DIFFUSION AND SEMI-CONVEXITY OF FUZZY SET MULTIFUNCTIONS

ALINA GAVRILUŢ "Al.I. Cuza" University, Faculty of Mathematics, Bd. Carol I, No. 11, Iaşi, 700506, ROMANIA gavrilut@uaic.ro

ANCA CROITORU "Al.I. Cuza" University, Faculty of Mathematics, Bd. Carol I, No. 11, Iaşi, 700506, ROMANIA croitoru@uaic.ro

NIKOS E. MASTORAKIS Military Institutes of University Education (ASEI), Hellenic Naval Academy, Terma Hatzikyriakou, 18593, GREECE mastor@wseas.org

Abstract: We present some properties regarding diffusion and semi-convexity for fuzzy set multifunctions defined on a ring of subsets of an abstract nonvoid space and taking values in the family of all nonvoid closed subsets of a real normed space.

Key–Words: diffused, semi-convex, fuzzy set multifunction, non-atomicity, Darboux property, regular, multimeasure, null-additive.

1 Introduction

In the last years, because of its utility in a broad spectrum of areas, such as statistics, probability, economy, theory of games, artificial intelligence, computer and system sciences, biology, medicine, physics, human decision making (see, for instance, [3], [8], [27], [30], [32, 33]), a theory of fuzziness became to develop.

In recent years, we were interested in the study of different problems of the classical measure theory (regularity, fuzziness, atoms, pseudoatoms, non-atomicity, finitely purely atomicity, Darboux property, integrability, continuity properties), which we treated in the set valued case (see, for instance, [1, 2], [4-7], [13-22], [28], [31]).

Another important properties, with many applications, are diffusion and semi-convexity. Different problems concerning this property of diffusion have been studied for real valued measures for instance by [11, 12], [25, 26].

Semi-convexity has been considered by Halmos [23] in his study about the range of a measure with values in a finite-dimensional vector space.

In this paper we present different aspects of the properties of diffusion and semi-convexity for fuzzy set multifunctions defined on a ring of subsets of an abstract nonvoid space and taking values in the family of all nonvoid closed subsets of a real normed space. Some results in the context of various notions (such as non-atomicity, Darboux property, regularity, decreasing convergence) are established.

2 Preliminaries

Let X be a real normed space, $\mathcal{P}_0(X)$ the family of all nonvoid subsets of X, $\mathcal{P}_f(X)$ the family of all nonvoid closed subsets of X, $\mathcal{P}_{bf}(X)$ the family of all nonvoid closed subsets of X, $\mathcal{P}_{bfc}(X)$ the family of all nonvoid closed bounded convex subsets of X and h the Hausdorff-Pompeiu pseudometric on $\mathcal{P}_f(X)$. h becomes a metric on $\mathcal{P}_{bf}(X)$ [24].

It is known that $h(M, N) = \max\{e(M, N), e(N, M)\}$, where $e(M, N) = \sup_{x \in M} d(x, N)$, for

every $M, N \in \mathcal{P}_f(X)$ is the *excess* of M over N and d(x, N) is the distance from x to N with respect to the distance induced by the norm of X.

On $\mathcal{P}_0(X)$ we consider the Minkowski addition " $\stackrel{\bullet}{+}$ " [24], defined by:

$$M + N = \overline{M + N}$$
, for every $M, N \in \mathcal{P}_0(X)$,

where $\overline{M+N}$ is the closure of M+N with respect to the topology induced by the norm of X.

We denote $|M| = h(M, \{0\})$, for every $M \in \mathcal{P}_f(X)$, where 0 is the origin of X.

We also denote $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$, where \mathbb{N} is the set of all naturals and $\mathbb{R}_+ = [0, +\infty)$.

We now recall some classical notions of measure theory. Suppose T is an abstract nonvoid space and C is a ring of subsets of T.

Definition 1 Let $\nu : \mathcal{C} \to [0, +\infty]$ be a set function. ν is said to be:

- *I)* monotone if $\nu(A) \leq \nu(B)$, for every $A, B \in C$ so that $A \subseteq B$;
- II) a submeasure if $\nu(\emptyset) = 0$, ν is monotone and $\nu(A \cup B) \leq \nu(A) + \nu(B)$, for every disjoint sets $A, B \in C$;
- III) finitely additive if $\nu(\emptyset) = 0$ and $\nu(A \cup B) = \nu(A) + \nu(B)$, for every disjoint sets $A, B \in C$;
- *IV*) *increasing convergent if*

$$\lim_{n \to \infty} \nu(A_n) = \nu(A)$$

for every sequence of sets $(A_n)_{n \in \mathbb{N}^*} \subset C$ so that $A_n \subseteq A_{n+1}$ for every $n \in \mathbb{N}^*$ and $\bigcup_{n=1}^{\infty} A_n = A \in C$;

V) order continuous (shortly, o-continuous) if

$$\lim_{n \to \infty} \nu(A_n) = 0$$

for every sequence of sets $(A_n)_{n \in \mathbb{N}^*} \subset C$, so that $A_n \supseteq A_{n+1}$, for every $n \in \mathbb{N}^*$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$;

VI) super-additive if $\nu(A \cup B) \ge \nu(A) + \nu(B)$, for every disjoint sets $A, B \in C$. The following notions generalize the wellknown corresponding notions from the nonadditive fuzzy measure theory ([9], [10], [29]).

Definition 2 ([4, 5], [7], [13-23], [28], [31]) Consider $\mu : \mathcal{C} \to \mathcal{P}_0(X)$ a set multifunction, with $\mu(\emptyset) = \{0\}$. μ is said to be:

- *I)* fuzzy (or monotone) if $\mu(A) \subseteq \mu(B)$, for every $A, B \in C$, with $A \subseteq B$;
- II) null-additive if $\mu(A \cup B) = \mu(A)$, for every $A, B \in C$, with $\mu(B) = \{0\}$;
- III) null-null-additive if $\mu(A \cup B) = \{0\}$, for every $A, B \in C$, with $\mu(A) = \mu(B) = \{0\}$;
- *IV*) decreasing convergent with respect to h if

$$\lim_{n \to \infty} h(\mu(A_n), \mu(A)) = 0,$$

for every decreasing sequence of sets $(A_n)_{n \in \mathbb{N}^*} \subset \mathcal{C}$, with $\bigcap_{n=1}^{\infty} A_n = A \in \mathcal{C}$;

V) a multimeasure if

$$\mu(A \cup B) = \mu(A) + \mu(B),$$

for every $A, B \in \mathcal{C}$, with $A \cap B = \emptyset$.

VI) a multisubmeasure if μ is monotone and

$$\mu(A \cup B) \subseteq \mu(A) + \mu(B),$$

for every disjoint sets $A, B \in C$.

- **Remark 3** I. If μ is $\mathcal{P}_f(X)$ -valued, then in Definition 2-V and VI it usually appears "+" instead of "+", because the sum of two closed sets is not always closed.
- II. If $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ is null-additive, then it is null-null-additive.

The converse is not valid. Indeed, let $T = \{a, b\}, C = \mathcal{P}(T) \text{ and } \mu : C \to \mathcal{P}_f(\mathbb{R})$ defined by $\mu(T) = [0, 2], \mu(\{b\}) = [0, 1]$ and $\mu(\emptyset) = \mu(\{a\}) = \{0\}$. Then μ is null-null-additive but it is not null-additive.

III. Any multisubmeasure $\mu : \mathcal{C} \to \mathcal{P}_0(X)$ is null-additive.

Indeed, let A, B be arbitrary sets of C, so that $\mu(B) = \{0\}$. Since μ is monotone, we have

(1) $\mu(A) \subseteq \mu(A \cup B).$

Since μ is a multisubmeasure, we obtain

(2)
$$\mu(A \cup B) \subseteq \mu(A) + \mu(B) = \mu(A).$$

From (1) and (2) it results $\mu(A \cup B) = \mu(A)$, which proves that μ is null-additive.

The converse in not true. Indeed, let $T = \{a, b\}, C = \mathcal{P}(T)$ and $\mu : C \to \mathcal{P}_f(\mathbb{R})$ defined by $\mu(T) = [0, 2], \mu(\{a\}) = \mu(\{b\}) = [0, \frac{1}{2}]$ and $\mu(\emptyset) = \{0\}$. Then μ is null-additive but it is not a multimeasure.

Suppose $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ is a set multifunction, with $\mu(\emptyset) = \{0\}$. By $|\mu|$ we denote the extended real valued set function defined by

$$|\mu|(A) = |\mu(A)|, \quad \forall A \in \mathcal{C}.$$

Definition 4 For a set multifunction $\mu : C \to \mathcal{P}_f(X)$, with $\mu(\emptyset) = \{0\}$, we consider the variation $\overline{\mu}$ of μ defined by

$$\overline{\mu}(A) = \sup\{\sum_{i=1}^{n} |\mu(A_i)|\},\$$

for every $A \in C$, where the supremum is extended over all finite partitions $\{A_i\}_{i=\overline{1,n}}$ of A. μ is said to be of finite variation on C if $\overline{\mu}(A) < \infty$, for every $A \in C$.

Remark 5 I. $\overline{\mu}$ is fuzzy and super-additive on $\mathcal{P}(T)$, the family of all subsets of T.

II. If μ is fuzzy, then $|\mu|$ is also fuzzy.

The converse is not true. Indeed, let $T = \{a, b\}, C = \mathcal{P}(T) \text{ and } \mu : C \to \mathcal{P}_f(\mathbb{R}) \text{ defined by } \mu(T) = \{1\}, \mu(\{a\}) = \mu(\{b\}) = [0, 1] \text{ and } \mu(\emptyset) = \{0\}.$ We have $|\mu(A)| = 1$ if $A \neq \emptyset$ and $|\mu(\emptyset)| = 0$. Then $|\mu|$ is fuzzy, but μ is not fuzzy.

III. If μ is null-additive, then $|\mu|$ is null-additive. The converse is not valid. Indeed, let $T = \{a, b\}$, $C = \mathcal{P}(T)$ and $\mu : C \to \mathcal{P}_f(\mathbb{R})$ defined by $\mu(T) = [0, 1], \mu(\{a\}) = 1$ and $\mu(\{b\}) = \mu(\emptyset) = \{0\}$. We have $|\mu(A)| = 1$ if A = T or $A = \{a\}$ and $|\mu(A)| = 0$ if $A = \{b\}$ or $A = \emptyset$. Then $|\mu|$ is null-additive, but μ is not null-additive.

Definition 6 ([4, 5], [7], [13], [16-18], [21], [28]) If $\mu : C \to \mathcal{P}_f(X)$ is a set multifunction, with $\mu(\emptyset) = \{0\}$, then:

- *I)* A set $A \in C$ is said to be an atom of μ if $\mu(A) \supseteq \{0\}$ and for every $B \in C$, with $B \subseteq A$, we have $\mu(B) = \{0\}$ or $\mu(A \setminus B) = \{0\}$;
- II) μ is said to be non-atomic if it has no atoms.
- **Remark 7** I. If $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ is fuzzy, then μ is non-atomic if and only if for every $A \in \mathcal{C}$, with $\mu(A) \supseteq \{0\}$, there exists $B \in \mathcal{C}$, with $B \subseteq A$, $\mu(B) \supseteq \{0\}$ and $\mu(A \setminus B) \supseteq \{0\}$.
- II. Suppose $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ is fuzzy. If $A \in \mathcal{C}$ is an atom of μ and $B \in \mathcal{C}$, $B \subseteq A$ has $\mu(B) \supseteq \{0\}$, then B is an atom of μ and $\mu(A \setminus B) = \{0\}$.

Example 8 Let $T = \{2n | n \in \mathbb{N}\}, C = \mathcal{P}(T)$ and the multisubmeasure defined, for every $A \in C$, by:

$$\mu(A) = \begin{cases} \{0\}, & \text{if } A = \emptyset\\ \frac{1}{2}A \cup \{0\}, & \text{if } A \neq \emptyset, \end{cases}$$

where $\frac{1}{2}A = \{\frac{x}{2} | x \in A\}.$

If \overline{A} is a set of C so that card A = 1 and $A \neq \{0\}$ or $A = \{0, 2n\}, n \in \mathbb{N} \setminus \{0\}$, then A is an atom of μ (by card A we mean the cardinal of A).

If A is a set of C so that card $A \ge 2$ and there exist $a, b \in A$ such that $a \ne b$ and $ab \ne 0$, then A is not an atom of μ .

Definition 9 Suppose $\nu : \mathcal{C} \to \mathbb{R}_+$ is an arbitrary set function, with $\nu(\emptyset) = 0$. We say that a set multifunction $\mu : \mathcal{C} \to \mathcal{P}_f(\mathbb{R}_+)$ is induced by ν if $\mu(A) = [0, \nu(A)]$, for every $A \in \mathcal{C}$.

Remark 10 Let $\mu : \mathcal{C} \to \mathcal{P}_f(\mathbb{R}_+)$ be the set multifunction induced by a set function $\nu : \mathcal{C} \to \mathbb{R}_+$ so that $\nu(\emptyset) = 0$. Then:

i) μ is fuzzy if and only if ν is fuzzy.

Indeed, we have $\mu(A) = [0, \nu(A)]$, for every $A \in \mathcal{C}$. We observe that $\mu(\emptyset) = \{0\}$. Let $A, B \in \mathcal{C}$ so that $A \subseteq B$. Then

$$\mu(A) \subseteq \mu(A) \Leftrightarrow \nu(A) \leq \nu(B).$$

So μ is diffused if and only if ν is diffused.

ii) μ is null-additive (null-null-additive, respectively) if and only if the same is ν .

Indeed, suppose μ is null-additive and let $A, B \in C$ so that $\nu(B) = 0$. Then $\mu(B) = \{0\}$ and since μ is null-additive, it results $\mu(A \cup B) = \mu(A)$. That is $[0, \nu(A \cup B)] = [0, \nu(A)]$, which implies $\nu(A \cup B) = \nu(A)$ and shows that ν is null-additive. For the converse, we analogously act.

Concerning null-null-additivity, the proof of the equivalence goes on in the same way.

iii) μ is a multimeasure if and only if ν is finitely additive.

Indeed, let $A, B \in \mathcal{C}$ so that $A \cap B = \emptyset$. Then

$$\mu(A) + \mu(B) = [0, \nu(A)] + [0, \nu(B)] =$$

= [0, \nu(A) + \nu(B)] = [0, \nu(A \cup B)] =
= \nu(A \cup B).

iv) μ is non-atomic if and only if ν is non-atomic.

Definition 11 Let $\mu : C \to \mathcal{P}_0(X)$ be a set multifunction so that $\mu(\emptyset) = \{0\}$. We say that μ has the Darboux property if for every $A \in C$ so that $\mu(A) \supseteq \{0\}$ and every $p \in (0, 1)$, there exists a set $B \in C$ such that $B \subseteq A$ and $\mu(B) = p\mu(A)$.

Example 12 Suppose C is the Borel σ -algebra of $T = [0, +\infty)$ and $\nu : C \to \mathbb{R}_+$ is an increasing convergent finitely additive set function so that $\nu([t,s]) \leq s - t$, for every $t, s \in T$, with $t \leq s$. Then the set multifunction $\mu : C \to \mathcal{P}_0(\mathbb{R})$ defined by $\mu(A) = [0, \nu(A)]$, for every $A \in C$ has the Darboux property.

Indeed, let $A \in C$ be a set so that $\mu(A) \supseteq \{0\}$ and let $p \in (0, 1)$. Consider $f : T \to \mathbb{R}$ the real function defined by $f(t) = \nu(A \cap [0, t])$. Since ν is finitely additive, we have:

 $|f(t) - f(s)| \le |t - s|, \ \forall t, s \in T,$

which implies that f is continuous on T. We have f(0) = 0 and by the increasing convergence of ν it follows $\lim_{t\to\infty} f(t) = \nu(A)$. Consequently, there is $t_0 \in T$ such that $f(t_0) = p\nu(A)$. Denoting $B = A \cap [0, t_0]$, it results $B \in C$, $B \subseteq A$ and $\nu(B) = p\nu(A)$. But this implies $\mu(B) = p\mu(A)$, which shows that μ has Darboux property.

In Gavriluț and Croitoru [17] we obtained the following:

Theorem 13 Let $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ be a set multifunction, so that $\mu(\emptyset) = \{0\}$ and $|\mu|(A) < +\infty$, for every $A \in \mathcal{C}$.

- I. Suppose μ is a multisubmeasure. If μ has the Darboux property, then μ is non-atomic.
- II. If C is an algebra, $\overline{\mu}$ is bounded, finitely additive and has the Darboux property, then μ is non-atomic.
- III. Suppose C is a σ -algebra and μ is the multisubmeasure induced by an o-continuous submeasure $\nu : C \rightarrow [0, +\infty)$. Then μ has the Darboux property if and only if μ is nonatomic.

Remark 14 [17] The converse of Theorem 13-I is not true. Indeed, let T be a compact space, \mathcal{B} the Borel δ -ring generated by the compact subsets of T and $\mu : \mathcal{B} \to \mathcal{P}_f(\mathbb{R})$ the multisubmeasure defined by:

$$\mu(A) = \begin{cases} \left[-\nu(A), \nu(A)\right], & \text{if } \nu(A) \le 1\\ \left[-\nu(A), 1\right], & \text{if } \nu(A) > 1, \end{cases}$$

for every $A \in \mathcal{B}$, where $\nu : \mathcal{B} \to [0, +\infty)$ is a bounded finitely additive set function having the Darboux property. Then μ is non-atomic, but μ does not have the Darboux property.

3 Diffusion of a set multifunction

We present in the sequel some properties regarding diffusion for set multifunctions.

Let T be a locally compact Hausdorff space, C a ring of subsets of T, \mathcal{B}_0 the Baire δ -ring generated by the G_{δ} -compact subsets of T (that is, compact sets which are countable intersections of open sets) and B the Borel δ -ring generated by the compact subsets of T. It is known that $\mathcal{B}_0 \subset \mathcal{B}$.

Definition 15 ([28]) Let $\mu : C \to \mathcal{P}_f(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$. We say that μ is diffused if for every $t \in T$, with $\{t\} \in C$, $\mu(\{t\}) = \{0\}$.

We recall now the concept of regularity that we have defined and studied, for instance, in [14, 22] for different types of set multifunctions with respect to the Hausdorff topology induced by the Hausdorff pseudo-metric. **Definition 16** Let $A \in C$ be an arbitrary set and $\mu : C \longrightarrow \mathcal{P}_f(X)$ a set multifunction, with $\mu(\emptyset) = \{0\}.$

- I) A is said to be regular with respect to μ if for every $\varepsilon > 0$, there exists a compact set $K \subseteq A, K \in \mathcal{C}$ such that $|\mu(B)| < \varepsilon$, for every $B \in \mathcal{C}, B \subseteq A \setminus K$.
- II) μ is said to be regular if every $A \in C$ is a regular set with respect to μ .
- **Remark 17** I. Let $\mu : \mathcal{C} \to \mathcal{P}_f(\mathbb{R}_+)$ be the set multifunction induced by a set function $\nu : \mathcal{C} \to \mathbb{R}_+$. Then:
 - i) μ is diffused if and only if ν is diffused.
 - ii) μ is regular if and only if ν is regular.
 - II. If T is a locally compact Hausdorff space, then $\{t\}$ is a compact set, hence $\{t\} \in \mathcal{B}$.

One can easily observe the following:

Remark 18 I. The Lebesgue measure μ is diffused.

Also, the set functions $m : \mathcal{C} \to \mathbb{R}_+$ defined for every $A \in \mathcal{C}$ by:

i)
$$m(A) = \sqrt{\mu(A)}$$
,
ii) $m(A) = \frac{\mu(A)}{1+\mu(A)}$

are diffused. The same are the set multifunctions induced by them.

- II. If $\mu, \nu : \mathcal{C} \to \mathcal{P}_f(X)$ are diffused set multifunctions, then the same are:
 - i) the set multifunction $\mu + \nu : \mathcal{C} \rightarrow \mathcal{P}_f(X)$ defined by $(\mu + \nu)(A) = \mu(A) + \nu(A)$, for every $A \in \mathcal{C}$;
 - ii) the set multifunction $\lambda \mu$ defined by $(\lambda \mu)(A) = \lambda \mu(A)$, for every $A \in \mathcal{C}$.
- III. Let $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$.

The following statements are equivalent:

- i) μ is diffused;
- ii) $|\mu|$ is diffused;
- iii) $\overline{\mu}$ is diffused on \mathcal{C} .

In the sequel, we establish that, under several assumptions, non-atomicity and diffusion are equivalent:

Theorem 19 Let $A \in \mathcal{B}$ with $\mu(A) \supseteq \{0\}$ and $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ be a regular fuzzy null-additive set multifunction, with $\mu(\emptyset) = \{0\}$.

- *I.* If A is an atom of μ , then there is a compact set $K_0 \in \mathcal{B}$ so that $K_0 \subseteq A$ and $\mu(A \setminus K_0) = \{0\}$.
- *II.* A is an atom of μ if and only if the following property holds:
 - (P) there is an unique $a \in A$ such that $\mu(A \setminus \{a\}) = \{0\}.$
- III. μ is non-atomic if and only if μ is diffused.

Proof. For every $E \in \mathcal{B}$, let $\mathcal{K}_E = \{K \subseteq E; K \text{ is a compact set and } \mu(E \setminus K) = \{0\}\} \subset \mathcal{B}$.

I. Let $A \in \mathcal{B}$ be an atom of μ .

One can easily check that $\emptyset \notin \mathcal{K}_A$. Indeed, if on the contrary, $\emptyset \in \mathcal{K}_A$, then it results $\mu(A \setminus \emptyset) =$ $\mu(A) = \{0\}$. But this is false, since A is an atom of μ . First, we prove that \mathcal{K}_A is nonvoid.

Suppose by the contrary that $\mathcal{K}_A = \emptyset$. Then for every compact set $K \subseteq A$, we have $\mu(A \setminus K) \supseteq \{0\}$.

Since A is an atom of μ , then $\mu(K) = \{0\}$.

Thus, by the regularity of μ , we immediately have that $\mu(A) = \{0\}$ and this is a contradiction.

Let us prove now that every set $K \in \mathcal{K}_A$ is an atom of μ . Indeed, if $K \in \mathcal{K}_A$, then $\mu(A \setminus K) = \{0\}$.

Also, for every $B \in \mathcal{B}$, with $B \subseteq K$, since $K \subseteq A$ and A is an atom of μ , we get $\mu(B) = \{0\}$ or $\mu(A \setminus B) = \{0\}$.

If $\mu(A \setminus B) = \{0\}$, then $\{0\} \subseteq \mu(K \setminus B) \subseteq \mu(A \setminus B) = \{0\}$, so $\mu(K \setminus B) = \{0\}$.

Consequently, $K \in \mathcal{K}_A$ is an atom of μ .

We prove now that $K_1 \cap K_2 \in \mathcal{K}_A$, for every $K_1, K_2 \in \mathcal{K}_A$.

Indeed, if $K_1, K_2 \in \mathcal{K}_A$, then $K_1 \cap K_2$ is a compact set of T and $\mu(A \setminus (K_1 \cap K_2)) = \{0\}$.

It recurrently results:

(3)
$$\bigcap_{i=1}^{n} K_i \in \mathcal{K}_A, \forall n \in \mathbb{N}^*, K_1, \dots, K_n \in \mathcal{K}_A.$$

We prove that $K_0 = \bigcap_{K \in \mathcal{K}_A} K$ is a nonvoid set.

Suppose, on the contrary, that $K_0 = \emptyset$.

There are $K_1, K_2, ..., K_{n_0} \in \mathcal{K}_A$ so that $\bigcap_{i=1}^{n_0} K_i = \emptyset. \text{ But from (3) it results } \bigcap_{i=1}^{n_0} K_i \in \mathcal{K}_A,$ which is a contradiction.

Now, we prove that $K_0 \in \mathcal{K}_A$. Obviously, K_0 is a compact set.

Let be $K \in \mathcal{K}_A$. Then $\mu(A \setminus K) = \{0\}$.

If $K_0 = K$, then $K_0 \in \mathcal{K}_A$.

If $K_0 \neq K$, then $K_0 \subsetneq K$.

Because $\mu(A \setminus K_0) = \mu(K \setminus K_0)$, it remains to demonstrate that $\mu(K \setminus K_0) = \{0\}$.

Suppose that, on the contrary, $\mu(K \setminus K_0) \supseteq$ {0}.

Since K is an atom of μ , by Remark 7-II, it follows that $K \setminus K_0$ is an atom of μ .

Because A is an atom of μ and $\mu(K \setminus K_0) \supseteq$ $\{0\}$, then $\mu(A \setminus (K \setminus K_0)) = \{0\}$.

Let us consider $C \in \mathcal{K}_{K \setminus K_0}$.

Then $\mu((K \setminus K_0) \setminus C) = \{0\}$ and, since $\mu(A \setminus (K \setminus K_0)) = \{0\}$, by the null-additivity of μ we get that $\mu(A \setminus C) = \{0\}$. This implies $C \in \mathcal{K}_A.$

Therefore, $K_0 \subseteq C$, but $C \subseteq K \setminus K_0$, which is a contradiction. Therefore, $\mu(K \setminus K_0) = \{0\}$.

So, indeed, if $A \in \mathcal{B}$ is an atom of μ , we find a compact set $K_0 \in \mathcal{B}$ so that $K_0 \subseteq A$ and $\mu(A \setminus K_0) = \{0\}.$

II. Let $A \in \mathcal{B}$ be an atom of μ .

a) The *existence part*:

We show that the set K_0 from the proof of i) is a singleton $\{a\}$.

Suppose that, on the contrary, there exist $a, b \in A$, with $a \neq b$ and $K_0 \supseteq \{a, b\}$.

Since T is a locally compact Hausdorff space, there exists an open neighbourhood V of a so that $b \notin V$.

Obviously, $K_0 = (K_0 \setminus V) \cup (K_0 \cap V)$ and $K_0 \setminus V, K_0 \cap \overline{V}$ are nonvoid compact subsets of Α.

We prove that $K_0 \setminus V \in \mathcal{K}_A$ or $K_0 \cap \overline{V} \in \mathcal{K}_A$. Indeed, if $K_0 \setminus V \notin \mathcal{K}_A$ and $K_0 \cap \overline{V} \notin \mathcal{K}_A$, then $\mu(A \setminus (K_0 \setminus V)) \supseteq \{0\}$ and $\mu(A \setminus (K_0 \cap \overline{V})) \supseteq \{0\}$ {0}.

Since A is an atom of μ , then $\mu(K_0 \setminus V) =$ $\{0\}$ and $\mu(K_0 \cap V) = \{0\}.$

Consequently, according to the nulladditivity of μ , we get $\mu(K_0) = \{0\}$.

This implies $\{0\} \subsetneq \mu(A) = \{0\}$, which is a contradiction.

Therefore, $K_0 \setminus V \in \mathcal{K}_A$ or $K_0 \cap \overline{V} \in \mathcal{K}_A$. Because $K_0 \subseteq K$, for every $K \in \mathcal{K}_A$, we get that $K_0 \subseteq K_0 \setminus V$ or $K_0 \subseteq K_0 \cap \overline{V}$, which is impossible.

So, $\exists a \in A$ so that $\mu(A \setminus \{a\}) = \{0\}$.

b) The *uniqueness part*:

Suppose that, on the contrary, there are $a, b \in A$, with $a \neq b$, $\mu(A \setminus \{a\}) = \{0\}$ and $\mu(A \setminus \{b\}) = \{0\}.$

Because $\{b\} \subseteq A \setminus \{a\}$ and $\mu(A \setminus \{a\}) =$ $\{0\}$, by the fuzziness of μ we get that $\mu(\{b\}) =$ $\{0\}.$

Then, according to the null-additivity of μ , by $\mu(A \setminus \{b\}) = \{0\}$ and $\mu(\{b\}) = \{0\}$, we have $\mu(A) = \{0\},$ which is a contradiction.

Now, consider $A \in \mathcal{B}$, with $\mu(A) \supseteq \{0\}$ having property (P) and let $B \in \mathcal{B}$, with $B \subseteq A$. If $a \notin B$, then $B \subseteq A \setminus \{a\}$. Because $\mu(A \setminus \{a\}) = \{0\}$ and μ is monotone, we have $\mu(B) = \{0\}$. If $a \in B$, then $A \setminus B \subseteq A \setminus \{a\}$, so $\mu(A \setminus B) = \{0\}$. Consequently, A is an atom of μ.

III. Let μ be diffused and suppose, on the contrary, there is an atom $A_0 \in C$ of μ .

By ii), there is an unique $a \in A_0$ so that $\mu(A_0 \setminus \{a\}) = \{0\}.$

On the other hand, by the diffusion of $\mu, \mu(\{a\}) = \{0\}.$

The null-additivity of μ implies that $\mu(A_0) =$ $\{0\}$, which is a contradiction since $A_0 \in C$ is an atom of μ . Consequently, μ is non-atomic.

Now, let μ be non-atomic and suppose, on the contrary, that μ is not diffused, so there is $t_0 \in$ T so that $\mu({t_0}) \supseteq {0}$.

Because μ is non-atomic, there is a set $B \in$ \mathcal{B} such that $B \subseteq \{t_0\}, \ \mu(B) \supseteq \{0\}$ and $\mu(\{t_0\}\setminus B) \supseteq \{0\}$. Consequently, $B = \emptyset$ or $B = \{t_0\}$, which is false. The proof is thus finished.

Semi-convexity 4

In this section we shall present some relationships among semi-convexity, Darboux property, diffusion and non-atomicity of fuzzy set multifunctions.

Definition 20 ([28]) Let $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$. We say that μ is semi-convex if for every $A \in \mathcal{C}$, with $\mu(A) \supseteq \{0\}$, there exists $B \in \mathcal{C}$ so that

$$B \subseteq A \text{ and } \mu(B) = \frac{1}{2}\mu(A).$$

Example 21 Let $\nu : \mathcal{C} \to [0, +\infty)$ be a set function, so that $\nu(\emptyset) = 0$ and μ the set multifunction defined by $\mu(A) = [0, \nu(A)]$, for every $A \in \mathcal{C}$. Then μ is semi-convex if and only if ν is semiconvex.

- **Theorem 22** I. If the set multifunction μ : $\mathcal{C} \to \mathcal{P}_0(X)$ has the Darboux property, then it is semi-convex.
- II. If C is a σ -ring and $\mu : C \to \mathcal{P}_{bfc}(X)$ is a semi-convex increasing convergent fuzzy multimeasure, then μ has the Darboux property.

Proof. I. It immediately follows.

II. Every $p \in (0, 1)$ has an expansion $p = \sum_{n=1}^{\infty} \frac{a_n}{2^n}$, where $a_n \in \{0, 1\}$, for every $n \in \mathbb{N}^*$.

By the semi-convexity of μ , for every $A \in \mathcal{C}$, there is $B_1 \in \mathcal{C}$ so that $B_1 \subseteq A$ and $\mu(B_1) = \frac{a_1}{2}\mu(A)$.

Analogously, there is $B_2 \in C$ so that $B_2 \subseteq A \setminus B_1$ and $\mu(B_2) = \frac{a_2}{2^2}\mu(A)$ and so on. Consider

$$B = \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (\bigcup_{k=1}^{n} B_k).$$

Then $B \in \mathcal{C}$ and

$$\mu(B) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{2^k} \mu(A)$$

(with respect to h).

From [24] it is known that if $M_n \xrightarrow{h} M$, M is bounded and $\alpha_n \to \alpha$ (where $\alpha_n, \alpha \in \mathbb{R}$), then $\alpha_n M_n \xrightarrow{h} \alpha M$. Consequently, $\mu(B) = p\mu(A)$, as claimed.

Theorem 23 If the fuzzy set multifunction μ : $\mathcal{C} \rightarrow \mathcal{P}_b(X)$ is null-additive and semi-convex, then μ is non-atomic.

Proof. Suppose, on the contrary, there is an atom $A_0 \in C$ of μ . Since μ is semi-convex, there exists $B_0 \in C$ so that $B_0 \subseteq A_0$ and $\mu(B_0) = \frac{1}{2}\mu(A_0)$.

Because $A_0 \in \mathcal{C}$ is an atom of μ and $B_0 \in \mathcal{C}$, $B_0 \subseteq A_0$, then:

(i) $\mu(B_0) = \{0\}$. In this case, we get $\mu(A_0) = \{0\}$, which is a contradiction.

(ii) $\mu(A_0 \setminus B_0) = \{0\}$. Then, by the null-additivity of μ , we have $\mu(A_0) = \mu(B_0)$, so

 $\mu(A_0) = \frac{1}{2}\mu(A_0)$ and this implies $|\mu(A_0)| = \frac{1}{2}|\mu(A_0)|$.

Because $\mu : \mathcal{C} \to \mathcal{P}_{bf}(X)$, then $\mu(A_0)$ is a bounded set, so

$$|\mu(A_0)| = \sup_{x \in \mu(A_0)} ||x|| < +\infty.$$

Consequently, $|\mu(A_0)| = 0$, so $\mu(A_0) = \{0\}$, which is again a contradiction since A_0 is an atom of μ . Then μ is non-atomic.

Theorem 24 Let $C = \mathcal{B}_0$ (or \mathcal{B}). If $\mu : C \to \mathcal{P}_{bfc}(X)$ is a decreasing convergent semi-convex fuzzy multimeasure, then for every $t \in T$, there exists $A_t \in C$ so that $t \in A_t$ and $\mu(A_t) = \{0\}$.

Proof. Let $t \in T$ be arbitrarily, but fixed. We first prove that there exists $A_t \in C$ so that $t \in A_t$.

a) If $\mathcal{C} = \mathcal{B}$, then $A_t = \{t\}$.

b) If $C = B_0$, since T is a Hausdorff locally compact space, then for t there exists a compact neighbourhood V_t , for which there is a relatively compact open set D_t so that $V_t \subseteq D_t$. By [13] we know that there exists $A_t \in B_0$ so that $V_t \subseteq A_t \subseteq$ D_t . Evidently, $t \in A_t$.

Now, let $A = A_t \in \mathcal{C}$ be so that $t \in A$.

If $\mu(A) = \{0\}$, the proof is finished.

If $\mu(A) \supseteq \{0\}$, since μ is semi-convex, there exists a set $A_1 \in \mathcal{C}$ so that $A_1 \subseteq A$ and $\mu(A_1) = \frac{1}{2}\mu(A)$. Then

$$\mu(A) = \frac{1}{2}\mu(A) + \mu(A \setminus A_1) = \frac{1}{2}\mu(A) + \frac{1}{2}\mu(A).$$

Using the cancelation law in $\mathcal{P}_{bfc}(X)$, we get that $\mu(A \setminus A_1) = \frac{1}{2}\mu(A)$.

Let $B_1 = A_1$ or $B_1 = A \setminus A_1$ be so that $t \in B_1$. Obviously, $\mu(B_1) = \frac{1}{2}\mu(A)$.

We construct by induction a decreasing sequence of sets $(B_n)_n \subset \mathcal{C}$ such that $\mu(B_n) = \frac{1}{2^n}\mu(A), B_n \subseteq A$ and $t \in B_n$, for every $n \in \mathbb{N}^*$.

We suppose that we have already obtained $B_1, B_2, ..., B_n$. Let us obtain B_{n+1} :

By the Darboux property, there exists $A_{n+1} \in \mathcal{C}$ so that $A_{n+1} \subseteq B_n$ and $\mu(A_{n+1}) = \frac{1}{2}\mu(B_n) = \dots = \frac{1}{2^{n+1}}\mu(A)$. Then $\mu(B_n \setminus A_{n+1}) = \frac{1}{2}\mu(B_n) = \frac{1}{2^{n+1}}\mu(A)$.

Let $B_{n+1} = A_{n+1}$ or $B_{n+1} = B_n \setminus A_{n+1}$ be so that $t \in B_{n+1}$. Then $\mu(B_{n+1}) = \frac{1}{2^{n+1}} \mu(A)$.

We consider $B = \bigcap_{n=1}^{\infty} B_n$. Obviously, $t \in B, B \in C$ and, for every $n \in \mathbb{N}^*$, we have

$$|\mu(B)| \le h(\mu(B_n), \mu(B)) + |\mu(B_n)| =$$

= $h(\mu(B_n), \mu(B)) + \frac{1}{2^n} |\mu(A)|.$

Because μ is $\mathcal{P}_{bfc}(X)$ -valued, then $\mu(A)$ is a bounded set, that is, there exists M > 0 so that $|\mu(A)| \leq M$. Also, because μ is decreasing convergent, $\lim_{n \to \infty} h(\mu(B_n), \mu(B)) = 0$. Therefore, $|\mu(B)| = 0$, hence $\mu(B) = \{0\}$.

So, for every $t \in T$, there exists $B \in C$ so that $t \in B$ and $\mu(B) = \{0\}$, as claimed.

Theorem 25 Let $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ be a diffused regular fuzzy multimeasure. Then $\mu_{/\mathcal{B}_0}$ satisfies the condition:

for every $t \in T$, there exists $A_t \in \mathcal{B}_0$ so that $t \in A_t$ and $\mu(A_t) = \{0\}$.

Proof. Let $t \in T$. By the regularity of μ , for every $n \in \mathbb{N}^*$, there is an open set $\widetilde{D}_n \supseteq$ $\{t\}, \widetilde{D}_n \in \mathcal{B}$ such that $|\mu(\widetilde{D}_n \setminus \{t\})| < \frac{1}{n}$. Since for every $n \in \mathbb{N}^*$, $\{t\} \subseteq \widetilde{D}_n$, according to Gavrilut [13], there exists an open set $D'_n \in \mathcal{B}_0$ so that $\{t\} \subseteq D'_n \subseteq \widetilde{D}_n$. Since $|\mu(\widetilde{D}_n \setminus \{t\})| < \frac{1}{n}$, we get $|\mu(D'_n \setminus \{t\})| < \frac{1}{n}$, for every $n \in \mathbb{N}^*$. So, since μ is diffused, we have:

$$\begin{split} |\mu(D'_n)| &= h(\mu(D'_n), \{0\}) = \\ &= h(\mu(D'_n), \mu(\{t\})) = \\ &= h(\mu(D'_n \setminus \{t\}) \stackrel{\bullet}{+} \mu(\{t\}), \mu(\{t\})) \le \\ &\le |\mu(D'_n \setminus \{t\})| < \frac{1}{n}, \end{split}$$

for every $n \in \mathbb{N}^*$.

Denote $D_n = \bigcap_{i=1}^n D'_i$, for every $n \in \mathbb{N}^*$ and let $A_t = \bigcap_{n=1}^\infty D'_n$. Then $D_n \in \mathcal{B}_0$, for every $n \in \mathbb{N}^*$, $A_t \in \mathcal{B}_0$, $D_n \searrow A_t$ and $|\mu(D_n)| \le |\mu(D'_n)| < \frac{1}{n}$, for every $n \in \mathbb{N}^*$. Also, $t \in A_t$. It only remains to prove that $\mu(A_t) = \{0\}$. Indeed, since μ is continuous from above, it results

$$\mu(A_t) = \lim_{n \to \infty} \mu(D_n)$$

with respect to h.

On the other hand, for every $n \in \mathbb{N}^*$, we have:

$$\begin{aligned} |\mu(A_t)| &\leq h(\mu(A_t), \mu(D_n)) + |\mu(D_n)| < \\ &< h(\mu(A_t), \mu(D_n)) + \frac{1}{n}. \end{aligned}$$

Consequently, $|\mu(A_t)| = 0$, so $\mu(A_t) = \{0\}$, as claimed.

Corollary 26 Let $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ be a regular fuzzy multimeasure. Then μ is diffused on \mathcal{B} if and only if for every $t \in T$, there exists $A_t \in \mathcal{B}_0$ so that $t \in A_t$ and $\mu(A_t) = \{0\}$.

Concluding remarks

In this paper, results concerning diffusion and semi-convexity of fuzzy set multifunctions are discussed in the context of different notions such as non-atomicity, regularity, Darboux property, decreasing convergence.

References:

- Apreutesei, G., Mastorakis, N.E., Croitoru, A., Gavriluţ, A. - On the translation of an almost linear topology, WSEAS Transactions on Mathematics 8 (2009), 479-488.
- [2] Apreutesei, G., Mastorakis, N.E., Croitoru, A., Gavriluţ, A. - Topological properties for the translation of a non-linear topology, 8th WSEAS International Conference of Non-linear Analysis, Non-linear Systems and Chaos (NOLASC' 09), University of La Laguna, Tenerife, Canary Islands, Spain, July 1-3, 2009.
- [3] Aumann, R.J., Shapley, L.S. Values of Non-atomic Games, Princeton University Press, Princeton, New Jersey, 1974.
- [4] Croitoru, A., Gavriluţ, A. Properties of non-additive set multifunctions, Annals of the University of Timişoara, Seria Matematică-Informatică, 47 (2009), 9-20.
- [5] Croitoru, A., Gavriluţ, A. Pseudo-atoms of fuzzy multisubmeasures, Proceedings of ICMI-2(2009), "V. Alecsandri" Univ. of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 19(2009), 185-196.
- [6] Croitoru, A., Gavriluţ, A., Mastorakis, N.
 On different types of convergences for sequences of totally-measurable functions, 9th WSEAS International Conference on Simulation, Modelling and Optimization (SMO'09), Budapest, Hungary, September 3-5, 2009.

- [7] Croitoru, A., Gavriluţ, A., Mastorakis, N., Gavriluţ, G. - On different types of nonadditive set multifunctions, WSEAS Transactions on Mathematics 8 (2009), 246-257.
- [8] Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Statist. 38 (1967), 325-339.
- [9] Denneberg, D. *Non-additive Measure and Integral*, Kluwer Academic Publishers, Dordrecht/Boston/London, 1994.
- [10] Drewnowski, L. Topological rings of sets, continuous set functions, Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys. 20 (1972), 269-276, 277-286.
- [11] Fernández, N.J. Are diffused, Radon measures nonatomic?, Papers in honor Pablo Bobillo Guerrero (Spanish), 261-265, Univ. Granada, 1992.
- [12] Gardner, R.J., Pfeffer, W.F. Are diffused, regular, Radon measures σ -finite?, J. London Math. Soc. 20 (1979), 485-494.
- [13] Gavriluţ, A. Non-atomicity and the Darboux property for fuzzy and nonfuzzy Borel/Baire multivalued set functions, Fuzzy Sets and Systems 160 (2009), 1308-1317.
- [14] Gavriluţ, A. *Regularity and autocontinuity of set multifunctions*, Fuzzy Sets and Systems Journal, doi: 10.1016/j.fss.2009.05.007.
- [15] Gavriluţ, A. *A set-valued Lusin type theorem*, The 2-nd International Conference on Mathematics and Informatics (ICMI), Bacau, Romania, Sept. 8-10, 2009.
- [16] Gavriluţ, A., Croitoru, A. Non-atomicity for fuzzy and non-fuzzy multivalued set functions, Fuzzy Sets and Systems 160 (2009), 2106-2116.
- [17] Gavriluţ, A., Croitoru, A. On the Darboux property in the multivalued case, Annals of the University of Craiova, Mathematics and Computer Sciences 35 (2008),130-138.
- [18] Gavriluţ, A., Croitoru, A. Fuzzy multisubmeasures and applications, Proceedings of the 9th WSEAS International Conference on Fuzzy Systems, [FS08], Sofia, Bulgaria, May 2-4, 2008, 113-119.

- [19] Gavriluţ, A., Croitoru, A. On totallymeasurable functions, Proceedings of ICMI-2(2009), "V. Alecsandri" Univ. of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 19 (2009), 275-288.
- [20] Gavriluţ, A., Croitoru, A., Mastorakis, N.E. - Measurability and Gould integrability in finitely purely atomic multisubmeasure spaces, WSEAS Transactions on Mathematics 8 (2009), 435-444.
- [21] Gavriluţ, A., Croitoru, A., Mastorakis, N.E.
 Finitely purely (pseudo) atomic set multifunctions, WSEAS Computational Intelligence Conference, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia, June 26-28, 2009.
- [22] Gavriluţ, A., Mastorakis, N.E. On regular multisubmeasures and their applications, WSEAS Computational Intelligence Conference, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia, June 26-28, 2009.
- [23] Halmos, P.R. *The range of a vector measure*, Bull. Amer. Math. Soc. 54 (1948), 416-421.
- [24] Hu, S. Papageorgiou, N.S. Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
- [25] Kharazishvili, A., Kirtadze, A. On the measurability of functions with respect to certain classes of measures, Georgian Mathematical Journal 11 (2004), no. 3, 489-494.
- [26] Kharazishvili, A.B. Strange Functions in Real Analysis, Second edition, Chapman &Hall/CRC, Taylor &Francis Group, Boca Raton, 2006.
- [27] Liginlal, O., Ow, T.T. *Modelling attitude* to risk in human decision processes: An application of fuzzy measures, Fuzzy Sets and Systems 157 (2006), 3040-3054.
- [28] Mastorakis, N.E., Gavriluţ, A., Croitoru, A., Apreutesei, G. - On Darboux property of fuzzy multimeasures, Proceedings of the 10th WSEAS, International Conference on Fuzzy Syst. [FS09], Prague, Czech Republic, March 23-25, 2009.

- [29] Pap, E. *Null-additive Set Functions*, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.
- [30] Pham, T.D., Brandl, M., Nguyen, N.D., Nguyen, T.V. - Fuzzy measure of multiple risk factors in the prediction of osteoporotic fractures, Proceedings of the 9th WSEAS International Conference on Fuzzy System [FS'08], Sofia, Bulgaria, May 2-4, 2008, 171-177.
- [31] Precupanu, A., Gavriluţ, A., Croitoru, A. -*A Fuzzy Gould Type Integral*, Fuzzy Sets and Systems, 161 (2010), 661-680.
- [32] Shafer, G. A Mathematical Theory of Evidence, Princeton University Press, Princeton, N.J., 1976.
- [33] Zadeh, L.A.- *Fuzzy Sets*, Information and Control 8 (1965), 338-353.