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Abstract: - A diagonally implicit Runge-Kutta-Nystróm General (SDIRKNG) method of fifth order with an 

explicit first stage for the integration of second-order IVPs is presented. A standard set of test problems are 

tested upon and the numerical results are compared when the same set of test problems are reduced to first-

order system and solved using existing fifth order singly diagonally implicit Runge-Kutta method. The time 

taken to solve each problem over all the stepsizes are also compared. The results suggest the superiority of the 

new method.  
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1 Introduction 
Many physical problems can be formulated in the 

form of ordinary differential equations. These 

differential equations can be classified as boundary 

value problem and initial value problems. Work on 

boundary value problem can be seen in Gordeziani 

et. al [1]. Systems of second order ordinary 

differential equations arise in many physical  

problems, such as celestial mechanics, astrophysics, 

electronics and molecular dynamics. The general 

form of the second order ordinary differential 

equation can be written as follows 

    ),,( yyxfy ′=′′ ,   nxxx ≤≤0 ,                       (1) 

with the given initial conditions  

     00 )( yxy = , 00 )( yxy ′=′ , 

where ny ℜ∈ , and nnnf ℜ→ℜ×ℜ×ℜ: . The 

function f is assumed to have derivative of arbitrary 

order everywhere in ℜ .  Using Runge-Kutta (RK) 

type of methods equation (1) can be solved using 

two general techniques, the first one is to transform 

(1) to first-order problem and then use any  RK 

method. Many classes of RK methods have been 

developed, these include the method constructed by  

 

Ismail et. al [2], Din et. al [3], Verner [4] and fifth 

order singly diagonally implicit Runge-Kutta 

(SDIRK) method due to Cooper and Sayfy [5] 

which can be found in Hairer and Wanner [6] .  The 

second technique is to solve (1) directly using 

Runge-Kutta-Nystróm General (RKNG) method. 

This method generates approximations 1+ny  and 

1+′ny ,  to )( 1+nxy and )( 1+′ nxy respectively, for 

n=0,1,…, according to  

∑
=

+ +′+=
q

i

iinnn kbhyhyy
1

2
1 , 

 ∑
=

+ ′+′=′
q

i

iinn kbhyy
1

1 ,   

 where q is the number of stages, nn xxh −= +1 , and  

),,(
11

2 ∑∑
==

′+′+′++=
i

j

jijn

i

j

jijninini kaykahyhcyhcxfk

 i = 1,…, q.     

We refer to (2) as generalized Runge-Kutta-

Nystróm method. Unlike their close relatives, the 

Runge-Kutta-Nystróm formulas for the special 

second order initial value problem ),( yxfy =′′ , the 

(2) 

WSEAS TRANSACTIONS on MATHEMATICS Fudziah Ismail

ISSN: 1109-2769 550 Issue 7, Volume 9, July 2010



RKNG schemes have been infrequently 

investigated.  Zurmühl [7]  presented a pair of fourth 

order formulas requiring four stages whose c, a′  
and b′  coincided with the tableau of parameters for 

the classical Runge-Kutta method for first-order 

ordinary differential equations. Ansorge and Tornig 

[8] performed a stability analysis of the classical 

RKNG using a scalar second-order differential 

equations with constant real coefficients. In 

determining the stability region of the method, 

technique used to solve the stability polynomial can 

also be obtained from Muresan [9]. Further 

improvements in fourth order, four stage RKNG 

methods, have been reported by Chawla and Sharma 

[10]. A number of explicit RKNG schemes, having 

orders five, six and seven, have been proposed by 

Fehlberg [11] and Fine [12]. In this paper  we are 

going to derive fifth order singly diagonally implicit 

Runge-Kutta Nystrom method with an explicit first 

stage and use it to solve system of second order 

IVPs. 

 

 

2 Derivation of the Method 
Generally, RKNG method can be written as follows  

∑
=

+ +′+=
q

i

iinnn kbhyhyy
1

2
1 , 

∑
=

+ ′+′=′
q

i

iinn kbhyy
1

1 ,

),,(
11

2 ∑∑
==

′+′+′++=
i

j

jijn

i

j

jijninini kahykahyhcyhcxfk

qi ,...,1=                  (3) 

or it can be written in an extended Butcher tableau 

as  

                1c      11a                 11a ′                

                ⋮       ⋮      ⋱               ⋮      ⋱   

               qc      1qa  . . .  qqa          1qa′    . . . qqa′    

                      1b   . . .   qb           1b′   . . .  qb′  

where the coefficients iiijij bbaa ′′ ,,,  determine the 

method and the parameters are required to satisfy 

the following equations  

∑
=

=
i

j

iji ac
1

2

2

1
,  ( ),...,1 qi = ,                             (4)                                                               

and  ∑
=

′=
i

j

iji ac
1

,  ( ),...,1 qi = .                        (5)                   

                                  

Based on the work of Hairer and Wanner [13], Fine 

[12] listed the order conditions of RKNG method up 

to order six.  

Here, we listed all the order conditions related to 

y′ up to order five in Table 1. And all the order 
conditions up to order five related to y are given in 

Table 2.  

TABLE I 

ORDER CONDITIONS UP TO ORDER FIVE FOR y′  

         ∑ =′
i

ib 1    (1.1)  
30

1
=′∑ jiji

ij

i cacb  (1.12)  * 

       ∑ =′
i

iicb
2

1    (1.2)    
15

12 =′′∑ jiji

ij

i cacb     (1.13) 

    ∑ =′
i

iicb
3

12     (1.3)  
30

1
=′′′∑ kjkiji

ijk

i caacb (1.14)  

  ∑ =′′
ij

jiji cab
6

1
  (1.4)  

60

12 =′∑ jij

ij

i cab     (1.15) * 

    ∑ =′
i

iicb
4

13     (1.5) 120

1
=′′∑ kjkij

ijk

i caab  (1.16) 

* 

 
8

1
=′′∑

ij
jijii cacb     (1.6)  ( )

20

12 =′′∑ jij

ij

i cab   (1.17)          
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∑ =′′
ij

jiji cab
12

12    (1.7)      
20

13 =′′∑ jij

ij

i cab      (1.18)             

∑ =′′′
ijk

kjkiji caab
24

1 (1.8)  
40

1
=′′′∑ kjkjij

ijk

i cacab (1.19)     

24

1
=′∑ jij

ij

i cab (1.9)*  
120

1
=′′∑ kjkij

ijk

i caab (1.20)* 

 
5

14 =′∑ i
i

icb    (1.10) 
60

12 =′′′∑ kjkij

ijk

i caab     (1.21) 

10

12 =′′∑ jiji
ij

i cacb (1.11) 
120

1
=′′′∑ lkljkij

ijkl

i caaab (1.22) 

TABLE 2 

ORDER CONDITIONS UP TO ORDER FIVE FOR  y 

∑ =
i

ib
2

1
          (2.1)   

40

1
=′∑ jijii cacb   (2.6) 

∑ =
i

iicb
6

1           (2.2) 
60

12 =′∑ jiji cab     (2.7) 

∑ =
i

iicb
12

12         (2.3) 
120

1
=′′∑ kjkiji caab (2.8) 

24

1
=′∑ jiji cab (2.4) 

120

1
=∑ jiji cab  (2.9) ** 

∑ =
i

iicb
20

13           (2.5)    

Now we need to list down the order conditions 

which depend on c, b′  and a′  only and  this set  is  
called  set S1 or  set belongs  to y′ ,  it  consists  of  
all  equations  in  

Table 1 except those denoted by (*). 

The second set of equations which depend on  c, b  

and a′  or we called it set S2 which belongs to y .  It 
consists of all equations in Table 2 except those 

denoted by (**). 

 Finally all equations denoted by * and ** from 

Table 1 and 2 belong to the set of equations S3 

which belong  to both y and y′ .   

There are 17 equations in S1, 8 equations in S2 and 

6   equations in S3, a  total number of 31 equations. 

Now look at set S1 and use the simplifying 

assumption 

  
2

2
i

ij

jij

c
ca =′∑                  (6)       

Certain order equations can be removed as follows:                                                                   

1. ∑ =′′
ij

jiji cab
6

1
 (1.4) , ∑ =′

i
iicb

3

12   , (1.2) 

     0
2

2

=













−′′ ∑∑ i
jiji

c
cab  , keep  (1.2) and  

    remove        (1.4) 

2. 
8

1
=′′∑

ij
jijii cacb   (1.6) ,  ∑ =′

i

iicb
4

13 , (1.5) 

    0
2

2

=













−′′ ∑∑ i
jijii

c
cacb , remove (1.6) and   

    keep     (1.5) 

3. ∑ =′′′
24

1
kjkiji caab  (1.8),  ∑ =′′

12

12
jiji cab   (1.7) 

    0
2

2

=












−′′′ ∑∑ j

kjkiiji

c
cacab , remove (1.8) 

    and keep (1.7) 

4. 
10

12 =′′∑ jijii cacb , (1.11),  
5

14 =′∑ iicb   (1.10) 
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    0
2

2
2 =














−′′ ∑∑ i
jijii

c
cacb , remove (1.11), keep 

      (1.10) 

5. 
30

1
=′′′∑ kjkijii caacb    (1.14),  

    
15

12 =′′∑ jijii cacb        (1.13) 

    0
2

2

=












−′′′ ∑∑ j

kjkijii

c
caacb , remove (1.14)  

     and   keep (1.13) 

6.   ( )
20

12 =′′∑ jiji cab  (1.17),  
10

12 =′′∑ jijii cacb   

     (1.11)          

     0
2

2

=












−′′′ ∑∑

j

kjkjiji

c
cacab , remove (1.17) and    

     keep    (1.11) 

7. 
40

1
=′′′∑ kjkjiji cacab    , (1.19), 

20

13 =′′∑ jiji cab ,  

     (1.18) 

   0
2

2

=












−′′′ ∑∑ j

kjkjiji

c
cacab , remove (1.19)  

   and keep (1.18) 

8.     
120

1
=′′′∑ lkljkiji caaab ,              (1.22),  

        
60

12 =′′′∑ kjkiji caab ,                   (1.21) 

        0
2

2

=













−′′′′ ∑∑ k
lkljkiji

c
caaab ,  

        remove (1.22) keep (1.21). 

Now use the simplifying assumption 

      
3

3
2 i

ij

jij

c
ca =′∑  ,           (7)                                                                                               

9.  ∑ =′′
12

12
jiji cab , (1.7),   ∑ =′

i

iicb
4

13 , (1.5) 

    













−′′ ∑∑

3

3
2 i
jiji

c
cab , remove (1.7) keep (1.5) 

10. 
15

12 =′′∑ jijii cacb , (1.13), ∑ =′
i

iicb
5

14 , (1.10) 

   













−′′ ∑∑

3

3
2 i
jijii

c
cacb , remove (1.13) keep (1.10) 

11. 
60

12 =′′′∑ kjkiji caab  (1.21), 
20

13 =′′∑ jij

ij

i cab   

      (1.18) 

       












−′′′ ∑∑

3

3

2 j

kjkiji

c
caab , remove (1.21) keep    

       (1.18) 

Thus equations needed to be satisfied for set S1 are 

(1.1), (1.2), (1.3), (1.5), (1.10) and (1.18) provided 

the simplifying assumptions are satisfied for 

qi ,,2,1 ⋯= . 

Now look at S2, we can still use the same 

simplifying assumption  

 Using (6) we have 

12.     ∑ =′
ij

jiji cab
24

1
  (2.2.4),  ∑ =

i

iicb
12

12  (2.3) 

  0
2

2

=













−′∑∑ i
jiji

c
cab , remove (2.4) keep (2.3) 
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13.   
40

1
=′∑ jijii cacb  (2.6) , ∑ =

i

iicb
20

13  (2.5)  

        0
2

2

=













−′∑∑ i
jijii

c
cacb , remove (2.6) keep   

         (2.5) 

14.
120

1
=′′∑ kjkiji caab (2.8),  

       
60

12 =′∑ jiji cab ,(2.7) 

       0
2

2

=












−′′ ∑∑ j

kjkiji

c
caab  remove (2.8), 

      keep  (2.7) 

    Using assumption (7)  we have 

15. 
60

12 =′∑ jiji cab  (2.7),     ∑ =
i

iicb
20

13 , (2.5) 

      0
3

3
2 =














−′∑∑ i

jiji

c
cab , remove (2.7),  

      keep (2.5). 

Thus for S2, equations to be satisfied are  (2.1), 

(2.2), (2.3) and (2.5). 

 

Now look at S3, which consists of equations  (1.9), 

(1.12), (1.15), (1.16), (1.20)  and (2.9), use the 

simplifying assumption 

0
6

3

=−∑ i
jij

c
ca     (8)                                                                                

16.   
24

1
=′∑ jij

ij

i cab   (1.9),  ∑ =′
i

iicb
4

13  (1.5) 

        0
6

3

=













−′ ∑∑ i
jiji

c
cab ,  remove (1.9),  

        keep      (1.5) . 

17.   
120

1
=′′∑ kjkij

ijk

i caab  , (1.16), 

         
60

12 =′∑ jij

ij

i cab   ,     (1.15)           

       0
2

2

=












−′′ ∑∑ j

kjkiji

c
caab , using simplifying  

         assumption (6) remove (1.16),  keep (1.15). 

18.    
30

1
=′∑ jiji

ij

i cacb  (1.12),  
5

14 =′∑ i
i

icb  (1.10) 

         0
6

3

=













−′ ∑∑ i
jijii

c
cacb , remove (1.12) 

19.  
120

1
=′′∑ kjkij

ijk

i caab    (1.20),   

       
20

13 =′′∑ jij

ij

i cab ,     (1.18) 

       0
6

3

=













−′′ ∑∑ j

kjkiji

c
caab , remove  (1.20) ,  

20.    
120

1
=∑ jiji cab  (2.9),  ∑ =

i

iicb
20

13  (2.5) 

        0
6

3

=













−∑∑ i
jiji

c
cab , remove (2.9). 

The only equations needed to be satisfied for this set 

are (1.15) and simplifying assumption (8)  

Now look at simplifying assumptions  (6)  and  (7). 

For 1i =  we have 

2

2
1

111

c
ca =′

3

3
12

111

c
ca =′  0111 ==⇒ ac  

γ22
2

222

2
2

222 =′=⇒=′ ac
c

ca ,                  (9) 
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 ( γ is  the diagonal element  iia ′  for 1>i )                

γ3
2

2

3
22

222 =⇒=′ c
c

ca  

thus it is not true and (7) cannot be satisfied for 

2=i  thus we need to have  

,02 =′b   0,0 222 =′′=′ ∑∑ iiabcb            (10)                         

From S2 since we are also using  (7)  we need to 

have (from no 15). 02 =b  

and  (6) are satisfied for i =1,2,3,4,5 and (7) are 

satisfied for i =1,2,3,4,5. From set S1 other 

equations needed to be satisfied are 

(1.1), (1.2), (1.3), (1.5), (1.10) and (1.18) 

From S3 and simplifying assumption (8),  

it is satisfied for for i =1  since  01 =c  

β6
6

2
2

3
2

222 =⇒= c
c

ca              (11) 

( β is the diagonal element of  iia  for 1>i                

From  (9)  and  (10)  we obtained   

3
2)2(6

2
22

2

γ
βγβ =⇒==c  

  and (8)  are satisfied for 4,3,2,1=i  

The following are the steps taken to obtain the 

coefficients of the fifth order  RKNG method 

Step 1: set 125.0=γ , from (9) we have                 

25.022 == γc . 

Step 2: From (6)  and (7) for 3=i , solve for 32a′  

and 3c , 

Step 3: From (6)  and (7) for 4=i , solve for 42a′  

and 43a′  ,  

using the values of   5.04 =c  and 3c  obtained  

in  step 2. 

Step 4: Set 75.05 =c and 9.06 =c ,  from (1.1), 

(1.2), (1.3) , (1.5) , (1.10) solve for  

6,5,4,3,1=′ib  

Step 5: Set 1.052 =′a , use (6) and (7) for 5=i , 

solve for     5453 aanda ′′ .      

Step 6: From equations (10), (1.18), (6) and (7) 

for 6=i ,  solve for  65646362 ,, aandaaa ′′′′  

Step 7; From equations (6), (7), (8)  and taking  

            02 =′∑ iiab ,we can solve  

             for   5431 ,,, bbbb  and 6b  

Step 8: Using (8) for i= 3 and the value of β  

solve for 32a . 

Step 9: Set 2.042 =a , solve for  43a  using (8) for 

i=4. 

Step10: Setting  

0125.0,08.0,1.0 656454 === aaa  

             solve for       6252 , aa  and 63a  from  (8) 

             ( i =5,6) and  (1.15). 

The coefficients of fifth order SDIRKNG 

method with an explicit first stage obtained are 

as follows: 

01 =c  

25.02 =c  

1584936491.03 =c  

5.04 =c  

75.05 =c  

9.06 =c  

125.0

0290063509.0

125.0

0

33

32

22

11

=′
−=′

=′
=′

a

a

a

a
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125.0

733591167564.0

540223290992.0

44

43

42

=′
=′
=′

a

a

a

 

125.0

562243401394.0

043175426480.0

1.0

55

54

53

52

=′
=′
=′
=′

a

a

a

a

 

580386422190.062 −=′a  

125.0

670169705358.0

4976079139921.0

9630689709691.0

66

65

64

63

=′
−=′

=′
=′

a

a

a

a

 

7842297137982.0

5560793923533.0

4783839745961.0

1572632661857.0

0.0

0240436530665.0

6

5

4

3

2

1

=′
=′
=′
=′
=′
=′

b

b

b

b

b

b

 

 

10039496367.0

670104166666.0

32

22

−=
=

a

a
 

670104166666.033 =a  

96090216885661

2.0

43

42

−=
=

a

a
 

670104166666.044 =a  

1.0

05.0

7000183012701

54

53

52

=

=

=

a

a

a

 

670104166666.055 =a  

0125.0

08.0

2374312358656.0

740223925838.0

65

64

63

62

=

=

=

−=

a

a

a

a

 

670104166666.055 =a  

 

080171188435.0

490339345140.0

511782631952.0

132314113187.0

0.0

760392721284.0

6

5

4

3

2

1

=

=
=

=
=
=

b

b

b

b

b

b

 

where the values of 1ia  and 1ia′ for (i=1(1)6) are 

given by ∑
=

−=
i

j

ijii aca
2

2
1

2

1
,  and ∑

=
−=′

i

j

ijii aca
2

1 . 

3  Numerical Results 

The following are some of the problems used to 

validate the new method. 

Problem 3.1  

21 yy ′−=′′ , 0)0(1 =y , 
11

1

1
)0(

−−
=′

e
y , 

12 yy ′−=′′ , 1)0(2 =y ,    
12

1

1
)0(

−−
=′

e
y ,    

100 ≤≤ x  

Solution:
11

1

1
)(

−

−

−

−
=

e

e
xy

x

, 
1

1

2
1

2
)(

−

−−

−

−−
=

e

ee
xy

x

.  

Source: Edwards Jr and Penny [14].   

Problem 3.2  

21

1
1

2
1

2
4

rr

y
yxy

′
+−=′′ ,      0xx ≥ , 

21

2
2

2
2

2
4

rr

y
yxy

′
+−=′′ ,  0xx ≥ ,        

105.0 ≤≤ xπ  

0)( 01 =xy ,   1)( 02 =xy ,   2

1

01 )2()( π−=′ xy ,  
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0)( 02 =′ xy ,  

 2
2

2
11 yyr ′+′=  and  2

2
2
12 yyr +=  

Solution: )cos()( 2
1 xxy = , )sin()( 2

2 xxy = .  

Source: Sharp and Fine [15]. 

Problem 3.3 

08 =+′+′′ kyyy ,    100 ≤≤ x  

1)0( =y ,  12)0( −=′y ,            16=k .  

Solution: xexxy 4)81()( −−= . 

Source:www.faculty.valencia.cc.fi.us/pfernandz/des

/chapter5.pdf   (20.9.2006).             

Problem 3.4   

     
π200,1)0(,0)0(

)sin(100

≤≤=′=
=+′′

xyy

yyy
 

There is no true solution but the value at π20  is 

0.000392823991. 

Source: Chawla and Rao [16] 

Problem 3.5 

0)0(,1)0(),sin(

1)0(,1)0(),cos(

2212

1121

=′=+=′′
−=′−=+′−=′′

yyxyy

yyxyy
 

 π40 ≤≤ x                                  

Solutions:  

  )cos()(),sin()cos()( 21 xxyxxxy =−−=  

                                       

The results obtained from the new method which 

was derived in section 2 are compared with the 

results when the same problems are solved using 

SDIRK method of order five and five stage due to 

Cooper and Sayfy [5]. In the SDIRK method the 

indirect approach is used to solve the problems by 

transforming them into a first-order differential 

equation of doubled dimension by considering the 

vector ),( yy ′  as the new variables, Since the 
method is implicit we do three iterations for the first 

k and two iterations for the subsequent k.  

The time taken for solving the problems numerically 

over rh −= 10x1 where 5,4,3,2,1=r  is also given in 

figure 1. 

The numerical results are given in Tables 3-7. The 

notations used are as follows:  

MTHD: Method used. 

 H~ The size of the step.   

 FCN ~ the number of functions evaluations. 

 STEP ~ the number of steps. 

 ERR ~ max y (ti) - 
it
y , (absolute value of the 

true solution minus the    computed solution at the 

mesh point i). 

Methods used are:  

RKNG 5: SDIRKNG method of order five and six                 

stages which was derived in this paper.  

RK 5: The SDIRK method order five and five 

stages due to Cooper and Sayfy [5], and  

0.1234(-10)   means 1234.0   X ( 1010− ). 

 

 

 

i 
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TABLE 3: NUMERICAL RESULTS FOR PROBLEM 3.1 

 

MTHD 

 

H FCN STEP ERR 

RKNG 5 

RK  5 

0.1 

 

1100 

1100 

100 

100 

1.2716(-5) 

3.9274(-5) 

 

RKNG 5 

RK 5 

0.01 

 

 

11000 

11000 

1000 

1000 

1.2397(-8) 

3.6935(-8) 

RKNG 5 

RK 5 

0.001 

 

 

110000 

110000 

 

10000 

10000 

1.2401(-11) 

3.6709(-11) 

RKNG 5  

RK 5 

0.0001 

 

1100000 

1100000 

100000 

100000 

1.88064(-13) 

1.9214(-13) 

 

 

TABLE 4: NUMERICAL RESULTS FOR PROBLEM 3.2 

 

MTHD 

 

H FCN STEP ERR 

RKNG 5 

RK  5 

0.1 

 

 

957 

957 

87 

87 

0.1342 

19.9744 

 

RKNG 5 

RK 5 

0.01 

 

 

9614 

9614 

874 

874 

1.42700(-6) 

0.3250 

RKNG 5 

RK 5 

0.001 

 

 

96206 

96206 

 

8746 

8746 

  2.3520(-10) 

 3.26279(-4) 

RKNG 5  

RK 5 

0.0001 

 

962126 

962126 

87466 

87466 

2.2957(-10) 

  3.2608(-7) 

 

TABLE5: NUMERICAL RESULTS FOR PROBLEM 3.3 

 

MTHD 

 

H FCN STEP ERR 

RKNG 5 

RK  5 

0.1 1100 

1100 

100 

100 

3.8330(-3) 

7.5216(-2)  

 

RKNG 5 

RK 5 

0.01 

 

 

11000 

11000 

1000 

1000 

3.1762(-6) 

5.6381(-5) 

RKNG 5 

RK 5 

0.001 

 

 

110000 

110000 

10000 

10000 

 

3.1140(-9) 

5.4728(-8)  

RKNG 5  

RK 5 

0.0001 

 

1100000 

1100000 

100000 

100000 

3.1301(-12) 

5.4712(-11)  

 

 

TABLE6: NUMERICAL RESULTS FOR PROBLEM 3.4 

 

 

MTHD 

 

H FCN STEP ERR 

RKNG 5 

RK  5 

0.1 6908 

6908 

628 

628 

2.2160(-2) 

3.9282(-4)  

 

RKNG 5 

RK 5 

0.01 

 

 

69113 

69113 

6283 

6283 

1.8528(-3)  

1.5255(-3)  

RKNG 5 

RK 5 

0.001 

 

691141 

691141 

62831 

62831 

 

8.5040(-4)  

8.52981(-4)  

RKNG 5  

RK 5 

0.0001 

 

6911498 

6911498 

628318 

628318 

5.3071(-5)  

5.3071(-5)  
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TABLE7: NUMERICAL RESULTS FOR PROBLEM 3.5 

 

MTHD 

 

H FCN STEP ERR 

RKNG 5 

RK  5 

0.1 1375 

1375 

125 

125 

3.1147(-5) 

7.6378(-2)  

 

RKNG 5 

RK 5 

0.01 

 

 

13816 

13816 

1256 

1256 

4.2094(-9)  

7.9699(-5)  

RKNG 5 

RK 5 

0.001 

 

 

138226 

138226 

12566 

12566 

 

2.0216(-11)  

8.0015(-8)  

RKNG 5  

RK 5 

0.0001 

 

1382293 

1382293 

125663 

125663 

2.3747(-10)  

2.1853(-10)  

 

 

 

0

2

4

6

8

10

12

Time in 

seconds

3.1 3.2 3.3 3.4 3.5

Problems

Figure 3.1: Total time taken to solve the problems

RKNG 5

RK 5

 

 

4 Conclusion 

For most of the problems tested, we can conclude 

that  solving the general second order equations 

directly using the fifth order  RKNG method 

produced smaller error compared to reduction to 

first order systems. From the number of function 

evaluations we can say that though the RKNG 

method is six stages but the first stage is explicit 

thus no iteration is needed to evaluate the first k, 

hence the method is effectively contain five stages 

which is comparable to the SDIRK method.  

In terms of time taken to solve the problems over all 

the stepsizes, RKNG 5 required slightly less time 

compared to RK 5, and we believed that if the 

problems consist of larger system of equations then 

the total time gained will be more apparent.  

Thus, the method RKNG 5 for the solving the 

second order IVPs directly is more efficient 

than the  RK 5 method. 
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