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Abstract: For the classical question, “Can you hear the shape of the drum?”, the answer is known to be “yes” for
certain convex planar regions with analytic boundaries. The answer is also known to be “no” for some polygons
with reentrant corners. A large number of mathematicians over four decades have contributed to the topic from
various approaches, theoretical and numerical. In this article, we develop a constructive analytic approach to
indicate how a preknowledge of the eigenvalues lead to the determination of the parameters of the boundary. This
approach is applied to a general boundary and in particular to a circle, an ellipse, and a square. In the case of
a square, we obtain an insight into why the analytical procedure does not, as expected, yield an answer. For the
Mathieu equation with a parameter, we demonstrate the determination of the parameter when the eigenvalues are
known.
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1 Introduction
The pursuit of a “complete” solution to the ques-
tion “Can you hear the shape of a drum?”, originally
posed by Lipman Bers and used as a title in 1966
by Mark Kac [9], has been a fascinating journey and
work can only be described as “work in progress”.
The research has involved many mathematicians and
many tools including Asymptotics, Probability The-
ory, Operator Theory, infinite algebraic systems and
inevitably intense computational work involving ap-
proximate methods. Mathematically, the problem is,
whether a preknowledge of the eigenvalues of the
Laplacian in a region leads to the definition of the
closed boundary Γ. Specifically, we have

uxx + uyy + λ2u = 0 in Ω, (1)
u = 0, on Γ. (2)

The equation (1) is also well known as the Telegraph
equation or the Helmholtz equation. In our analy-
sis, we restrict Ω to be a simply connected convex
region with an analytic boundary. According to the
maximum principle for linear elliptic partial differen-
tial equations [6], the infinite eigenvalues λ2

n, n =
1, 2, 3, · · · ,∞ are positive, real, ordered and satisfy

0 < λ2
1 < λ2

2 < λ2
3 < · · · < λ2

n < · · ·∞ . (3)

It is well established that the answer to the question
is both “yes” and “no” depending on the nature of the
boundary Γ. In this paper, we give a constructive ap-
proach for the determination of Γ when the answer
is “yes”. In such classical problems, theoretical re-
sults like existence, uniqueness and even justification
of truncation of resulting infinite systems, approxima-
tions with error analysis, asymptotic, etc., need to be
complemented with constructive approaches for prac-
tical considerations. In Section 2, we give a brief ac-
count of work so far and give a glimpse of various
approaches and results. The account is not claimed to
be complete or exhaustive. Section 3 introduces the
fully integrated solution of (1) in terms of complex
variables z and z̄ as well as some identities. A gen-
eral parameterized analytical boundary Γ in (2) hav-
ing a biaxial symmetry is introduced in Section 4 and
a complete formal solution to (1) and (2) is given. A
constructive process to derive equations to determine
the parameters of the boundary in terms of eigenval-
ues of the boundary value problem, is described. The
processes defined in Section 4 are used in Section 5
when Γ is a circle. Section 5 also discusses in detail
when the boundary is an ellipse. It is shown in Sec-
tion 6, the failure of the analytic processes when the
boundary is a square (as expected), thus giving some
insight to the “no” answer to the original question. For
the Mathieu equation with a parameter q, we demon-

WSEAS TRANSACTIONS on MATHEMATICS P. N. Shivakumar, Yan Wu, Yang Zhang

ISSN: 1109-2769 21 Issue 1, Volume 10, January 2011



strate how a preknowledge of the eigenvalues leads to
the determination of the value of q. Section 8 gives
some conclusions and suggests a number of avenues
for future research work.

2 Earlier Work
In this section, we trace briefly, various results, mainly
theoretical and some approximations. The results are
mainly for polygonal drums and drums with analyti-
cal boundaries. Connections are made to other topics
including quantum mechanics, black body radiation,
diffusion, geometrical optics, antenna theory etc. A
main tool in the present paper is the role of infinite
linear systems. A complete discussion of these sys-
tems can be found in a review paper by Shivakumar et
al. [17].

(a) In the famous paper, Mark Kac [9] analyzes us-
ing only asymptotic properties of large eigenval-
ues and uses probability theory as the tool to es-
tablish that one can hear the area of a polygonal
drum and conjectures for multiply connected re-
gions. This paper also establishes that one can
hear the perimeter as well.

(b) Since elliptic regions are one of the very few cases
for which (1) admits solution by separation of
variables, many papers deal with Mathieu equa-
tions.

(i) In 1987, Shivakumar et al [15] give a com-
plete account including location of eigen-
values with precise lower and upper bounds
to any required degree of accuracy using a
powerful and simple algorithm. This paper
lists 18 eigenvalues to eight places of accu-
racy for the case q = 1. Use is made of
estimates for truncation of infinite systems
when the matrix has a diagonally dominant
structure.

(ii) In 1960, Keller and Rubinov [10] de-
velop asymptotic formulas for large eigen-
values and they apply their techniques to
Schrodinger equation. The paper also con-
tains numerical values for some eigenvalues
in the case of an elliptic region.

(iii) In 1984, Chen et al [3] develop numerical
packages for the two Mathieu equations and
they give a visualization for the eigenfunc-
tions. This paper has valuable information
about approximate eigenvalues of the Lapla-
cian.

(c) Based on the fact that there exist nonisometric
planar regions that have identical spectra, Driscoll
[4] discusses polygons with reentrant corners.
The paper also describes algorithms which yield
values accurate to 12 digits using finite elements.
These polygons clearly imply the answer ‘no’ to
the question.

(d) A major contribution in 2000 is by Zelditch [19],
where a positive answer “yes” is given for certain
regions with analytic boundaries. Because of its
relevance to the present paper, we quote the fol-
lowing abstract:
Let DL denote the class of bounded, simply con-
nected real analytic plain domains with reflection
symmetries across two orthogonal axes, of which
one has length L. Under generic conditions, we
prove that if Ω1,Ω2 ∈ DL and if the Dirich-
let spectra coincide, Spec(Ω1) = Spec(Ω2), then
Ω1 = Ω2 up to rigid motion.

(e) In 2008, Yan Wu and Shivakumar [16] use com-
plex variable solution to (1) and derive an infinite
system of linear algebraic equations for the ellipse
with some numerical computations.

(f) Other results include a paper in 2000 by Ash-
baugh et al [2] in proving results of Polya and
Weinberger giving a new sharp bound for the ratio
of the first two eigenvalues in the form

λ2
1

λ2
2

=
(

j2,1

j1,1

)2

,

where jp,k denotes the kth positive zero of the
Bessel function Jp(x). In addition, there are in-
numerable papers using numerical techniques for
various regions in the antenna theory.

(g) In 1998, Ramm and Shivakumar [14] discuss the
inequalities for the minimal eigenvalue of the
Laplacian in an annulus as the inner circle moves
towards the outer circle.

3 Preliminaries

We express (1) in terms of complex variables z =
x + iy, z̄ = x − iy and the system (1) and (2) be-
comes

uzz̄ +
λ2

4
u = 0 in Ω, (4)

u = 0 on Γ.
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We start the analysis using the completely integrated
form of the solution to (1) as given on page 58 of
Vekua [18] by

u =
{

f0(z)−
∫ z

0
f0(t)

∂

∂t
J0

(
λ
√

z̄(z − t)
)

dt

}
+ conjugate, (5)

where f0(z) is an arbitrary holomorphic function in Ω
which can be formally expressed as

f0(z) =
∞∑

n=0

anzn (6)

and J0 represents the Bessel function of first kind of
order 0 given by

J0

(
λ
√

z̄(z − t)
)

=
∞∑

q=0

(
−λ2

4

)q
z̄q(z − t)q

q!q!
. (7)

Incidentally, (5) can also be derived by using

u =
∞∑

n=0

zn fn(z) + conjugate, (8)

yielding

fn(z) =
(
−λ2

4

)n 1
(n− 1)!n!

∫ z

0
f0(t)(z−t)n−1dt .

(9)
Equations (8) and (9) will be of value in evaluating
approximations for u by suitably truncating the series
in (8).

Substituting for f0(z) from (6) in (5) the general
solution for (4) yields [16]

u = 2a0J0

(
λ
√

zz̄
)

+
∞∑

n=1

an

∞∑
k=0

(
−λ2

4

)k

An k (zn + z̄n) (zz̄)k (10)

where

An k =
n!

k!(n + k)!
, n = 1, 2, · · · , k = 0, 1, · · · ,

(11)
From an identity given in Abramowitz and Stegun [1],
we have, when n is even,

zn+z̄n =

n
2∑

m=0

cmn(z+z̄)n−2m(zz̄)m, n = 0, 1, · · ·

(12)

where

cmn = (−1)m n

m!
(n−m− 1)!
(n− 2m)!

,

m = 0, 1, · · · , n, n = 1, 2, 3, · · · .

4 Boundary Γ

In this section we introduce a general parameterized
analytical boundary Γ in (2) having a biaxial symme-
try, including several cases used in Section 5.

(a) A general boundary

Based on the requirements stated in Section 2(d), as
given in Zelditch [19], we consider the parameterized
analytical boundary Γ with biaxial symmetry to be
given by

(z + z̄)2 =
∞∑

n=0

dn1 (zz̄)n (13)

which yields, on using Cauchy products for infinite
series,

(z + z̄)2p =
∞∑

n=0

dnp (zz̄)n (14)

where

dnp =
n∑

l=0

dl p−1dn−l 1, p = 1, 2, 3, · · · . (15)

We remark here that knowing the eigenvalues for (1)
and (2), we need to find dn,1, n = 0, 1, 2, · · · . It may
be noted that dnp contains d01, d02, · · · , d0n. In fact

d0p = dp
01, d1p = pd01d11, etc. (16)

(b) Circular boundary

We consider the circular boundary given by

x2 + y2 = a2 or zz̄ = a2 (17)

(c) An elliptic boundary

Here we consider the elliptic boundary Γ given by

x2

α2
+

y2

β2
= 1 or (z+z̄)2 = a+bzz̄ , α > β , (18)

a =
4α2β2

β2 − α2
, b =

4α2

α2 − β2

and

α2 =
a

4− b
, β2 = −a

b
, a < 0, b > 0 . (19)
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(d) A square boundary

We give this example to demonstrate why our analyti-
cal approach does not yield information of the bound-
ary with sharp corners from a preknowledge of eigen-
values. Consider a square boundary given by x = ±a,
y = ±a or

z4 + z̄4 = 2(zz̄)2 − 16a2(zz̄) + 16a4 (20)

or
z2 + z̄2 = 4(zz̄ − 2a)2 . (21)

5 Solutions for (1) and (2)

We assume

f0(z) =
∞∑

n=0

a2nz2n (22)

instead of (6) and the solution (10) now becomes

u = 2a0J0

(
λ
√

zz̄
)

+
∞∑

n=1

a2n

∞∑
k=0

(
−λ2

4

)k

A2n k

(
z2n + z̄2n

)
(zz̄)k

(23)

where

A2n k =
(2n)!

k!(2n + k)!
, n = 1, 2, · · · (24)

and k = 0, 1, 2, · · ·

Also (12) yields

z2n + z̄2n =
n∑

m=0

[
(−1)m 2n

m!
(2n−m− 1)!
(2n− 2m)!

× (z + z̄)2(n−m) (zz̄)m

]
, (25)

n = 1, 2, 3 · · · ,

which on substitution in (23) gives

u =2a0J0(λ
√

zz̄) +
∞∑

n=1

a2n

∞∑
k=0

(
−λ2

4

)k

A2nk

×
n∑

m=0

(−1)m 2n(2n−m− 1)!
m!(2n− 2m)!

× (z + z̄)2(n−m) (zz̄)m

(26)

(a) General boundary Γ

From Section 4 (a), we can substitute (14) in (26) to
get the solution u to (1) on the boundary (13) as

u =2a0J0

(
λ
√

zz̄
)

+
∞∑

n=1

a2n


∞∑

k=0

∞∑
q=0

n∑
m=0

Dn kqm (zz̄)k+q+m


(27)

where

Dn kqm =
(
−λ2

4

)k

A2n kbmndq n−m , (28)

bmn =
(−1)m 2n

m!
(2n−m− 1)!
(2n− 2m)!

m = 0, 1, 2, · · · ,∞ n = 1, 2, · · ·∞
(29)

and

d00 = 1, di0 = 0, i = 1, 2, · · · .

After rearrangement of summations, (27) becomes

u =2a0 +
∞∑

n=1

a2nDn000 +
[
2a0

(
−λ2

4

)

+
∞∑

n=1

a2n


1∑

i=0

1−i∑
p=0

Dnp 1−i−p i


 zz̄

+
∞∑

q=2

{
2a0

(
−λ2

4

)q 1
q!q!

+
q−1∑
n=1

a2n

 n∑
i=0

q−1∑
p=0

Dnp q−i−p i



+
∞∑

n=q

a2n

 q∑
i=0

q−1∑
p=0

Dnp q−i−p i

 (zz̄)q .

(30)

To satisfy (2), now given by (13), we equate the co-
efficients of (zz̄)q, q = 0, 1, 2, · · · to zero to get the
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infinite linear algebraic system.

2a0 +
∞∑

n=1

a2nd0n = 0 ,

(
−λ2

4

)
2a0µ +

∞∑
n=1

a2n [d1nb0n + d0n−1b1n] = 0 ,

(
−λ2

4

)
a2n

{(
n∑

i=0

+
q∑

i=0

)

×
q−1∑
p=0

µpA2npdq−p−i n−ibin

}
= 0,

where

µ =
(
−λ2

4

)
. (31)

Writing the above system as
∞∑

n=0

fqna2n, q = 0, 1, 2, · · · , (32)

we note that fqn is a polynomial of degree q in µ and
contains only d01, d11, d21, · · · . The values µ are de-
termined by formally setting

D = det(fqn) = 0 (33)

which can be expressed as an infinite series in µ given
by

D =
∞∑
i=0

Diµ
i (34)

and µi’s are given by D = 0. We note that we can
rewrite (34) as

D = D0

∞∏
i=1

(
1− µ

µi

)
(35)

formally suggesting that
Di

D0
is the sum of the inverse

products of µ1, µ2, · · · taken i at a time. In particu-
lar,

D1

D0
= −

∞∑
i=1

1
µi

,
D2

D0
=

∞∑
i=1

∞∑
j=i+1

1
µiµj

.

Also

D0 = det[fqn]
∣∣∣∣
q=0

,

D1 =
∂

∂q
det[fqn]

∣∣∣∣
q=0

, and

Di =
1
i!

∂i

∂qi
det[fqn]

∣∣∣∣
q=0

, i = 2, 3, · · · .

(36)

It should be noted that the determinants Di contain
only dij , which in turn, contain di1’s only. Thus the
equations (36) provide a formal approach to the deter-
mination of di1’s, i = 0, 1, 2, · · · once the eigenvalues
are known. In the next three subsections, we apply the
above approach to individual cases; circle, ellipse and
square.

(b) A circle

It is well known that the solution to (1) and (2) is given
by

u = a0J0

(
λ
√

zz̄
)

(37)

and the eigenvalues are given by the zeros of
J0(λa) = 0 namely

λi =
j0i

a
, i = 1, 2, · · · ,∞ . (38)

We can write using (37),

∞∑
q=0

(
−λ2

4

)q 1
q!q!

a2q =
∞∏

j=1

(
1− λ2

λ2
j

)
.

As in Section 5 (a), comparing the coefficients of λ2,
we get

a2 = 4
∞∑

j=1

1
λ2

j

,

thus establishing uniquely the value of a if all the
eigenvalues λ1, λ2, · · · are known. In fact, substitut-
ing for λj from (38) we get

a2

4
=

∞∑
j=1

a2

j2
0j

which checks with the well known fact that

∞∑
j=1

1
j2
0j

= 4 .

(c) An Ellipse
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Here we develop the solution to (1.1) in the elliptic
domain described in Section 4(c). The derivation par-
allels the derivation described in Section 5(a) and (4.1)
is now given by

d01 = a, d11 = b, di1 = 0, i = 2, 3, · · · (39)

After considerable calculations, we get an infinite sys-
tem of equations in a2n, n = 0, 1, 2, · · · as given by

2a0 +
∞∑

n=1

a2nan = 0

2a0
µk

k!k!
+

∞∑
n=1

µk (2n)!
k!(2n + k)!

an

+
k∑

n=1

[
n∑

l=1

(2n)!µk−lbln

(k − l)!(2n + k − l)!

]
a2n

+
∞∑

n=k+1

k∑
l=1

(2n)!µk−lbln

(k − l)!(2n + k − l)!
a2n = 0

k = 1, 2, 3, · · · ,∞
(40)

where µ = −λ2

4
.

Writing (40) as

∞∑
n=0

fnqa2n = 0, q = 0, 1, 2, · · · ,

we can formally express

det [fnq] =
∞∑

q=0

Dqµ
q = D0

∞∑
q=0

Dq

D0
µq

= D0

∞∏
j=1

(
1− µ

µj

)
to get

∞∑
j=1

1
µj

= −D1

D0
. (41)

We note as before, infinite determinants are given by

Di =
1
i!

∂if

∂µi

∣∣∣∣
µ=0

i = 1, 2, · · · , (42)

and det [fnq] = 0 gives the eigenvalues.

We will express
D1

D0
entirely in terms of a and b thus

ensuring a direct relationship between a, b and the
eigenvalues. In this article we will assume a value for
b which then determines the value for a. To facilitate
calculations, we denote

βkn =
(2n)!

k!(2n + k)!
an,

αknl =
(2n)!bln

(k − l)!(2n + k − l)!

(43)

which enables us to write (40) as

2a0 +
∞∑

n=1

anan = 0

2a0µ
k

k!k!
+ µk

∞∑
n=1

βknan +
k∑

l=1

k∑
n=l

µk−lαknla2n

+
∞∑

n=k+1

k∑
l=1

µk−lαknla2n = 0

k = 1, 2, · · · ,

(44)

We note that fnq is a polynomial of degree q in µ. The
determinant D1 is the sum of an infinite determinants
derived from differentiating D with respect to µ and
setting µ = 0. After considerable algebra, we get,
using (41)

D0 =
∞∏
i=1

αiii

D1 =

( ∞∏
i=1

αiii

){
β11 − a

α111

+
∞∑

n=2

αnnn−1αn−1n−1n−1 − αnn−1n−1αn−1nn−1

αn−1n−1n−1αnnn

}
.
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Substituting in (42), using (43) we get

D1

D0
= −2

3
a

b− 2
−

∞∑
n=2

2a

4n2 − 1

×


n−1∑
m=0

(−1)m(2n−m−1)!(n−m)
m!(2n−2m)!bm+1

n∑
m=0

(−1)m(2n−m−1)!
m!(2n−2m)!bm


= −

∞∑
j=1

1
µj

=
∞∑

j=1

4
λ2

j

.

(45)

Writing

g(n, b) =
1

4n2 − 1


n−1∑
m=0

(−1)m(2n−m−1)!(n−m)
m!(2n−2m)!bm+1

n∑
m=0

(−1)m(2n−m−1)!
m!(2n−2m)!bm


(46)

and

h(k, b) =
k∑

n=2

g(n, b) , (47)

we can express (45) by

a = −

∞∑
j=1

4
λ2

j

2
3b−6 + 2h(∞, b)

. (48)

α a p
p∑

j=1

1
λ2

j
k g(k, b) h(k, b)

β b 1 < λ < 1000 (5.25) (5.26)
1 -0.0404 13 0.0274 50 0.0124 1.7709

0.1 4.0404 100 0.0062 2.1967
200 0.0031 2.6240

1 -0.1667 38 0.1147 50 0.0060 0.9877
0.2 4.1667 100 0.0030 1.1937

200 0.0015 1.4009
1 -0.3956 63 0.2255 50 0.0038 0.6537

0.3 4.3956 100 0.0019 0.7842
200 0.0009 0.0038

Table 1

To demonstrate our constructive approach, we assume
a value for b which in turn gives the value of a if
∞∑

j=1

1
λ2

j

is known. It is well known that for a given

ellipse, there are no known results which give all the
eigenvalues. It is interesting to note that for a given a

and b of an ellipse we can find the infinite sum
∞∑

j=1

1
λ2

j

since h(∞, b) contains only b. Naturally, to get a pre-
cise value of a for a given b we need precise values for
∞∑

j=1

1
λ2

j

and for h(∞, b).

For numerical work, we can extract from (48) an ap-
proximate value of a for a known b as given by

a ≈ −

p∑
j=1

4
λ2

j

2
3b−6 + 2h(k, b)

. (49)

Table points to the numerical convergence of the se-
ries given by h(∞, b) by evaluating h(k, b) for various
values of k. Further, the sequence {g(n, b)}, n =
1, 2, · · · yields a decreasing sequence in n. The calcu-
lations were done in MATLAB using a fine mesh for
the finite differences method. In the case α = 1, β =

0.1, we can calculate
∞∑

j=1

1
λ2

j

from (48) when h(∞, b)

is replaced by h(200, b) giving
∞∑

j=1

1
λ2

j

= 0.0563 in

comparison to
13∑

j=1

1
λ2

j
= 0.0274.

6 A square boundary
We give this example to demonstrate how our ap-
proach does not yield information of the boundary
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from a preknowledge of the eigenvalues in the case
of a boundary containing sharp corners.
Consider the square boundary given by (21), namely,

z2 + z̄2 = 4(zz̄ − 2a)2 . (50)

Instead of using (6), (10) and (12), we use

f0(z) =
∞∑

n=0

a4nz4n (51)

to get

u = 2a0J0

(
λ
√

zz̄
)

+
∞∑

n=1

∞∑
k=0

(
−λ2

4

)k
A4n k

(
z4n + z̄4n

)
a4n (zz̄)k ,

(52)
and

z4n + z̄4n =
n∑

m=0

bmn

(
z2 + z̄2

)2n−2m (zz̄)2m ,

(53)
which gives on using (50)

z4n + z̄4n =
n∑

m=0

bmn4n−m (zz̄ − 2a)n−m . (54)

Substituting (54) in (52), we get the solution u of (1)
and (50) as given by

u = 2a0J0

(
λ
√

zz̄
)

+
∞∑

n=1

∞∑
k=0

n∑
m=0

A4n ka4n (zz̄ − 2a)2(n−m) (zz̄)k+2m

= 2a0J0

(
λ
√

zz̄
)

+
∞∑

n=1

∞∑
k=0

n∑
m=0

2(n−m)∑
q=0

Amk

(
2(n−m)

q

)
× (−2a)2(n−m)−q a4n (zz̄)k+q+2m .

Now u can be expressed as a power series in (zz̄) and
setting powers of (zz̄) to zero, we get an infinite sys-
tem of the form

∞∑
n=0

gqna4n = 0, q = 0, 1, 2, · · · . (55)

As before, we formally write

D = det (gnq) =
∞∑
i=0

Diµ
i = D0

∞∑
i=0

Di

D0
µi

= D0

∞∏
i=1

(
Di

D0
qi

)
= D0

∞∏
i=1

(
1− µ

µi

)
.

It is well known that for a square, the eigenvalues λ2

are given by
m2π2

a2
+

n2π2

a2
and using µ = −λ2

4
, we

get

D1

D0
= −

∞∑
i=1

1
µi

=
4a2

π2

∞∑
m=1

∞∑
n=m+1

1
m2 + n2

.

The double series is clearly divergent and hence the
failure of the analytic approach, although det[gqn] = 0
yields the eigenvalues.

7 Mathieu equation

In this section, we consider the Mathieu equation

d2y

dθ2
+ (µ− 2q cos 2θ) y = 0 (56)

where q is a parameter. Equation (56) is derived from
(1) using separation of varibles in elliptical coordi-
nates (p.721, [1]). See Shivakumar, Williams, and
Rudraiah [15] for a detailed discussion of the solu-
tion to (56) and where the first 18 eigenvalues µ1,
µ2, · · · , µ18 are precisely calculated with upper and
lower bounds. A simple but powerful algorithm is
used which can calculate the eigenvalues for any re-
quired degree of accuracy. The eigenvalues were de-
rived for q = 1. Our aim here is to use the 18 eigen-
values for (56) to lead to establishing the value of q,
which is q = 1 in the present case.
Using

y(θ) =
∞∑

k=1

xk cos 2(k − 1)θ, (57)

(56) yields the infinite system

Axe = µxe (58)

where xe = (x1, x2, · · · )t and A is given by

A = (aij)

where a11 = 0, a12 = q, a21 = 2q, a23 = q,

aij =

{
4(i− 1)2 − µ, i = j, j = 2, 3, · · ·
q, j = i− 1, i + 1 i = 3, 4, · · ·

(59)
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Denoting by D(µ), the determinants of (A− µI), we
can write as before

D(µ) =
∞∑
i=1

Diµ
i

= D0

∞∏
i=1

(
1− µ

µi

)
(60)

giving

−D1

D0
=

∞∑
i=1

1
µi

(61)

and

Di =
1
i!

∂

∂µi
D

∣∣∣∣
µ=0

.

For convenience, we will define the determinants Bi,j

by

Bi,j(q) =

∣∣∣∣∣∣∣∣∣∣∣

4i2 q 0 · · · · · ·
q 4(i + 1)2 q · · · · · ·

q 4(i + 2)2 q · · ·
. . .

4j2

∣∣∣∣∣∣∣∣∣∣∣
where i ≥ 2 and j > i, i and j being positive integers.
After considerable calculations, we get

D(0) = D0 = −2q2B2,∞(q),

D1 = D′(0) = −B1,∞(q) + 2q2B3,∞(q)

+ 2q2
∞∑
i=3

B2, i−1(q)Bi+1,∞(q)

giving

− D′(0)
D(0)

=
B1,∞(q)

2q2 B2,∞(q)
− 1

B2,∞(q)

×

{
B3,∞(q) +

∞∑
i=3

B2, i−1(q)Bi+1,∞(q)

}
(62)

and from (61),

−D′(0)
D(0)

=
∞∑
i=1

1
µi
≈

18∑
i=1

1
µi

= −1.8246 . (63)

We can use (62) to numerically evaluate the right side
for various values of q and truncating the infinite ma-
trices to various sizes. We then match that value of q

which is closest to (63).
As an alternate approximate method and since all the
determinants are strictly diagonally dominant (0 <
2q < 4 i2) we can use the error estimates (see [15])

1
|bjj |(1− µj)

≤ Bjj(µ)
detB

≤ 1
|bjj |(1− µj)

,

where for the matrix B = (bij)n×n, Bjj represents
co-factors of bjj and

µj |bjj | = −
∑
k 6=j

bjk.

These approximations yield for (63)

S(q, n) =
4 · 12 − q

2q2
−

n∑
i=3

1
4i2 − 2q

≤ −D′(0)
D(0)

≤ 4 · 12 + q

2q2
−

n∑
i=3

1
4i2 + 2q

= R(q, n)

(64)

Since the two series in the inequality in (64) are
convergent, it is easily seen that the series in (62) is
also convergent. In the table below, we give the val-
ues for−D′(0)

D(0) for various values of q (near q = 1) and
the determinants actually evaluated for various sizes
of the truncated matrices of size k × k.

q k n −D′(0)
D(0)

0.98 10 20 1.9135
30 1.9135
40 1.9135

0.99 10 20 1.8717
30 1.8717
40 1.8717

1.00 10 20 1.8311
30 1.8311
40 1.8311

1.01 10 20 1.7917
30 1.7917
40 1.7917

1.02 10 20 1.7534
30 1.7534
40 1.7534

Table 2: Values of −D′(0)
D(0) for various values of q

From Table 2, the value of q is determined by
knowing the first nineteen eigenvalues. For q = 1.0,
equation (62) gives an approximate value of 1.8311,

WSEAS TRANSACTIONS on MATHEMATICS P. N. Shivakumar, Yan Wu, Yang Zhang

ISSN: 1109-2769 29 Issue 1, Volume 10, January 2011



while the sum of the inverses of first 19 eigenvalues is
1.8246. In Table 3 values of R(q, n) and S(q, n) are
given. We give rough upper and lower bounds R(q, n)
and S(q, n) for various values of q and n.

Table 3: Values of R(q, n) and S(q, n)

q S(q, n) R(q, n)
0.9 1.9023 2.9403
1.0 1.4887 2.4158
1.1 1.1871 2.0235

Clearly 1.8246 lies between S(1, 20) and
R(1, 20).

We note that (62) and (63) expresses q in terms of
the eigenvalues. In fact the infinite determinants can
be evaluated to any required degree of accuracy since
all the determinants are strictly diagonally dominant
[15].

8 Conclusions

In this article, we have demonstrated a constructive
approach when the answer is ‘yes’. We give an inter-
pretation to ‘a preknowledge of eigenvalues’ as know-
ing the sums of the inverse products of the eigenvalues
µi, i = 1, 2, · · · , taken i at a time. Equation (46) in
the case of an ellipse expresses the parameters of the
ellipse in terms of the eigenvalues. Similarly, equa-
tions (62) and (63) express the parameter q in terms of
the eigenvalues. Our conjecture is that for the answer
to be ‘yes’, it is necessary for the sums of the inverse
products of the eigenvalues µi, i = 1, 2, · · · , taken i
at a time to be convergent series. Another conjecture
is that all analytic curves (curvilinear polygons for ex-
ample) yield the answer ‘yes’. Future work consists
of dealing with doubly connected regions (circular an-
nulus, elliptic ring, elliptic region with a circular hole,
etc.) and infinite region with a hole using conformal
mapping when needed.
Thanks are due to Simon Karuku for his help in com-
puter calculations.
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