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Abstract: In this paper, we study the heterogeneous duopoly with product differentiation, in which one firm is
quantity setter and the other is price setter. The deterministic and stochastic models with delay are presented and
fuzzy and hybrid models, as well. For the stochastic disturbance model with delay, sufficient conditions are done
so that the steady state is asymptotically stable in mean and in mean square. Using programs in Maple 13 we make
some numerical simulations that verify the theoretical results.
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1 Introduction
In the recent literature, it has been proved that infor-
mation delay makes dynamic economic models unsta-
ble [11], [16], [3]. Information delay in dynamic eco-
nomic models has been introduced by Invernizzi and
Medio [4], and its application to dynamic oligopolies
has been examined by Chiarella and Khomin [1] and
Chiarella and Szidarovsky [2]. Also, its application
to IS-LM models has been studied by Neamtu et al.
[14], [15], [13]. For the Kaldor’s business cycle model
Takeuchi and Yamamura [20] have been analyzed the
effects caused by the fiscal policy with a fixed time
lag on the stability of economics. The destabilizing
effect of the time delay indicates that delay dynamic
models may explain various cyclic behavior of eco-
nomic variables. In the existing literature few studies
are given for price/quantity adjusting oligopolies, for
heterogeneous competitors and for markets with non-
linear demand functions.

Regarding the practical situations, where the de-
lay plays an important role, models with stochastic
perturbation are framed by stochastic differential de-
lay equation. In this paper, we investigate the effects
of random perturbation for delayed dynamics rent
seeking game and heterogeneous competition with

product differentiation analyzing the steady state of
the models with stochastic perturbation.

The main purpose of this paper is to provide a
positive answer that different time lags can generate
different stochastic dynamics. Stochastic aspects of
the models are used to capture the uncertainty about
the environment in which the system is operating, the
structure and the parameters of the models being stud-
ied. A stochastic process can be expressed in two
ways, depending on the expected results. One way is
to perturbed the initial system with stochastic terms,
taking into consideration the equilibrium point of the
considered system, but in this case, determining the
equilibrium point, if it exists, is quite difficult. We
study a stochastic nonlinear duopoly model in a het-
erogenous competition and we prove sufficient con-
ditions that the steady state to be exponential asymp-
totically stable in mean, in mean square and to admit
bounded variance. Also, we take into consideration
the fuzzy and hybrid models.

In our present work, we use fuzzy differential
equations, that were firstly proposed by Liu [8]. This
is a type of differential equation, driven by a Liu pro-
cess, just like a stochastic process is described by a
Brownian motion. These two processes are different.
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A stochastic process is characterized by a probabil-
ity density function, so it is characterized by Fokker-
Planck equation. The random variables are repre-
sented using normal distribution and the phenomenon
has a repetitive characteristic. In the case of credi-
ble process, we are working with the distribution of
a fuzzy variable, but the process does not have this
aspect of repetitivity.

In the case when fuzziness and randomness si-
multaneously appear in a system, we will talk about
hybrid process. In this sense, we have the concept of
fuzzy random variable that was introduced by Kwak-
ernaak [5], [6]. A fuzzy random variable is a random
variable that takes fuzzy variable values. More gen-
erally, hybrid variable was proposed by Liu [9] to de-
scribe the phenomena with fuzziness and randomness.
Based on the hybrid process, we will work with differ-
ential equations characterized by Wiener-Liu process.
This can be computed using It-Liu formula [10]. In
some situations, there exist many Brownian motions
(Wiener processes) and Liu processes in a system,
therefore, we can take into consideration also multi-
dimensional It-Liu formula.

After this introduction, in Section 2 we describe
the dynamic deterministic and stochastic models for
heterogeneous competition with product differentia-
tion with isoelastic price functions. Also, the per-
turbated stochastic model for the deterministic model
is presented. In Section 3, the analysis of the lin-
ear stochastic differential equations with delay is
showed. Section 4 studies the linearized models for
the Cournot-Bertrand and Cournot-Cournot stochas-
tic disturbance models, where sufficient conditions are
done so that the steady state is asymptotically stable
in mean and in mean square. In section 5 the fuzzy
and hybrid models, corresponding to the Cournot-
Bertrand and traditional Cournot models with delay,
are presented. Some numerical simulations are per-
formed in Section 6, using programs in Maple 13.
Concluding comments are presented in the last sec-
tion.

2 The dynamic deterministic and
stochastic models for heteroge-
neous competition with product
differentiation

Assume that 2 agents compete for a rent, which will
earn a unit profit for the firm that actually will win
the rent. Let xi, i = 1, 2, denote the effort of agent
i, i = 1, 2, spends in order to win the rent, and let
bi, i = 1, 2, bi > 0 be its cost. Consider firm 1 as
leader and firm 2 the follower. Let τ1 ≥ 0 be the

parameter that characterize the delay. The determinis-
tic mathematical model with delay is described by the
differential equations with delay given by:

ẋ1(t) = k1[
x2(t)

(x1(t) + x2(t))2
− b1]

ẋ2(t) = k2[
x1(t)

(x1(t− τ1) + x2(t))2
− b2],

(1)

where ki > 0, i = 1, 2 and the initial conditions:

x1(θ) = φ1(θ), θ ∈ [−τ1, 0], x2(0) = φ2.

Now, we consider the Cournot-Bertrand competi-
tion in which two firms produce differentiated prod-
ucts. Firm 1 is a quantity setter and firm 2 is a price
setter. Let x1 and p2 be the output for the first firm
and respectively the firm 2’s market price. Let R1(p2)
and R2(x1) be the reaction functions of the firms and
we assume that each firm has a fixed time delay τi,
i = 1, 2 on its competitor’s variable.

The delayed deterministic dynamic model is
given by:

ẋ1(t) = k1[R1(p2(t− τ2))− a1x1(t)]

ṗ2(t) = k2[R2(x1(t− τ1))− a2p2(t)]
(2)

where ki > 0, i = 1, 2 and ai > 0, i = 1, 2 and the
initial conditions:

x1(θ)=φ1(θ), θ∈ [−τ2, 0],p2(θ)=φ2(θ),θ∈ [−τ1,0].

The reaction functions can be considered as [17]:
1.

R1(p2) =
1

1−θ1θ2

(√
θ1

p2c1
− θ1

p2

)
,

R2(x1) =
√

c2

θ2x1
,

(3)

where 0 < θi < 1, i = 1, 2 and c1, c2 denote the con-
stant marginal costs for the Cournot Bertrand compe-
tition.

2.

R1(p2) =
√

θ1p2

c1
−θ1p2, R2(x1) =

√
θ2x1

c2
− θ2x1,

(4)

for the traditional Cournot competition in which both
firms are quantity setters.

3.

R1(p2) =
√

c1p2

θ1
, R2(x1) =

√
c2x1

θ2
, (5)
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in the case of Bertrand-Bertrand competition in which
both firms are price setters.

The models (1), (2) are determinist models de-
scribed by a system of differential equation with delay
given by:

ẋ1(t)=k1(f1(x1(t),x2(t),x2(t−τ2))−a1x1(t))

ẋ2(t)=k2(f2(x1(t),x2(t), x1(t−τ1))−a2x2(t))
(6)

with the initial conditions

x1(θ)=φ1(θ), θ∈ [−τ1, 0],x2(θ)=φ2(θ),θ∈ [−τ2, 0].

Let the probability space (Ω,F , P ) be given, and
w(t) ∈ R be a scalar Wiener process defined on
Ω having independent stationary Gaussian increments
with w(0) = 0, E(w(t) − w(s)) = 0 and E(w(t) −
w(s)) = min(t, s). The symbol E denotes the math-
ematical expectation [12]. The sample trajectories of
w(t) are continuous, nowhere differentiable and have
infinite variation on any finite time interval [7].

Assume that x1 = x∗1, x2 = x∗2 is a steady state
of (6), that means

f1(x∗1, x
∗
2, x

∗
2)− a1x

∗
1 = 0

f2(x∗1, x
∗
2, x

∗
1)− a2x

∗
2 = 0.

We are interested in finding the effect of the noise
perturbation on the steady state. Let the stochastic dis-
turbance model of (6) given by a system of stochastic
differential equations with delay:

dx1(t) = k1((f1(x1(t), x2(t), x2(t− τ2)))−
− k1a1x1(t))dt− k1σ1(x1(t)− x∗1)dw(t),

dx2(t) = k2((f2(x1(t), x2(t), x1(t− τ1)))−
− k2a2x2(t))dt− k2σ2(x2(t)− x∗2)dw(t).

(7)

From a formal point of view, we can solve (7) and
write the stochastic process x1(t) = x1(t, ω), x2(t) =
x2(t, ω),

x1(t) = x1(0) +
∫ t

0
k1(f1(x1(t), x2(t), x2(t− τ2))−

− a1x1(t))ds− k1σ1

∫ t

0
(x1(t)− x∗1)dw(s),

x2(t) = x2(0) +
∫ t

0
k2(f2(x1(t), x2(t), x1(t− τ1))−

− a2x2(t))ds− k2σ2

∫ t

0
(x2(t)− x∗2)dw(s).

(8)

Linearizing (7) around the steady state yields the
linear stochastic differential delay equations:

y1(t) = k1[(a11 − a1)y1(t) + a12y2(t)+

+ b12y2(t− τ2)]dt− k1σ1y1(t)dw(t),

y2(t) = k2[a21y1(t) + (a22 − a2)y2(t)+

+ b21y1(t− τ1)]dt− k2σ2y2(t)dw(t),

(9)

where a11 =
∂f1

∂x1
|(x∗1,x∗2), a12 =

∂f1

∂x2
|(x∗1,x∗2),

b12 =
∂f1

∂x2(t− τ2)
|(x∗1,x∗2), a21 =

∂f2

∂x1
|(x∗1,x∗2), a22 =

∂f2

∂x2
|(x∗1,x∗2), b21 =

∂f2

∂x1(t− τ1)
|(x∗1,x∗2).

3 The analysis of the linear stochas-
tic differential delay equations

Consider the matrices:

A =
(

k1(a11 − a1) k1a12

k2a21 k2(a22 − a2)

)
,

B1 =
(

0 0
k2b21 0

)
, B2 =

(
0 k1b12

0 0

)
,

C =
(

k1σ1 0
0 k2σ2

)
, y =

(
y1

y2

)
.

(10)

From (9) we have:

dy = (Ay(t) + B1y(t− τ1) + B2y(t− τ2))dt−
− Cy(t)dw(t).

(11)

When σ1 = σ2 = 0, the stochastic differential
delay equation (11) is given by:

ẏ(t) = Ay(t) + B1y(t− τ1) + B2y(t− τ2). (12)

From (12), if a1 = a2 = 0, b12 = 0, the charac-
teristic function of (12) is given by:

h1(λ, τ1) = λ2 − (k1a11 + k2a22)λ+

+ k1k2a11a22 − k1k2a12a21 − k1k2a12b21e
−λτ1 .

(13)

If a11 = a12 = a21 = a22 = 0, the characteristic
functions of (12) is given by:

h2(λ, τ1, λ2) = λ2 − (k1a1 + k2a2)λ+

+ k1k2a1a2 − k1k2b12b21e
−λ(τ1+τ2).

(14)
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If a1 = a2 = 0, b12 = 0, let C1([−τ1, 0], IR2) be
the family of continuous functions Φ1 from [−τ1, 0]
to IR2.

If a11 = a12 = a21 = a22 = 0, let C2([−(τ1 +
τ2, 0], IR2) be the family of continuous function Φ2

from [−(τ1 + τ2), 0] to IR2.
Using the fundamental solution Y 1, Y 2 the solu-

tion of (12) with the initial condition y(θ) = Φ1(θ) ∈
C1([−τ1, 0], IR2) respectively y(θ) = Φ2(θ) ∈
C2([−(τ1 + τ2), 0], IR2) is given by:

yΦ1(t) = Y 1(t)Φ1(0) +
∫ 0

−τ1

Y 1(t− τ1 − s)Φ1(s)ds,

(15)
respectively

yΦ2(t) =Y 2(t)Φ2(0)+
∫ 0

−(τ1+τ2)
Y 2(t−τ1−τ2−s)Φ2(s)ds.

(16)
From (15), (16), the asymptotic behavior of

yΦ1(t), yΦ2(t) are determined by the fundamental so-
lutions Y 1(t), Y 2(t).

We have the following result:
Theorem 1. [3] If α1 = max{Re(λ) : h1(λ) =

0}, respectively α2 = max{Re(λ) : h2(λ) = 0},
then for α > α1 respectively α > α2 there is the
constants k1 = k1(α), k2 = k2(α) such that the fun-
damental solution Y 1, respectively Y 2 satisfies the in-
equality:

||Y 1(t)|| ≤ k1e
α1t, respectively||Y 2(t)|| ≤ k2e

α2t,
(17)

t ≥ 0.
From Theorem 1, the solutions (15), respectively

(16) approach 0 as t → ∞ if and only if α1 > 0
respectively α2 > 0.

When the characteristic equations h1(λ) = 0,
h2(λ) = 0 have pure imaginary roots, then the study
of the solutions for (12) leads to the existence of the
Hopf bifurcation and will be presented in the next sec-
tions.

Consider system (11) with σ1 6= 0, σ2 6= 0. From
the fundamental solution Y 1(t), respectively Y 2(t),
the solution of (11) is a stochastic process given by:

y(t, Φ1) = yΦ1(t)+
∫ t

0
Y 1(y−s)Cy(s−τ1; Φ1)dw(s)

(18)
respectively

y(t, Φ2) = yΦ2(t) +
∫ t

0
Y 1(y − s)Cy(s−

− (τ1 + τ2); Φ2)dw(s),
(19)

where yΦ1(t), respectively yΦ2(t) is the solution given
by (15), respectively (16). The existence and unique-
ness theorem for the stochastic delay equation has
been established in [7].

The solutions y(t,Φ1), respectively y(t,Φ2) are
stochastic processes with distribution at any time t de-
termined by the initial function Φ1(θ), respectively
Φ2(θ). From the Chebyshev inequality, the possible
rang of y at time t is a ”almost” determined by its mean
and variance at time t. Thus, the first and second mo-
ments of the solutions are important for investigating
the solutions behavior.

We have used E to denote the mathematical ex-
pectation and we denote y(t,Φ1) respectively y(t, Φ2)
by y(t).

Proposition 1 If a1 = a2 = 0, b12 = 0 the first mo-
ments of the solution of (12) are given by:

E(y(t))
dt

= AE(y(t)) + B1E(y(t− τ1)), (20)

and

E(y(t)) = Y 1(t)Φ1(0)+
∫ 0

−τ1

Y 1(t−τ1−s)Φ1(s)ds.

If α1 = max{Re(λ) : h1(λ) = 0}, then for any
α > α1 there is a constant k1 = k1(α) so that:

||dE(y(t))|| < k1||Φ1||eαt, t ≥ 0. (21)

If α1 < 0, then (11) is the first moment exponen-
tially stable.

The proof can be obtained by taking the mathemati-
cal expectation of both sides of (11) and taking into
account the properties of Itô integral.

Proposition 2 If a11 = a12 = a21 = a22 = 0, the
first moment of (12) is given by:

E(y(t))
dt

= B1E(y(t−τ1))+B2E(y(t−τ2)), (22)

and

E(y(t)) = Y 2(t)Φ2(0)+

+
∫ 0

−(τ1+τ2)
Y 2(t− (τ1 + τ2)− s)Φ2(s)ds.

(23)

If α2 = max{Re(λ) : h2(λ) = 0}, then for any
α > α2 there is a constant k2 = k2(α) so that:

||E(y(t))|| < k1||Φ2||eαt, t ≥ 0. (24)

If α2 < 0, then (11) is the first moment exponen-
tially stable.
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Thus in the mean, the solution for the linear
stochastic equations (12) behaves precisely like the
solution of the unperturbed deterministic equations.

To examine the stability of the second moment of
y(t) for the linear stochastic differential delay equa-
tion (11). We use Itô rule to given the stochastic dif-
ferential of y(t)y(t)T .

We have:

d

dt
E(y(t)yT (t)) = E(dy(t)y(t)T + y(t)dyT +

+ Cy(t)T C) =

E(Ay(t)y(t)T + y(t)y(t)T AT + B1y(t− τ1)y(t)T +

+ y(t)yT (t− τ1)BT
1 + B2y(t− τ2)yT (t)+

+ y(t)yT (t− τ2)BT
2 + CyT (t)C).

(25)

Let R(t, s) = E(y(t)yT (t)) be the covariances
matrix of the process y(t) so that R(t, t) satisfies:

Ṙ(t, t) = AR(t, t) + R(t, t)AT + B1R(t− τ1, t)+

+R(t, t−τ1)BT
1 +B2R(t−τ2, t)+R(t, t−τ2)BT

2+

+ CR(t, t)CT .

(26)

Proposition 3 The characteristic function of (26) is
given by:

h(λ, τ1, τ2) = (2λ− 2k1(a11 − a1)− k2
1σ

2
1)(2λ−

− 2k2(a22 − a2)− k2
2σ

2
2)(2λ− k1(a11 − a1)−

− k2(a22 − a2)− k1k2σ1σ2)−
− 2k1k2(4λ− 2k1(a11 − a1)− 2k2(a22 − a2)−
− k2

1σ
2
1 −K2

2σ2
2)(a12 + b12e

−λτ1)(a21 + b21e
−λτ1).

(27)

Proof. From (26) we have:

Ṙ11(t, t) = (2k1(a11 − a1)+

+ k2
1σ

2
1)R11(t, t) + 2k1a12R12(t, t)+

+ k1b12R21(t, t− τ2) + k1b12R12(t, t− τ2)

Ṙ12(t, t) = k2a21R11(t, t) + (k1(a11 − a1)+

+ k2(a22 − a2))R12(t, t) + k2b21R11(t− τ1, t)+

+ k2(a22 − a2)R22(t, t) + k1b12R22(t, t− τ2)+

+ k1k2σ1σ2R12(t, t)

Ṙ22(t, t) = 2k2a21R12(t, t) + k2b21R12(t− τ1, t)+

+ (2k2(a22 − a2) + k2
2σ

2
2)R22(t, t).

(28)

Consider R11(t, s) = eλ(t+s)K11, R12(t, s) =
eλ(t+s)K12, R22(t, s) = eλ(t+s)K22, with K11, K12,
K22 constants. We replace them in (28) and setting
the condition that the system we obtain should accept
results different than 0, we get (27).

The stability of the second moments is ana-
lyzed studying the roots of the characteristic equation
h(λ, τ1, τ2) = 0, for the cases a1 = a2 = 0, b12 = 0
and a11 = a12 = a21 = a22 = 0. We use the Routh-
Hurwitz theorem for determining the necessary and
sufficient conditions that this equation admits roots
with negative real part.

4 The analysis of the Cournot-
Bertrand and traditional Cournot
stochastic models with delay

The Cournot-Bertrand model with delay is given by
(2) with the reaction functions (3) and has the follow-
ing properties:

Proposition 4 1. The steady state is given by the
point (x∗1, p

∗
2), where

x∗1 =
c2

θ2a2α2
, p∗2 = α,

where α is the positive root of the equation:

θ1θ
2
2a

4
2x

3 − c1θ
2
2a

4
2x

2 − 2c1c2a1a
2
2θ2(1− θ1θ2)x−

− c1c2a
2
1(1− θ1θ2)2 = 0;

2. The characteristic function of the linearized
system (9) in (x∗1, p

∗
2) is given by:

h(λ, τ) = λ2 + (k1a1 + k2a2)λ + k1k2a1a2−
− k1k2γe−λτ

(29)

where τ = τ1 + τ2, γ = b12b21 and

b12 =
1

(1−θ1)α

(
θ1

α
− 1

2

√
θ1

c1

1√
α

)
,

b21 =
1
2

√
c2

θ2

1
x∗1

√
x∗1

;

3. If γ ∈ [−√a1a2,

√
a1a2

4
), no stability switch-

ing occurs and the delay system is always locally
asymptotically stable;

4. Given γ < −√a1a2, the dynamic system with
fixed time delay is locally asymptotically stable when
τ < τ0 and unstable when τ > τ0,
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where τ0 =
θ0

ω0
with:

ω2
0 =

−(k2
1a

2
1 + k2

2a
2
2)

2
±

±
√

(k2
1a

2
1 + k2

2a
2
2)2 − 4k2

1k
2
2(a1a2 − γ2)

2
,

sin θ0 = −(a1k1 + a2k2)ω0

k1k2γ
,

cos θ0 =
a1k1a2k2 − ω2

0

k1k2γ
,

and θ0 ∈ [π2 , π) if k1k2 − ω2
0 ≥ 0 and θ0 ∈ (0, π

2 )
otherwise.

If a1 = a2 = 1 Theorem 2 from [17] is obtained.
Now, consider the stochastic perturbated model of

(2) given by the following system of stochastic differ-
ential equations with delay:

dx1(t) = k1[R1(p2(t− τ1))− a1x1(t)]dt−
− k1σ1(x1(t)− x∗1)dw(t),

dp2(t) = k2[R2(x1(t− τ2))− a2p2(t)]dt−
− k2σ2(p2(t)− p∗2)dw(t).

(30)

The linearized of the (30) is given by:

dy1(t) = (−k1a1y1(t) + k1b12y2(t− τ1))dt−
− k1σ1y1(t)dw(t),

dy2(t) = (k2b21y1(t− τ2)− k2a2y2(t))dt−
− k2σ2y2(t)dw(t).

(31)

We have considered y1(t) = y1(t, ω) and y2(t) =
y2(t, ω). If we use E to denote the mathematical ex-
pectation and taking it in both sides of (31) by using
properties for Itô integral we obtain the first moments
of the solution of (31) that are given by:

Ė(y1(t)) = −k1a1E(y1(t)) + k1b12E(y2(t− τ2)),

Ė(y2(t)) = k2b21E(y1(t− τ1))− k2a2E(y2(t− τ)).
(32)

To examine the stability of the second mo-
ments of y1(t) and y2(t), for the linear stochas-
tic differential equations with delay (31), we
use Itô’s rule given by the stochastic differ-
ential of (y1(t), y2(t))T (y1(t), y2(t)). Denoted
by R11(t, s) = E(y1(t)y1(s)), R12(t, s) =
E(y1(t)y2(s)), R22(t, s) = E(y2(t)y2(s)), the se-
cond moments from (31) are given by:

Ṙ11(t, t) = (−2k1a1 + σ2
1k

2
1)R11(t, t)+

+ k1b12R21(t− τ1, t) + k1b12R12(t, t− τ2),

Ṙ12(t, t) = (−k1a1 − k2a2 + k1k2σ1σ2)R12(t, t)+

+ k2b21R11(t− τ1, t) + k1b12R22(t, t− τ2),

Ṙ22(t, t) = (−2k2a2 + σ2
2k

2
2)R22(t, t)+

+ k2b21R12(t− τ1, t) + k2b21R21(t− τ1, t).
(33)

The characteristic function of system (33) is:

h2(λ, τ) = (2λ + 2k1a1 − k2
1σ

2
1)(2λ + 2k2a2−

− k2
2σ

2
2)(2λ + k1a1 + k2a2 − k1k2σ1σ2)−

− 2k1k2(4λ + 2(k1a1 + k2a2)− k2
1σ

2
1 − k2

2σ
2
2)·

· b12b21e
−λτ ,

(34)

where τ = τ1 + τ2.
Using the notations n1 = k1a1, n2 = k2a2, from

(34) we deduce:

h3(λ, τ) = Q3(λ)−Q1(λ)e−λτ ,

where

Q3(λ) = (2λ + 2n1 − k2
1σ

2
1)(2λ + 2n2 − k2

2σ
2
2)·

· (2λ + n1 + n2 − k1k2σ1σ2)

Q1(λ) = 2k1k2b12b21(4λ + 2n1 + 2n2 − k2
1σ

2
1−

− k2
2σ

2
2).

If τ = 0, the roots of the equation h3(λ, 0) = 0
have negative real part if the Routh-Hurwitz condi-
tions hold.

If we denote by:

c1 = 4(3(n1 + n2)− k2
1σ

2
1 − k2

2σ
2
2 − k1k2σ1σ2),

c2 = 2(2n1 − k2
1σ

2
1)(2n2 − k2

2σ
2
2) + 2(2(n1 + n2)−

− k2
1σ

2
1 − k2

2)(n1 + n2 − k1k2σ1σ2)

c3 = (2n1 − k2
1σ

2
1)(2n2 − k2

2σ
2
2)(n1 + n2 − k1k2σ1σ2)

c4 = 8k1k2b12b21

c5 = 2k1k2b12b21(2(n1 + n2)− k2
1σ

2
1 − k2σ

2
2),

then

h(λ, τ) = 8λ3 + c1λ
2 + c2λ + c3 − (c4λ + c5)e−λτ .

If

φ2(λ) = h(λ, 0) = 8λ3 + c1λ
2 +(c2− c4)λ+ c3− c5
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and φ2(0) = c3 − c5 < 0, φ′2(0) = c2 − c4 > 0 or
φ2(0) = c3 − c5 > 0, φ′2(0) = c2 − c4 < 0, then the
equation φ2(λ) = 0 admits a positive root.

We obtain:

sinθ =
ω3(8c5 − c1c4)− ω(c2c5ω − c3c4)

c2
5 − ω2c2

4

cosθ =
ω4c4 − ω2(c5c1 + c4c2) + c3c5

c2
5 − ω2c2

4

and

P (ω) = 64ω6 + (c2
1 − 16c2)ω4 + (c2

2 − 2c1c3 − c2
4)ω

2+

+ c2
3 − c2

5.

If ω0 is a positive solution of P (ω) = 0 then:

τ0 =
1
ω0

arctg
ω3(8c5 − c1c4)− ω(c2c5ω − c3c4)

ω4c4 − ω2(c5c1 + c4c2) + c3c5

In what follows the analysis for the traditional
Cournot competition with the reaction functions given
by (4) is summarized in:

Proposition 5 1. The steady state is given by
(x10, p20), where

x10 =
θ2

c2(θ2 + a2z∗)
, p20 =

θ2z
∗

c2(θ2 + a2z∗)

with z∗ the positive root of the equation:

m2a2
2z

3+(2a2θ2m
2−θ2

2)z
2+(m2θ2

2−2a1θ1)z−a2
1 = 0

and m =
θ1c2

θ2c1
;

2. The characteristic equation of the linearized
system in (x10, p20) is (9), where

b12 = −θ1 +
1

2
√

p20

√
θ1

c1
, b21 = −θ2 +

1
2
√

x10

√
θ2

c2
;

(35)
3. The first moments of the solution are (32) with

b12 and b21 from (35);
4. The second moments of the solution are (33)

with b12 and b21 from (35);
5. The characteristic function of (33) is given by

(34) with b12 and b21 from (35).

The analysis of the behavior for the mean and
mean square values can be done using the characteris-
tic equations h1(λ, τ) = 0 and h2(λ, τ) = 0.

5 The fuzzy and hybrid Cournot-
Bertrand and traditional Cournot
models with delay

Fuzzy differential equations are derived to model
fuzzy dynamic systems. Fuzzy differential equations
are mainly concerning probabilistic uncertainty based
on possibility measure. Recently, Liu (2008) intro-
duced a new kind of fuzzy differential equation based
on credibility measure. The study is moved from a
probabilistic space to a credibilistic one, as it is de-
scribed by Li and Liu [10]. This is a new theory that
deals with fuzzy phenomena. Fuzzy random theory
and random fuzzy theory can be seen as an extension
of credibility theory. A fuzzy random variable can be
seen as a function from the probability space to the
set of fuzzy variables, and a random fuzzy variable
is a function from the credibility space to the set of
random variables [10]. Let (θ, P,C) be a credibility
space, where θ is a nonempty set, P is a subset of θ, the
biggest σ-algebra over θ and C is a credibility mea-
sure.

If we consider C(t) a Liu process on credibility
space, we call a fuzzy differential equation, the inte-
gral equation of Volterra type, given by:

x(t) = x(0) +
∫ t

0
f(s)ds +

∫ t

0
g(s)dC(s, z) (36)

with f and g real valued functions. The first in-
tegral is a Riemann integral, and the second one is
a Liu integral [21]. Formally, the equation (36) can
be written in a similar way to a stochastic differential
equation, like above:

dx = f(x)dt + g(x)dC(t, z).

The fuzzification is done by considering Liu pro-
cesses [6], C(t, zi), with zi, i = 1, 2, 3 positive num-
bers that define the membership functions of the fuzzy
normal distributions

µi(t, zi) = 2(1 + exp(πzi/t
√

6))(−1), i = 1, 2, 3.

The system of fuzzy differential equations associ-
ated to (2) has the form:

ẋ1(t) = k1[R1(p2(t− τ2))− a1x1(t)]dt−
− k1β1(x1 − x∗1)dC(t, z1)

ṗ2(t) = k2[R2(x1(t− τ1))− a2p2(t)]dt−
− k2β2(x2 − x∗2)dC(t, z2)

(37)
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The mixture between fuzziness and randomness
leads to a hybrid process. In this sense, we have the
concept of fuzzy random variable that was introduced
by Kwakernaak [5], [6]. A fuzzy random variable
is a random variable that takes fuzzy variable values.
More generally, hybrid variable was proposed by Liu
[8] to describe the phenomena with fuzziness and ran-
domness. Based on the hybrid process, we will work
with differential equations characterized by Wiener-
Liu process. This can be computed using It-Liu for-
mula [10], [18].

Let (Ω, F, P ) be a probabilistic space and
(θ, P, C) a credibility space. If we consider w(t) a
Wiener process on the probability space, and C(t, zi),
i = 1, 2, 3 Liu process on credibility space, we call a
hybrid differential system associated to (2) the differ-
ential equations system given by:

dx1 = k1[R1(p2(t− τ2))− a1x1(t)]dt−
− k1β1(x1 − x∗1)dC(t, z1)−
− k1σ1(x1 − x∗1)dw(t)

dp2 = k2[R2(x1(t− τ1))− a2p2(t)]dt−
− k2β2(x2 − x∗2)dC(t, z2)−
− k2σ2(x2 − x∗2)dw(t)

(38)

6 Numerical simulations
The numerical simulation was made using a program
in Maple 13.

For the Cournot-Bertrand model we consider the
following parameters: k1 = 0.2, k2 = 0.5, σ1 = 2,
σ2 = 1, a1 = 2, a2 = 1, c1 = 4, c2 = 3,
θ1 = 0.4, θ2 = 0.2. We obtained the steady state
x∗1 = 0.01593, p∗2 = 30.68. The real parts of roots
for the equations h1(λ, 0) = 0 and h2(λ, 0) = 0 are
negative. The mean values E(yi(t)), i = 1, 2, the
mean square values E(yi(t)2), i = 1, 2 and the vari-
ances D(yi(t)) = E(yi(t)2) − (E(yi(t)))2, i = 1, 2
are asymptotically stable. In what follows we consider
τ = 3.

The orbits (n, y1(n, ω)), (n, y2(n, ω)) are pre-
sented in Fig1 and in Fig2 respectively:

In figures Fig3 and Fig4 the orbits
(n,E(y1(n, ω))), (n,E(y2(n, ω))) are displayed:

The variances (n,D(y1(n, ω))),
(n,D(y2(n, ω))) are showed in Fig5 and Fig6:

From the above simulations we can notice that the
mean values and the variances of the state variables
are asymptotically stable.

For the traditional Cournot model the parameters
for the model are: k1 = 0.2, k2 = 0.5, σ1 = 2,
σ2 = 1, a1 = 2, a2 = 1, c1 = 4, c2 = 3, θ1 = 0.4,
θ2 = 0.2. We obtained the steady state x10 = 0.046,
p20 = 0.057. The real parts of roots for the equa-
tion h2(λ, 0) = 0 are negative and the roots of equa-
tion h1(λ, 0) = 0 are given by: λ1 = 0.011 and
λ2 = −0.911. Therefore, the mean values E(yi(t)),
i = 1, 2 are unstable and the mean square values
E(yi(t)2), i = 1, 2 are asymptotically stable. In what
follows we consider τ = 3.

The orbits (n, y1(n, ω)), (n, y2(n, ω)) are pre-
sented in Fig7 and in Fig8 respectively:

WSEAS TRANSACTIONS on MATHEMATICS Mihaela Neamtu, Marilen Pirtea, Gabriela Mircea, Dumitru Opris

ISSN: 1109-2769 588 Issue 7, Volume 9, July 2010



Figures Fig9 and Fig10 display the orbits
(n,E(y1(n, ω))), (n,E(y2(n, ω))):

The variances (n,D(y1(n, ω))),
(n,D(y2(n, ω))) are showed in Fig11 and Fig12:

From the above graphics we notice that for the
traditional Cournot model the mean values and the
variances of the state variables are asymptotically sta-
ble.

All these graphics justify the behaviors of the
models solutions as obtained in the theoretical section.

In what follows we consider the numerical sim-
ulation of the fuzzy model (37) and hybrid model
(38), as well. The numerical simulation of the terms
βi(x1(t) − x∗i )dC(t, zi) is done using the formula
βi(xi[j]− x∗i )L(j, zi), where:

L(j, zi) = 2(1 + exp(πzi/(hS(i, j)
√

6)))(−1),

S(i, j) = βi

j−1∑

k=0

xi[k].

We use σ1 = 3, σ2 = 5, β1 = 0, β2 = 0, z1 =
0.2, z2 = 0.3, a1 = 2, a2 = 1, c1 = 4 c2 = 3,
θ1 = 0.4, θ2 = 0.2, k1 = 0.2, k2 = 0.5 and obtain the
graphics:

Fig 13 (n, x1(n, ω, z1)), Fig 14 (n, x2(n, ω, z2)):

Fig 15 (x1(n, ω, z1), x2(n, ω, z2)):

If β1 = β2 = 0 we get the stochastic model. In
this case we have:

Fig 16 (n, x1(n, ω)), Fig 17 (n, x2(n, ω)):

Fig 18 (x1(n, ω), x2(n, ω)):

A similar simulation can be done for Cournot-
Cournot and Bertrand-Bertrand models.
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7 Conclusions
In this paper we have studied the Cournot-Bertrand
and Cournot-Cournot models described by the
stochastic differential equations with delay. The study
is done in the neighborhood of the steady state. Con-
ditions are found for the asymptotically stability of
the mean values and the variance of the state vari-
ables. These conditions are given using the charac-
teristic equations associated to the differential sys-
tems that describe the mean values and the mean
square values. A similar analysis can be done for the
Bertrand-Bertrand competition with the reaction func-
tions given by (4).

We have presented Cournot-Bertrand and
Cournot-Cournot models by considering stochastic
approach (by writing stochastic system of differential
equations), fuzzy approach (the fuzzy system of
differential equations associated to the deterministic
system) and hybrid system of differential equations,
as a combination of randomness and fuzziness.

The models from this paper can be extended con-
sidering the fractional integral [19].
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of some Discrete IS-LM Models with Tax Rev-
enues and Time Delay, WSEAS Transactions on
Mathematics, 2(8), 2009, pp. 51–62.
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crete IS-LM Model with Tax Revenues, Pro-
ceedings of the 10th WSEAS International Con-
ference on Mathematics and Computers in
Business and Economics (MCBE’09) - ”Re-
cent Advanced in Mathematics and Comput-
ers in Business and Economics”, Prague, 2009,
pp.171-176.
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House, Timişoara, 2009.

WSEAS TRANSACTIONS on MATHEMATICS Mihaela Neamtu, Marilen Pirtea, Gabriela Mircea, Dumitru Opris

ISSN: 1109-2769 590 Issue 7, Volume 9, July 2010
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