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Abstract: - A diagonally implicit Runge-Kutta-Nystrom General (SDIRKNG) method of fifth order with an
explicit first stage for the integration of second-order IVPs is presented. A standard set of test problems are
tested upon and the numerical results are compared when the same set of test problems are reduced to first-
order system and solved using existing fifth order singly diagonally implicit Runge-Kutta method. The time
taken to solve each problem over all the stepsizes are also compared. The results suggest the superiority of the

new method.
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1 Introduction
Many physical problems can be formulated in the
form of ordinary differential equations. These
differential equations can be classified as boundary
value problem and initial value problems. Work on
boundary value problem can be seen in Gordeziani
et. al [1]. Systems of second order ordinary
differential equations arise in many physical
problems, such as celestial mechanics, astrophysics,
electronics and molecular dynamics. The general
form of the second order ordinary differential
equation can be written as follows

Y= 0,00, XgSxX<X (1)

n?°

with the given initial conditions
Y(xg)=yo, ¥'(x0)=y0,

where ye R”, and [ :RxR"xR" > R". The
function f'is assumed to have derivative of arbitrary
order everywhere in R . Using Runge-Kutta (RK)
type of methods equation (1) can be solved using
two general techniques, the first one is to transform
(1) to first-order problem and then use any RK
method. Many classes of RK methods have been
developed, these include the method constructed by
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Ismail et. al [2], Din et. al [3], Verner [4] and fifth
order singly diagonally implicit Runge-Kutta
(SDIRK) method due to Cooper and Sayfy [5]
which can be found in Hairer and Wanner [6] . The
second technique is to solve (1) directly using
Runge-Kutta-Nystrom General (RKNG) method.
This method generates approximations y,,; and

y;z+l >
n=0,1,..., according to

to y(x,.)and y'(x,,;)respectively, for

q
Vel = Vu +hy, + hzzbz‘ki >
i=1
g (2)
Vit =Y + Y bik;
i=1

where g is the number of stages, h=x,,; —x, , and

no

S i

ki =f(x, +cih,y, +c;hy, +h Za,-jkj,yn +Za,-jkj)
j=1 j=1

i=1,..,q.
We refer to (2) as generalized Runge-Kutta-
Nystrom method. Unlike their close relatives, the
Runge-Kutta-Nystrom formulas for the special
second order initial value problem y" = f(x,y), the
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RKNG schemes have been infrequently
investigated. Zurmiihl [7] presented a pair of fourth
order formulas requiring four stages whose ¢, a'
and b’ coincided with the tableau of parameters for
the classical Runge-Kutta method for first-order
ordinary differential equations. Ansorge and Tornig
[8] performed a stability analysis of the classical
RKNG using a scalar second-order differential
equations with constant real coefficients. In
determining the stability region of the method,
technique used to solve the stability polynomial can
also be obtained from Muresan [9]. Further
improvements in fourth order, four stage RKNG
methods, have been reported by Chawla and Sharma
[10]. A number of explicit RKNG schemes, having
orders five, six and seven, have been proposed by
Fehlberg [11] and Fine [12]. In this paper we are
going to derive fifth order singly diagonally implicit
Runge-Kutta Nystrom method with an explicit first
stage and use it to solve system of second order
IVPs.

2 Derivation of the Method
Generally, RKNG method can be written as follows

q
Vsl =V +hyly + 07 bik;
i=1

q
Vi =y +hY bk,
i=1
k; = f(x,+ch,y,+hcy,+h ZaU J,yn+h2alj ;
Jj=1
i=1l..,q 3)

or it can be written in an extended Butcher tableau
as

’
¢ | an ap
c a a’ !
q aq1 qq ql - Aqq
’ ’
by ... b, b ... b,
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where the coefficients a;,a;,b;,b; determine the

method and the parameters are required to satisfy
the following equations

=1,...,9), @)

i
=D a;, (i

J=1

N | —
o

i
and ¢; :Zag]- , (i=1,...,9).
=l

&)

Based on the work of Hairer and Wanner [13], Fine
[12] listed the order conditions of RKNG method up
to order six.

Here, we listed all the order conditions related to

y'up to order five in Table 1. And all the order

conditions up to order five related to y are given in
Table 2.

TABLE

ORDER CONDITIONS UP TO ORDER FIVE FOR )’

Shi=1 (L1) Zb,c,aljcj (1.12)*
1
Zb;cl:% (1.2) Zb,c,aljcj:E (1.13)
! ’ ! 1
; 3 iik 30
1
zba,,c,— (1.4) Zblal]cjz—o (1.15) *
ij
1
blaayc, =— (1.16
St =L (15) %f ek =150 (110)
- 11 4
£
1 1
Thieaie, = (1.6) Zb( Le P =55 (117
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rr 1 r_! 3
zb, ajej=— (1.7) Zb, ajcy = (1.18)
r ! / 1
> blajalyc, :_(1 8) | Dobjajic,a’ycy :4—0(1.19)
ijk ijk
1
Zb,aljcj = (1.9)* Zb,aljajkck ~120 —(1.20)*
ijk
14 1 1
> blc; =3 (1.10) | Y bjajalyci = (1.21)
i ijk
Zb,’c,za,'jcj— 5 (L1D) Zbaljajkaklcl——(l 22)
ijkl
TABLE 2

ORDER CONDITIONS UP TO ORDER FIVE FOR y

Sh=t Q1) | Sheaje; =— (2.6)
1
zb:c: =— (22) Zbl a; ] :5 (27)
1

Zbl-cl — (2.3) sz a; jkck __0(28)
b;a _ ! 24 b _ ! 2.9) **

211]]_5(-) Zlal]cj_ 0()

Z:bicl»3 =— (2.5)

Now we need to list down the order conditions
which depend on ¢, b" and a' only and this set is
called set S1 or set belongs to ', it consists of
all equations in

Table 1 except those denoted by (*).
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The second set of equations which depend on ¢, b
and a’ or we called it set S2 which belongs to y . It
consists of all equations in Table 2 except those
denoted by (**).

Finally all equations denoted by * and ** from

Table 1 and 2 belong to the set of equations S3
which belong to both y and y'.

There are 17 equations in S1, 8 equations in S2 and
6 equations in S3, a total number of 31 equations.

Now look at set S1 and use the simplifying
assumption

Zal, c; = (6)

Certain order equations can be removed as follows:

L. Zb aj ,—— (14), bt == . (1.2)

2
Zb [Zag cj - J 0, keep (1.2) and

remove

(1.4)

2. Zbcaljcj 1 (e, zb;cf:%,(l.S)

¢2
Zblcl[z% cj- J 0, remove (1.6) and
keep (1.5)

3. Zba A Cr Y] (1.8), Z:b’a’c2 =— (1-7)

rry T

2
sz ajj z[zajkck : }—O,remove(lx)
and keep (1.7)
4. Zb’cza'c

l]j_

,(1.11), Zbl-’cfzé (1.10)
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2
Zb [Za,] cj— J 0, remove (1.11), keep
(1.10)

’ ! ’ 1

30
> b Lan
lclallc] —15 (1.13)

2
> bjc; U[Za 2 Cp — J 0, remove (1.14)
and keep (1.13)

6. Zb(ljj)_

(1 17), Y. bjciajc, %

(1.11)
02
Ybiajc;| Y a'e, —7 =0, remove (1.17) and
keep (1.11)
7. Zbl-'a;jcja}kck =—

/!3 1
. (1.19), > bjaj; =35

(1.18)

2

sz aj j[Za xCk ——} 0, remove (1.19)
and keep (1.18)

8. Zbl-'a,fjajka}dc, = , (1.22),

1
120

s
Zblal]ajkck 0’ (1.21)

2
! ’ ! ! Ck
D biaja'y [Zaklcl —TJ =0,
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remove (1.22) keep (1.21).

Now use the simplifying assumption

3

zau Jj - H (7)

9. Shiajet = (17 St =1, (15)
c.3
Zb al]c] —? , remove (1.7) keep (1.5)

10. Zbca ol = ,(1.13),

iCi%5¢

St = (110

3
Z [ l]] %J,remove(1.13)keep(1.10)

1
ror 3
11. Zblal]ajkck = (1 21), Zblallc] =2

(1.18)

3

2.bi U[Z a;kck

J remove (1.21) keep

(1.18)
Thus equations needed to be satisfied for set S1 are
(1.1), (1.2), (1.3), (1.5), (1.10) and (1.18) provided

the simplifying assumptions are satisfied for
i=L2,---,q.

Now look at S2, we can still use the same
simplifying assumption

Using (6) we have

1
12. Zb aje; = -1 e3)

024, vug

2
> b, [Za,] ¢, é} 0, remove (2.4) keep (2.3)
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keep  (1.5).
13. Y bcajc; = m (2.6), Zblc?:% (2.5)

1
17. > bjajayc;, =— ,(1.16),
AP}

¢2
Zblcl[z% cj- J 0, remove (2.6) keep
sz a; ] =— , (L.15)

(2.5)
) 2
14.Zbl-ag]-a_’jkck 25(2.8), > bla a; Za]kck =0, using simplifying
1 .
Zbl a) J - Lo assumption (6) remove (1.16), keep (1.15).

18. Zblclayc] 25 (112 > blek :%(1.10)
2 i

c
2.b; g[za,kck —7] 0 remove (2.8), ]
Zblcl[ZaU ;= ] 0, remove (1.12)

keep (2.7)

Using assumption (7) we have 1
19. Y bjaja e, =— (1.20),
m 120

1
15. Y balc? =— (2.7), A1 s
Z i lj ] 60( ) ;b,cl 20 ( )
Zb,al]cj ——O, (1.18)

3

3
Zb [Z ajc; ——J 0, remove (2.7),
Z U(Zajkck——J 0, remove (1.20),

keep (2.5).
Thus for S2, equations to be satisfied are (2.1), _
(2.2), (2.3) and (2.5). 20. D biaye; =5 (29), Shel = )
Now look at S3, which consists of equations (1.9), 2.h (Zau €~ J 0, remove (2.9).

(1.12), (1.15), (1.16), (1.20) and (2.9), use the
simplifying assumption . . .
The only equations needed to be satisfied for this set

o3 are (1.15) and simplifying assumption (8)

Zaljc] ———0 ®) . .
Now look at simplifying assumptions (6) and (7).

. For i =1 we have
16. Zblallc] = (1.9), S bie? - (1.5)

2 3

’ _cl ' 2_01 _ _
aj ¢ =— ay ¢ =— =c¢y=a;; =0
11€1 > 11€1 3 1 11

3
Zb [Za,] c; - J:o, remove (1.9), 5

! c !
asCy 272302 =2a5 =2y, )
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( yis the diagonal element a}; for i>1)
3

26
ar,Cy :7:C2 :3]/

thus it is not true and (7) cannot be satisfied for
i =2 thus we need to have

by =0, Y bye, =0, > blal, =0 (10)

From S2 since we are also using (7) we need to
have (from no 15). b, =0

and (6) are satisfied for i =1,2,3,4,5 and (7) are
satisfied for 1 =1,2,3,4,5. From set S1 other
equations needed to be satisfied are

(1.1), (1.2), (1.3), (1.5), (1.10) and (1.18)

From S3 and simplifying assumption (8),

it is satisfied for fori =1 since ¢, =0

3
) 2
arCy :?: CH = 6ﬂ

(11)

( B is the diagonal element of a,; for i>1

From (9) and (10) we obtained

2
3 =6p=(2)" = p=2"-

and (8) are satisfied for i =1,2,3,4

The following are the steps taken to obtain the
coefficients of the fifth order RKNG method

Step 1: set
c, =2y=0.25.

y=0.125, from (9) we have

Step 2: From (6) and (7) for i =3, solve for a3,
and c5,

Step 3: From (6) and (7) for i=4, solve for a},
and aj; ,

using the values of
in step 2.

¢y =0.5 and ¢; obtained
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Step 4: Set ¢s =0.75and ¢, =0.9, from (1.1),

(1.2), (1.3) , (1.5) , (1.10) for
bl =13,4,5,6

solve

Step 5: Set a5, =0.1, use (6) and (7) for i=5,

solve for  as; and ai,.

Step 6: From equations (10), (1.18), (6) and (7)
for i=6, solve for ay,, ag;, ag, and ags

Step 7; From equations (6), (7), (8) and taking

> b.aj, =0 ,we can solve

for b,,bs,b,,bs and by

Step 8: Using (8) for i= 3 and the value of g
solve for a;,.

Step 9: Set a4, =0.2, solve for a,; using (8) for
i=4.

Step10:
Asq = 01,

Setting
Aeqg = 008, Ags = 0.0125

solve for asy,ag and agy from (8)

(7=5,6) and (1.15).

The coefficients of fifth order SDIRKNG
method with an explicit first stage obtained are
as follows:

= 0
¢y =025
c3 =0.1584936491

Cyq = 0.5

¢ =0.75

aj; =0

aby =0.125

aly = —0.0290063509
aly =0.125
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a’y, =0.022329099254
ayy =0.359116756473
ayy =0.125

as, =0.1

asy; =0.317542648004
as, =0.224340139456
als =0.125

al, =-0.038642219058

al; =0.0689709691963
al, =0.6079139921497
als =—0.016970535867
als =0.125

b] =0.0436530665024
by =0.0

b} =0.2632661857157
b}, =0.3839745961478
b} =0.0793923533556
by =0.2297137982784

ay, =0.010416666667
a3, =-0.00394963671
a3; =0.010416666667

az, =02

ayz =-02168856619609
asy =0.010416666667
as, =0183012701700
asy =0.05

asy =0.1

ass =0.010416666667
ag, =-0.022392583874
agy =0.4312358656237
agy =0.08

ags =0.0125

ass =0.010416666667
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b, =0.039272128476
b, =0.0

by = 0231411318713
b, =0.178263195251
bs =0.033934514049
bg =0.017118843508

where the values of g, and a, for (i=1(1)6) are

: 1 2 d '

3 Numerical Results

The following are some of the problems used to
validate the new method.

Problem 3.1

, 1
i ==Y2 y1(0)=0,y1(0)=1 -
-e

14 ! ! 1
Y2 ==y1,320)=1, J’2(0)=1 -
—e

0<x<10

. l—e™* 7 -1 —X
Solution: y; (x) = _el , Vo(x) =
—e” l-e

Source: Edwards Jr and Penny [14].

Problem 3.2

2 !
y{’=—4x2yl +_y1 , X=X,
nr

2
vy =—4x>y, + Y2
nr

, X=X,

V0.57 <x<10

1
11(xg)=0, yy(xg)=1, y{(x9)=-(27)2,

Issue 7, Volume 9, July 2010



WSEAS TRANSACTIONS on MATHEMATICS

y,2(x0)=07

12 12 2 2
n=yyi~+yy and r, =4y +y;

Solution: y,(x) = cos(xz) , Vo (x)= sin(xz) .

Source: Sharp and Fine [15].

Problem 3.3
y'+8y'+ky=0, 0<x<10
y(0)=1, y'(0)=-12, k=16.

Solution: y(x) = (1—8x)e **.

Source:www.faculty.valencia.cc.fi.us/pfernandz/des

/chapterS.pdf (20.9.2006).

Problem 3.4

y"+100y =sin(y)

y(0)=0, y'(0)=1, 0<x<20x

There is no true solution but the value at 207 is

0.000392823991.

Source: Chawla and Rao [16]

Problem 3.5

yi=-yy +cos(x), y(0)=-1, y;(0)=-1
y5 =y +sin(x), p,(0)=1, »5(0)=0
0<x<4r

Solutions:

»1(x) = —cos(x) —sin(x), ¥, (x) = cos(x)
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The results obtained from the new method which
was derived in section 2 are compared with the
results when the same problems are solved using
SDIRK method of order five and five stage due to
Cooper and Sayfy [5]. In the SDIRK method the
indirect approach is used to solve the problems by
transforming them into a first-order differential
equation of doubled dimension by considering the
vector (y,y') as the new variables, Since the

method is implicit we do three iterations for the first
k and two iterations for the subsequent £.

The time taken for solving the problems numerically
over h=1x10"" where r=1,2,3,4,5 is also given in

figure 1.

The numerical results are given in Tables 3-7. The

notations used are as follows:

MTHD: Method used.

H~ The size of the step.

FCN ~ the number of functions evaluations.

STEP ~ the number of steps.

ERR ~ max; | y () - y, |, (absolute value of the

true solution minus the  computed solution at the

mesh point 7).
Methods used are:

RKNG 5: SDIRKNG method of order five and six

stages which was derived in this paper.

RK 5: The SDIRK method order five and five
stages due to Cooper and Sayfy [5], and

0.1234(-10) means 0.1234 X (107'°).
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TABLE 3: NUMERICAL RESULTS FOR PROBLEM 3.1
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TABLES: NUMERICAL RESULTS FOR PROBLEM 3.3

MTHD H FCN STEP ERR MTHD H FCN STEP ERR
RKNG 5 0.1 1100 100 1.2716(-5) RKNG 5 0.1 1100 100 3.8330(-3)
RK 5 1100 100 3.9274(-5) RK 5 1100 100 7.5216(-2)
RKNG 5 0.01 11000 1000 1.2397(-8) RKNG 5 0.01 11000 1000 3.1762(-6)
RK'S 11000 1000 3.6935(-8) RK'S 11000 1000 5.6381(-5)
RKNG 5 0.001 110000 10000 1.2401(-11) RKNG 5 0.001 110000 10000 3.1140(-9)
RK'S 110000 10000 3.6709(-11) RK'S 110000 10000 5.4728(-8)
RKNG 5 0.0001 | 1100000 100000 1.88064(-13) RKNG 5 0.0001 1100000 100000 3.1301(-12)
RK'S 1100000 100000 1.9214(-13) RK'S 1100000 100000 5.4712(-11)

TABLE 4: NUMERICAL RESULTS FOR PROBLEM 3.2

TABLE6: NUMERICAL RESULTS FOR PROBLEM 3.4

MTHD H FCN STEP ERR MTHD H FCN STEP ERR
RKNG 5 0.1 957 87 0.1342 RKNG 5 0.1 6908 628 2.2160(-2)
RK 5 957 87 19.9744 RK 5 6908 628 3.9282(-4)
RKNG 5 0.01 9614 874 1.42700(-6) RKNG 5 0.01 69113 6283 1.8528(-3)
RK'S5 9614 874 0.3250 RK S 69113 6283 1.5255(-3)
RKNG 5 0.001 96206 8746 2.3520(-10) RKNG 5 0.001 691141 62831 8.5040(-4)
RK'5 96206 8746 3.26279(-4) RK S 691141 62831 8.52981(-4)
RKNG 5 | 0.0001 962126 87466 2.2957(-10) RKNG 5 0.0001 6911498 628318 5.3071(-5)
RK'S 962126 87466 3.2608(-7) RK S 6911498 628318 5.3071(-5)
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TABLE7: NUMERICAL RESULTS FOR PROBLEM 3.5

MTHD H FCN STEP ERR
RKNG 5 0.1 1375 125 3.1147(-5)
RK 5 1375 125 7.6378(-2)
RKNG 5 0.01 13816 1256 4.2094(-9)
RK'S 13816 1256 7.9699(-5)
RKNG 5 0.001 138226 12566 2.0216(-11)
RK'S 138226 12566 8.0015(-8)
RKNG 5 0.0001 1382293 125663 2.3747(-10)
RK'S 1382293 125663 2.1853(-10)

Figure 3.1: Total time taken to solve the problems

12
101
8
Time in
seconds ORKNG5
BRK5

M 32 33 34 35

Problems
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4 Conclusion

For most of the problems tested, we can conclude
that solving the general second order equations
directly using the fifth order = RKNG method
produced smaller error compared to reduction to
first order systems. From the number of function
evaluations we can say that though the RKNG
method is six stages but the first stage is explicit
thus no iteration is needed to evaluate the first £,
hence the method is effectively contain five stages
which is comparable to the SDIRK method.

In terms of time taken to solve the problems over all
the stepsizes, RKNG 5 required slightly less time
compared to RK 5, and we believed that if the
problems consist of larger system of equations then
the total time gained will be more apparent.

Thus, the method RKNG 5 for the solving the
second order IVPs directly is more efficient
than the RK 5 method.
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