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Abstract: Control charts are used to monitor for changes in a process by distinguishing 

between common and special causes of variability. When a control chart signals, process 

engineers must initiate a search for the special cause of the process disturbance. Identifying 

which combination of the many process variables is responsible for a change in the process 

allows engineers to improve quality by preventing or avoiding changes in those variables 

which lead to poor quality. We examine a process-monitoring tool that not only provides 

speedy detection regardless of the magnitude of the process shift, but also provides useful 

change point statistics. Robustness against assignable causes of variation appears to be 

important and a likelihood ratio method is used to develop test statistics for step change shifts. 

The performance of the proposed methodology is demonstrated with numerical example and 

simulation studies. 
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1. Introduction 
 

   The variability in process measurement comes from 

two basic sources: “common cause” variability, 

which is all sources of unavoidable random 

variability that can be removed only by changing the 

system, and “special cause” variability, which results 

from some potentially identifiable source that can be 

removed. A system is said to be in the state of 

statistical control when the only variability is that due 

to common causes. When a special cause intervenes, 

the process is said to be out-of-control. The most 

often investigated change point problem is that of the 

change in the mean or variance of normal variables. 

    In the area of mathematical statistics, the decision 

whether the observed series remained stationary or 

whether a change of a specific kind occurred is 

usually based upon hypotheses testing. The null 

hypothesis claims that the process is stationary while 

the alternative hypothesis claims that the process is 

non-stationary and the stationarity was violated in a 

specific way. The simplest situation is when at the 

beginning, a certain process (e.g. that of 

manufacturing process) is assumed to vary around a 

certain constant 0a  whereby it is assumed to be in- 

control.  However, it can happen that as a failure of 

the production device, e.g., the observed 

characteristics suddenly start to alter around another 

out-of-control constant 01 aa ≠ . It can happen that, on 

account of that sudden failure, the variance 2σ  may 

change as well, yet it is possible that the variance 

remains the same. Furthermore, sometimes the 

variance can be presumed to be known due to 

researcher’s long experience with the production 

process. 

 

2. Change in mean and/or variance 
 

   In some cases, it can happen that the change point 

may happen either in one parameter or in both 

(simultaneously). Then, the null hypothesis H  

against the alternative A  can be written as follows; 

 

 nYYH ,......,: 1 ~  ( )2,σaN  

 

{ }2,...,2: −∈∃ nmA  such that                 (1)                                               

mYY ,......,1      ~  ( )211,σaN    

nm YY ,......,1+  ~  ( )222 ,σaN   

  

where ( ) ( )222
2
11 ,, σσ aa ≠ .  

 

Jaromir et al. (1999) proposed the Maximum-Type test 

statistics to test the hypothesis in (1). This test is 

formulated based on the maximum likelihood approach 

which have the form 
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and β  is a small positive constant less than one and 

 x  indicates the integer part of x . The benefit of 

statistic (3) is that they are bounded in probability. 

The trimming off a %100β  portion of the sample 

(upper time points) implies that one assumes that the 

change did not occur during this time period.  It is 

important to note that generally we take 

[ ]1.0,01.0∈β . The decision on “How much to trim 

off?” depends on the subjective  decision of the 

statistician and his/her a priori knowledge of the 

problem. If the statistician decides to trim off only a 

very small portion of the time points or no time 

points (observations) at all, he/she pays for it by a 

loss of the power of his/her test as the critical values 

depend rather strongly on the value of β .  

   For the decision about rejection of the null 

hypothesis H , we need to know critical values of 

the suggested test statistics. It means to know their 

distribution under H . Since the distribution of 

statistics (2) and (3) are not tractable, their critical 

values were obtained by simulation. Each type of the 

test statistic (2) and (3) with different sample sizes 

was repeated for 10,000 times under H  model and 

the corresponding desired percentile critical value 

was obtained from generated empirical distribution. 

One would reject H  if test statistics of (2) or (3) is 

greater than the desired significance level α . The 

simulated critical values of statistic (2) and (3) are 

presented in Table 1-3.  

   For n  large, Gombay and Horvath (1990) showed 

that the limit behavior of the studied probabilities is 

as follows 
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3. Maximum-Type Critical Values 

n  
Over-All  

Maximum-

Type 

Trimmed Maximum-Type 

01.0=β  05.0=β  10.0=β  

10 3.087 3.076 3.090 3.043 

20 3.174 3.173 3.206 3.143 

30 3.301 3.263 3.198 3.087 

40 3.289 3.271 3.251 3.127 

50 3.322 3.327 3.255 3.189 

100 3.375 3.387 3.268 3.163 

 

Table 1: Simulated 2.5% critical values of the 

Over-All Maximum-Type test statistic 

(2) and the corresponding Trimmed 

Maximum-Type statistics (3) for 

different trimming portions β . 

 

n  
Over-All  

Maximum-

Type 

Trimmed Maximum-Type 

01.0=β  05.0=β  10.0=β  

10 2.841 2.817 2.858 2.808 

20 2.942 2.956 2.935 2.862 

30 3.046 3.021 2.952 2.851 

40 3.031 3.040 3.010 2.867 

50 3.090 3.076 3.034 2.911 

100 3.142 3.142 3.047 2.919 

 

Table 2: Simulated  5% critical values of the Over-

All Maximum-Type test statistic (2) and 

the corresponding Trimmed Maximum-

Type statistics (3) for different trimming 

portions β . 
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Table 3: Simulated 10% critical values of the Over-

All Maximum-Type test statistic (2) and the 

corresponding Trimmed Maximum-Type 

statistics (3) for different trimming 

portions β . 

 

 

4. Methodology 

   De Mast and Roes (2004) developed the subsequent 

control charting procedure that is illustrated as 

follow. 

 

1. Determine the locations of possible shifts and 

test the significance of these shifts. Upon 

completion of this step, the original data is 

divided into intervals in which the mean of 

the measurements is presumed constant. 

 

2. Estimate (using robust estimators) the means 

of the intervals between successive shifts and 

the variance of the in-control measurements. 
 

3. On the basis of these estimates, estimate a 

pair of control limits for each interval. 

Points are identified as outliers if they fall 

beyond these control limits. 

 

Let the in-control process be denoted as iy , 

ni ,...,1= , with the following null model: 

 

iiiy εµ += , for    ni ,...,1=                   (9)                                    

with iε  i.i.d. ),0( 2σΝ . 

 

Assuming that a single shift has occurred. Then 

model (9) is written as follows: 
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with iε  i.i.d. ),0( 2σΝ ; 

 

   The main aim is to estimate the location shift, τ . 

There are two change point detection methods to 

determine the location of shifts τ  and test the 

significance of these shifts, namely proposed by De 

Mast and Roes (2004). Let refer this method as 

DMRCP method henceforth. In this paper, we 

consider the Maximum-Type change point detection 

method [4]. The desired critical values for testing the 

significance of location shifts are displayed in Tables 

1-3. De Mast and Roes (2004) proposed a robust 

procedure to estimate 1µ  and 2µ  to accommodate the 

presence of possible outliers. According to De Mast 

and Roes (2004) robust procedure,  [ ]τµ1ˆ  and [ ]τµ2ˆ  

be the solution of  
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with [ ]τ1mm =  if τ≤≤ i1  and [ ]τ2mm =  if 

ni ≤≤+1τ  for which [ ]τ1m  and [ ]τ2m  are the 

medians of τyy ,...,1  and nyy ,...,1+τ , respectively.  ψ  

is an odd function and c  is a tuning constant. It can be 

observed that [ ]τµ1ˆ   and [ ]τµ2
ˆ  are the M-estimates for 

the location based on the scale initial estimate denoted 

as [ ]τ0s  . The the final scale estimate is given by  
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with 'ψ  indicating the derivative of ψ . The scale 

estimate obtained by employing the asymptotic 

variance of the M-estimators for location in order to 

estimate the standard deviation of the error. This 

kind of scale estimator in Eq. (12) is called an A-

estimators by Lax (1985). There are many psi 

function to be chosen from, and in this study, De 

Mast and Roes (2004) proposed to use bisquare 

function  which is given by 

 

n  
Over-All  

Maximum-

Type 

Trimmed Maximum-Type 

01.0=β  05.0=β  10.0=β  

10 2.562 2.539 2.552 2.528 

20 2.684 2.673 2.678 2.594 

30 2.765 2.763 2.674 2.598 

40 2.774 2.793 2.745 2.592 

50 2.817 2.815 2.765 2.630 

100 2.889 2.897 2.767 2.642 
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Hence, in other words, observations further away 

from the mean will be more and more downweighted, 

and observations beyond [ ]τ0cs  are totally rejected. 

De Mast and Roes (2004) pointed out that the value 

9=c  for the tuning constant seem to perform well.  

   It is important to note that once the shift has been 

detected, the data are split into two groups τyy ,...,1  

and nyy ,...,1+τ . Repeating the same process to both 

groups, justifying whether more shifts can be 

detected, De Mast and Roes (2004) recommended 

that process will be continued until the size of the 

groups becomes smaller than 4 or any other selected 

minimum value.  

   Let kµµ ˆ,...,ˆ
1  be the estimated means of the groups 

in between the detected shifts kττ ˆ,...ˆ
2 , the standard 

deviation of the error is estimated by: 
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   The Median Absolute Deviation (MAD) is used for 

the initial scale, 0s  which is defined as 

{ }mymedians i −=0  where m  denoting the median 

of the corresponding subgroup. The factor n  in the 

numerator of  Eq. (14) is replaced by ( )knn −2  for 

the sake of accounting the loss of degrees of freedom 

in the estimation of kµµ ,...,1 .   

   For each identified group, kj ,...,1= , De Mast and 

Roes (2004) proposed the following control limits: 
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We define 01̂ =τ  and nk =+1τ̂ . The conventional 

value of 3=h  is employed and the factor 

jj

jj

ττ

ττ
ˆˆ

1ˆˆ

1

1

−

−−

+

+
 is introduced to explain the connection 

between the iy  and the control limits.   

 

5. Numerical Example:  Hybrid  

Microcircuits Data 
 

   In this section, we will apply the proposed procedure 

to analyze a data taken from Camil and Ron (1998) for 

verification purposes. Raw materials used in 

manufacturing of hybrid microcircuits consist of 

components, dyes, pastes and ceramic substrates. The 

substrates plate undergo a process of printing and 

firing during which layers of conductors, dielectric, 

resistors and platinum or gold are added to the plates. 

Subsequent production steps consist of laser trimming, 

mounting and reflow soldering or chip bonding. The 

last manufacturing stage is the packaging and sealing 

of complete modules. 

   Five dimensions of substrate plates are considered 

here, with labels (a, b, c), (W, L). The first three are 

determined by the laser inscribing process. The last 

two are outer physical dimensions. These outer 

dimensions are measured on a different instrument  

than the first three, using a different sample substrates. 

   In this study, we will consider only the first 

dimension ‘a’ which measured the substrate plates. 

The Average Moving Range (AMR) chart and the 

proposed robust control charts for these individual 

length measurement of ‘a’ are presented in Figure 1 

and Figure 2 respectively. The numerical results are 

performed using S-PLUS language.   

   The plot of Figure 1 indicates that there are two 

signals, which are observations number 19 and 31. The 

two signals would suggest that the length 

measurements is not completely stable in the sample, 

which is in itself a valuable suggestion of assignable 

cause. It can be seen that the AMR chart detects the 

larger outliers. It does not, however, provide 

indications about the presence of the shifts. The 

standard deviation of the in-control process is 

estimated to be 2.125, which seems too large. The 

large estimate can be explained by the fact that it 

includes the additional variation that caused by the 

shifts and by the fact that the AMR chart is not robust. 

The AMR chart  does not provide clear information 

about their number or the time points on which they 

occur. Furthermore, the detected shifts are not 

incorporated into the analysis, and, as a consequence, 

the chart is less sensitive in detecting the remaining 

assignable causes.  

On the other hand, the robust control chart reveals 

the presence of several assignable causes, three 
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isolated disturbances occurred which are indicated by 

observation number 19, 20 and 31 as well as one shifts 

in which it happen in between observation number 18 

and 19. Observation number 22 which is located very 

close to border line of second pair of lower control 

limit would suggest that the point might be a possible 

outlier. On the contrary, this point seems still within 

the control limit of the AMR chart. Removing the 

outliers and correcting the remaining measurements 

for the outliers, the process engineer is left with 

measurement that can be described considerably well 

by a normal distribution with standard deviation 1.962.  

This value is smaller than the the standard deviation of 

the AMR chart due to the fact that the effects of 

outlying observations have been downweighted.  

   Once the special cause has been identified, the 

necessary action can then be taken to rectify or 

improve the process. Figure 2 gives important 

indications of their characteristic and the time points 

on which they occurred. Based on the chart, it also 

implies that the measurement length has shifted 

between observation 18 and observation 19.  

   In addition to these shifts, the length measurement 

appeared to be in statistical control, indicating that no 

assignable causes should be sought on the basis of 

these measurements.  

   It seems that the robust control chart is preferred as it 

provides the most revealing description of this dataset. 
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Figure 1: AMR Control Chart for Hybrid Microcircuits. 
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        Figure 2: Proposed Robust Control Chart for Hybrid Microcircuits. 
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Magnitude of shift, δ  

Sample size, n  

10=n  20=n  30=n  40=n  50=n  100=n  

0.5 0.1180 0.0608 0.0560 0.0474 0.0492 0.0556 

1 0.2018 0.1761 0.1804 0.2005 0.2157 0.2542 

1.5 0.3265 0.3512 0.3898 0.4163 0.4350 0.4605 

2 0.4734 0.5442 0.5868 0.6005 0.6221 0.6307 

2.5 0.6021 0.6973 0.7366 0.7521 0.7531 0.7634 

3 0.7191 0.8136 0.8386 0.8395 0.8474 0.8517 

 

Table 4: Proportion of detected shifts depending on magnitude of the shift and sample size for 

change in mean for trimmed portion of 05.0=β  . 
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Figure 3: Proportion of detected shifts depending on magnitude of the shift and sample size 

for change in mean for trimmed portion of 05.0=β  . 

 

Sample 

Size 

 Magnitude of Shift, δ  

δ =0.5 δ =1.0 δ =1.5 δ =2.0 δ =2.5 δ =3.0 

n =30 
τ̂  14.84 15.08 15.01 14.99 14.99 15.00 

Standard Error ( τ̂ ) 0.29046 0.22691 0.14180 0.08976 0.04394 0.02450 

n =50 
τ̂  24.94 24.99 25.02 25.00 24.98 25.01 

Standard Error ( τ̂ ) 0.55348 0.33362 0.14920 0.06274 0.03063 0.01763 

 

Table 5: Simulation Result: Average Change Point Estimates and Associated Standard Error 

for Change Point for various sample sizes. 
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Magnitude of Shift, δ  

δ =0.5 δ =1.0 δ =1.5 δ =2.0 δ =2.5 δ =3.0 

( )ττ =ˆP̂  0.0534 0.1833 0.3916 0.5910 0.7331 0.8320 

( )1ˆˆ ≤−ττP  0.1202 0.3322 0.6017 0.7991 0.9075 0.9589 

( )2ˆˆ ≤−ττP  0.1739 0.4296 0.7082 0.8782 0.9591 0.9844 

( )3ˆˆ ≤− ττP  0.2230 0.4996 0.7681 0.9172 0.9769 0.9927 

( )4ˆˆ ≤−ττP  0.2647 0.5525 0.8071 0.9388 0.9840 0.9957 

( )5ˆˆ ≤− ττP  0.3089 0.5940 0.8316 0.9517 0.9874 0.9972 

( )6ˆˆ ≤−ττP  0.3471 0.6287 0.8509 0.9591 0.9895 0.9980 

( )7ˆˆ ≤−ττP  0.3914 0.6601 0.8690 0.9652 0.9908 0.9982 

( )8ˆˆ ≤− ττP  0.4352 0.6914 0.8835 0.9700 0.9918 0.9985 

( )9ˆˆ ≤−ττP  0.4815 0.7203 0.8964 0.9734 0.9930 0.9986 

( )10ˆˆ ≤−ττP  0.6069 0.7500 0.9089 0.9797 0.9932 0.9988 

 

Table 6: Simulation Results for Different Magnitudes of Process Change Based on 10,000 

Trials, n =30. 
 

 
Magnitude of Shift, δ  

δ =0.5 δ =1.0 δ =1.5 δ =2.0 δ =2.5 δ =3.0 

( )ττ =ˆP̂  0.0462 0.2141 0.4336 0.6131 0.7580 0.8550 

( )1ˆˆ ≤−ττP  0.1118 0.3954 0.6743 0.8307 0.9244 0.9710 

( )2ˆˆ ≤−ττP  0.1627 0.5011 0.7859 0.9144 0.9731 0.9976 

( )3ˆˆ ≤− ττP  0.2018 0.5721 0.8493 0.9490 0.9873 0.9995 

( )4ˆˆ ≤−ττP  0.2364 0.6235 0.8855 0.9704 0.9945 0.9997 

( )5ˆˆ ≤− ττP  0.2708 0.6654 0.9097 0.9798 0.9972 0.9999 

( )6ˆˆ ≤−ττP  0.2991 0.6966 0.9275 0.9853 0.9983 1.0000 

( )7ˆˆ ≤−ττP  0.3264 0.7217 0.9371 0.9899 0.9988  

( )8ˆˆ ≤− ττP  0.3488 0.7430 0.9454 0.9923 0.9994  

( )9ˆˆ ≤−ττP  0.3698 0.7617 0.9519 0.9940 0.9996  

( )10ˆˆ ≤−ττP  0.3925 0.7764 0.9569 0.9950 1.0000  

 

Table 7: Simulation Results for Different Magnitudes of Process Change Based on 10,000 

Trials, n =50. 
 

Magnitude of shift, δ  

Sample size, n  

30=n  50=n  

DMRCP Max-Type DMRCP Max-Type 

1 0.2031 0.2073 0.2150 0.2232 

2 0.5638 0.5910 0.5738 0.6131 

3 0.7986 0.8320 0.8204 0.8550 

 

 Table 8: Proportion of detected shifts depending on magnitude of the shift and  

 sample size for change in mean using two different methods. 

WSEAS TRANSACTIONS on MATHEMATICS Ng Kooi Huat,  Habshah Midi

ISSN: 1109-2769 505 Issue 7, Volume 9, July 2010



 

 

 Magnitude of Shift

 P
ro

p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 Magnitude of Shift

 P
ro

p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n = 30, DMR
n = 30, Max-Type

 

 Magnitude of Shift
 P

ro
p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 Magnitude of Shift
 P

ro
p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n = 50, DMR
n = 50, Max-Type

 

 Magnitude of Shift

 P
ro

p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 Magnitude of Shift

 P
ro

p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n = 30, DMRCP
n = 30, Max-Type

 

 Magnitude of Shift
 P

ro
p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 Magnitude of Shift
 P

ro
p
o
rt
io

n
 D

e
te

c
te

d
 

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n = 50, DMRCP
n = 50, Max-Type

  

Figure 4: Proportion of detected shifts depending on magnitude of the shift and sample size 

for change in mean using two different methods. 

 

 

6. Simulation Study 

   The first simulation study was conducted to assess 

the performances of the De Mast and Roes (2004) 

chart at various magnitude of shifts and sample of size 

10, 20, 30, 40, 50, 100. Namely called as DMR chart 

hereinafter. The DMR chart is evaluated based on the 

proportion of correctly detected the location of shifts 

in the case that where there is a change in mean. The 

individual observations x  are generated from a 

normal distribution with mean 00 =µ  and 1=σ , 

where δ  represents the size of the shift in the mean. A 

special case of trimmed portion 05.0=β  is chosen in 

this study. The size of the shift is measured in terms of 

process standard deviation. Hence, the size of the shift 

is defined as ( ) σµµδ 01 −= . Without loss of 

generality, 00 =µ  is the initial in-control process 

mean and 1µ  is the process mean after the shift, and 

let δ  = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. The position of the 

shift τ  is set at middle point of the measurements. For 

instance, if sample is 10, then the position of the 

change will be set as 5=τ . From Table 4, it is evident 

that as the magnitude of shift increases, the proportion 

of correctly detected shift increases accordingly. The 

performance of the DMR chart also improved when 

the sample size increases ranging from 10 to 100. 
   We will now analyze the performance of the change    

point estimator through the second simulation study. 

The idea is very similar, assuming that the process is 

initially in control, with observations coming from a 

normal distribution with a known mean of 0µ  and a 

known standard deviation of 0σ . However, after an 

unknown point in time τ  (known as the process 

change point), the process location changes from 0µ  

to 001 δσµµ ±= , where δ  is the unknown magnitude 

of the change. We also assume that once this step 

change in the process location occurs, the process 

remains at the new level of 1µ , until the special cause 

has been identified and  removed. We investigated two 

different sample sizes, n = 30 and n = 50. For 

instance, when the sample size is 50, observations 

were randomly generated from standard normal 

distribution for observations 1, 2, 3,…, 25. Then, 

starting with subgroup 26, observations were randomly 

generated from a normal distribution with mean δ  and 

standard deviation 1. This procedure was repeated a 

total of 10,000 times for each of the values of δ  that 

were studied, namely δ  = 0.5, 1.0, 1.5, 2.0, 2.5 and 

3.0. For each  simulation run, the change point 

estimator was computed. The average of the estimates 

from the 10,000 simulation runs was computed along 

with its standard error.  

   In Table 5, τ̂ are tabulated in which the average 

change point estimate from the simulation runs for 

various sizes of change in the process mean together 

with its corresponding standard error estimates. As the 
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actual change point for the simulations was at time 25, 

the average estimated time of the process change, τ̂ , 

should be close to 25. It is noted that when the process 

step change of standardized magnitude δ  = 1, the 

average estimated time of the process change was 

24.94, which is fairly close to the actual change point 

of 25. While for a standardized process location 

change of size δ  = 2, the average estimated time of 

the change is 25.00. Meanwhile, when δ  = 3, the 

average estimated time of the change is 25.01. Hence, 

on average, the Maximum-Type change point 

estimator of the time of the process change is 

considerably close to the actual time of the change, 

regardless of the magnitude of the change.  

   The observed frequency in which the estimates of 

the time of the step was within m  observations of the 

actual time of the change, for m  = 0, 1, 2, . . . , 10 , is 

shown in Table 6. This provides an indication of the 

precision of the estimator. The proportion of the 

10,000 runs where the estimated time of the change 

was within m±  of the actual change should be high 

and should increase as m  increases. Referring to table 

6, we observe that the precision increases with 

increases in sample size n  for each δ .  

   In the case of n  = 30, when the process step change 

of magnitude δ  = 2, the average of the estimated 

10,000 change point estimates was 14.99. The change 

point estimator identified correctly the change point in 

59.10 % of the trials. Our proposed estimate was 

within one observation of the actual change point in 

79.91% of the trials, and within two observations of 

the actual change point in 87.82% of the trials.  

   However, when the process step changes of 

magnitude is δ = 3, the estimator demonstrated a good 

performance in identifying the time of change. The 

average of the estimated 10,000 change point 

estimates was 15.00. For step changes of this 

magnitude, the estimator exactly identified the time of 

the change in 83.00% of the trials and was within one 

(two) observations of the time of the actual process 

change in 95.89% (99.44%) of the trials. 

   Turning to the case of n  = 50, we notice that of the 

10,000 simulation trials conducted for δ  = 2, 61.31% 

of those simulation trials identified the change point 

precisely. It was in 83.07% of the trials, the change 

point was estimated to be within ± 1 of the actual time 

of the process change. Also, in 91.44% of the trials, 

the estimate was within ± 2 observations; in 94.90% 

of the trials, it was within ± 3 observations; and in 
99.50% of the trials, it was within ± 10 observations 
of the actual time of the process change.    

   For a process step change of magnitude δ  = 3, the 

change point estimator identified exactly the change 

point in 85.50% of the trials. The estimate was within 

one observations of the true change point in 97.10% of 

the trials, and within two observations of the actual 

change point in 99.76% of the trials.  

   Lastly, in table 8, we compare the proportion of 

detected shifts depending on magnitude of the shift 

and sample size for change in mean using two 

different methods. This comparison is done for 

different standardized magnitudes of the step change 

in the process mean. Based on Figure 4, it appears to 

be that when the process readings follow a normal 

distribution and statistically independent. Maximum-

Type method compares favorably with DMRCP 

method, (see De Mast and Roes (2004)) and gives a 

better performance if the underlying distribution of 

change cause is normal. 

  

7. Conclusions 
    

  If process engineers could determine when the 

process changed, their search could be narrowed 

down to finding which aspect of the process changed 

at that time. This could allow them to identify the 

special cause more quickly, and to use that 

information to improve the quality of the process or 

product sooner. Thus, it can be seen that regardless of 

the magnitude of the change in the process mean, our 

proposed estimator produces a useful estimates of the 

time of the process change.  

   The conventional Shewhart control charts for 

individual measurement are widely used in the 

monitoring processes. However, these charts require 

the assumption that the process variables are 

normally distributed and thus, are very sensitive to 

the presence of occasional outliers. Hence, the 

philosophy of the robust individual control chart is 

more in keeping with the desire to provide robust 

limits in the face of non-normal distributions or errors 

in data collection. The robust control chart offers 

some significant advantages over existing control 

chart.  This paper has presented a simple alternative 

robust univariate variable control chart by using 

Maximum-Type change point detection formulation 

for monitoring the process change in mean and 

variance. The robust control charting method 

efficiently monitor contaminated data processes and 

process shift. Classical charts are not a preference for 

process monitoring where contamination may exist.  
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