Vj |} is attained for pairs (i, j)
with

⋃
|Vi∪Vj | {i, j} = {1, 2, . . . , χ(G)}.

Remark 2.39. The converse of the above corollary is
not true. Consider the graph G.

s
ss s

s s
1

2 3

6
5 4

G :

A chromatic partition of G is given by
{{2, 4, 5}, {3, 6}, {1}}.
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Corollary 2.40. If G is a complete r-partite(r ≥
3)graph with equi-cardinal partite sets, then G�P2n

is β0-excellent.

Remark 2.41. Let G = K2 + K3 + K2. Then G is
not β0-excellent, but G�P2n is β0-excellent.

Corollary 2.42. Qn is β0-excellent,since Qn =
Qn−1�P2. Moreover Qn�P2n is also β0-excellent.

Remark 2.43. Let G = K4 + K3 + K2. Then G and
G�P2n are not β0-excellent.

Theorem 2.44. There exists a regular graph which is
not β0-excellent.

t t
t
t t

ttt
t t

t t
t
t t

t

�
�

�

A
A
A
A
A
AA

�
��

1

2

34

56

7

8

9

10

11

12

13

1415

16

G :

For this graph G, the β0-set is {2, 5, 6, 8, 11, 13, 16}
consisting of 7 vertices. The remaining vertices are
contained in the independent sets {1, 3, 6, 8, 12, 14},
{1, 3, 7, 9, 12, 14}, {1, 3, 7, 9, 12, 15} of cardinality
6 each. Thus this graph is 3-regular but not β0-
excellent.

Theorem 2.45. Let G be a bipartite graph with bipar-
tition V1, V2. Then G�Cm is β0-excellent.
Proof. Case(i): Let m = 2n. Let V (C2n) =
{u1, u2, . . . , u2n}.

The maximum independent sets of G�C2n are⋃
j≡0(mod2), 1≤j≤2n

P
⋃ ⋃

j≡0(mod2), 2≤j≤2n

Q

and
⋃

j≡0(mod2), 1≤j≤2n

R
⋃ ⋃

j≡0(mod2), 2≤j≤2n

S,

where P = {(vi, uj) : vi ∈ V1)} , Q =
{(vi, uj) : vi ∈ V2)} , R = {(vi, uj) : vi ∈ V2)}
and S = {(vi, uj) : vi ∈ V1)}. Hence G�Cm is
β0-excellent.
Case(ii): Let m = 2n + 1. Let V (C2n+1) =
{u1, u2, . . . , u2n+1}.

β0(G�C2n+1) = n|V (G)|.
The following are β0-sets of G�C2n+1.⋃
j≡1(mod 2), 1≤j≤2n

P1
⋃ ⋃

j≡0(mod 2), 2≤j≤2n

P2;

⋃
j≡1(mod 2), 1≤j≤2n

Q1
⋃ ⋃

j≡0(mod 2), 2≤j≤2n

Q2;⋃
j≡1(mod 2), 2≤j≤2n+1

R1
⋃ ⋃

j≡0(mod 2), 2≤j≤2n

R2

and ⋃
j≡1(mod 2), 2≤j≤2n+1

S1
⋃ ⋃

j≡0(mod 2), 2≤j≤2n

S2,

whereP1 = {(vi, uj) : vi ∈ V1)}, P2 =
{(vi, uj) : vi ∈ V2)}, Q1 = {(vi, uj) : vi ∈ V2)},
Q2 = {(vi, uj) : vi ∈ V1)}, R1 =
{(vi, uj) : vi ∈ V1)}, R2 = {(vi, uj) : vi ∈ V2)},
S1 = {(vi, uj) : vi ∈ V2)} and S2 =
{(vi, uj) : vi ∈ V1)}. Hence G�Cm is β0-excellent.

Theorem 2.46. Let G be a β0-excellent graph. For
any β0-set S of G, let V − S contain a β0-set of G.
Then G�C2n is β0-excellent.
Proof. The proof follows from the fact that for
any β0-set S of G and a β0-set S1 of G in V − S,⋃
i≡1(mod 2), 1≤i≤2n

P
⋃ ⋃

j≡0(mod 2), 1≤j≤2n

Q, where

P = {(v, ui) : v ∈ S)}, Q = {(v, uj) : v ∈ S1)} and⋃
i≡1(mod 2), 1≤i≤2n

R
⋃ ⋃

j≡0(mod 2), 1≤j≤2n

S,

where R = {(v, ui) : v ∈ S1)}, S =
{(v, uj) : vi ∈ S)} are β0-sets of G�C2n.

Theorem 2.47. (i) C2n�C2k+1 is β0-
excellent. (ii)C2n�C2m is β0-excellent. (iii)
C2k+1�C2n+1, n ≤ k is β0-excellent.

Corollary 2.48. The following graphs are β0-
excellent.

(i) P2n�P2k+1. Result follows from the fact that
G�P2k+1 is β0-excellent if G is of even order and
V (G) = A ∪B,A ∩B = φ, |A| = |B| and A,B are
independent.

(ii) P2n�C2k+1. (G�Cm is β0-excellent if G is
bipartite with partition V1, V2.)

(iii) P2n+1�C2k+1.
(since G�Cm is β0-excellent if G is bipartite with

partition V1, V2.)
(iv) P2n�C2k.
(since G�Cm is β0-excellent if G is bipartite with

partition V1, V2.)
(v) P2n+1�C2k.
(since G�Cm is β0-excellent if G is bipartite with

partition V1, V2.)

Definition 2.49. Mycielski Graphs Let G = (V,E)
be a simple graph. The Mycielskian of G is the graph
µ(G) with vertex set equal to the disjoint union V ∪
V ′ ∪ {u} where V ′ = {x′ : x ∈ V } and the edge set
E ∪ {xy′, x′y : xy ∈ E} ∪ {y′u : y′ ∈ V ′}. The
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vertex x′ is called the twin of the vertex and the vertex
u is called the root of µ(G).

Theorem 2.50. Let G 6= K2 be a graph. Then µ(G)
is not β0-excellent.
Proof. Let V (G) = {u1, u2, . . . , un}. Let
V (µ(G)) = {u1, u2, . . . , un, u′1, . . . , u

′
n, v}. Then

E(µ(G)) =
n⋃

i=1
{u′iuj : uj ∈ NG(ui), 1 ≤ j ≤ n} ∪

{u′iv : 1 ≤ i ≤ n}. It has been proved that
β0(µ(G)) = max {2β0(G), |V (G)|}.

Suppose β0(G) < |V (G)|
2 . Then {u′1, u′2, . . . , u′n}

is the only β0-set of µ(G).
Suppose β0(G) > |V (G)|

2 .

Let
{

ui1 , ui2 , . . . , uiβ0

}
be a β0-set of

G.Then
{

ui1 , ui2 , . . . , uiβ0
, u′i1 , u

′
i2

, . . . , u′iβ0

}
is

a β0-set of µ(G). Clearly v is not in any β0-set of
µ(G).

Suppose β0(G) = |V (G)|
2 . Suppose β0(G) = 1

and |V (G)| = 2. Then G = K2 in which case
µ(G) = C5 which is β0-excellent. Suppose β0(G) >

1. Then for any β0-set
{

ui1 , ui2 , . . . , uiβ0

}
of G,{

ui1 , ui2 , . . . , uiβ0
, u′i1 , u

′
i2

, . . . , u′iβ0

}
is a β0-set of

µ(G). Also {u′1, . . . , u′n} is a β0-set of µ(G).
v does not belong to any of these β0-sets. There-

fore µ(G) is not β0-excellent, when G 6= K2.

Definition 2.51. Let G be a graph. G is said to be
β1-excellent if every edge of G belongs to a β1-set of
G.

Remark 2.52. G is β1-excellent if and only if L(G)
is β0-excellent.

3 β0-excellence of Harary graphs

Definition 3.1. Harary graphs Hn,m with n vertices
and m < n is defined as follows:

Case(i): n is even and m = 2r. Then Hn,2r has n
vertices 0, 1, 2, · · · , n−1 and i, j are joined if i−r ≤
j ≤ i + r, where the addition is taken under modulo
n.

Case(ii):m is odd and n is even. Let m = 2r +1.
Then Hn,2r+1 is constructed by first drawing Hn,2r

and then adding edges joining vertex i to the vertex
i + n

2 , for 0 ≤ i ≤ n
2 .

Case(iii): m and n are odd. Let m = 2r + 1.
Then Hn,2r+1 is constructed by drawing Hn,2r and
then adding edges joining vertex 0 to the vertices n−1

2

and n−1
2 and vertex i to i + n+1

2 , for 1 ≤ i ≤ n−1
2 .

Theorem 3.2. Let n > 2r.

β0(H2r,n) =

{
n−r
r+1 if r+1 divides n-r⌊
n−r
r+1

⌋
+ 1 if r+1 does not divide n-r

Proof. Let V (H2r,n) = {0, 1, 2, . . . , n− 1}.
Case(i):

Let r + 1 divides n − r. Consider S =
{i, r + i + 1, 2r + i + 2, . . . , tr + t + i}, where t =
n−r
r+1 − 1.

tr + t+ i = (n− r)− r−1+ i = n−2r−1+ i.
Suppose n−2r−1+i = i−s (or) i−s+n, according
as i − s ≥ 0 (or) otherwise. Then n − 2r − 1 =
−s (or)n − s. That is 2r + 1 = s + n(or)s. Since
s ≤ r, 2r + 1 6= s. Therefore 2r + 1 = s + n. But
s+n > 2r +1. Since s ≥ 1, n > 2r, a contradiction.
Therefore S is an independent set in H2r,n. Therefore
β0(H(2r,n)) ≥ t + 1. Suppose S1 is an independent
set of H2r,n of cardinality t + l, l ≥ 2.

Let S1 = {a1, a2, . . . at+l}. Let a1 < a2 <
. . . , < at+l.

t + l = n−r
r+1 − 1 + l ≥ n−r

r+1 + 1 (since l ≥ 2).
Let a1 = i. Then a2 > i + r, a3 > i +

2r, . . . , at+l > i + (t + l − 1)r. That is at+l >

i +
(

n−r
r+1

)
r.

Let 1 ≤ s ≤ r. at+l is adjacent to a1 if and only
if i−s or i−s+n > i+

(
n−r
r+1

)
r. That is if and only

if s < −
(

n−r
r+1

)
r, a contradiction since right hand

side is negative and s is positive. (or) i − s + n >

i +
(

n−r
r+1

)
r. This implies n− s >

(
n−r
r+1

)
r.

n− r = q(r + 1) ⇒ q(r + 1) + r − s > qr.
qr + q + (r − s) > qr. Since s ≤ r, r − s ≥ 0,

one has qr + q + (r − s) > qr (since q ≥ 1), which
is true. at+l is adjacent to a1. Therefore S1 is not
independent. So β0(H2r,n) ≤ t + 1. Therefore
β0(H2r,n) = t + 1.

Case(ii):
Let r + 1 do not divide n − r. Consider S =

{i, r + 1 + i, 2r + 2 + i, . . . , tr + t + i}, where t =⌊
n−r
r+1

⌋
. Let n− r = q(r + 1) + α, α > 0, α < r + 1.

Therefore t = q.
tr+t+i = qr+q+i = q(r+1)+i = n−r−α+i.
Let 1 ≤ s ≤ r.
If tr + t + i = i − s(or)i − s + n, according

as i − s ≥ 0(or) otherwise , then n − α − r + i =
i−s(or)i−s+n. n−α−r+ i = i−s (or)i−s+n.
n − α − r = −s (or) −α − r = −s. That implies
r+α−n = s (or) s = r+α i.e, s < 0 or s > r(since
α + r < n), a contradiction. [ r + α < n, because
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n = r+q(r+1)+α. If q = 0, then n = r+α, where
α < r + 1. That is n ≤ 2r, a contradiction. So q ≥ 1.
Therefore n > r+α.] Thus S is an independent set in
H2r,n. Therefore β0(H2r,n) ≥ t+1. Suppose S1 is an
independent set of H2r,n of cardinality t+l, l ≥ 2. Let
S1 = {a1, a2, . . . , at+l}. Let a1 < a2 < . . . < at+l.
t + l = q + l =

⌊
n−r
r+1

⌋
+ l > n−r

r+1 + 1.
Let a1 = i. Then a2 > i + r, a3 > i +

2r, . . . , at+l > i + (t + l − 1)r > i +
(

n−r
r+1

)
r.

at+l is adjacent to a1 if and only if i− s(or)i− s + n

is greater than i +
(

n−r
r+1

)
r. That is if and only if −s

(or)−s + n >
(

n−r
r+1

)
r.

But −s >
(

n−r
r+1

)
r is not possible, since the

right hand side is positive and left hand side is neg-
ative. Therefore −s + n >

(
n−r
r+1

)
r. That is n− s >(

q + α
r+1

)
r. That leads to q(r + 1) + α + r − s >

qr+ rα
r+1 which means q(r+1)+ r−s > qr+ rα

r+1 −
α = qr − α

r+1 . That is q(r + 1) + r − s ≥ qr [ since
α

r+1 < 1 ] , which is true, since q(r + 1) + r − s =
qr + q + r − s ≥ qr, as r − s ≥ 0. Therefore
at+l is adjacent to a1. Therefore S1 is not an inde-
pendent set. Therefore β0(H2r,n) ≤ t + 1. Therefore
β0(H2r,n) = t + 1.

Theorem 3.3. Consider H2r+1,n, where n is even.
Then (i) If 2(r + 1) does not divide n, then

β0(H2r+1,n) =

{
n−r
r+1 , if r+1 divides n-r⌊
n−r
r+1

⌋
+ 1, otherwise

.

(ii)If 2(r + 1) divides n,then

β0(H2r+1,n) =
⌊

n−r
r+1

⌋
.

Proof. We observe the following
(i) Suppose 2(r + 1) divides n. Then r + 1 does

not divide n− r.
Let r + 1 divide n − r. Let n = 2q(r + 1) and

n−r = q1(r+1). Therefore 2q(r+1) = r+q1(r+1).
That is (2q − q1)(r + 1) = r, a contradiction. Hence
(i).

(ii) Suppose 2(r + 1) does not divide n. Then
r + 1 divides n− r if and only if n = 2q(r + 1) + r,
for some positive integer q.

Let n = 2q(r + 1) + α, where 0 < α < 2(r + 1).
Then n− r = 2q(r + 1) + α− r.

Suppose r+1 divides n−r. Then α−r is divisible
by r+1. Let α−r = k(r+1). If k < 0, α = r+k(r+
1) implies that α < 0, a contradiction. Hence k ≥ 0.
Thus α = k(r + 1) + r. Since α < 2(r + 1), k = 1,
one has α = 2r+1. Therefore n = 2q(r+1)+2r+1.

That means that n is odd, a contradiction. Therefore
k = 0. That is, α = r. Therefore n = 2q(r + 1) + r.

Conversely, if n = 2q(r + 1) + r, then clearly
n− r is divisible by r + 1.
Case(i):
Subcase (i): Suppose 2(r + 1) does not divide n and
r + 1 divides n − r. Then by observation (ii), n =
2q(r + 1) + r, for some positive integer q. For any
integer i, i + n

2 is of the form lr + l + i if and only if
l(r + 1) = n

2 . That is if and only if 2(r+1) divides n ,
a contradiction.

Let S = {i, r + 1 + i, 2r + 2 + i, . . . tr + t + i},
where t = n−r

r+1 − 1. That is t = 2q − 1.
tr + t + i = (n − r) − r − 1 + i = n − 2r −

1 + i. Suppose n− 2r − 1 + i = i− s (or) i− s + n
according as i− s ≥ 0 (or) otherwise. Then n− 2r−
1 = −s(or) n − s. That is 2r + 1 = n + s (or) s.
Since s ≤ r, 2r + 1 6= s. Therefore 2r + 1 = n + s.
But s + n > 2r + 1, since s ≥ 1 and n > 2r, a
contradiction. Therefore S is an independent set in
H2r+1,n. Therefore β0(H2r+1,n) ≥ t+1 = n−r

r+1 . Since
H2r,n is a spanning subgraph of H2r+1,n , we get that
β0(H2r+1,n) ≤ β0(H2r,n) = n−r

r+1 .
Therefore β0(H2r+1,n) = n−r

r+1 .
Subcase (ii): 2(r + 1) does not divide n and r + 1
does not divide n− r.

By observation (ii), n = 2q(r + 1) + α , where
0 < α < 2(r + 1) and α 6= r. Proceeding
as in case (ii) of theorem 3.2, we get that S =
{i, r + 1 + i, 2r + 2 + i, . . . tr + t + i}, where t =⌊

n−r
r+1

⌋
is an independent set of H2r+1,n. Therefore

β0(H2r+1,n) ≥
⌊

n−r
r+1

⌋
+ 1. But β0(H2r+1,n) ≤

β0(H(2r,n)) =
⌊

n−r
r+1

⌋
+ 1. Therefore β0(H2r+1,n) =⌊

n−r
r+1

⌋
+ 1.

Case (ii): 2(r + 1) divides n.
By observation (i), r + 1 does not divide n − r.

Let n
2(r+1) = l. Then i is adjacent to i + n

2 gives that
i is adjacent to lr + l + i.
Let S be the set of all elements i, r + 1 + i, 2r + 2 +
i, . . . , (l− 1)(r + 1) + i, l(r + 1) + 1 + i, (l + 1)(r +
1) + 1 + i,

. . . , t(r + 1) + l + i, where t =
⌊

n−r
r+1

⌋
− 1.

Let n− r = q(r + 1) + α, where 0 < α < r + 1.
Therefore t = q − 1.

tr + t + 1 + i = t(r + 1) + 1 + i

= (q − 1)(r + 1) + 1 + i

= q(r + 1) + i− r = n− r − α +
i− r = n− 2r − α + i.
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Let 1 ≤ s ≤ r. If t(r + 1) + 1 + i = i − s (or)
i − s + n (according as i − s ≥ 0 (or) otherwise),
then n − 2r − α + i = i − s(or) i − s + n. That is
n−2r−α = −s (or) n− s. That is n−2r−α = −s
(or) n − 2r − α = n − s. If n − 2r − α = n − s,
then s = 2r + α, a contradiction , since s ≤ r. If
n− 2r − α = −s, then s = 2r + α− n = 2r + α−
q(r + 1) − α − r. That is s = r − q(r + 1) < 0,
a contradiction. Therefore S is an independent set in
H2r+1,n. Therefore β0(H2r+1,n) ≥

⌊
n−r
r+1

⌋
.

Let S1 = {i, r + 1 + i, 2r + 2 + i, . . . ,
(l− 1)(r + 1) + i, l(r + 1) + 1 + i, (l + 1)(r + 1) +
1 + i, . . . , t(r + 1) + l + i}, where t =

⌊
n−r
r+1

⌋
. Let

n − r = q(r + 1) + α, 0 < α < r + 1. Let 1 ≤
s ≤ r. Then t = q. If t(r + 1) + 1 + i = i − s (or)
i − s + n (according as i − s ≥ 0 (or) otherwise.).
Then q(r + 1) + 1 + i = i − s (or)i − s + n. That
is q(r + 1) + 1 = −s(or) n − s. If q(r + 1) + 1 =
−s, then a contradiction , since L.H.S is positive. If
q(r + 1) + 1 = n − s, then n − r − α + 1 = n − s.
That is s = r + α − 1. But s ≤ r. Therefore α ≤ 1.
But α > 0. Therefore α = 1.

Therefore, n−r = q(r+1)+1 = t(r+1)+1. In
this case , t(r+1)+1+i is adjacent with i. Therefore
S1 is not independent.

Therefore β0(H2r+1,n) ≤
⌊

n−r
r+1

⌋
.

Therefore β0(H2r+1,n) =
⌊

n−r
r+1

⌋
.

Observation 3.4.
(i) 2(r + 1) can not divide both n + 1, n− 1.
This is because in such a case 2(r + 1) divides 2,

a contradiction, since 2(r + 1) ≥ 4.
(ii) If 2(r + 1) divides n− 1, then r + 1 does not

divide n− r.
This is because if r+1 divides n−r, then n−r =

a(r+1). n = a(r+1)+r. Let n−1 = 2(r+1)l. Then
2(r+1)l+1 = a(r+1)+r. 2(r+1)l = a(r+1)+r−1,
a contradiction.

(iii) Suppose 2(r + 1) divides n− 1. Let r + 1 do
not divide n − r. Then t(r + 1) + 1 < n − r, where
t =

⌊
n−r
r+1

⌋
.

Since r +1 does not divide n− r , t(r +1)+1 ≤
n − r.Suppose t(r + 1) + 1 = n − r. Let n − 1 =
2q(r+1). Therefore t(r+1)+r = n−1 = 2q(r+1).
Thus r + 1 divides r, a contradiction.

(iv) Suppose 2(r + 1) divides n + 1. Then r + 1
divides n− r.

Let n+1 = 2q(r+1). Therefore n−r = 2q(r+
1)− r− 1 = (r +1)(2q− 1). Therefore r +1 divides
n− r.

Theorem 3.5. Consider H2r+1,n, where n is odd.
(i) 2(r+1) does not divide n−1 as well as n+1.

Then
β0(H2r+1,n) ={

n−r
r+1 , if r+1 divides n-r⌊
n−r
r+1

⌋
+ 1, otherwise

(ii) 2(r + 1) divides n− 1 but not n + 1.

β0(H2r+1,n) =
⌊

n−r
r+1

⌋
+ 1.

(iii) 2(r + 1) divides n + 1 but not n− 1.
Then β0(H2r+1,n) = n−r

r+1 .

Proof. Case (i):
2(r + 1) does not divide n− 1 as well as n + 1.
Let 0 ≤ i ≤ n− 1.

Let S = {i, r + 1 + i, 2(r + 1) + i, . . . , t(r + 1) + i}.
l(r + 1) + i = i + n+1

2 , (i ≥ 0). This implies
r + 1 divides n+1

2 , a contradiction.
l(r + 1) + 0 = 0 + n−1

2 . This implies r + 1
divides n−1

2 , a contradiction. l(r + 1) + i is adjacent
to m(r+1)+i, if l(r+1)+i+

(
n+1

2

)
= m(r+1)+i.

This implies (m− l)(r+1) = n+1
2 . This implies r+1

divides n+1
2 , a contradiction.

Subcase(i): Let r + 1 divide n − r. Let t =
n−r
r+1 − 1.

t(r +1)+ i = n− r− r−1+ i = n−2r−1+ i.
Suppose t(r + 1) + i = i− s(or) i− s + n, (1 ≤

s ≤ n) according as i − s ≥ 0 (or) otherwise. Then
n−2r−1+i = i−s (or) i−s+n. That is n−2r−1 =
−s (or)n−s. Since n > 2r+1, n−(2r+1) is positive
and −s is negative. Therefore n− 2r− 1 = −s is not
possible. n − 2r − 1 = n − 1 gives s = 2r + 1, 1 ≤
s ≤ n, a contradiction. Therefore |S| = t + 1 = n−r

r+1 .
Therefore β0(H2r+1,n) ≥ n−r

r+1 . H2r,n is a spanning
subgraph of H2r+1,n.

β0(H2r+1,n) ≤ β0(H2r,n) ≤ n−r
r+1 . Therefore

β0(H2r+1,n) = n−r
r+1 .

Subcase(ii):
Let r + 1 do not divide n− r. Let t =

⌊
n−r
r+1

⌋
.

Proceeding as in case (ii) of theorem 3.3,

we get that β0(H2r+1,n) ≥
⌊

n−r
r+1

⌋
+ 1.

H2r,n is a spanning subgraph of H2r+1,n. There-

fore β0(H2r+1,n) ≤ β0(H2r,n) =
⌊

n−r
r+1

⌋
+ 1. There-

fore β0(H2r+1,n) =
⌊

n−r
r+1

⌋
+ 1.

Case (ii):
2(r +1) divides n− 1 but not n+1. By observa-

tion(ii), r+1 does not divide n−r and t(r+1)+1 <

n− r, where t =
⌊

n−r
r+1

⌋
. Let 0 ≤ i ≤ n− 1.
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Let i > 0 and let S =
{i, r + 1 + i, 2(r + 1) + i, . . . , t(r + 1) + i}, where
t =

⌊
n−r
r+1

⌋
.

l(r+1)+ i = i+ n+1
2 . This implies r+1 divides

n+1
2 , a contradiction.

l(r + 1) + i is adjacent to m(r + 1) + i, if l(r +
1) + i +

(
n+1

2

)
=

m(r+1)+i. This implies (m−l)(r+1) = n+1
2 . This

implies r+1 divides n+1
2 , a contradiction. Proceeding

as in Case(ii), we get that S is an independent set of
cardinality

⌊
n−r
r+1

⌋
+ 1.

Thus β0(H2r+1,n) ≥
⌊

n−r
r+1

⌋
+ 1.

H2r,n is a spanning subgraph of H2r+1,n.

Therefore β0(H2r+1,n) ≤ β0(H2r,n) =
⌊

n−r
r+1

⌋
+

1. Therefore β0(H2r+1,n) =
⌊

n−r
r+1

⌋
+ 1.

Case(iii):
2(r + 1) divides n + 1 but not n− 1. Then r + 1

divides n − r. 0 is adjacent to n−1
2 and n+1

2 . Let
l1 = n+1

2(r+1) . 0 is adjacent to l1(r+1) and l1(r+1)−1.
Let S0 be the set of all elements 0, r + 1, . . . ,
(l1 − 1)(r + 1), l1(r + 1) + 1, . . . , t(r + 1) + 1.
If a(r + 1) = b(r + 1) + n+1

2 , where a, b ≤ (l1 − 1).
(a− b)(r +1) = n+1

2 . This implies a− b = n+1
2(r+1) =

l1, a contradiction.
If a(r + 1) + n+1

2 = b(r + 1) + 1,where a ≤
l1 − 1, b ≥ l1, then (b − a)(r + 1) = n−1

2 . That is
r + 1 divides n−1

2 , a contradiction.
If a(r + 1) + 1 = b(r + 1) + 1 + n+1

2 , where
a, b ≥ l1 and a > b, then a − b = n+1

2(r+1) = l1.
Therefore a = b + l1 ≥ l1 + l1 = 2l1 = n+1

(r+1) .
Therefore a(r + 1) ≥ n + 1.That is t(r + 1) ≥ a(r +
1) ≥ n + 1. Therefore t ≥ n+1

(r+1) , a contradiction,
since t = n−r

r+1 −1. Therefore S0 is an independent set
of cardinality t + 1 = n−r

r+1 .
Let i 6= 0. i is adjacent to n+1

2 + i.
Let l1 = n+1

2(r+1) . Therefore i is adjacent to l1(r +
1) + i.

Let Si = {i, i + r + 1, i + 2(r + 1), . . . , (l1 −
1)(r + 1) + i, l1(r + 1) + 1 + i, . . . ,
t(r + 1) + 1 + i}.

If a(r +1)+ i = b(r +1)+ i+ n+1
2 where a, b ≤

l1−1, then a−b)(r+1) = n+1
2 . a−b = n+1

2(r+1) = l1,
a contradiction.

If a(r + 1) + i + n+1
2 = b(r + 1) + 1 + i, where

a ≤ l1 − 1, b ≥ l1, then (b − a)(r + 1) = n−1
2 , a

contradiction.
If a(r+1)+1+ i = b(r+1)+1+ n+1

2 + i where

a, b ≥ l1 and a > b,then (a− b)(r + 1) = n+1
2 . This

implies a− b = n+1
2(r+1) = l1.

Therefore a = l1 + b ≥ l1 + l1 = 2l1 = n+1
r+1 and

a(r + 1) ≥ n + 1. That is t(r + 1) ≥ a(r + 1) ≥
n + 1, which implies t ≥ n+1

r+1 , a contradiction, since
t = n−r

r+1 − 1. So Si is independent set of cardinality
t + 1 = n−r

r+1 . Therefore β0(H2r+1,n) ≥ n−r
r+1 .

H2r,n is a spanning subgraph of H2r+1,n.
Therefore β0(H2r+1,n) ≤ β0(H2r,n) = n−r

r+1 .
Therefore β0(H2r+1,n) = n−r

r+1 .

Theorem 3.6. Consider H2r+1,n, where n is odd. Let
2(r + 1) divide (n − 1) but not n + 1. If t(r + 1) +
2 ≥ n − r, where t = n−r

r+1 , then H2r+1,n is not β0-
excellent.
Proof. 2(r + 1) divides n− 1 but not n + 1. Let l1 =
n−1

2(r+1 . 0 is adjacent to l1(r + 1). Also 0 is adjacent to
l1(r+1)+1,since l1(r+1)+1 = n−1

2 +1 = n+1
2 . Let

S1 be the set of all elements 0, r +1, . . . , (l1− 1)(r +
1), l1(r+1) = 2, (l1 +1)(r+1)+2, . . . , t(r+1)+2.

If t(r+1)+2 < n− r, then S1 is an independent
set of cardinality

⌊
n−r
r+1

⌋
+ 1. Suppose t(r + 1) + 2 =

n−r. Then S1 is not independent. Let S2 be the set of
all elements 0, r + 1, . . . , (l1 − 1)(r + 1), l1(r + 1) +
2, (l1 + 1)(r + 1) + 2, . . . , (t − 1)(r + 1) + 2 be an
independent set. Therefore |S2| = t =

⌊
n−r
r+1

⌋
< β0.

Let S′
1 be the set of all elements 0,−(r +

1),−2)r + 1), . . . ,−(l1 − 1)(r + 1),−l1(r + 1) −
2, . . . ,
− t(r + 1) − 2. If t(r + 1) + 2 < n − r, then
−t(r + 1) − 2 > r. Therefore −t(r + 1) − 2 is not
adjacent to 0. Therefore S′

1 is an independent set of

cardinality
⌊

n−r
r+1

⌋
+ 1 = β0.

Suppose t(r + 1) + 2 = n − r. Then S′
1 is not

independent.
Also S′

2 be the set of all elements
0,−(r+1),−2(r+1), . . . ,−(l1−1)(r+1),−l1(r+
1)− 2, . . . ,
−(t−1)(r+1)−2 is an independent set of cardinality⌊

n−r
r+1

⌋
< β0. Therefore 0 does not belong to any β0-

set.

Illustration 3.7. Consider H5,7. r = 2, n = 7, 2(r +
1) = 6 does not divide n + 1 = 8, but 6 divides
n− 1 = 7− 1 = 6.

t =
⌊

n−r
r+1

⌋
= 1, β0 =

⌊
n−r
r+1

⌋
+ 1 =

⌊
5
3

⌋
= 2.

S0 = {0} is a maximal independent set contain-
ing 0 and there is no β0-set containing 0.

S1 = {1, 4} , S2 = {2, 5} , S3 = {3, 6} are the
β0-sets of H5,7.
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Remark 3.8. H2r,n is β0-excellent. H2r+1,n is not
β0-excellent if and only if n is odd and 2(r+1) divides
n− 1.

4 JUST β0- EXCELLENT GRAPHS

N. Sridharan and M. Yamuna [10] initiated the study
of just excellence in graphs with respect to the dom-
ination parameter. A graph G is just γ excellent if
every vertex is contained in a unique minimum dom-
inating set. In this section, just β0- excellent graphs
are defined and studied.

4.1 Introduction

Partition of V (G) into independent sets is the same as
proper coloring of the graph. A chromatic partition is
a partition of the vertex set into minimum number of
independent sets. Such a partition may not contain a
maximum independent set. For example, a double star
contains a unique chromatic partition of cardinality
two in which both the independent sets are not maxi-
mum. The question that naturally arises is that ”‘Does
there exist a graph in which the vertex set can be parti-
tioned into maximum independent sets ?”’. This leads
to the concept of just β0- excellent graphs. It is shown
in this chapter that a graph of order n is just β0- excel-
lent if and only if β0(G) divides n, G has exactly n

β0

distict β0 sets and the maximum cardinality of a parti-
tion of V (G) into independent sets is n

β0
. This section

is devoted to the definition and properties of just β0-
excellent graphs, just β0 excellence in product graphs,
just β0 excellence in Generalized Petersen graphs and
just β0 excellence in Harary graphs.

4.2 Definitions and Properties of just β0- ex-
cellent graphs

Definition 4.1. A graph G is said to be just β0-
excellent graph if for each u ∈ V , there exists a
unique β0-set of G containing u.

Examples of just β0-excellent graphs
(1) C2n (2) Kn (3) Kn,n (4) Pm�Pn, if

mn ≡ 0(mod2).

Examples of not just β0-excellent graphs
(1) C2n+1 (2) K1,n (3)Pn (4) The subdivision

graph of K1,n (5) Petersen graph (6) Wn, n ≥ 5 (7)
Dr,s (8) G ◦K1, for any connected graph G.

(9) Fn = Pn−1 + K1.

Properties of just β0-excellent graphs

1. Every just β0-excellent graph is a β0-excellent
graph.

2. If G is justβ0-excellent and G 6= Kn,then there is
no vertex u such that < V −N [u] > contains at least
two maximum independent sets.
Proof. Since G is just β0-excellent, given u ∈ V (G),
there exists a unique β0-set S of G containing u. Sup-
pose V − N [u] contains at least two maximum inde-
pendent sets. G 6= Kn.

Therefore β0(G) ≥ 2 and β0(< V −N [u] >) ≥
1. S − {u} is an independent set of < V −N [u] >
and hence β0(< V −N [u] >) ≥ β0(G)− 1.
If β0(< V − N [u] >) = β0(G), then any β0-set of
< V −N [u] > together with u is an independent set of
G of cardinality β0(G)+1, a contradiction. Let T1, T2

be two maximum independent sets of V −N [u]. Then
T1∪{u} and T2∪{u} are maximum independent sets
of G, a contradiction.

3. Let G be just β0-excellent. Then there exists a
unique partition of V (G) into β0-sets of G.
Proof. Let u ∈ V (G). Let S1 be the unique β0-set of
G containing u.

If V −S1 = φ, then there is nothing to prove. Oth-
erwise consider a vertex v ∈ V − S1. v is contained
in a unique β0-set say S2 of G. S1 ∩ S2 = φ, since G
is just β0-excellent. If V − (S1 ∪ S2) = φ, the pro-
cess stops. Otherwise there exists w ∈ V − (S1∪S2).
There exists a unique β0-set say S3 of G containing w.
Clearly Si ∩ Sj = φ, i 6= j, 1 ≤ i, j ≤ 3. Proceeding
like this, we get a partition of V (G) into β0-sets of G.

4. β0(G) is a factor of n.
Proof. From the previous property, n = mβ0(G),
where m is the cardinality of the partition of V (G)
into β0-sets.

5. Let G be a just β0-excellent graph. Let |V (G)| =
n. Then n = χ(G)β0(G).

From property 4, n = dβ0(G). Also n
β0(G) ≤

χ(G) and hence d ≤ χ(G). Clearly χ(G) ≤ d. Hence
χ(G) = d.

6. In a just β0-excellent graph G, |V (G)| =
β0(G).χ(G). The converse is not true.
Consider P6. β0(P6) = 3, χ(P6) = 2. |V (P6)| =
6 = β0(P6).χ(P6). But P6 is not a just β0-excellent
graph.

7. δ(G) ≥ n
β0(G) − 1.

Proof. Let Π = {S1, S2, . . . , Sm} be a β0-set par-
tition of V (G). Let u ∈ Si. Then u is adjacent to
at least one vertex in each Sj , j 6= i. Therefore
deg(u) ≥ m − 1. Therefore δ(G) ≥ m − 1 =
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n
β0(G) − 1.

8. n
β0(G) = 1 if and only if G = Kn.

9. If G has two or more disjoint β0-sets, then G has
no isolates.
Proof. Suppose G has two or more disjoint β0-sets.
Let S1, S2, . . . , St be the disjoint β0-sets. Then t ≥ 2.
Suppose G has an isolate, say u. Let u ∈ S1. Then
S2∪{u} is an independent set of cardinality β0(G)+1,
a contradiction. (or) [ Equivalently, any isolate vertex
is contained in every β0-set and hence if there are iso-
lates, there can not be two or more disjoint β0-sets.]
Thus, if G is just β0-excellent and G has an isolate,
then G = Kn and conversely.

10. Let G be a just β0-excellent graph. If G 6= K2

and G 6= Kn, then δ(G) ≥ 2.
Proof. Since G 6= Kn and since G is a just β0-
excellent graph, δ(G) ≥ 1.

Suppose u is a pendent vertex of G. Let N(u) =
{v}. Since G is just β0-excellent, there exists a β0-
set of D containing v. Therefore v ∈ D and u /∈ D.
Suppose β0(G) = 1. Then G is a complete graph.
Since G 6= K2 and δ(G) ≥ 1, G = Kn, n ≥ 3.
Therefore δ(G) ≥ 2. Therefore u is not a pendent
vertex, a contradiction. Suppose β0(G) ≥ 2. Then
|D| ≥ 2. Therefore there exist w ∈ D, w 6= v. Let
D1 = (D − {v}) ∪ {u}. Then D1 ia a β0-set of G
and w is contained in two β0-sets of G namely D and
D1, a contradiction. Therefore δ(G) ≥ 2.

Remark 4.2. Any even cycle G is a just β0-excellent
graph with δ(G) = 2. Any tree is not a just β0-
excellent graph.

11. A graph G has exactly two disjoint β0-sets whose
union is V (G) say V1, V2 if and only if for every non
empty proper subset A of V1 or V2, |N(A)| > |A|.
Proof. Suppose G has exactly two disjoint β0-sets
whose union is V (G) say V1, V2. Let A ⊂ V1. Sup-
pose |N(A)| ≤ |A|. Let C = V2 − N(A). If
C = φ, then N(A) = V2. Thus |A| ≥ |N(A)| =
|V2| = β0(G). But A ⊂ V1, a contradiction. Thus
C 6= φ. A ∪ C is an independent set of G and
|A∪C| = |A|+|C| = |A|+β0(G)−|N(A)| ≥ β0(G),
a contradiction, since G has exactly two disjoint β0-
sets whose union is V (G). Therefore, |N(A)| > |A|.
Conversely, let there be two disjoint β0-sets whose
union is V (G) say V1, V2 and for any proper subset
A of V1 or V2, |N(A)| > |A|.

Let W be a β0-set of G. W 6= V1, and W 6= V2.
Let W ∩ V1 = W1, W ∩ V2 = W2. Then W1 6=
φ,W2 6= φ. |N(W1)| > |W1|. N(W1) ∩ W2 = φ.

(For: if x ∈ N(W1) ∩ W2, then x ∈ N(W1) and
x ∈ W2. That is x is adjacent to every vertex in W1

and x ∈ W2. But W1 ∪ W2 = W is an independent
set, a contradiction.) |W1|+|W2| = β0(G). Therefore
|N(W1)| + |W2| > β0(G). That is |V2| > β0(G), a
contradiction. Hence the theorem.

Corollary 4.3. A graph G has exactly two disjoint β0-
sets whose union is V (G) if G is of even order and
contains a spanning cycle u1, u2, . . . , u2n such that
whenever ui, uj are adjacent, then i, j are of opposite
parity.
Proof. Suppose G is of even order and contains a
spanning cycle u1, u2, . . . , u2n such that whenever
ui, uj are adjacent, then i, j are of opposite parity.
Then {u1, u3, . . . , u2n−1}, {u2, u4, . . . , u2n} are the
only β0-sets of G whose union is V (G). The converse
is not true.

(i) Consider G.

rr
rr

rrrr r rr
rr
r1
2

3
4
5
6

7

8
9
10
11
12

u

u′

G :
r
r

r
r

r
r

r
r

r
r

r
r

r
rG :

1 5 7 9 11 u′

u12108642

3

There are exactly two disjoint β0-sets
{1, 3, 5, 7, 9, 11, u′} , {2, 4, 6, 8, 10, 12, u}
whose union is V (G). G has no spanning
cycle. For: consider S = {4, 8, 5, 11}.
ω(G − S) = 5 and the five components are
{u} , {u′} , {9, 10} , {6, 7} , {1, 2, 3, 12}.

(If G has spanning cycle, then for any S ⊆
V (G), ω(G− S) ≤ |S|.)

(ii) Consider C2n, (n ≥ 6). Let
V (C2n) = {u1, u2, . . . , u2n}. Add two more
vertices u, u′. Join u with u2n−1, u2n−3 and
u′ with u2n−4, u2n−6. Let G be the resulting
graph. Let S = {u2n−1, u2n−3, u2n−4, u2n−6}.
The components of G − S are
{u} , {u′} , {u2n−2} , {u2n−5} , {u2n, 1, . . . , u2n−7}.

Therefore ω(G − S) > |S|. There-
fore G can not contain a spanning cy-
cle. But G has exactly two β0-sets namely
{1, 3, 5, . . . , (2n− 1), u′} , {2, 4, . . . , 2n, u}.

12. Let G have two disjoint β0-sets V1, V2 whose
union is V (G). Then

(a) G has no isolates.
(b) N(V1) = V2 and N(V2) = V1.
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(c)If G 6= K2, then δ(G) ≥ 2.
Proof. (a) Suppose G has an isolate say u. Let u ∈ V1.
Then V2 ∪ {u} is an independent set of cardinality
β0(G) + 1, a contradiction. Therefore G has no iso-
lates.

(b) Suppose N(V1) ⊂ V2. Let v ∈ V2 − N(V1).
Then v is an isolate of G, a contradiction. Therefore
N(V1) = V2. Similarly, N(V2) = V1.

(c) Let u ∈ V1. (Similar proof holds if u ∈ V2).
If |V1| = 1, then G = K2, a contradiction. There-
fore |V1| > 1. Let A = {u}. Since |N(A)| > |A|,
|N(A)| ≥ 2. Therefore deg(u) ≥ 2. Therefore
δ(G) ≥ 2.

13. Let G have exactly two disjoint β0-sets V1(G) and
V2(G) whose union is V (G). Then G is connected.
Proof. Suppose G is disconnected. Let G1 be a com-
ponent of G and
G2 =< V (G) − V (G1) >. Let V1 ∩ V (G1) = A,
V2∩V (G1) = D, V1∩V (G2) = C and V2∩V (G2) =
B.
Since φ 6= A ⊂ V1. Then |N(A)| > |A|, ( using
property 11). N(A) ⊂ D. Therefore V2−N(A) ⊃ B
(since B ∪D = V2). Therefore |V2 − N(A)| ≥ |B|.
|V2| = |N(A)| + |V2 − N(A)| and hence β0(G) >
|A|+|B|. Similarly, |V1| = β0 > |C|+|D|. Therefore
|A|+|B|+|C|+|D| < 2β0(G). But |V1| = |A|+|C|.
|V2| = |B|+ |D|. |V1|+ |V2| = |A|+ |B|+ |C|+ |D|.

Then 2β0(G) = |A|+ |B|+ |C|+ |D|, a contra-
diction. Therefore G is connected.

14. Every just β0-excellent graph G 6= Kn is con-
nected.
Proof. Suppose G is not connected. Since G 6= Kn,
one of the connected components of G, say G1, has at
least two vertices.

Claim: G1 is a just β0-excellent graph.
Let u ∈ V (G1). Then there exists a unique β0-set

say S of G containing u. Let S1 = S ∩ V (G1). Then
S1 is an independent set of G1 containing u. Suppose
S1 is not a β0-set of G1. Then |S1| < β0(G1). Let
S2 = S ∩ V (G − G1). Then S = S1 ∪ S2 and S1

and S2 are disjoint. Therefore β0(G) = |S| = |S1|+
|S2| < β0(G1) + β0(< G − G1 >). But β0(G) =
β0(G1)+β0(< G−G1 >), a contradiction. Therefore
S1 is a β0-set of G. G1 is β0-excellent graph.
Let u ∈ V (G1). Suppose A and B are β0-sets of G1

containing u. Let C be any β0-set of < G − G1 >.
Then A ∪ C,B ∪ C are β0-sets of G containing u, a
contradiction, since G is just β0-excellent. Therefore
G1 is just β0-excellent. Since G1 is connected and of
order ≥ 2, there are at least two β0-sets in G1. Let

A1, B1 be two β0-sets of G1. Let C be a β0-set of
< G−G1 >. Then C∪A1, C∪B1 are two β0-sets of
G containing C which is non empty, a contradiction.
Therefore G is connected.

15. Let G be a just β0-excellent graph.
Let u ∈ V (G). Let S be the unique β0-set of

G containing u. Then < pn[u, S] > is complete and
|pn[u, S]| ≤ χ(G).
Proof. Let x, y ∈ pn(u, S). Then u is adjacent to x, y.
Also x, y are not adjacent to any vertex of S − {u}.
If x, y are not adjacent, then (S − {u}) ∪ {x, y} is
an independent set of G of cardinality β0(G) + 1, a
contradiction. Therefore N [u] is complete. Since G
is just β0-excellent, there exist at least |N [u]| β0-sets
in G. Therefore pn[u, S] ≤ number of β0-sets of G =
χ(G).

16. There are graphs for which pn[u, S] = χ(G).
Consider K4,4,4. Let V (K4,4,4) be the set of all

elements u1, u2,u3, u4, v1, v2, v3, v4, w1, w2, w3, w4

where {u1, u2, u3, u4}, {v1, v2, v3, v4},
{w1, w2, w3, w4} are β0-sets. Remove the edges
v1u2, v1u3, v1u4, w1u2, w1u3, w1u4.

Let G be the resulting graph. G
is just β0-excellent having the three β0-
sets, {u1, u2, u3, u4} , {v1, v2, v3, v4}, and
{w1, w2, w3, w4}. Let S = {u1, u2, u3, u4}.
pn[u, S] = {u1, v1, w1}. Then |pn[u, S]| = 3 =
χ(G).

17. Let G be a bipartite just β0-excellent graph and
G 6= K2. Let u ∈ V (G). Let S be the unique β0-set
of G containing u. Then pn[u, S] = {u}.
Proof. Since G is bipartite, χ(G) = 2. Since G is just
β0-excellent, number of β0-sets of G = χ(G) = 2. If
for any u ∈ V (G), pn[u, S] ⊃ {u}, then there exists
u ∈ pn[u, S], v 6= u. Also, if V1, V2 is the bipartition
and if u ∈ V1, then (V1 − {u}) ∪ {v} is a β0-set,
contradicting the fact that there are exactly two β0-
sets. Therefore pn[u, S] = {u}.

Remark 4.4. |pn[u, S]| = 1 < 2 = χ(G).

Example: 1

u u
u

uu
1 2

34

5
G1 :

G1 is γ-excellent but not β0-excellent.

Example :2
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G2 :

G2 is neither γ nor β0-excellent.

Example:3

s
s
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s
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1 2 3

4 5 6

G3 :

G3 is β0-excellent but not γ-excellent.

Example:4 s
s

s
s

s
s�

�
�

�
1 2 3

4 5 6

G5 :

G5 is just β0-excellent but not γ-just excellent.

Example:5

t t
tt

t t

tt
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�

1 2

34

5
6

78

G6 :

G6 is neither just γ-excellent nor β0-excellent.

Example:6 C9 is just γ-excellent but not just β0-
excellent. C9 is β0-excellent.

Example:7 Kn is both just γ-excellent and just β0-
excellent.

Remark 4.5. Qn is just β0-excellent (β0(Qn) =
2n−1, each vertex is n-regular and χ(Qn) = 2).

Theorem 4.6. A graph G is just β0-excellent if and
only if

(i) β0(G) divides n.
(ii) G has exactly n

β0(G) distinct β0-sets.
(iii) The maximum cardinality of a partition of

V (G) into independent sets is n
β0(G) .

Proof. Let G be a just β0-excellent. Let
S1, S2, . . . , Sm be the collection of distinct β0-sets of
G. Since G is just β0-excellent, these sets are pairwise
disjoint and their union is V (G). Therefore (i),(ii) and
(iii) follows.

Conversely, let G be a graph satisfying the condi-
tions (i), (ii) and (iii). Let n = mβ0(G). By condition
(iii), there exist independent sets V1, V2, . . . , Vm such
that they are pairwise disjoint and V1∪V2∪. . .∪Vm =
V .
Therefore n =

m∑
i=1

|Vi| ≤ mβ0(G). Since n =

mβ0(G), each Vi is a maximum independent sets of
G. Therefore V = V1 ∪ V2 ∪ . . . ∪ Vm and Vi’s are
pairwise disjoint β0-sets. Therefore G is β0-excellent.
Since G has exactly n

β0(G) (= m) distinct β0-sets,
V1, V2, . . . , Vm are the only β0-sets of G. Therefore
G is just β0-excellent.

Observation 4.7. Let G be a just β0-excellent graph.
Then ∆(G) ≤ (χ(G)− 1)β0(G).
Proof. Let u ∈ V (G). Let deg(u) > (χ(G) −
1)β0(G). u is not adjacent to at least β0(G) − 1 ver-
tices. degG(u) + degG(u) = n− 1.

Therefore n− 1 > (χ(G)− 1)β0(G) + β0(G)−
1 = χ(G)β0(G)− 1 = n− 1, a contradiction.

Therefore degG(u) ≤ (χ(G) − 1)β0(G). There-
fore ∆(G) ≤ (χ(G)− 1)β0(G).

Remark 4.8. The upper bound is reached in G =
Kn1,n2,...,nr , where n1 = n2, . . . = nr = n.(
χ(G) = r, β0(G) = n, deg(u) = (r − 1)n) =
(χ(G)− 1)β0(G).

Theorem 4.9. Let G, H be just β0-excellent graphs
and G 6= Kn, H 6= Kn.

Then (i) G ∪H is not just β0-excellent.
(ii) G + H is just β0-excellent if and only if

β0(G) = β0(H).
Proof. (i) Since G 6= Kn, H 6= Kn, G has at least two
β0-sets and H has at least two β0-sets. Let u ∈ V (G).
Then there exists a unique β0-set S in G containing u.
Let T1, T2 be two β0- sets of H . Then S ∪ T1, S ∪ T2

are two β0-sets of G ∪ H containing u. Therefore
G ∪H is not just β0-excellent.
(ii) Suppose G + H is just β0-excellent. Then G + H
is β0-excellent. Therefore β0(G) = β0(H).
Conversely, let β0(G) = β0(H). Any β0-set of G+H
is either a β0-set of G or a β0-set of H . Since G, H
are just β0-excellent, we get that G + H is just β0-
excellent.

Theorem 4.10. Let G be a just β0-excellent and let
G 6= Kn and G be not a bipartite graph. Then
β0(G) ≤ n

3 , where n = |V (G)|.
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Proof. Since G is not bipartite and G is just β0-
excellent, there are at least three β0-sets. Therefore

n
β0(G) ≥ 3 ⇒ β0(G) ≤ n

3 .

Remark 4.11. Kr,r,r is a just β0-excellent graph in
which β0(G) = n

3 .

Theorem 4.12. Every graph is an induced subgraph
of a just β0-excellent graph.
Proof. Let G be a graph. Let S11, S12, . . . , S1k1 be
disjoint β0-sets of G.

(k1 ≥ 1). Let G1 = G − (S11 ∪ S12 ∪ . . . ∪
S1k1). Let S21, S22, . . . , S2k2 be disjoint β0-sets of
G1. Proceeding in this manner, we get a partition π of
V (G) into independent sets such that the first set of k1

independent sets are β0-sets of G. Add new vertices
such that each partite set in π have cardinality β0(G)+
1. Make the new vertices adjacent to all the vertices
in the partite sets of π other than that in which they
lie. It is easy to see that the resulting graph is just
β0-excellent with independence number β0(G) + 1.

Addition of vertices to G such that each partite
set in π has cardinality β0(G) may not give a just β0-
excellent graph.

Example 4.13.

s s s s

ss
u1 u2

u3u4

u5

u6

G :

β0-sets of G are {u1, u3, u5},
{u2, u4, u6},{u1, u3, u6}.

Here π = {{u1, u3, u5} , {u2, u4, u6}} and
∪S∈πS = V (G). If we add no vertex, we get G it-
self which is β0-excellent but not just β0-excellent.

Definition 4.14. Let G be any graph. Suppose G is
not just β0-excellent. Let H be a just β0-excellent
graph of minimum order containing G as an induced
subgraph. Then |V (H)| − |V (G)| is called just β0-
excellent embedding index of G and is denoted by
emβ0(G).

Remark 4.15. emβ0(G) ≤ t(β0 + 1)− n.

Definition 4.16. Let G be a graph. Suppose G is not
just β0-excellent graph. Let H be a just β0-excellent
graph of minimum independence number containing
G as an induced subgraph. Then |β0(H)| − |β0(G)|
is called just β0-excellent embedding independent in-
dex of G and is denoted by emiβ0(G).

Remark 4.17. (1) Since G is an induced subgraph of
H , β0(G) ≤ β0(H).

(2) 0 ≤ emiβ0(G) ≤ 1.
(3) There are graphs in which emiβ0(G) = 0.

Example 4.18.

s s s s

ss
1 2

56

3
4

G :

t t t t
tttt

1 3 5 7

2 4 6 8

H1 :

r r r
rrr

r r r

1 5

2 6

3 8 9

4

7
H2 :

β0(H1) = 4, β0(H2) = 3. G is an induced sub-
graph of both H1 and H2 . H2 is a graph with min-
imum independence number containing G as an in-
duced subgraph. Thus emiβ0(G) = 0.

Remark 4.19. If G is not β0- excellent and G has a
unique β0-set, then emiβ0(G) = 0.

Remark 4.20. If G is just β0-excellent, then H = G
and hence emiβ0(G) = emβ0(G) = 0.

Remark 4.21. Let G be a non just β0-excellent graph.
G is said to belong to emi-C1 class if emiβ0(G) = 0
and emi-C2 class if emiβ0(G) = 1.

Example 4.22. (1) K1,n belongs to emi-C1 class.
(2) C2n+1 belongs to emi-C2 class .

Open Problem:
Characterize emi-C1 class and emi-C2 class.

Remark 4.23. Consider Dr,s. It has a unique β0-set.
Any chromatic partition consists of two sets. If we
consider a chromatic partition and add new vertices
and edges as in the theorem, then we may not get a
just β0-excellent graph.

Example 4.24.
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G :

β0(H) = 7 and {1, 2, 3, 6, 7, 8, 9} is the unique
β0-set of H . Then H is not even β0-excellent. Hence
the partition of V (G) into independent sets is to be
done in the manner described in the theorem.

Remark 4.25. Let π be the partition of V (G) as in
the theorem. Then the number of new vertices added
is |π|(β0(G) + 1)− n.

Proof. Let π = {V1, V2, . . . , Vk, . . . , Vt}, where
V1, V2, . . . , Vk are β0-sets (k ≥ 1) of G and the re-
maining sets are independent having cardinality <
β0(G). The number of vertices added to G = k +

t∑
i=k+1

(β0(G)+1−|Vi|) = k+(t−k)(β0 +1)− (n−

kβ0) = tβ0 + t− n = t(β0 + 1)− n.

Illustration 4.26.

s
s
s s

s
1

2

34

5G :

s s s
sss
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aaaaaaaaa

c
c

c
cc

H :

The β0-sets of C5 are {1, 3}, {1, 4},{2, 4},{2, 5}.
Hence C5 is not β0-excellent. But for H , the β0-sets
are {1, 3, 7}, {2, 4, 8} and {5, 6, 9}. H is just β0-
excellent graph; β0(C5) = 2, β0(H) = 3 and the
number of new vertices added is 4.

4.3 Just β0 excellence in Product graphs

Theorem 4.27. Let H be a graph. If n = χ(H), then
Kn�H is just β0-excellent and if n > χ(H), then
Kn�H is not just β0-excellent.

Proof follows from the theorem 2.19.

Observation 4.28. Let H be a graph. Kn�H is just
β0-excellent if and only if H is just β0-excellent.

Theorem 4.29. If every vertex of H belongs to an
union of disjoint independent sets of H of maximum
cardinality, then Kn�H is not just β0-excellent
Proof. Suppose every vertex of H belongs to an union
of disjoint independent sets of H of maximum cardi-
nality. Then by theorem 2.22, Kn�H is β0-excellent.

Suppose {S1, S2, . . . , Sn} and
{X1, X2, . . . , Xn} are collections of disjoint in-
dependent sets of H with union having maximum
cardinality. If Si∩Xj 6= φ, for some i, j, then as seen
in theorem 2.22, any element of Si ∩Xj is contained
in two maximum independent sets and hence Kn�H
is not just β0-excellent. Suppose Si ∩ Xj = φ, for
every i, j.

Claim: For some order of {S1, S2, . . . , Sn}, |Si| =
|Xi|, 1 ≤ i ≤ n.

Let
∑n

i=1 |Si| = t. Then
∑n

i=1 |Xi| = t.
Suppose |Si| < |Xi|. Then |S1| + |S2| + . . . +
|Si−1| + |Si+1| + . . . + |Sn| > |X1| + |X2| +
. . . + |Xi−1| + |Xi+1| + . . . + |Xn|. Therefore
|Xi|+ |S1|+ . . . + |Si−1|+ |Si+1|+ · · ·+ |Sn| > t.
Since Si ∩ Xj = φ, we have disjoint independent
sets of H , Xi, S1, S2, . . . , Si−1, Si+1, . . . Sn such that
|Xi|+ |S1|+ . . .+ |Si−1|+ |Si+1|+ . . .+ |Sn| > t, a
contradiction. Similarly, if |Si| > |Xi|, we get a con-
tradiction. Therefore |Si| = |Xi|, 1 ≤ i ≤ n. Let v ∈
S1. Then as seen in theorem 2.22, S1, S2, . . . , Sn as
well as S1, X2, . . . , Xn give rise to β0-set of Kn�H
and (ui, v) belongs to at least two β0-sets of Kn�H .
Therefore Kn�H is not just β0-excellent.

Theorem 4.30. Let G be a bipartite graph. G�C2m

is just β0-excellent and G�C2m+1 is not just β0-
excellent.
Proof follows from theorem 2.46

Theorem 4.31. The following are just β0-excellent
graphs.

(i) P2n�P2k+1 is just β0-excellent.
(ii) P2n�C2k is just β0-excellent.
(iii) P2n+1�C2k is just β0-excellent.

Proof follows from remark 2.30 and theorem
2.31.

Theorem 4.32. The following are not just β0-
excellent graphs.

(i) P2n�C2k+1

(ii) P2n+1�C2k+1
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4.4 Just β0-excellence in Generalized Pe-
tersen graphs P (n, k)

Definition 4.33. Generalised Petersen
Graphs P (n, k): For each n ≥ 3 and
0 < k < n , P (n, k) denotes the gener-
alised Petersen graph with vertex set V (G) =
{u1, u2, · · · , un, v1, v2, · · · , vn} and the edge set
E(G) = {uiui+1(mod n), uivi, vivi+k(mod n)}, 1 ≤
i ≤ n.

Theorem 4.34. P (2n, k) is just β0-excellent if k is
odd.
Proof. Let {u1, u2, . . . , un} be the vertices in the
outer circle and {v1, v2, . . . , vn} be the remaining ver-
tices. Let S1 = {v1, u2, v3, u4, . . . , v2n−1, u2n} and
S2 = {u1, v2, u3, v4, . . . , u2n−1, v2n}. Then S1, S2

are disjoint β0-sets of P (2n, k). Clearly for any non-
empty proper subset A of S1 or S2, |N(A)| > |A|.
Therefore P (2n, k) is just β0-excellent.

Illustration 4.35. s sss
s
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s
s
ss

ss
ssss

s
s s s s

ss
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u12
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v10

v11

v12

P (12, 3) :

The β0-sets are
{u1, v2, u3, v4, u5, v6, u7, v8, u9, v10, u11, v12},

{v1, u2, v3, u4, v5, u6, v7, u8, v9, u10, v11, u12}.
Hence P (12, 3) is just β0-excellent.

Theorem 4.36. P (n, 1), n odd is β0-excellent but not
just β0-excellent.
Proof. Let

V (P (n, 1) = {u1, u2, . . . , un, v1, v2, . . . , vn}.
E(P (n, 1)) = {uiui+1, vivi+1, uivi, (mod n)},

where 1 ≤ i ≤ n,
β0(P (n, 1)) = n− 1. The following are β0-sets

{u1, v2, u3, v4, . . . , un−2, vn−1},
{v1, u2, v3, u4, . . . , vn−2, un−1},
{un, v1, u2, v3, u4, . . . , un−3, vn−2} and
{vn, u1, v2, . . . , vn−3, un−2}. Therefore P (n, 1), n is
odd is β0-excellent. Clearly, it is not just β0-excellent.

Illustration 4.37.
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P (11, 1) :

The β0-sets of P (11, 1) are
{u1, v2, u3, v4, u5, v6, u7, v8, u9, v10},
{v1, u2, v3, u4, v5, u6, v7, u8, v9, u10},
{u11, v1, u2, v3, u4, v5, u6, v7, u8, v9} and

{u1, v2, u3, v4, u5, v6, u7, v8, u9, v11}. Hence all
the vertices are in at least one β0-set. Hence P (11, 1)
is β0-excellent, but clearly P (11, 1) is not just β0-
excellent.

Theorem 4.38. P (n, 3), n odd is β0-excellent but not
just β0-excellent
Proof. Let

V (P (n, 3) = {u1, u2, . . . , un, v1, v2, . . . , vn},
E(P (n, 3)) = {uiui+1, vivi+3, uivi, (mod n)}

where 1 ≤ i ≤ n . β0(P (n, 3)) = n− 2.
The following are β0-sets

{u1, v2, u3, v4, . . . , un−2, vn−2},
{v1, u2, v3, u4, . . . , vn−2},
{un−1, vn, u1, v2, . . . , un−3} and
{vn−1, un, v1, u2, . . . , vn−3},
{un, v1, u2, . . . , un−3}, {vn, u1, v2, . . . , vn−3}.

Therefore P (n, 3), n is odd is β0-excellent.
Clearly, it is not just β0-excellent. Hence the result.

Illustration 4.39. s
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P13,3 :

The β0-sets are
{u1, v2, u3, v4, u5, v6, u7, v8, u9, v10, u11},
{v1, u2, v3, u4, v5, u6, v7, u8, v9, u10, v11},
{u12, v13, u1, v2, u3, v4, u5, v6, u7, v8, u9},
{u13, v1, u2, v3, u4, v5, u6, v7, u8, v9, u10}.
Therefore P13,3 is β0-excellent. Clearly, P13,3 is

not just β0-excellent.
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Theorem 4.40. P (n, 5), n odd is β0-excellent but not
just β0-excellent
Proof. Let
V (P (n, 5) = {u1, u2, . . . , un, v1, v2, . . . , vn},
E(P (n, 5)) = {uiui+1, vivi+5, uivi, 1 ≤ i ≤
n (mod n)}. β0(P (n, 3)) = n− 3. The following are
β0-sets {u1, v2, u3, v4, . . . , vn−5, un−4, un−2},
{v1, u2, v3, u4, . . . , un−5, vn−4, vn−2}. Sim-
ilar β0-sets can be written starting with
un−1; vn−1;un; vn;un−3; vn−3. Therefore P (n, 5), n
odd is β0-excellent. Clearly, it is not just β0-excellent.

Illustration 4.41. s
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P (15, 5)

The β0-sets of P (15, 5) are
{u1, v2, u3, v4, u5, v6, u7, v8, u9, v10, u11, u13},
{v1, u2, v3, u4, v5, u6, v7, u8, v9, u10, v11, v13},
{u15, v14, u13, v12, u10, v9, u8, v7, u6, v5, v4, u3, }.

Therefore P (15, 5) is β0-excellent and it is not just
β0-excellent.

Theorem 4.42. P (n, 2), n odd is β0-excellent but not
just β0-excellent

Proof. Let
V (P (n, 2) = {u1, u2, . . . , un, v1, v2, . . . , vn},
E(P (n, 2)) = {uiui+1, vivi+2, uivi, (mod n)}

where 1 ≤ i ≤ n. β0(P (n, 2)) = [4n
5 ]. The following

are β0-sets {u1, v2, u3, v4, . . . , vn−4, un−3, un−1},
{v1, u2, v3, u4, . . . , un−4, vn−3, vn−1}. Similar β0-
sets can be written starting with the remaining ver-
tices of P (n, 2). Therefore P (n, 2), n is odd is β0-
excellent. Clearly, it is not just β0-excellent.

4.5 Just β0-excellence of Harary graphs

The β0-excellence of Harary graph has been discussed
in the third section. Based on the results in that sec-
tion, the just β0-excellence of Harary graphs are dis-
cussed here.

Observation 4.43. The condition
⌊

n−r
r+1

⌋
6= j−i

r+1 is not
sufficient to ensure that H2r,n is not just β0- excellent.

Consider H5,9. Here r = 2, n = 9,n − r = 7.
t = n−r

r+1 = 7
3 = 2. Let j = 3, i = 0. j−i

r+1 = 3
3 = 1 6=⌊

n−r
r+1

⌋
.

But S3 = {3, 6, 0} , S0 = {0, 3, 6} are not dis-
tinct. Here 3 ∈ S0 and 0 ∈ S3.

Remark 4.44. The condition j /∈ Si (or) S′
i implies

that
⌊

n−r
r+1

⌋
6= j−i

r+1

Suppose
⌊

n−r
r+1

⌋
= j−i

r+1 . Then j−i
r+1 = t, where

t =
⌊

n−r
r+1

⌋
.

Therefore j − i = t(r + 1). Therefore j = t(r +
1) + i. Therefore j ∈ Si, a contradiction.

Remark 4.45. The condition that
⌊

n−r
r+1

⌋
6= j−i

r+1 need

not imply that j /∈ Si and S′
i.

Consider H5,9. Here r = 2, n = 9,n − r = 7.
t = n−r

r+1 = 7
3 = 2.

Let j = 3, i = 0. S0 = {0, 3, 6} , S′
0 = {0, 3, 6}.

3 ∈ S0 and S′
0.

j−i
r+1 = 3−0

3 = 1 6= n−r
r+1 . But j ∈ Si and j ∈ S′

i.

Theorem 4.46. Let j − i = q(r + 1), q > 0. Then
q ≤ 2t and q can be written as t−m, where m ≥ −t,
t =

⌊
n−r
r+1

⌋
.

Proof. Suppose r+1 divides j−i. Let j−i = (r+1)q.
Write q = l − m, l ≤ t, where t =

⌊
n−r
r+1

⌋
.Suppose

q > 2t and n− r = q1(r + 1) + α1, 0 ≤ α1 < r + 1.
2t(r + 1) = 2

⌊
n−r
r+1

⌋
(r + 1) = 2

⌊
q1(r+1)+α1

r+1

⌋
(r +

1) = 2q1(r + 1) = 2n− 2r − 2α1.
2t(r + 1) = n + (n − 2r − α1) − α1. q > 2t

implies that q ≥ 2t + 1.
Therefore,

q(r + 1) ≥ (2t + 1)(r + 1)
= 2t(r + 1) + (r + 1)
= n + (n− 2r − α1) + (r + 1− α1)).

Since n− r = q1(r + 1) + α1, n− 2r−α1 = q1(r +
1)−r ( q1 = 0 implies that n−r = α1 < r+1 implies
that n < 2r + 1, a contradiction, since n ≥ 2r + 1).

Therefore, q1 ≥ 1. Therefore, n − 2r − α1 > 0.
Also, α1 < r + 1. Therefore, j − i = q(r + 1) >
n, a contradiction. Thus, q ≤ 2t. Suppose q ≤ t.
Then q = l − m, where l = t, m ≥ 0. Suppose
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t < q ≤ 2t. Then q = t −m, where m ≥ −t. Thus
for j − i = q(r + 1) with q > 0, we can always write
q = l −m, l = t, m ≥ −t.

Theorem 4.47. H2r,n is not just β0-excellent if
and only if there exist i, j(i < j), 0 ≤ i, j ≤
n − 1 such that r + 1 divides j − i (or) j −
i − n and j does not belong to Si or S′

i, where
Si = {i, r + 1 + i, . . . , t(r + 1) + i} and S′

i =
{i, i− (r + 1), . . . , i− t(r + 1)}, where t =

⌊
n−r
r+1

⌋
.

Proof. Suppose (r + 1) divides j − i. Then by the
theorem 4.46, j − i = q(r + 1) and q = t − m,
where m ≥ −t. Therefore (t − m)(r + 1) = j − i.
Therefore t(r + 1) + i = m(r + 1) + j. The two
β0-sets Si = {i, r + 1 + i, . . . , t(r + 1) + i}, S′

j =
{j, j − (r + 1), . . . ,m(r + 1) + j, . . . , j − t(r + 1)} (or)
Si = {i, r + 1 + i, . . . , t(r + 1) + i}, and Sj =
{j, j + (r + 1), . . . , j + t(r + 1)} have a common el-
ement namely t(r + 1) + i according as m < 0 (or)
m ≥ 0. Si = S′

j or Si = Sj implies j ∈ Si, a con-
tradiction. Therefore Si 6= S′

j or Si 6= Sj . Therefore
H2r,n is not just β0-excellent.

A similar proof holds when r + 1 divides
j − i − n. Conversely, Suppose H2r,n is not just
β0-excellent. Then there exist distinct β0-sets S1, S2

such that S1 ∩ S2 6= φ. Without loss of generality,
let S1 = {i, r + 1 + i, . . . , t(r + 1) + i} , S2 =
{j, j + (r + 1), . . . , j + t(r + 1)} (or)
S1 = {i, r + 1 + i, . . . , t(r + 1) + i} , S2 =
{j, j − (r + 1), . . . ,m(r + 1) + j, . . . , j − t(r + 1)}.
Since S1 and S2 are distinct, i does not be-
long to S2 and j does not belong to S1.
Let l(r + 1) + i = m(r + 1) + j (or)
l(r + 1) + i = m(r + 1) + j − n. Then l 6= 0,
m 6= 0. That is (r + 1)(l − m) = j − i (or)
(r +1)(l−m) = j− i−n. Therefore (r +1) divides
j − i (or)j − i− n.

Observation 4.48. If r+1 divides n−r and n−r
r+1 does

not divide n, then H2r,n is not just β0-excellent.
Proof. Suppose r+1 divides n−r, then β0(H2r,n) =
n−r
r+1 . If H2r,n is just β0-excellent, then β0 divides
n. But by hypothesis, n−r

r+1 = β0 does not divide n.
Therefore H2r,n is not just β0-excellent.

Illustration 4.49. Consider H5,11. Here r = 2, n =
11, n− r = 9, r + 1 = 3. t = n−r

r+1 − 1 = 3− 1 = 2.
2(r + 1) = 6 divides n + 1 = 12. β0(G) = n−r

r+1 = 3.
So S0 = {0, 3, 7}, S1 = {1, 4, 8}, S2 = {2, 5, 9},
S3 = {3, 6, 10}, S4 = {4, 7, 0}, S5 = {5, 8, 1},
S6 = {6, 9, 2}, S7 = {7, 10, 3}, S8 = {8, 0, 4}, S9 =
{9, 1, 5}, S10 = {10, 2, 6}. j = 10, i = 1. r + 1 di-
vides j−i. Si = S1 = {1, 9, 5}. S′

i = S′
1 = {1, 9, 5}.

10 /∈ S1 and S′
1. Therefore H5,11 is β0-excellent but

not just β0-excellent.
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