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Abstract: - The solution of conventional boundary integral equations (CBIEs) sometimes does not exist or is not 

unique, which has been demonstrated in a large number of numerical experiments. According to the authors’ 

opinion, there exist two reasons which can lead to this phenomenon. One reason is that the solution of the CBIEs 

can not describe the behavior of the solution of the corresponding boundary value problem at infinity accurately; 

the other one is that the form of exterior boundary value problem has deficiency, which is still a problem to be 

solved but has not attracted adequate attention. Many  examples illustrate that CBIEs are not equivalent to the 

Poisson’s exterior boundary value problem. In this paper, the equivalent boundary integral equations (EBIEs) 

for Poisson’s exterior boundary value problems are established.  
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1   Introduction 

 
Research on numerical methods of differential 

equations is a hot topic. Many efficient methods for 

finding numerical solutions of differential equations 

have been presented so far such as in [1-4]. 
Many problems of steady field in physics and 

engineering are directly related to boundary value 

problem (BVP) about solving Laplace’s equation or 

Poisson’s equation, such as in hydrodynamic 

pressure [5-8], torsion of elastic rod [9, 10], 

membrane equilibrium [11], stable heat conduction 

[12-14], steady seepage [15-18], and electromagnetic 

field [19, 20]. Therefore, the efficient methods of 

solving Laplace’s equation play important roles in 

the engineer application. 

For the mixed interior BVP, it is well known that 

the existence and uniqueness of the solution to this 

kind of problem can be determined by the governing 

differential equations and its corresponding boundary 

conditions. However, when it comes to the exterior 

BVP, the existence and uniqueness of the solution 

depend on not only the governing differential 

equations and the corresponding boundary conditions 

but also the behavior of its solution at infinity [21-23]. 

The conventional Laplace’s exterior BVP can be 

expressed as two forms: one is directly transplanted 

from the BVP in a finite field, the solution of this 

BVP is existent but not unique; the other one, which 

is the most prevalent, can be written as 

0

( ) 0,

( ) ( ),

( ) (1/ ),

cu

u u

u O

∆ = ∈Ω


= ∈Γ
 = → ∞

x x

x x x

x x x
 

 

If the above BVP has a solution, the solution must 

be unique. However, the question is the solution to 

this problem is not always existent. 

The EBIE refers to the equivalence of the 

boundary integral equation and the original BVP. 

The CBIE in infinite domain is directly transplanted 

from the CBIE in finite domain, and sometimes there 

is no solution, or sometimes the solution is not unique. 

In 1977, Jawson and Symm [24] pointed out that, in 

some situation, the CBIE would be wrong. However, 

in their work the efficient method to solve such 

problem was not provided. In this paper, a sufficient 

and necessary condition with respect to the Dirichlet 

exterior BVP, which can ensure the existence and 

uniqueness of the solution, is provided and fully 

proved. Based on the proposed condition, EBIEs for 

Poisson’s exterior boundary value problems are 

established. 

For Poisson’s exterior BVP, the research of its 

BIE is a very difficult problem to be solved in 

boundary element analysis. In fact, to the author’s 

best knowledge, there is no similar work can be 

found in the literature for solving this problem. 

According to this, the main work of this paper can 

be summarized as follows: section 2 of this paper 
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provides a sufficient and necessary condition which 

can ensure the existence and uniqueness of solution 

for Dirichlet exterior BVP of the harmonic function. 

Section 3 establishes the BIE which are equivalent to 

the BVP on the exterior domain. It then goes on, in 

the section 4, to present the EBIE for the Poisson’s 

exterior BVP. Section 5 concludes the paper with 

further discussions. 

 

2 The sufficient and necessary 

condition to exterior boundary value 

problem 

 
We assume that Ω  is a bounded domain with the 

boundary Γ  in 2R , 2 ( )c RΩ = − Ω Γ∪  is open 

complement of Ω . 

 

Lemma 1  For Laplace’s equation  
2 2

2 2

1 2

0
x x

ω ω
ω

∂ ∂
∆ = + =

∂ ∂
, define the 

 following nondegenerate transformation 

1 1 2

2 1 2

( , )

( , )

x y y

x y y

ϕ

ψ

=


=
,which satisfies the 

conditions 
1 1y y

ϕ ψ∂ ∂
=

∂ ∂
, 

2 2y y

ϕ ψ∂ ∂
= −

∂ ∂
,Then we 

have 
2 2

2 2

1 2

0
y y

ω ω
ω

∂ ∂
∆ = + =

∂ ∂
. 

 

Lemma 2
[22]

 Assume 2 {0}H R⊂ − , and Let �H  , 

��H  be the two sets satisfying 

� 2
{ / , }H H⊂ = ∈y y x x x ,  

�� �2
{ / , }H H⊂ = ∈y y x x x  

where 1 2( , )x x=x  and 
2 2 2

1 2x x= +x , then we 

have ��H H= . 

 

Definition
[22]

 If 2 {0}H R⊂ −  and ( )u x  is a 

function in H , we can form a new function 
�( )u y  defined as follows 

� 2
( ) ( / )u u=y y y ，

�H∈y  

where 

� 2

1 2{( , ) / , , 1, 2}k kH y y y x H k= = ∈ =x x . 

 

Lemma 3
[22]

 If ( )u x  is the harmonic function in 

2 {0}H R⊂ − , then we can obtain �( )u x  is the 

harmonic function in �H . 

 

Lemma 4
[22]

 Assume ( )u x  is the harmonic 

function in { }Ω − y . If ( ) (log )u o= −x x y  as 

→x y , then y  is removable singular point of 

u . 

 

Corollary
[22]

 Let ( )u x  is the harmonic function 

in cΩ  and 0 c∉Ω  (without loss of generality). If 

( ) (log )u o=x x  as → ∞x , then there is 

constant C  such that lim ( )
x

u x C
→∞

= . 

 

Lemma 5
[22]

 There exist the special harmonic 

function �u  in cΩ  such that  

�

�

�

( ) 0,

( ) 0,

( ) (ln ),

cu

u

u O

∆ = ∈Ω



= ∈Γ


= → ∞

x x

x x

x x x

 

 

Lemma 6
[22]

 Assume ( )u x , ( )cu x  are the 

harmonic functions in Ω  and cΩ  respectively, 

and ( ) (1)cu O=x  at ∞ , then we have  

                0
u
d

Γ

∂
Γ =

∂∫ n
,  

0
c

u
d

Γ

∂
Γ =

∂∫ n
 

Let us consider Dirichlet exterior BVP as 

follows 

( ) 0, cu∆ = ∈Ωx x                  (1) 

0( ) ( ),u u= ∈Γx x x                (2) 

( )u M≤x , x  is large enough     (3) 

where M  is a constant. 

 

Theorem 7 Let Γ  be a piecewise smooth curve, 

0 c∉Ω Γ∪ (without loss of generality) and 

0 ( )u x  is a continuous function on Γ , there 

exists a unique solution of problem (1)-(2) if and 

only if (3) holds. 
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Proof (Sufficiency). If lim ( )u C
→∞

=
x

x  holds, and 

then consider the BVP as follows 

 
�0, {0}cu in∆ = Ω ∪                (4) 

�2

0( ) ( / ),v u on= Γy y y            (5) 

 

Since � {0}cΩ ∪  is a finite domain with boundary 

�Γ , and ( )v y  is a continuous function on Γ . 

Obviously, there exists a unique solution to the 

above boundary value problem in mathematical 

physical equation. 

Suppose ( )v x�  is a function in �� ��
ccΩ Γ = Ω Γ∪ ∪ . 

According to both Lemma 2 and Lemma 3, ( )v x�  

is a harmonic functions in �
�
c cΩ = Ω , so ( )v x�  

satisfies (1). On �
�
Γ = Γ , we have 

2

0( ) ( ) ( / ) ( )v v v u= = =x y x x x�  

That is to say, ( )v x�  satisfies (2). Thus, 

( ) ( )u v=x x�  is the solution of the problem 

(1)-(2). 

 

(Necessity). Assume (3) is false. When x  

approaches ∞ , either we have ( ) (ln )u O=x x , 

or we can find a unbounded sequence { }kx  

satisfying lim ( )k
k

u x b
→∞

=  for random real number 

b . Thus, if ( )u x  is the solution of problem 

(1)-(2), and l  is random real number, then 

�( ) ( )u lu+x x  is also the solution of that 

according to Lemma 5. But this is a contradiction 

because there exists a unique solution to the 

problem (1)-(2). 

This completes the proof. 

 

Remark: Let Γ  be a piece smooth curve, 0 ( )u x  

is a continuous function which only contains a 

finite number of discontinuity points of the first 

kind, then theorem 7 still is true. 

Now we consider inhomogeneous Dirichlet 

exterior BVP (Poisson’s exterior BVP) as 

follows 

( ) , cu f in∆ = − Ωx                (6) 

,u u onΓ = Γ                       (7) 

where ( )f x  has compact support in cΩ . 

For the above inhomogeneous BVP, solution is 

the sum of two solutions: 1 2u u u= + , where 1u  

is a solution of the associated homogeneous BVP 

and 2u  is a particular solution of inhomogeneous 

BVP. 

Suppose *( ) ( ) ( , )
c

cw f u d
Ω

= Ω∫y x x y , and 

c∈Ωy . It is easy to deduce w f∆ = − , so ( )w y  

is a particular solution. The problem (6)-(7) can 

be transformed as follows 

 

0, cv in∆ = Ω                       (8) 

,v u w onΓ = − Γ                 (9) 

(1),v O at= ∞                     (10) 

 

According to the Theorem 7, a unique solution v  

exists to the above problem. It is obvious that 

u v w= +  is the solution of the problem (6)-(7). 

 

Theorem 8 Assume 1 2( )f L R∈ , and 

1
( ) logf d

>
×∫ y y y y , then *f  ω =  is local 

integral, and also is a distribution solution. 

( *f   denote the convolutions of all the 

integrable functions ,f   in 2R , that is to say, 

* ( ) ( ) ( ) ( ) ( ) * ( )f  f  d f  d  f= − = − =∫ ∫x y x y y x y y y x

, where ( ) log / 2 π= −x x .) 

 

Proof:  Define 0 ( ) x  as follows 

 

0

( ) 1
( )

0 1

 
 

 ≤
= 

>

x x
x

x
 

 

Since 1

0 L∈ , then 0*f   is defined almost 

everywhere. Suppose 0( ) ( ) ( )   ∞ = −x x x , 

there exists lim(log log ) 0
→∞

− − =
y

x y y  for any 

x , so *f  ∞  exists everywhere and is local 

bounded. Thus 0* *f  f  ω ∞= +  is defined 

almost everywhere and local integrable for any 

case. Now define ( )jf x  as follows 
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( )
( )

0
j

f j
f

j

 ≤
= 

>

x x
x

x
 

 

Let *j jf  ω = , according the dominated 

convergence theorem, we have jω ω→ , 

jω ω∆ → ∆  in the distribution sense. If 0Cφ ∞∈ , 

and � ( ) ( )jjf f= −x x , then 

�, * , , * ,j j jf   f  ω φ φ φ< ∆ >=< ∆ >=< ∆ >=<

� �( * ) ( * )(0) ,jj jf f fφ φ φ∆ >= − =< − >  

Since j jfω∆ = − , thus lim jf fω∆ = − = − . 

This completes the proof. 

 
 

3 Equivalent boundary integral 

equations for Laplace’s exterior 

problems  

 
Theorem 9 A harmonic function is defined as 

follow 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] , c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n
 

As → ∞y , ( )u C→y  if, and only if, 

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
. 

 

Proof   Since  
2

2 2

2( , )
2 ln 2ln ln(1 )− = + − +

xx y
x y y

y y
 

cos(( , ), )
ln ln

∂
− = ∇ − =

∂ −
x

x

x y n
x y n x y

n x y
i  

 

Then, as → ∞y , we have 

 

1 ( ) 1
( ) ( ) ln ( )

2

u
u d O C

π Γ

∂
= − Γ + +

∂∫ x

x
y y

n y
 

 

Therefore ( )u C→y  if, and only if,  

 

( )
0

u
d

Γ

∂
Γ =

∂∫
x

n
 as → ∞y . 

 

3.1 Equivalent expression of the harmonic 

function  

 

Theorem 10 Let Γ  be a piece smooth curve in  

plane, and ( )u x  that with the first-order  

continuous partial derivatives in cΩ  is a  

harmonic function in cΩ . Assume ( ) (1)u O=x   

as → ∞x . Then ( )u x  can be expressed as  

follows 

 

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
                  (11) 

*
* ( ) ( , )

( ) [ ( , ) ( ) ] , c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n
 

(12) 

 

Proof   Let (0)RB  including Ω  denote a  

sufficiently large ball with radius R  and center 

 at the original point. Setting � (0)R cBΩ = Ω∩  

 and applying Green theorem on �Ω , we can  

obtain 

 

�

*
*

*
*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ] ,

RB

u u
u u u d

u u
u u d

Γ

∂

∂ ∂
= − Γ

∂ ∂

∂ ∂
+ − Γ ∈Ω

∂ ∂

∫

∫

x x y
y x y x

n n

x x y
x y x y

n n

             

(13) 

 

Since ( )u x  is bounded at infinite, we have  

lim ( )
x

u C
→∞

=x  according to the corollary of  

lemma 4, thus 

 
*1 ( , ) 1 1

( ) ( ) ( )
2

R

u
u C O and O B

R R Rπ

∂
= + =− + ∈∂

∂

x y
x x

n
 

 

Therefore 

 
*

* ( ) ( , )
lim [ ( , ) ( ) ]

RBR

u u
u u d C

∂→∞

∂ ∂
− Γ =

∂ ∂∫ x

x x y
x y x

n n

                                               (14) 

 

Substituting (14) into (13) and setting R → ∞ ,  

we can deduce 
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*
* ( ) ( , )

( ) [ ( , ) ( ) ] , c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n
 

 

This proves (12). 

Applying Green theorem to harmonic function  

( )u x  and ( ) 1v ≡x  in cΩ , then we have 

 

( ) ( )
0

RB

u u
d d

Γ ∂

∂ ∂
Γ + Γ =

∂ ∂∫ ∫x x

x x

n n
 

 

The equation (11) holds as R → ∞  

This proves theorem. 

 

3.2 Equivalent boundary integral equations  

 

Letting → Γy , according the equations (11) and  

(12), we can get the following equivalent  

boundary integral equations 

 

               
( )

0
u

d
Γ

∂
Γ =

∂∫ x

x

n
                (15) 

*
* ( ) ( , )

( ) [ ( , ) ( ) ] ,
u u

ku u u d C
Γ

∂ ∂
= − Γ + ∈Γ

∂ ∂∫ x

x x y
y x y x y

n n

                                                   (16) 

 

where k  equals / 2α π  for 2D  and α  denotes 

the interior angle at point y  on the boundary 

[25]. 

 

4 Equivalent boundary integral 

equations for Poisson’s exterior 

problems  

 
In this section, we shall deduce Equivalent 

boundary integral equations for problem (6)-(7) 

(Poisson’s exterior BVP). 

 
4.1 Equivalent direct boundary integral 

equations 

 

Lemma 11   Suppose V  is a compact set, 
nS R⊂  is an open set, and V S⊂ . Then there is 

0 ( )g C S∞∈  such that 1g ≡  in v  and 0 1g≤ ≤  in 

S . 

 

Proof:   Define 

inf{ : , }V Sδ = − ∈ ∉x y x y

{ : /2}and U exist y V suchthat δ= ∈ − <x x y  

then we have >0δ , V U⊂  and U S⊂ . 

Suppose UT  is characteristic function of U . Let 

φ  is a nonnegative function belonging to 

0 /2( (0))C Bδ
∞  and 1φ =∫ . It can be verified easily 

that *UT φ  is the g  satisfying the conditions of 

theorem. 

 

Lemma 12   Let ( )f x  have compact support, 

then the particular solution ( )w y  has the 

following properties 

*
* ( ) ( , )

[ ( , ) ( ) ] 0, c

w u
u w d

Γ

∂ ∂
− Γ = ∈Ω

∂ ∂∫ x

x x y
x y x y

n n
  

                                                              (17) 

( ) ( )
0

c
c

w w
d d

Γ Ω

∂ ∂
Γ + Ω =

∂ ∂∫ ∫
x x

n n
      

                                                             (18) 

 

     Let (0)RB  denote a sufficiently large ball 

with radius R  and center at the original point, 

and (0) suppRB f⊃  (support of f ). According 

to Lemma 10, there is 0 ( (0))Rg C B∞∈  satisfying 

1g ≡  in (0)RB . Applying Green theorem to 

( )w y  and *( , )gu x y  in (0)RB , then we have the 

equation (17); It is similar that we can get the 

equation(18) by applying green theorem to 

( )w y  and g . 

     It is evident from Theorem 9 the solution  

( )v y  of boundary value problem (8)-(9) can  

be expressed as follows 

           
( )

0
v

d
Γ

∂
Γ =

∂∫ x

x

n
  

                                                           (19) 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] , c

v u
v u v d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n
 

                                                           (20) 

Since ( ) ( ) ( )v u w= −y y y , so it follows that 

 

( ) ( )
0

u w
d d

Γ Γ

∂ ∂
Γ − Γ =

∂ ∂∫ ∫x x

x x

n n
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*
*

*
*

( ) ( , )
( ) ( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ] , c

u u
u w u u d C

w u
u w d

Γ

Γ

∂ ∂
− = − Γ +

∂ ∂

∂ ∂
− − Γ ∈Ω

∂ ∂

∫

∫

x

x

x x y
y y x y x

n n

x x y
x y x y

n n

 

 

According to Lemma 12, we have 

 

     
( )

( ) 0
c

c

u
d f d

Γ Ω

∂
Γ + Ω =

∂∫ ∫x

x
x

n
 

                                                          (21)  
*

*

*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )] ,
c

c c

u u
u u u d

f u d C

Γ

Ω

∂ ∂
= − Γ

∂ ∂

+ Ω + ∈Ω

∫

∫

x

x x y
y x y x

n n

x x y y

      

                                                          (22) 

 

Letting → Γy , according the equations (21) and 

(22), we can get the following equivalent 

boundary integral equations 

 

          
( )

( ) 0
c

c

u
d f d

Γ Ω

∂
Γ + Ω =

∂∫ ∫x

x
x

n
   

                                                          (23) 
*

*

*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )] ,
c

c

u u
ku u u d

f u d C

Γ

Ω

∂ ∂
= − Γ

∂ ∂

+ Ω + ∈Γ

∫

∫

x

x x y
y x y x

n n

x x y y

     

                                                          (24) 

 

where k  equals / 2α π  for 2D  and α  denotes 

the interior angle at point y  on the boundary. 

 

4.2 Equivalent indirect boundary integral 

equations 

 

Without loss of generality, let us consider 

Dirichlet exterior BVP as follows 

 

                  
0

,

,

c c

c

u f

u u

∆ = − ∈Ω


= ∈Γ

x

x
 

 

According to the theorem 8, ( )ω x  is a particular 

solution of the above problem. Assume 

cu u ω′ = − , we consider the following exterior 

BVP 

 

                   

0,

,

(1),

c

c

u

u u

u O

ωΓ

′∆ = ∈Ω


′ = − ∈Γ
 ′ = → ∞

x

x

x

 

 

Let (0)RB  including Ω  denote a sufficiently 

large circle with radius R  and center at the 

original point. Setting � (0)R cBΩ = Ω∩  and 

applying Green theorem in �Ω , we can obtain 

 

�

*
*

*
*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ] ,

R

c c

B
c c

u u
u u u d

u u
u u d

Γ

∂

′∂ ∂
′ ′= − Γ

∂ ∂

′∂ ∂
′+ − Γ ∈Ω

∂ ∂

∫

∫

x

x

x x y
y x y x

n n

x x y
x y x y

n n

                                                                (25) 

Since ( ) (1)u O′ =x , and lim ( )
x

u C
→∞

′ =x   

according to lemma 4, thus 

 
*1 ( , ) 1 1

( ) ( ), ( ),
2

R

c

u
u C O o B

R R Rπ

∂
′ = + = − + ∈∂

∂

x y
x x

n

 

So 
*

* ( ) ( , )
lim [ ( , ) ( ) ]

RBR
c c

u u
u u d C

∂→∞

′∂ ∂
′− Γ =

∂ ∂∫ x

x x y
x y x

n n

 

then we can deduce 

 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] , c

c c

u u
u u u d C

Γ

′∂ ∂
′ ′= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n

                                                             (26) 

And since ( ) ( ) ( )cu u ω′ = −x x x and  

 

( ) ( )c

c c c

uu ω′ ∂∂ ∂
= −

∂ ∂ ∂

x x

n n n
, Thus 

*
*

*
*

*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ]

( ) ( , ) ,
c

c
c c

c c

c c

c c

u u
u u u d

u
u d

f u d C

ω
ω

Γ

Γ

Ω

∂ ∂
= − Γ

∂ ∂

∂ ∂
− − Γ

∂ ∂

+ Ω + ∈Ω

∫

∫

∫

x

x

x x y
y x y x

n n

x x y
x y x

n n

x x y y

   

                                                         (27) 

 

According to lemma 12, there exists 
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*
* ( ) ( , )

[ ( , ) ( ) ] 0
c c

u
u d

ω
ω

Γ

∂ ∂
− Γ =

∂ ∂∫ x

x x y
x y x

n n
 

 

then we have  

 
*

*

*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , ) ,
c

c
c c

c c

c c

u u
u u u d

f u d C

Γ

Ω

∂ ∂
= − Γ

∂ ∂

+ Ω + ∈Ω

∫

∫

x

x x y
y x y x

n n

x x y y

   

                                                         (28) 

 

Performing non-analytic continuation of ( )cu x  

to the finite domain Ω , we have the following 

harmonic function ( )u x  

 

                   
( ) 0,

( ) ( ),c

u

u u

∆ = ∈Ω


= ∈Γ

x x

x x x
 

 

Applying Green theorem in Ω , then the 

following equation exists 

 
*

* ( ) ( , )
0 [ ( , ) ( ) ] ,

u u
u u d

Γ

∂ ∂
= − Γ ∈Ω

∂ ∂∫ x

x x y
x y x y

n n
   

                                                       (29) 

 

By the addition of equations (28) and (29), we 

can get 

 
*

*

*
*

*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ]

( ) ( , ) ,
c

c
c c

c c

c c

u u
u u u d

u u
u u d

f u d C

Γ

Γ

Ω

∂ ∂
= − Γ

∂ ∂

∂ ∂
+ − Γ

∂ ∂

+ Ω + ∈Ω

∫

∫

∫

x

x

x x y
y x y x

n n

x x y
x y x

n n

x x y y

                                                       (30) 

 

According to 
* *( , ) ( , )

c

u u∂ ∂
= −

∂ ∂

x y x y

n n
 and 

( ) ( )cu u=x x , there are the following equation 

 
* *( ) ( ) ( , ) ( ) ( , )

c
c c
u u d f u d Cϕ

Γ Ω
= Γ + Ω +∫ ∫x

y x x y x x y    

                                                       (31) 

 

where 
( )( )

( ) c

c

uu
ϕ

∂∂
= +

∂ ∂

xx
x

n n
, 

c
∈Ωy  

By the Lemma 6 we have 

 

      
( )

0
u

d
Γ

∂
Γ =

∂∫
x

n
, 

( )
0

c

u
d

Γ

′∂
Γ =

∂∫
x

n
 

 

Since 
( ) ( )c

c c c

uu ω′ ∂∂ ∂
= −

∂ ∂ ∂

x x

n n n
, according to the 

lemma 12, we can get  

 

( )( )
( ) [ ]c

c

uu
d dϕ

Γ Γ

∂∂
Γ = + Γ

∂ ∂∫ ∫x x

xx
x

n n

( )
( )

c
c

c

d f d
ω

Γ Ω

∂
= Γ = − Ω

∂∫ ∫x

x
x

n
 

 

So 

 

( ) ( ) 0
c

cd f dϕ
Γ Ω

Γ + Ω =∫ ∫x
x x              (32) 

 

Therefore the equivalent expression of the 

potential function can be expressed as 

 

* *

( ) 0

( ) ( ) ( , ) ( ) ( , )c

d

u u d f u d C

ϕ

ϕ

Γ

Γ Ω

 Γ =


= Γ + Ω +

∫

∫ ∫

x

x x

x

y x x y x x y

 

Letting → Γy , according the expression (31), 

we can get the following equivalent boundary 

integral equations 

 
* *( ) ( ) ( , ) ( ) ( , ) ,

c
c cu u d f u d Cϕ

Γ Ω
= Γ + Ω + ∈Γ∫ ∫x

y x x y x x y y

                                                              (33) 

( )
( )c

c

u
kϕ

∂
=

∂

y
y

n
       

* *( , ) ( , )
( ) ( ) ,

c
c

c c

u u
d f dϕ

Γ Ω

∂ ∂
+ Γ + Ω ∈Γ

∂ ∂∫ ∫x

x y x y
x x y

n n

                                                              (34) 

 

where k  equals / 2α π  for 2D  and α  denotes 

the interior angle at point y  on the boundary. 
*( , )

c

u∂

∂

x y

n
 in the equation (21) has singularity 
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1
( )O
r

. Thus, considering the nonexistence of 

regular integral on Γ , we can only get Cauchy 

principal value integrals. 

Equivalent indirect boundary integral equations 

in three typical boundary conditions are given in 

the table 1(
u

u
∂

=
∂

n

n
) 

Table 1: Equivalent indirect boundary integral 

equations 

Boundary value 

problems 

Boundary 

conditions 

Boundary 

integral 

equation 

Dirichlet u  (32), (33) 

Neumann un  (32), (34) 

Mix u , un  (32), (33), (34) 

 
 

5 Discussion and conclusion  

 
5.1 Laplace’s exterior boundary value 

problem  

 

Example 1 Let cΩ  be the open complement of 

the unit circle with the boundary Γ , consider the 

following Dirichlet exterior BVP 

 

                        

2 0,

( ) 1,

cu x

u x

∇ = ∈Ω


≡ ∈Γ x
 

 

In fact, both 

1( ) 1u ≡x  and 2 ( ) ln 1u ≡ +x x ,  for any 

c∈Ωx are all the solutions of the above 

problem. It shows that the problem may have 

not unique solution if any conditions ensuring 

the behavior of the solution at infinite are not 

given. However, the constraint condition is not 

arbitrary. If we give the following condition 

( ) (1/ ),u O= → ∞x x x  

then the solution of the above problem does not  

exist. 

 

 

5.2  Boundary integral equation of Laplace’s 

exterior boundary value problem 

 

Now we will certify that the CBIE have no 

extensive suitability by an example. 

 

Example 2 Suppose Ω  is a bounded domain 

with the boundary Γ , and 2 ( )c RΩ = − Ω Γ∪  is 

its open complement. We shall consider the 

following two Dirichlet exterior boundary value 

problems (BVPs) 

 

( ) ( )0 0

( ) 0, ( ) 0,

: ( ) ( ) : ( ) ( )

( ) (1) ( ) (1)

c cu u

u u C u u

u O u O

 ∆ = ∈Ω ∆ = ∈Ω
 

Ι = + ∈Γ ΙΙ = ∈Γ 
 = →∞ = →∞ 

x x x x

x x x x x x

x x x x

 

where C  is a constant. 

The CBIE base on the harmonic function in cΩ  

can be expressed as 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] , c

u u
u u u d

Γ

∂ ∂
= − Γ ∈Ω

∂ ∂∫ y

y x y
x x y y x

n n

                                                                (35) 

Supposing the solutions 1u  and 2u  to the above 

two problem can be get by the use of the CBIE, 

then 1 2u u u= −  is the solution of the following 

boundary integral equation 

 

( ) 0,

( )

( ) (1)

cu

u C

u O

∆ = ∈Ω


= ∈Γ
 = → ∞

x x

x x

x x

 

 

It is obvious that ( )u C≡x ( c∈Ωx ) is the 

solution of the above problem. According to the 

theorem 9, if 
( )

0
u

d
Γ

∂
Γ =

∂∫ y

y

n
, the equation (35) 

approaches 0 as → ∞x ; if 
( )

0
u

d
Γ

∂
Γ ≠

∂∫ y

y

n
, 

the equation (35) approaches ∞  as → ∞x . 

Thus, at least one solution of problem (Ⅰ) and 

(Ⅱ) can’t obtained by means of the CBIE. 

 

 5.3  Conclusions 

 

For any two boundary value problems that the 

difference of two boundary functions is a 
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constant, at least one problem can not be solved 

by CBIE. What’s more, on account of 

complexity of boundary conditions in projects, it 

is difficult to judge that the problem can be 

solved under whatever conditions. In this 

situation, the EBIE of the Poisson’s exterior 

problems are developed. The above conclusions 

also apply to Neumann and mixed BVPs. 
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