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1 Introduction 
The Weibull distribution is one of the most 

popular widely used models of failure time in life 

testing and reliability theory. The Weibull 

distribution has been shown to be useful for 

modeling and analysis of life time data in medical, 

biological and engineering sciences. 

Applications of the Weibull distribution in 

various fields are given in Zaharim et al [28], Gotoh 

et al [7], Shamilov et al [21], Vicen-Bueno et al 

[27], Niola et al [15], Green et al.[8]. 

A great deal of research has been done on 

estimating the parameters of the Weibull 

distribution using both classical and Bayesian 

techniques, and a very good summary of this work 

can be found in Johnson et al. [12]. Recently, 

Hossain and Zimmer in [9] have discussed some 

comparisons of estimation methods for Weibull 

parameters using complete and censored samples.  

The three-parameter Modified-Weibull 

distribution is defined by the distribution function: 

      
xexxexxxf

λβα−λ−β λ+βα= )()( 1   (1) 

0,,,0 >λβα≥x  

and cumulative distribution function 
xexexF

λβα−−= 1)( , 0,,,0 >λβα≥x   (2) 

Here α is the scale parameter, and β and λ are the 

shape parameters. 

It is remarkable that most of the Bayesian 

inference procedures have been developed with the 

usual squared-error loss function, which is 

symmetrical and associates equal importance to the 

losses due to overestimation and underestimation of 

equal magnitude. However, such a restriction may 

be impractical in most situations of practical 

importance. For example, in the estimation of 

reliability and failure rate functions, an 

overestimation is usually much more serious than an 

underestimation. In this case, the use of symmetrical 
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loss function might be inappropriate as also 

emphasized by Basu and Ebrahimi in [2]. 

A useful asymmetric loss known as the LINEX 

loss function (linear-exponential) was introduced by 

Varian in [26] and has been widely used by several 

authors, Zellner in [29], Basu and Ebrahimi in [2], 

Calabria and Pulcini in [4], Soliman in [23], Singh 

et al. in [22] and Ahmadi et al. in [1]. This function 

rises approximately exponentially on one side of 

zero and approximately linearly on the other side. It 

may also be noted here that the squared-error loss 

function can be obtained as a particular member of 

the LINEX loss function for a specific choice of the 

loss function parameter. 

Despite the flexibility and popularity of the 

Linex loss function for the location parameter 

estimation, it appears to be unsuitable for the scale 

parameter and other quantities (c.f. Basu and 

Ebrahimi in [2], Parsian and Sanjari Farsipour in 

[17]). Keeping these points in mind, Basu and 

Ebrahimi [2] defined a modified Linex loss. A 

suitable alternative to the modified Linex loss is the 

general entropy loss proposed by Calabria and 

Pulcini in [4]. 

However, Bayesian estimation under the LINEX 

loss function is not frequently discussed, perhaps, 

because the estimators under asymmetric loss 

function involve integral expressions, which are not 

analytically solvable. Therefore, one has to use the 

numerical quadrature techniques or certain 

approximation methods for the solutions. Lindley's 

approximation technique is one of the methods 

suitable for solving such problems. Thus, our aim in 

this paper is to propose the Bayes estimators of the 

parameters of Modified-Weibull distribution under 

the squared error loss, LINEX loss and general 

entropy loss functions using Lindley's 

approximation technique. In Sections 2 and 3, we 

discuss estimation of parameters. In Section 4 

numerical results are presented, and Section 5 

contains the conclusion. 

 

 

2 Maximum likelihood estimation of 

the parameters 
For a random sample ( )nxxxx ,...,, 21=  of size n 

form (1) the likelihood function is 

⋅α=λβα
∑∑
=

λβ
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α−λ
n

i
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and taking the logarithm we get 
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The maximum likelihood estimates of 

parameters of the Modified-Weibull distribution are 

given as solutions of equations 
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 (5) 

which maybe solve using a iteration scheme. We 

propose here to use a bisection or Newton-Raphson 

method for solving the above-mentioned normal 

equations. 

 

 

3 Bayesian estimation of the 

parameters 
In Bayesian estimation, we consider three types 

of loss functions. The first is the squared error loss 

function (quadratic loss) which is classified as a 

symmetric function and associates equal importance 

to the losses for overestimation and underestimation 

of equal magnitude. The second is the LINEX 

(linear-exponential) loss function which is 

asymmetric, was introduced by Varian in [26]. 

These loss functions were widely used by several 

authors; among of them Rojo in [20], Basu and 

Ebrahimi in [2], Pandey in [16], Soliman in [23], 

[24], Soliman et al in [25] and Nassar and Eissa in 

[14]. This function rises approximately 

exponentially on one side of zero and approximately 

linearly on the other side. The third is the 

generalization of the Entropy loss used by several 

authors (Dey et al. in [5] and Dey and Liu in [6]) 

where the shape parameter c is taken equal to 1. 

This more general version allows different shapes of 

the loss function. 

The squared error loss (SEL) function is as 

follows 
2** )(),( φ−φ∝φφBSL        (6) 

Under the assumption that the minimal loss 

occurs at φ=φ* , the LINEX loss function 

(LINEX) for can be expressed as 

1,1)( ≠−∆−∝∆ ∆ cceL c
BL           (7) 

where )( * φ−φ=∆  is an estimate of φ. The sign 

and magnitude of the shape parameter c represents 
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the direction and degree of symmetry, respectively. 

(If 0>c , the overestimation is more serious than 

underestimation, and vice-versa.) For c close to 

zero, the LINEX loss is approximately SEL and 

therefore almost symmetric. 

The posterior expectation of the LINEX loss 

function (7) is 

−∝φ−φ φ−
φ

φ
φ ][))((

** cc
BL eEeLE  

1])[( * −φ−φ− φEc           (8) 

where )(⋅φE  denotes the posterior expectation with 

respect to the posterior density of φ. By a result of 

Zellner in [29], the (unique) Bayes estimator of φ, 

denoted by *
BLφ  under the LINEX loss function is 

the value φ*
 which minimizes (8). It is 

{ }][ln
1* φ−

φ−=φ c
BL eE

c
  (9) 

provided that the expectation ][ φ−
φ

ceE  exists and is 

finite. The problem of choosing the value of the 

parameter c is discussed in Calabria and Pulcini in 

[3]. 

The modified Linex loss i.e the General Entropy 

loss (GEL) is defined as: 

1log),(
**

* −








φ
φ

−








φ
φ

∝φφ cL

c

BE  (10) 

where *φ  is an estimate of parameter φ. It may be 

noted that when 0>c , a positive error causes more 

serious consequences than a negative error. On the 

other hand, when 0<c , a negative error causes 

more serious consequences than a positive error. 

The Bayes estimate *
BEφ  relative to the general 

entropy loss is given as 

{ } cc
BE E

1

* ][
−−φ=φ   (11) 

provided that { }cE −φ  exists and is finite. It can be 

shown that, when 1=c , the Bayes estimate (11) 

coincides with the Bayes estimate under the 

weighted squared-error loss function. Similarly, 

when 1−=c  the Bayes estimate (11) coincides 

with the Bayes estimate under squared error loss 

function. 

For Bayesian estimation, we need prior 

distribution for the parameters α, β and λ. It may be 

noted here that when the shape parameter β is equal 

to one, the Modified-Weibull distribution reduces to 

Modified-Exponential distribution (see Preda et al. 

in [19]) and when the shape parameter λ is equal to 

one, the Modified-Weibull distribution reduces to 

Weibull distribution. 

Hence, the gamma prior may be taken as a prior 

distribution for the scale parameter of the Modified-

Weibull distribution. It is needless to mention that 

under the above-mentioned situation, a prior is a 

conjugate prior. On the other hand, if all the 

parameters are unknown, a joint conjugate prior for 

the parameters does not exist. In such a situation, 

there are a number of ways to choose the priors. 

For all the parameters we consider the piecewise 

independent priors, namely a non-informative prior 

for the shape parameters and a natural conjugate 

prior for the scale parameter (under the assumption 

that shape parameter is known). Thus the proposed 

priors for parameters α, β and λ may be taken as 

0,,0,
)(

)(
1

1 >>α
Γ
α

=α
α−−

ba
a

eb
g

baa

  (12) 

0,
1

)(2 >β
β

=βg   (13) 

and 

0,
1

)(3 >λ
λ

=λg   (14) 

respectively where )(⋅Γ  is the gamma function. 

Thus the joint prior distribution for λ, β and α is 

)(
),,(

1

a

eb
g

baa

Γβλ
α

=λβα
α−−

       (15) 

0,,0,, >>λβα ba  

Substituting ),,( λβαL  and ),,( λβαg  from (3) 

and (15) respectively we get the correspond joint 

posterior ),,( λβαP  as 

⋅
βλ

α
=λβα
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It may be noted here that the posterior 

distribution of (α, β, λ) takes a ratio form that 

involves an integration in the denominator and 

cannot be reduced to a closed form. Hence, the 

evaluation of the posterior expectation for obtaining 

the Bayes estimator of α, β and λ  will be tedious. 

Among the various methods suggested to 

approximate the ratio of integrals of the above form, 

perhaps the simplest one is Lindley's in [13] 

approximation method, which approaches the ratio 
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of the integrals as a whole and produces a single 

numerical result. 

Thus, we propose the use of Lindley's in [13] 

approximation for obtaining the Bayes estimator of 

α, β and λ. Many authors have used this 

approximation for obtaining the Bayes estimators 

for some lifetime distributions; see among others, 

Howlader and Hossain in [10] and Jaheen in [11]. 

In this paper we calculate )|( xE iθ  and )|( 2 xE iθ  

in order to find the posterior variance estimates 

given by 
22 ))|(()|()|( xExExVar iii θ−θ=θ  

3,2,1=i , where α=θ1 , β=θ2 , λ=θ3 . 

If n is sufficiently large, according to Lindley in 

[13], any ratio of the integral of the form 

=θθθ= )],,([)( 321uExI  

∫

∫
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where 

),,()( 321 θθθ=θ uu  is a function of 1θ , 2θ  

or 3θ  only 

),,( 321 θθθL  is log of likelihood 

),,( 321 θθθG  is log joint prior of 1θ , 2θ  

and 3θ , 

can be evaluated as 
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and ijσ  is the (i, j)-th element of the inverse of the 

matrix }{ ijL , all evaluated at the MLE of 

parameters. 

For the prior distribution (14) we have 
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Now we can obtain the values of the Bayes 

estimates of various parameters. 

a) Case of the squared error loss function 
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b) Case of the Linex loss function 

i) If α−=λβα ˆ)ˆ,ˆ,ˆ( ceu  then 
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c) Case of the general entropy loss function 

i) If cu −α=λβα ˆ)ˆ,ˆ,ˆ(  then 
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Hence the posterior variances are given by 
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Similary 
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4 Numerical Findings 

The estimators α̂  , β̂ , and λ̂  are maximum 

likelihood estimators of the parameters of the 

Modified-Weibull distribution; whereas BSα̂ , BLα̂ , 

BEα̂ , BSβ̂ , BLβ̂ , BEβ̂ , and BSλ̂ , BLλ̂ , BEλ̂ , are 

Bayes estimators obtained by using the L-
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approximation for squared error, Linex and general 

entropy loss function respectively. As mentioned 

earlier, the maximum likelihood estimators and 

hence risks of the estimators cannot be put in a 

convenient closed form. 

Therefore, risks of the estimators are empirically 

evaluated based on a Monte-Carlo simulation study 

of samples. A number of values of unknown 

parameters are considered. Sample size is varied to 

observe the effect of small and large samples on the 

estimators. Changes in the estimators and their risks 

have been determined when changing the shape 

parameter of loss functions while keeping the 

sample size fixed. Different combinations of prior 

parameters α, β and λ are considered in studying the 

change in the estimators and their risks. The results 

are summarized in Figures 1-21. 

It is easy to notice that the risk of the estimators 

will be a function of sample size, population 

parameters, parameters of the prior distribution 

(hyper parameters), and corresponding loss function 

parameters. 

In order to consider a wide variety of values, we 

have obtained the simulated risks for sample sizes 

N=20, 40, 60 and 100.  

The various values of parameters of the 

distribution considered are for:  

- scale parameter α=0.2 (.3) 1.4,  

- shape parameters β=0.6 (.2) 1.2 and  

λ=0.2 (.3) 1.4, 

- loss parameter c=±1.5, ±1.1, ±0.5 and 0.1 

with i=1,2,3. 

Prior parameters a and b are arbitrarily taken as 1 

respectively 2. 

After an extensive study of the results thus 

obtained, conclusions are drawn regarding the 

behavior of the estimators, which are summarized 

below. It may be mentioned here that because of 

space restrictions, all results are not shown in the 

graphs. 

 

 
Fig.1 Risk of α for c=0.1 

 
Fig.2 Risk of β for c=0.1 

 

 
Fig.3 Risk of λ for c=0.1 

 

 
Fig.4 Risk of α for overestimation (c=0.5) 

 

Only a few are presented here to demonstrate the 

effects found and the conclusion drawn. 

However, in most of the cases, the proposed 

Bayes estimator is better than the Maximum 

Likelihood Estimator (MLE). 

 

4.1 The Effect of Sample Size 
It is noted that as sample size increases, the risk 

of all the estimators decreases, (see Figures 1-9). 
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For small samples, the behaviors of risks of 

estimators depend on the values of c, α, β and λ. 

 

 
Fig.5 Risk of β for overestimation (c=0.5) 

 

 
Fig.6 Risk of λ for overestimation (c=0.5) 

 
Fig.7 Risk of α for underestimation (c=-0.5) 

 

For any values of c (i.e., when overestimation is 

more serious then underestimation), the risk of the 

Bayes estimators GEL of α and β is greater than all 

other risks (the Bayes estimators SEL and LINEX, 

the MLE) for a sample size smaller than 75. When 

sample size increases enough (over 75) the GEL 

will be the lower risk than all other risks. 

 

 
Fig.8 Risk of β for underestimation (c=-0.5) 

 

 
Fig.9 Risk of λ for underestimation (c=-0.5) 

 

 
Fig.10 Risk of α as function of α 

 

On the contrary, the risk GEL for λ is lower than 

all other risks (SEL, LINEX and MLE) for any 

sample size for any value of c.  

The risks LINEX and MLE are higher for 

1.0=c  and 5.0=c  and for 5.0−=c  only the risk 

MLE is higher. 
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4.2 Effect of Population Parameters α, β and 
λ 

The effect of variation of α, β and λ on the risks 

of the estimator of α, β and λ respectively has also 

been studied. It has been noticed that for all values 

of c, the risk of the estimators of α and β increases 

when increase the value of parameter α and β 

respectively (see Figures 10,11, 13,14, 16 and 17). 

The same trend is also noticed for λ when 1.0=c . 

 

 
Fig.11 Risk of β as function of β 

 

 
Fig.12 Risk of λ as function of λ 

 

 

Fig.13 Risk of α for overestimation as function of α 

 

 
Fig.14 Risk of β for overestimation as function of β 

 

 
Fig.15 Risk of λ for overestimation as function of λ 

 

 
Fig.16 Risk of α for underestimation as function of 

α 
 

When c is positive the risks of the estimators 

SEL and MLE of α are lower than those for GEL 

and LINEX of α and when c is negative the risks of 

the estimators SEL and LINEX of α are lower than 

those for estimators MLE and GEL of α. 
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The overestimation increase and the 

underestimation decrease the risks of LINEX and 

GEL of β in relation to the risk of MLE and SEL of 

β. In the case of underestimation the risk of 

estimator GEL is bigger of the risk of estimator 

MLE if 85.0<β  and then is less of MLE and the 

risk of LINEX is smallest of all the risks.  

For 5.0=c  and 5.0−=c , it is noted that as the 

value of λ increases, the risk of the estimator GEL 

of λ first increases then decreases (see Figures 15 

and 18). 

The risk of the other all estimators of λ increase 

when value of λ increase in this cases.  

 

 
Fig.17 Risk of β for underestimation as function of 

β 
 

 
Fig.18 Risk of λ for underestimation as function of 

λ 
 

4.3 Effect of Loss Parameters 
In studying the effect of variation in the values of 

c, i.e., the LINEX loss parameter and General 

Entropy loss parameter, on risks of the estimator of 

α, β and λ, it may be noted that the risks for 

negative values of c are less than the risks for 

positive values of c . 

As the magnitude of c increases, the risks of the 

estimators of α, β and λ, increase. 

In almost cases, the risks of the Bayes estimator 

GEL are less than the risks of Bayes estimator 

LINEX, but this may not be true for 1.1−<c . 

 

 

 
Fig.19 Risk of α as function of c 

 

 
Fig.20 Risk of β as function of c 

 

 
Fig.21 Risk of λ as function of c 
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5 Conclusion 
The performance of the proposed Bayes 

estimators has been compared to the maximum 

likelihood estimator. On the basis of these results, 

we may conclude that for positive c, i.e., 

overestimation is more serious than 

underestimation, the Bayes estimators SEL and 

GEL of λ performs better than the corresponding 

maximum likelihood estimator and the Bayes 

estimators LINEX. The maximum likelihood 

estimators and Bayes estimators SEL of α and β are 

better for small and moderate sample sizes; whereas 

risks of the Bayes estimator GEL of all parameters 

population perform better than any of the estimators 

for a very large sample sizes. 

For negative c, the Bayes estimators LINEX and 

he maximum likelihood estimators of α and β 

performs better than the Bayes estimators SEL and 

GEL. For parameter λ, the Bayes estimators LINEX 

and GEL are better for small and moderate sample 

sizes; whereas risks of the Bayes estimators GEL 

and LINEX of all parameters of population perform 

better than any of all the estimators for a very large 

sample sizes. 
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