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Abstract: In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in
mathematical physics via the (1 + 1) dimensional modified Kawahara equation by using the following
two methods: (i) A further improved (G′

G )- expansion method, where G = G(ξ) satisfies the auxiliary
ordinary differential equation [G′(ξ)]2 = aG2(ξ) + bG4(ξ) + cG6(ξ), where ξ = x − V t while a, b, c and
V are constants. (ii) The well known extended tanh- function method. We show that the exact solutions
obtained by these two methods are equivalent. Note that the first method (i) has not been used by anyone
before.
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1 Introduction

In recent years, the exact solutions of nonlin-
ear PDEs have been investigated by many au-
thors( see for example [1]–[49]) who are inter-
ested in nonlinear physical phenomena. Many
powerful different methods have been presented
by those authors. For integrable nonlinear differ-
ential equations, the inverse scattering transform
method [2], the Hirota method [10], the truncated
Painleve expansion method [43], the Backlund
transform method [19]–[21] and the exp-function
method [4, 9, 36, 44, 45] are used in looking for
the exact solutions. Among non-integrable non-
linear differential equations there is a wide class
of the equations that referred to as the partially
integrable, because these equations become inte-
grable for some values of their parameters. There
are many different methods to look for the ex-
act solutions of these equations. The most fa-
mous algorithms are the truncated Painleve ex-
pansion method [14], the Weierstrass elliptic func-

tion method [13], the tanh- function method
[1, 7, 8, 32, 34, 39, 46] and the Jacobi elliptic func-
tion expansion method [6, 16, 18, 30, 37, 38, 40].
There are other methods which can be found in
[11],[22],[23]-[29],[33].

Wang et al [30] have introduced a sim-
ple method which is called the (G′

G )-expansion
method to look for traveling wave solutions of
nonlinear PDEs, where G = G(ξ) satisfies the
second order linear ordinary differential equa-
tion G′′(ξ) + λG′(ξ) + µG(ξ) = 0, where ξ =
x − V t while V, λ and µ are arbitrary con-
stants. For further references see the articles
[3, 5, 7, 20, 41, 42, 48, 49]. Recently El-Wakil et al
[7] and Parkes [20] have shown that the extended
tanh- function method proposed by Fan [8] and
the basic (G′

G )- expansion method proposed by
Wang et al [30] are entirely equivalent in as much
as they deliver exactly the same set of solutions to
a given evolution equation. This observation has
been pointed out recently by Kudryashov [15]. In
this article, we introduce an alternative approach
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which is called a further improved (G′

G )- expansion
method to find the exact traveling wave solutions
of some nonlinear PDEs, where G = G(ξ) sat-
isfies the auxiliary ordinary differential equation
[G′(ξ)]2 = aG2(ξ) + bG4(ξ) + cG6(ξ), where a, b

and c are constants. This approach has not been
used by anyone before. It will play an important
role in constructing many exact traveling wave
solutions for the nonlinear PDEs via the (1 + 1)
dimensional modified Kawahara equation. The
objective of this article is to show that the exact
solutions of these two equation obtained by using
the further improved (G′

G )- expansion method and
the well known extended tanh- function method
are equivalent.

2 Description of a further
improved (G′

G )- expansion
method

Suppose we have the following nonlinear partial
differential equation

F (u, ut, ux, uy, utt, uxt, ...) = 0, (2.1)

where u = u(x, t) is an unknown function, F is a
polynomial in u(x, t) and its partial derivatives in
which the highest order derivatives and the non-
linear terms are involved. In the following we
give the main steps of a further improved (G′

G )-
expansion method:

Step 1. The traveling wave variable

u(x, t) = u(ξ), ξ = x− V t, (2.2)

where V is a constant, permits us reducing Eq.
(2.1) to an ODE for u = u(ξ) in the form

P (u, u′, u′′, u′′′, ...) = 0 (2.3)

where ′ = d
dξ .

Step 2. Suppose the solution of Eq.(2.3) can be
expressed by a polynomial in (G′

G ) as follows

u(ξ) =
n∑

i=0

αi

(
G′

G

)i

, (2.4)

where G = G(ξ) satisfies the following auxiliary
equation

[G′(ξ)]2 = aG2(ξ) + bG4(ξ) + cG6(ξ), (2.5)

where αi, a, b, c and V are arbitrary constants to
be determined provided αn 6= 0. The positive
integer n can be determined by considering the
homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in
Eq (2.1) or (2.3).

More precisely, we define the degree of u(ξ)
as D[u(ξ)] = n which gives rise to the degree of
other expressions as follows{

D[dqu
dξq ] = n + q,

D[up(dqu
dξq )s] = np + s(q + n).

(2.6)

Therefore, we can get the value of n in (2.4).

Step 3. Substituting (2.4) into (2.3) and using Eq
(2.5), we obtain polynomials in Gj(ξ), G′(ξ)Gj(ξ)
(j = 0,±1,±2, · · · ). Equating each coefficient of
the resulted polynomials to zero, yields a set of
algebraic equations for αi, a, b, c and V which
can be solved by Maple or Mathematica.

Step 4. The general solutions of the auxiliary
equation (2.5) have been well known (see, for ex-
ample [35, 47]) which can be written in the form

No G(ξ)

1
[

−a b sech2(
√

aξ)
b2−ac(1+ε tanh(

√
aξ))2

]1/2
, a > 0

2
[

a b csch2(
√

aξ)
b2−ac(1+ε coth(

√
aξ))2

] 1/2
, a > 0

3
[

2a
ε
√

∆ cosh(2
√

aξ)−b

]1/2
, a > 0,∆ > 0.

4
[

2a
ε
√

∆ cos(2
√
−aξ)−b

]1/2
, a < 0,∆ > 0

5
[

2a
ε
√
−∆ sinh(2

√
aξ)−b

]1/2
, a > 0,∆ < 0

6
[

2a
ε
√

∆ sin(2
√
−aξ)−b

]1/2
, a < 0,∆ > 0

7
[

−a sech2(
√

aξ)
b+2ε

√
ac tanh(

√
aξ)

]1/2
, a > 0, c > 0

8
[

−a sec2(
√
−aξ)

b+2ε
√
−ac tan(

√
−aξ)

]1/2
, a < 0, c > 0

9
[

a csch2(
√

aξ)
b+2ε

√
ac coth(

√
aξ)

]1/2
, a > 0, c > 0

10
[

−a csc2(
√
−aξ)

b+2ε
√
−ac cot(

√
−aξ)

] 1/2
, a < 0, c > 0

11
[
−a

b (1 + ε tanh(1
2

√
aξ)

]1/2
, a > 0,∆ = 0

12
[
−a

b (1 + ε coth(1
2

√
aξ)

]1/2
, a > 0,∆ = 0

13
[

aae2ε
√

aξ

(e2ε
√

aξ−4b)2−64ac

]1/2
, a > 0,

14
[

εae2ε
√

aξ

1−64ace4ε
√

aξ

]1/2
, a > 0, b = 0

where ∆ = b2 − 4ac and ε = ±1.
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Step 5. Substituting αi, V and the general solu-
tion of Eq (2.5) into (2.4) we have many exact
traveling wave solutions of the nonlinear partial
differential equation (2.1).

3 Some applications

In this section, we apply the further improved
(G′

G )- expansion method to construct the exact
traveling wave solutions for one dimensional mod-
ified Kawahara equation, which are very impor-
tant nonlinear evolution equations in the mathe-
matical physics and have been paid attention by
many researchers.

3.1 Example 1. On solving the mod-
ified Kawahara equation by a fur-
ther improved (G′

G
)- expansion

It is well known [12] that the modified Kawahara
equation has the form:

ut + αuux + βuxxx − γuxxxxx = 0, (3.1)

where α, β and γ are arbitrary constants. This
equation has been derived by Kawahara [12] as a
model for water waves in the long- wave regime
for moderate values of surface tension. The Kawa-
hara equation (3.1) gives an appropriate descrip-
tion of several phenomena observed in the dynam-
ics of the water-wave problem.

Let us now solve Eq. (3.1) by the proposed
method. To this end, we see that the travel-
ing wave variable (2.2) permits us converting Eq.
(3.1) into the following ODE:

C − V u +
1
2
αu2 + βu′′ − γu(4) = 0, (3.2)

where C is a constant of integration. Considering
the homogeneous balance between the highest or-
der derivative and the nonlinear term in (3.2), we
deduce from (2.6) that D(u(4)) = D(u2). There-
fore n + 4 = 2n and hence n = 4. Thus, we get

u(ξ) = α4

(
G′

G

)4

+ α3

(
G′

G

)3

+ α2

(
G′

G

)2

+α1

(
G′

G

)
+ α0. (3.3)

Substituting (3.3) into (3.2), collecting all the
terms of powers of

(
G′

G

)
and setting each coef-

ficient to zero, we get the following system of al-
gebraic equations:

−V α3a + αα3a
2α2 + αα3aα0

+αα1α2a + αα3a
3α4 + αα1α4a

2

−V α1 + αα1α0 = 0,

2αα2
4b

3c + 3αα4bc
2α2 + 168βα4c

2b

−31008γα4c
2ab +

3
2
αα2

3c
2b− 3072γα2c

2b

−8736γα4b
3c + 6αα2

4abc2 = 0,

1
2
αα2

4b
4 − V α4c

2 − 840γα4b
4

+
3
2
αα2

3b
2c + 3αα4b

2α2c + αα4c
2α0

+
1
2
αα2

2c
2 + 3αα2

4a
2c2 + 112βα4c

2a

+24βα2c
2 + 3αα4ac2α2 − 1320γα2b

2c

+αα3c
2α1 + 6αα2

4ab2c− 12960γα4b
2ac

+108βα4b
2c− 1920γα2c

2a− 7936γα4c
2a2

+
3
2
αα2

3c
2a = 0,

−2V α4bc− 1280γα4b
3a + αα2

2bc

+2αα4bcα0 + 2αα3bα1c− 120γα2b
3

+
1
2
αα2

3b
3 + 6αα4abα2c− 5312γα4a

2bc

−1360γα2bac + 3αα2
3abc + 6αα2

4a
2bc

+28βα2bc + 2αα2
4ab3 + αα4b

3α2

+128βα4abc + 20βα4b
3 = 0,

−V α4b
2 − V α2c + 6βα2b

2 − 2V α4ac

+αα4b
2α0 + 3αα2

4a
2b2 +

3
2
αα2

3a
2c

+2αα2
4a

3c + αα2
2ca + αα2cα0 + αα3b

2α1

+
3
2
αα2

3b
2a + 3αα4a

2cα2 + 2αα4acα0

+
1
2
αα2

2b
2 + 28βα4b

2a + 16βα2ca + 32βα4a
2c

−120γα2b
2a− 496γα4b

2a2 − 256γα2ca
2

−512γα4a
3c +

1
2
αα2

1c + 3αα4ab2α2

+2αα3aα1c = 0,

WSEAS TRANSACTIONS on MATHEMATICS Elsayed M. E. Zayed

ISSN: 1109-2769 58 Issue 2, Volume 10, February 2011



4βα2ba− 32γα4a
3b + 2αα4abα0 + 8βα4a

2b

+αα2
2ba− 2V α4ab− 16γα2ba

2 + 2αα2
4a

3b

+3αα4a
2bα2 − V α2b + αα2bα0 +

1
2
αα2

1b

+2αα3aα1b +
3
2
αα2

3a
2b = 0,

αα4c
3α3 − 5760γα3c

3 = 0,

3αα4bc
2α3 − 8640γα3c

2b = 0,

2αα3bα2c + 2αα4bcα1 − 288γα1cb

−360γα3b
3 + 54βα3bc + αα4b

3α3

−2808γα3abc + 6αα4abα3c = 0,

αα3cα0 + αα1α2c + 8βα1c− 264γα3b
2a

+αα3b
2α2 − V α3c + 3αα4ab2α3

+2αα4acα1 + 2αα3aα2c + αα4b
2α1

+3αα4a
2cα3 + 24βα3ac + 12βα3b

2

−128γα1ca− 24γα1b
2 − 384γα3a

2c = 0,

6βα3ab− V α3b− 8γα1ba + 2βα1b

+αα1α2b + 2αα3aα2b + αα3bα0

+3αα4a
2bα3 + 2αα4abα1 − 24γα3a

2b = 0,

−27120γα4b
2c2 − 20480γα4c

3a +
1
2
αα2

3c
3

+2αα2
4ac3 + 80βα4c

3 − 1920γα2c
3

+αα4c
3α2 + 3αα2

4b
2c2 = 0,

−13440γα4c
4 +

1
2
αα2

4c
4 = 0,

−32640γα4c
3b + 2αα2

4bc
3 = 0,

3αα4b
2α3c− 384γα1c

2 + αα3c
2α2

+48βα3c
2 + αα4c

2α1 − 4224γα3c
2a

+3αα4ac2α3 − 3600γα3b
2c = 0,

−V α4a
2 +

1
2
αα2

3a
3 − V α0 + C

+
1
2
αα2

0 + αα4a
3α2 +

1
2
αα2

4a
4

−V α2a + αα2aα0 +
1
2
αα2

1a + αα3a
2α1

+
1
2
αα2

2a
2 + αα4a

2α0 = 0.

(3.4)

With the aid of Maple or Mathematica we can
solve the above system (3.4) to obtain the follow-
ing sets of solutions:

The set 1.

α4 = 1680 β
13αa ,

α2 = −3360 β
13α ,

γ = β
208a ,

V = αα0 − 1104βa
13 ,

C = 1
338α [−28704α0αβa + 887040β2a2

+169α2
0α

2],

α3 = α1 = 0.

(3.5)

The set 2.

α4 = 168D β
13αa ,

α2 = −224β(D+5)
13α ,

γ = Dβ
2080a

V = 1
65D [65α0αD + 4368βaD + 89280βa],

C = 1
1690α [−7488α0αβaD + 14784β2a2D

−118560βaα0α− 1196160β2a2

+845α2
0α

2],

α3 = α1 = 0,
(3.6)

where D = −31
2 ± 3i

2

√
31.

For the set 1, we have the following solutions:

u(ξ) =
1680 β

13αa

(
G′

G

)4

− 3360 β

13α

(
G′

G

)2

+ α0,

(3.7)
where

ξ = x−
[
αα0 −

1104βa

13

]
t. (3.8)

While for the set 2, we have the following solu-
tions:

u(ξ) =
168D β

13αa

(
G′

G

)4

−224β(D + 5)
13α

(
G′

G

)2

+α0,

(3.9)
where

ξ = x− t

65D
[65α0αD + 4368βaD + 89280βa].

(3.10)
According to the step 4 of section 2, we have

the following families of exact solutions
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Family 1. If a > 0,∆ > 0, then the exact
solution for the set 1 has the form

u =
1680 βa

13α
tanh4(2

√
aξ)

−3360 βa

13α
tanh2(2

√
aξ) + α0, (3.11)

Family 2. If a < 0, ∆ > 0, then the exact
solution for the set 1 has the form

u =
1680βa

13α
tan4(2

√
−a ξ)

+
3360βa

13α
tan2(2

√
−a ξ) + α0, (3.12)

or

u =
1680βa

13α
cot4(2

√
−a ξ)

+
3360βa

13α
cot2(2

√
−a ξ) + α0. (3.13)

Family 3. If a > 0,∆ < 0, then the exact
solution for the set 1 has the form

u =
1680 βa

13α
coth4(2

√
a ξ)

− 3360 βa

13α
coth2(2

√
a ξ) + α0. (3.14)

Family 4. If a > 0, c > 0 then the exact
solution for the set 1 has the form

u = α0 +
105βa

13α
[tanh(

√
aξ) + coth(

√
a ξ)]4

− 840βa

13α
[tanh(

√
aξ)+coth(

√
aξ)]2, (3.15)

or

u = α0 +
105 βa3

13αc2
csch8(

√
aξ)

−840 βa2

13αc
csch4(

√
aξ). (3.16)

Family 5. If a < 0, c > 0, then the exact
solution for the set 1 has the form

u = α0 +
105 βa

13α
[tan(

√
−aξ)− cot(

√
−a ξ)]4

+
840βa

13α
[tan(

√
−aξ)−cot(

√
−aξ)]2. (3.17)

Family 6. If a > 0, b = 0, then the exact
solution for the set 1 has the form

u =
105β

3328αac2
coth4(

εξ

4
√

c
)

−1680β

299αc
coth2(

εξ

4
√

c
) + α0. (3.18)

Similarly, we can find the exact solutions for
the set 2, using (3.9) and (3.10) which are omitted
here.

3.2 Example 2. On solving the modi-
fied Kawahara equation by the ex-
tended tanh-function method

With reference to the well known extended tanh-
function method [1, 7, 8, 32, 34, 39, 46], the so-
lution of the equation (3.1) can be written in the
form:

u(ξ) = α4φ
4(ξ) + α3φ

3(ξ) + α2φ
2(ξ)

+α1φ(ξ) + α0, (3.19)

where φ(ξ) satisfies the Riccati equation

φ′(ξ) = R + φ2(ξ) (3.20)

The Riccati equation (3.20) have the following so-
lutions: (i) If R < 0, then

φ(ξ) = −
√
−R tanh(

√
−Rξ)

or

φ(ξ) = −
√
−R coth(

√
−Rξ)

(3.21)

(ii) If R > 0, then

φ(ξ) =
√

R tan(
√

Rξ),

or

φ(ξ) = −
√

R cot(
√

Rξ)

(3.22)

(iii) If R = 0, then

φ(ξ) =
−1
ξ

. (3.23)

Substituting (3.19) along with (3.20) into (3.1) we
get the following polynomial:

(−840γα4 +
1
2
αα2

4)φ
8 + (α3αα4 − 360γα3)φ7

+ (20βα4+
1
2
αα2

3+αα2α4−2080γα4R−120γα2)φ6

+ (αα2α3−816γα3R−24γα1+12βα3+αα1α4)φ5

+ [
1
2
αα2

2 + αα1α3 + αα4α0 + 6βα2

−240γα2R + 32βα4R− 1696γα4R
2 − V α4]φ4

+ [−40γα1R + αα1α2 + 18βα3R− V α3

−576γα3R
2 + αα3α0 + 2βα1]φ3

+ [8βα2R + 12βα4R
2 − 480γα4R

3 − 136γα2R
2

−V α2 + αα2α0 +
1
2
αα2

1]φ
2

+ [−V α1 + 2βα1R− 120γα3R
3

−16γα1R
2 + αα1α0 + 6βα3R

2]φ

− V α0 + C1 − 16γα2R
3 +

1
2
αα2

0
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−24γα4R
4 + 2βα2R

2 = 0 (3.24)

Equating the coefficients of this polynomial to
zero and solving the algebraic equations by Maple
or Mathematica, we have the following two sets of
solutions:

The set 3

α4 = −420β
13αR ,

α2 = −840β
13α ,

α3 = α1 = 0,

γ = −β
52R ,

V = αα0 + 276βR
13 ,

C = 1
338α [7176α0αβR + 55440R2β2

+169α2
0α

2].

(3.25)

The set 4

α4 = 42D1 β
13αR ,

α2 = 56 β(D1−5)
13α ,

α3 = α1 = 0,

γ = D1β
520R ,

V = 1
65D1

[−1092D1Rβ + 65α0αD1 + 22320βR],

C = 1
1690α [−1872α0αβRD1 − 924D1β

2R2

+29640βRα0α− 74760β2R2 + 845α2
0α

2],
(3.26)

where D1 = 31
2 ± 3i

2

√
31.

Thus, the exact solutions of the modi-
fied Kawahara equation (3.1) have the following
forms:

For the set 3 we deduce for R < 0 that

u = −420 βR

13α
tanh4(

√
−Rξ)

+
840 βR

13α
tanh2(

√
−Rξ) + α0, (3.27)

or

u = −420 βR
13α coth4(

√
−Rξ)

+840 βR
13α coth2(

√
−Rξ) + α0, (3.28)

while for R > 0 we deduce that

u = −420 βR
13α tan4(

√
Rξ)

−840 βR
13α tan2(

√
Rξ) + α0, (3.29)

or

u = −420 βR
13α cot4(

√
Rξ)

−840 βR
13α cot2(

√
Rξ) + α0, (3.30)

where

ξ = x− (αα0 +
276βR

13
)t

Similarly, we can write down the exact solu-
tions for the set 4, which are omitted here. From
the previous results, we have the following re-
marks:

Remark 1 If we put R = −4a where a > 0
then the results (3.11) and (3.14) are equivalent
to the results (3.27) and (3.28) respectively.

Remark 2 If we put R = −4a wherea < 0 then
the results (3.12) and (3.13) are equivalent to the
results (3.29) and (3.30) respectively. From these
remarks we have the following observation:

The exact solutions of the modified Kawahara
equation obtained using the extended tanh- func-
tion method are equivalent to its exact solutions
obtained using the further improved (G′

G )- expan-
sion method.

Remark 3 These solutions have been checked
with Maple by putting them back into the origi-
nal equation.

4 Conclusions

In summary, we have found the exact solutions of
the (1+1)-dimensional modified Kawahara equa-
tion (3.1) using two methods via the further im-
proved ( G′

G )-expansion method and the extended
tanh-function method. We have arrived at the
observation that these exact solutions are equiva-
lent.
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