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1 Introduction

In the last years, because of its utility in a broad
spectrum of areas, such as statistics, probabil-
ity, economy, theory of games, artificial intelli-
gence, computer and system sciences, biology,
medicine, physics, human decision making (see,
for instance, [3], [8], [27], [30], [32, 33]), a the-
ory of fuzziness became to develop.

In recent years, we were interested in the
study of different problems of the classical mea-
sure theory (regularity, fuzziness, atoms, pseudo-
atoms, non-atomicity, finitely purely atomicity,
Darboux property, integrability, continuity prop-
erties), which we treated in the set valued case
(see, for instance, [1, 2], [4-7], [13-22], [28],
[31]).

Another important properties, with many ap-
plications, are diffusion and semi-convexity. Dif-
ferent problems concerning this property of diffu-
sion have been studied for real valued measures
for instance by [11, 12], [25, 26].

Semi-convexity has been considered by Hal-
mos [23] in his study about the range of a mea-
sure with values in a finite-dimensional vector

space.
In this paper we present different aspects of

the properties of diffusion and semi-convexity for
fuzzy set multifunctions defined on a ring of sub-
sets of an abstract nonvoid space and taking val-
ues in the family of all nonvoid closed subsets of
a real normed space. Some results in the con-
text of various notions (such as non-atomicity,
Darboux property, regularity, decreasing conver-
gence) are established.

2 Preliminaries
Let X be a real normed space, P0(X) the family
of all nonvoid subsets of X , Pf (X) the family of
all nonvoid closed subsets of X,Pbf (X) the fam-
ily of all nonvoid closed subsets of X,Pbfc(X)
the family of all nonvoid closed bounded con-
vex subsets of X and h the Hausdorff-Pompeiu
pseudometric on Pf (X). h becomes a metric on
Pbf (X) [24].

It is known that h(M,N) = max{e(M,N),
e(N,M)}, where e(M,N) = sup

x∈M
d(x,N), for
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every M,N ∈ Pf (X) is the excess of M over
N and d(x,N) is the distance from x to N with
respect to the distance induced by the norm of X.

On P0(X) we consider the Minkowski addi-

tion ”
•
+ ” [24], defined by:

M
•
+N = M +N, for every M,N ∈ P0(X),

where M +N is the closure of M + N with re-
spect to the topology induced by the norm of X.

We denote |M | = h(M, {0}), for every M ∈
Pf (X), where 0 is the origin of X .

We also denote N∗ = N\{0}, where N is the
set of all naturals and R+ = [0,+∞).

We now recall some classical notions of mea-
sure theory. Suppose T is an abstract nonvoid
space and C is a ring of subsets of T .

Definition 1 Let ν : C → [0,+∞] be a set func-
tion. ν is said to be:

I) monotone if ν(A) ≤ ν(B), for every A,B ∈
C so that A ⊆ B;

II) a submeasure if ν(∅) = 0, ν is monotone
and ν(A ∪ B) ≤ ν(A) + ν(B), for every
disjoint sets A,B ∈ C;

III) finitely additive if ν(∅) = 0 and ν(A∪B) =
ν(A) + ν(B), for every disjoint sets A,B ∈
C;

IV) increasing convergent if

lim
n→∞

ν(An) = ν(A),

for every sequence of sets (An)n∈N∗ ⊂ C
so that An ⊆ An+1 for every n ∈ N∗ and
∞∪
n=1

An = A ∈ C;

V) order continuous (shortly, o-continuous) if

lim
n→∞

ν(An) = 0,

for every sequence of sets (An)n∈N∗ ⊂ C,
so that An ⊇ An+1, for every n ∈ N∗ and
∞∩
n=1

An = ∅;

VI) super-additive if ν(A ∪B) ≥ ν(A) + ν(B),
for every disjoint sets A,B ∈ C.

The following notions generalize the well-
known corresponding notions from the non-
additive fuzzy measure theory ([9], [10], [29]).

Definition 2 ([4, 5], [7], [13-23], [28], [31]) Con-
sider µ : C → P0(X) a set multifunction, with
µ(∅) = {0}. µ is said to be:

I) fuzzy (or monotone) if µ(A) ⊆ µ(B), for
every A,B ∈ C, with A ⊆ B;

II) null-additive if µ(A∪B) = µ(A), for every
A,B ∈ C, with µ(B) = {0};

III) null–null-additive if µ(A ∪ B) = {0}, for
every A,B ∈ C, with µ(A) = µ(B) = {0};

IV) decreasing convergent with respect to h if

lim
n→∞

h(µ(An), µ(A)) = 0,

for every decreasing sequence of sets
(An)n∈N∗ ⊂ C, with

∞
∩

n=1
An = A ∈ C;

V) a multimeasure if

µ(A ∪B) = µ(A) + µ(B),

for every A,B ∈ C, with A ∩B = ∅.

VI) a multisubmeasure if µ is monotone and

µ(A ∪B) ⊆ µ(A) + µ(B),

for every disjoint sets A,B ∈ C.

Remark 3 I. If µ is Pf (X)-valued, then in
Definition 2-V and VI it usually appears
”
•
+” instead of ”+”, because the sum of two

closed sets is not always closed.

II. If µ : C → Pf (X) is null-additive, then it is
null-null-additive.
The converse is not valid. Indeed, let T =
{a, b}, C = P(T ) and µ : C → Pf (R) de-
fined by µ(T ) = [0, 2], µ({b}) = [0, 1] and
µ(∅) = µ({a}) = {0}. Then µ is null-null-
additive but it is not null-additive.

III. Any multisubmeasure µ : C → P0(X) is
null-additive.
Indeed, let A,B be arbitrary sets of C, so
that µ(B) = {0}. Since µ is monotone, we
have

(1) µ(A) ⊆ µ(A ∪B).
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Since µ is a multisubmeasure, we obtain

(2) µ(A ∪B) ⊆ µ(A) + µ(B) = µ(A).

From (1) and (2) it results µ(A∪B) = µ(A),
which proves that µ is null-additive.
The converse in not true. Indeed, let T =
{a, b}, C = P(T ) and µ : C → Pf (R) de-
fined by µ(T ) = [0, 2], µ({a}) = µ({b}) =
[0, 1

2
] and µ(∅) = {0}. Then µ is null-

additive but it is not a multimeasure.

Suppose µ : C → Pf (X) is a set multifunc-
tion, with µ(∅) = {0}. By |µ| we denote the ex-
tended real valued set function defined by

|µ|(A) = |µ(A)|, ∀ A ∈ C.

Definition 4 For a set multifunction µ : C →
Pf (X), with µ(∅) = {0}, we consider the varia-
tion µ of µ defined by

µ(A) = sup{
n∑

i=1

|µ(Ai)|},

for every A ∈ C, where the supremum is extended
over all finite partitions {Ai}i=1,n of A.
µ is said to be of finite variation on C if µ(A) <
∞, for every A ∈ C.

Remark 5 I. µ is fuzzy and super-additive on
P(T ), the family of all subsets of T .

II. If µ is fuzzy, then |µ| is also fuzzy.
The converse is not true. Indeed, let T =
{a, b}, C = P(T ) and µ : C → Pf (R) de-
fined by µ(T ) = {1}, µ({a}) = µ({b}) =
[0, 1] and µ(∅) = {0}. We have |µ(A)| = 1
if A ̸= ∅ and |µ(∅)| = 0. Then |µ| is fuzzy,
but µ is not fuzzy.

III. If µ is null-additive, then |µ| is null-additive.
The converse is not valid. Indeed, let T =
{a, b}, C = P(T ) and µ : C → Pf (R)
defined by µ(T ) = [0, 1], µ({a}) = 1 and
µ({b}) = µ(∅) = {0}. We have |µ(A)| = 1
if A = T or A = {a} and |µ(A)| = 0 if
A = {b} or A = ∅. Then |µ| is null-additive,
but µ is not null-additive.

Definition 6 ([4, 5], [7], [13], [16-18], [21], [28])
If µ : C → Pf (X) is a set multifunction, with
µ(∅) = {0}, then:

I) A set A ∈ C is said to be an atom of µ if
µ(A) ! {0} and for every B ∈ C, with B ⊆
A, we have µ(B) = {0} or µ(A\B) = {0};

II) µ is said to be non-atomic if it has no atoms.

Remark 7 I. If µ : C → Pf (X) is fuzzy, then
µ is non-atomic if and only if for every A ∈
C, with µ(A) ! {0}, there exists B ∈ C,
with B ⊆ A, µ(B) ! {0} and µ(A\B) !
{0}.

II. Suppose µ : C → Pf (X) is fuzzy. If A ∈ C
is an atom of µ and B ∈ C, B ⊆ A has
µ(B) ) {0}, then B is an atom of µ and
µ(A\B) = {0}.

Example 8 Let T = {2n|n ∈ N}, C = P(T )
and the multisubmeasure defined, for every A ∈
C, by:

µ(A) =

{0}, if A = ∅
1

2
A ∪ {0}, if A ̸= ∅,

where 1
2
A = {x

2
|x ∈ A}.

If A is a set of C so that card A = 1 and
A ̸= {0} or A = {0, 2n}, n ∈ N\{0}, then A is
an atom of µ (by card A we mean the cardinal of
A).

If A is a set of C so that card A ≥ 2 and there
exist a, b ∈ A such that a ̸= b and ab ̸= 0, then A
is not an atom of µ.

Definition 9 Suppose ν : C → R+ is an arbi-
trary set function, with ν(∅) = 0. We say that a
set multifunction µ : C → Pf (R+) is induced by
ν if µ(A) = [0, ν(A)], for every A ∈ C.

Remark 10 Let µ : C → Pf (R+) be the set mul-
tifunction induced by a set function ν : C → R+

so that ν(∅) = 0. Then:

i) µ is fuzzy if and only if ν is fuzzy.

Indeed, we have µ(A) = [0, ν(A)], for every A ∈
C. We observe that µ(∅) = {0}. Let A,B ∈ C so
that A ⊆ B. Then

µ(A) ⊆ µ(A) ⇔ ν(A) ≤ ν(B).

So µ is diffused if and only if ν is diffused.
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ii) µ is null-additive (null-null-additive, respec-
tively) if and only if the same is ν.
Indeed, suppose µ is null-additive and let
A,B ∈ C so that ν(B) = 0. Then µ(B) =
{0} and since µ is null-additive, it results
µ(A ∪ B) = µ(A). That is [0, ν(A ∪ B)] =
[0, ν(A)], which implies ν(A ∪ B) = ν(A)
and shows that ν is null-additive. For the
converse, we analogously act.
Concerning null-null-additivity, the proof of
the equivalence goes on in the same way.

iii) µ is a multimeasure if and only if ν is finitely
additive.

Indeed, let A,B ∈ C so that A∩B = ∅. Then

µ(A)
•
+ µ(B) = [0, ν(A)]

•
+ [0, ν(B)] =

= [0, ν(A) + ν(B)] = [0, ν(A ∪B)] =

= µ(A ∪B).

iv) µ is non-atomic if and only if ν is non-
atomic.

Definition 11 Let µ : C → P0(X) be a set mul-
tifunction so that µ(∅) = {0}. We say that µ has
the Darboux property if for every A ∈ C so that
µ(A) ) {0} and every p ∈ (0, 1), there exists a
set B ∈ C such that B ⊆ A and µ(B) = pµ(A).

Example 12 Suppose C is the Borel σ-algebra of
T = [0,+∞) and ν : C → R+ is an increasing
convergent finitely additive set function so that
ν([t, s]) ≤ s − t, for every t, s ∈ T , with t ≤
s. Then the set multifunction µ : C → P0(R)
defined by µ(A) = [0, ν(A)], for every A ∈ C
has the Darboux property.

Indeed, let A ∈ C be a set so that µ(A) ) {0}
and let p ∈ (0, 1). Consider f : T → R the real
function defined by f(t) = ν(A ∩ [0, t]). Since ν
is finitely additive, we have:

|f(t)− f(s)| ≤ |t− s|, ∀t, s ∈ T,

which implies that f is continuous on T . We have
f(0) = 0 and by the increasing convergence of ν
it follows lim

t→∞
f(t) = ν(A). Consequently, there

is t0 ∈ T such that f(t0) = pν(A). Denoting
B = A ∩ [0, t0], it results B ∈ C, B ⊆ A and
ν(B) = pν(A). But this implies µ(B) = pµ(A),
which shows that µ has Darboux property.

In Gavriluţ and Croitoru [17] we obtained the
following:

Theorem 13 Let µ : C → Pf (X) be a set multi-
function, so that µ(∅) = {0} and |µ|(A) < +∞,
for every A ∈ C.

I. Suppose µ is a multisubmeasure. If µ has
the Darboux property, then µ is non-atomic.

II. If C is an algebra, µ is bounded, finitely ad-
ditive and has the Darboux property, then µ
is non-atomic.

III. Suppose C is a σ-algebra and µ is the mul-
tisubmeasure induced by an o-continuous
submeasure ν : C → [0,+∞). Then µ has
the Darboux property if and only if µ is non-
atomic.

Remark 14 [17] The converse of Theorem 13-I
is not true. Indeed, let T be a compact space, B
the Borel δ-ring generated by the compact sub-
sets of T and µ : B → Pf (R) the multisubmea-
sure defined by:

µ(A) =

{
[−ν(A), ν(A)] , if ν(A) ≤ 1

[−ν(A), 1] , if ν(A) > 1,

for every A ∈ B, where ν : B → [0,+∞) is a
bounded finitely additive set function having the
Darboux property. Then µ is non-atomic, but µ
does not have the Darboux property.

3 Diffusion of a set multifunc-
tion

We present in the sequel some properties regard-
ing diffusion for set multifunctions.

Let T be a locally compact Hausdorff space,
C a ring of subsets of T , B0 the Baire δ-ring gen-
erated by the Gδ-compact subsets of T (that is,
compact sets which are countable intersections
of open sets) and B the Borel δ-ring generated
by the compact subsets of T . It is known that
B0 ⊂ B.

Definition 15 ([28]) Let µ : C → Pf (X) be a
set multifunction, with µ(∅) = {0}. We say that
µ is diffused if for every t ∈ T, with {t} ∈ C,
µ({t}) = {0}.

We recall now the concept of regularity that
we have defined and studied, for instance, in [14,
22] for different types of set multifunctions with
respect to the Hausdorff topology induced by the
Hausdorff pseudo-metric.
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Definition 16 Let A ∈ C be an arbitrary set and
µ : C −→ Pf (X) a set multifunction, with
µ(∅) = {0}.

I) A is said to be regular with respect to µ if
for every ε > 0, there exists a compact set
K ⊆ A, K ∈ C such that |µ(B)| < ε, for
every B ∈ C, B ⊆ A\K.

II) µ is said to be regular if every A ∈ C is a
regular set with respect to µ.

Remark 17 I. Let µ : C → Pf (R+) be the
set multifunction induced by a set function
ν : C → R+. Then:

i) µ is diffused if and only if ν is diffused.
ii) µ is regular if and only if ν is regular.

II. If T is a locally compact Hausdorff space,
then {t} is a compact set, hence {t} ∈ B.

One can easily observe the following:

Remark 18 I. The Lebesgue measure µ is dif-
fused.
Also, the set functions m : C → R+ defined
for every A ∈ C by:

i) m(A) =
√

µ(A),

ii) m(A) = µ(A)
1+µ(A)

are diffused. The same are the set multifunc-
tions induced by them.

II. If µ, ν : C → Pf (X) are diffused set multi-
functions, then the same are:

i) the set multifunction µ
•
+ ν : C →

Pf (X) defined by (µ
•
+ ν)(A) =

µ(A)
•
+ ν(A), for every A ∈ C;

ii) the set multifunction λµ defined by
(λµ)(A) = λµ(A), for every A ∈ C.

III. Let µ : C → Pf (X) be a set multifunction,
with µ(∅) = {0}.
The following statements are equivalent:

i) µ is diffused;
ii) |µ| is diffused;

iii) µ is diffused on C.

In the sequel, we establish that, under sev-
eral assumptions, non-atomicity and diffusion are
equivalent:

Theorem 19 Let A ∈ B with µ(A) ! {0} and
µ : B → Pf (X) be a regular fuzzy null-additive
set multifunction, with µ(∅) = {0}.

I. If A is an atom of µ, then there is a compact
set K0 ∈ B so that K0 ⊆ A and µ(A\K0) =
{0}.

II. A is an atom of µ if and only if the following
property holds:

(P )
there is an unique a ∈ A
such that µ(A\{a}) = {0}.

III. µ is non-atomic if and only if µ is diffused.

Proof. For every E ∈ B, let KE = {K ⊆ E;K
is a compact set and µ(E\K) = {0}} ⊂ B.

I. Let A ∈ B be an atom of µ.
One can easily check that ∅ /∈ KA. Indeed, if

on the contrary, ∅ ∈ KA, then it results µ(A\∅) =
µ(A) = {0}. But this is false, since A is an atom
of µ. First, we prove that KA is nonvoid.

Suppose by the contrary that KA = ∅.
Then for every compact set K ⊆ A, we have
µ(A\K) ! {0}.

Since A is an atom of µ, then µ(K) = {0}.
Thus, by the regularity of µ, we immediately

have that µ(A) = {0} and this is a contradiction.
Let us prove now that every set K ∈ KA is an

atom of µ. Indeed, if K ∈ KA, then µ(A\K) =
{0}.

Also, for every B ∈ B, with B ⊆ K, since
K ⊆ A and A is an atom of µ, we get µ(B) =
{0} or µ(A\B) = {0}.

If µ(A\B) = {0}, then {0} ⊆ µ(K\B) ⊆
µ(A\B) = {0}, so µ(K\B) = {0}.

Consequently, K ∈ KA is an atom of µ.
We prove now that K1 ∩K2 ∈ KA, for every

K1, K2 ∈ KA.
Indeed, if K1, K2 ∈ KA, then K1 ∩ K2 is a

compact set of T and µ(A\(K1 ∩K2)) = {0}.
It recurrently results:

(3)
n∩

i=1

Ki ∈ KA,∀n ∈ N∗, K1, . . . , Kn ∈ KA.

We prove that K0 = ∩
K ∈ KA

K is a nonvoid
set.

Suppose, on the contrary, that K0 = ∅.
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There are K1, K2, ..., Kn0 ∈ KA so that
n0∩
i=1

Ki = ∅. But from (3) it results
n0∩
i=1

Ki ∈ KA,
which is a contradiction.

Now, we prove that K0 ∈ KA. Obviously,
K0 is a compact set.

Let be K ∈ KA. Then µ(A\K) = {0}.
If K0 = K, then K0 ∈ KA.
If K0 ̸= K, then K0  K.
Because µ(A\K0) = µ(K\K0), it remains

to demonstrate that µ(K\K0) = {0}.
Suppose that, on the contrary, µ(K\K0) !

{0}.
Since K is an atom of µ, by Remark 7-II, it

follows that K\K0 is an atom of µ.
Because A is an atom of µ and µ(K\K0) !

{0}, then µ(A\(K\K0)) = {0}.
Let us consider C ∈ KK\K0 .
Then µ((K\K0)\C) = {0} and, since

µ(A\(K\K0)) = {0}, by the null-additivity of
µ we get that µ(A\C) = {0}. This implies
C ∈ KA.

Therefore, K0 ⊆ C, but C ⊆ K\K0, which
is a contradiction. Therefore, µ(K\K0) = {0}.

So, indeed, if A ∈ B is an atom of µ, we
find a compact set K0 ∈ B so that K0 ⊆ A and
µ(A\K0) = {0}.

II. Let A ∈ B be an atom of µ.
a) The existence part:
We show that the set K0 from the proof of i)

is a singleton {a}.
Suppose that, on the contrary, there exist

a, b ∈ A, with a ̸= b and K0 ⊇ {a, b}.
Since T is a locally compact Hausdorff

space, there exists an open neighbourhood V of
a so that b /∈ V .

Obviously, K0 = (K0\V ) ∪ (K0 ∩ V ) and
K0\V , K0 ∩ V are nonvoid compact subsets of
A.

We prove that K0\V ∈ KA or K0∩V ∈ KA.
Indeed, if K0\V /∈ KA and K0 ∩ V /∈ KA,

then µ(A\(K0\V )) ! {0} and µ(A\(K0∩V )) !
{0}.

Since A is an atom of µ, then µ(K0\V ) =
{0} and µ(K0 ∩ V ) = {0}.

Consequently, according to the null-
additivity of µ, we get µ(K0) = {0}.

This implies {0}  µ(A) = {0}, which is a
contradiction.

Therefore, K0\V ∈ KA or K0 ∩ V ∈ KA.
Because K0 ⊆ K, for every K ∈ KA, we

get that K0 ⊆ K0\V or K0 ⊆ K0 ∩ V , which is
impossible.

So, ∃a ∈ A so that µ(A\{a}) = {0}.
b) The uniqueness part:
Suppose that, on the contrary, there are

a, b ∈ A, with a ̸= b, µ(A\{a}) = {0} and
µ(A\{b}) = {0}.

Because {b} ⊆ A\{a} and µ(A\{a}) =
{0}, by the fuzziness of µ we get that µ({b}) =
{0}.

Then, according to the null-additivity of µ,
by µ(A\{b}) = {0} and µ({b}) = {0}, we have
µ(A) = {0}, which is a contradiction.

Now, consider A ∈ B, with µ(A) ! {0}
having property (P ) and let B ∈ B, with B ⊆ A.

If a /∈ B, then B ⊆ A\{a}. Because
µ(A\{a}) = {0} and µ is monotone, we have
µ(B) = {0}. If a ∈ B, then A\B ⊆ A\{a}, so
µ(A\B) = {0}. Consequently, A is an atom of
µ.

III. Let µ be diffused and suppose, on the
contrary, there is an atom A0 ∈ C of µ.

By ii), there is an unique a ∈ A0 so that
µ(A0\{a}) = {0}.

On the other hand, by the diffusion of
µ, µ({a}) = {0}.

The null-additivity of µ implies that µ(A0) =
{0}, which is a contradiction since A0 ∈ C is an
atom of µ. Consequently, µ is non-atomic.

Now, let µ be non-atomic and suppose, on
the contrary, that µ is not diffused, so there is t0 ∈
T so that µ({t0}) ! {0}.

Because µ is non-atomic, there is a set B ∈
B such that B ⊆ {t0}, µ(B) ! {0} and
µ({t0}\B) ! {0}. Consequently, B = ∅ or
B = {t0}, which is false. The proof is thus
finished. �

4 Semi-convexity
In this section we shall present some relation-
ships among semi-convexity, Darboux property,
diffusion and non-atomicity of fuzzy set multi-
functions.

Definition 20 ([28]) Let µ : C → Pf (X) be a set
multifunction, with µ(∅) = {0}. We say that µ is
semi-convex if for every A ∈ C, with µ(A) ! {0},
there exists B ∈ C so that

B ⊆ A and µ(B) =
1

2
µ(A).
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Example 21 Let ν : C → [0,+∞) be a set func-
tion, so that ν(∅) = 0 and µ the set multifunction
defined by µ(A) = [0, ν(A)], for every A ∈ C.
Then µ is semi-convex if and only if ν is semi-
convex.

Theorem 22 I. If the set multifunction µ :
C → P0(X) has the Darboux property, then
it is semi-convex.

II. If C is a σ-ring and µ : C → Pbfc(X) is
a semi-convex increasing convergent fuzzy
multimeasure, then µ has the Darboux prop-
erty.

Proof. I. It immediately follows.
II. Every p ∈ (0, 1) has an expansion p =

∞∑
n=1

an
2n

, where an ∈ {0, 1}, for every n ∈ N∗.

By the semi-convexity of µ, for every A ∈
C, there is B1 ∈ C so that B1 ⊆ A and µ(B1) =
a1
2
µ(A).

Analogously, there is B2 ∈ C so that B2 ⊆
A\B1 and µ(B2) =

a2
22
µ(A) and so on.

Consider

B =
∞∪
n=1

Bn =
∞∪
n=1

(
n∪

k=1

Bk).

Then B ∈ C and

µ(B) = lim
n→∞

n∑
k=1

µ(Bk) = lim
n→∞

n∑
k=1

ak
2k

µ(A)

(with respect to h).
From [24] it is known that if Mn

h→ M , M
is bounded and αn → α (where αn, α ∈ R), then
αnMn

h→ αM . Consequently, µ(B) = pµ(A), as
claimed. �

Theorem 23 If the fuzzy set multifunction µ :
C → Pb(X) is null-additive and semi-convex,
then µ is non-atomic.

Proof. Suppose, on the contrary, there is an atom
A0 ∈ C of µ. Since µ is semi-convex, there exists
B0 ∈ C so that B0 ⊆ A0 and µ(B0) =

1
2
µ(A0).

Because A0 ∈ C is an atom of µ and B0 ∈ C,
B0 ⊆ A0, then:

(i) µ(B0) = {0}. In this case, we get
µ(A0) = {0}, which is a contradiction.

(ii) µ(A0\B0) = {0}. Then, by the null-
additivity of µ, we have µ(A0) = µ(B0), so

µ(A0) = 1
2
µ(A0) and this implies |µ(A0)| =

1
2
|µ(A0)|.

Because µ : C → Pbf (X), then µ(A0) is a
bounded set, so

|µ(A0)| = sup
x∈µ(A0)

∥x∥ < +∞.

Consequently, |µ(A0)| = 0, so µ(A0) = {0},
which is again a contradiction since A0 is an atom
of µ. Then µ is non-atomic. �
Theorem 24 Let C = B0 (or B). If µ : C →
Pbfc(X) is a decreasing convergent semi-convex
fuzzy multimeasure, then for every t ∈ T , there
exists At ∈ C so that t ∈ At and µ(At) = {0}.
Proof. Let t ∈ T be arbitrarily, but fixed. We
first prove that there exists At ∈ C so that t ∈ At.

a) If C = B, then At = {t}.
b) If C = B0, since T is a Hausdorff locally

compact space, then for t there exists a compact
neighgbourhood Vt, for which there is a relatively
compact open set Dt so that Vt ⊆ Dt. By [13] we
know that there exists At ∈ B0 so that Vt ⊆ At ⊆
Dt. Evidently, t ∈ At.

Now, let A = At ∈ C be so that t ∈ A.
If µ(A) = {0}, the proof is finished.
If µ(A) ! {0}, since µ is semi-convex, there

exists a set A1 ∈ C so that A1 ⊆ A and µ(A1) =
1
2
µ(A). Then

µ(A) =
1

2
µ(A)

•
+ µ(A\A1) =

1

2
µ(A)

•
+

1

2
µ(A).

Using the cancelation law in Pbfc(X), we get
that µ(A\A1) =

1
2
µ(A).

Let B1 = A1 or B1 = A\A1 be so that t ∈
B1. Obviously, µ(B1) =

1
2
µ(A).

We construct by induction a decreasing se-
quence of sets (Bn)n ⊂ C such that µ(Bn) =
1
2n
µ(A), Bn ⊆ A and t ∈ Bn, for every n ∈ N∗.

We suppose that we have already obtained
B1, B2, ..., Bn. Let us obtain Bn+1 :

By the Darboux property, there exists
An+1 ∈ C so that An+1 ⊆ Bn and µ(An+1) =
1
2
µ(Bn) = ... = 1

2n+1µ(A). Then µ(Bn\An+1) =
1
2
µ(Bn) =

1
2n+1µ(A).

Let Bn+1 = An+1 or Bn+1 = Bn\An+1 be
so that t ∈ Bn+1. Then µ(Bn+1) =

1
2n+1µ(A).

We consider B =
∞
∩

n=1
Bn. Obviously, t ∈

B,B ∈ C and, for every n ∈ N∗, we have

|µ(B)| ≤ h(µ(Bn), µ(B)) + |µ(Bn)| =

= h(µ(Bn), µ(B)) +
1

2n
|µ(A)|.
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Because µ is Pbfc(X)-valued, then µ(A) is a
bounded set, that is, there exists M > 0 so that
|µ(A)| ≤ M . Also, because µ is decreasing con-
vergent, lim

n→∞
h(µ(Bn), µ(B)) = 0. Therefore,

|µ(B)| = 0, hence µ(B) = {0}.
So, for every t ∈ T , there exists B ∈ C so

that t ∈ B and µ(B) = {0}, as claimed. �

Theorem 25 Let µ : B → Pf (X) be a diffused
regular fuzzy multimeasure. Then µ/B0 satisfies
the condition:

for every t ∈ T , there exists At ∈ B0

so that t ∈ At and µ(At) = {0}.

Proof. Let t ∈ T . By the regularity of µ,
for every n ∈ N∗, there is an open set D̃n ⊇
{t}, D̃n ∈ B such that |µ(D̃n\{t})| < 1

n
. Since

for every n ∈ N∗, {t} ⊆ D̃n, according to
Gavriluţ [13], there exists an open set D′

n ∈ B0 so
that {t} ⊆ D′

n ⊆ D̃n. Since |µ(D̃n\{t})| < 1
n

,
we get |µ(D′

n\{t})| < 1
n

, for every n ∈ N∗. So,
since µ is diffused, we have:

|µ(D′
n)| = h(µ(D′

n), {0}) =
= h(µ(D′

n), µ({t})) =

= h(µ(D′
n\{t})

•
+ µ({t}), µ({t})) ≤

≤ |µ(D′
n\{t})| <

1

n
,

for every n ∈ N∗.

Denote Dn =
n
∩
i=1

D′
i, for every n ∈ N∗ and let

At =
∞
∩

n=1
D′

n. Then Dn ∈ B0, for every n ∈ N∗,

At ∈ B0, Dn ↘ At and |µ(Dn)| ≤ |µ(D′
n)| < 1

n
,

for every n ∈ N∗. Also, t ∈ At. It only remains
to prove that µ(At) = {0}. Indeed, since µ is
continuous from above, it results

µ(At) = lim
n→∞

µ(Dn)

with respect to h.
On the other hand, for every n ∈ N∗, we

have:

|µ(At)| ≤ h(µ(At), µ(Dn)) + |µ(Dn)| <

< h(µ(At), µ(Dn)) +
1

n
.

Consequently, |µ(At)| = 0, so µ(At) = {0},
as claimed. �

Corollary 26 Let µ : B → Pf (X) be a regular
fuzzy multimeasure. Then µ is diffused on B if
and only if for every t ∈ T , there exists At ∈ B0

so that t ∈ At and µ(At) = {0}.

Concluding remarks
In this paper, results concerning diffusion and
semi-convexity of fuzzy set multifunctions are
discussed in the context of different notions such
as non-atomicity, regularity, Darboux property,
decreasing convergence.
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