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Abstract: - The solution of conventional boundary integral equations (CBIEs) sometimes does not exist or is not 

unique, which has been demonstrated in a large number of numerical experiments. According to the authors’ 

opinion, there exist two reasons which can lead to this phenomenon. One reason is that the solution of the CBIEs 

can not describe the behavior of the solution of the corresponding boundary value problem at infinity accurately; 

the other one is that the form of exterior boundary value problem has deficiency, which is still a problem to be 

solved but has not attracted adequate attention. In this paper, a sufficient and necessary condition with respect to 

the Dirichlet exterior boundary value problem, which can ensure the existence and uniqueness of the solution, is 

provided and fully proved. Based on the proposed condition, equivalent boundary integral equations (EBIEs) for 

exterior problems are established. In addition, an extremum principle on the exterior domain is introduced in this 

paper. 

 

Key-Words: - Laplace equation, exterior boundary value problem; BEM; Equivalent boundary integral 

equations; Extremum principle ; Numerical method 

 

1   Introduction 
Research on numerical methods of differential 

equations is a hot topic. Many efficient methods for 

finding numerical solutions of differential equations 

have been presented so far such as in [1-4]. 
Many problems of steady field in physics and 

engineering are directly related to boundary value 

problem (BVP) about solving Laplace’s equation, 

such as in hydrodynamic pressure [5-8], torsion of 

elastic rod [9,10], membrane equilibrium [11], stable 

heat conduction [12-14], steady seepage [15-18], and 

electromagnetic field [19-20]. Therefore, the 

efficient methods of solving Laplace’s equation play 

important roles in the engineer application. 
For the mixed interior BVP, it is well known that 

the existence and uniqueness of the solution to this 

kind of problem can be determined by the governing 

differential equations and its corresponding boundary 

conditions. However, when it comes to the exterior 

BVP, the existence and uniqueness of the solution 

depend on not only the governing differential 

equations and the corresponding boundary conditions 

but also the behavior of its solution at infinity [21-23]. 

The conventional Laplace’s exterior BVP can be 

expressed as two forms: one form is directly 

transplanted from the BVP in a finite field, the 

solution of this BVP is existent but not unique; the 

other one, which is the most prevalent, can be written 

as 

0

( ) 0,

( ) ( ),

( ) (1/ ),

cu

u u

u O

∆ = ∈Ω


= ∈Γ
 = → ∞

x x

x x x

x x x
 

 

If the above BVP is solvable, the solution must be 

unique. However, the solution of the problem is not 

always existent.  

The EBIE refers to the equivalence of the 

boundary integral equation and the original BVP. 

The CBIE in infinite domain is directly transplanted 

from the CBIE in finite domain, and sometimes there 

is no solution, or sometimes the solution is not unique. 

In 1977, Jawson and Symm [24] pointed out that, in 

some situation, the CBIE would be wrong. However, 

in their work the efficient method to solve such 

problem was not provided. The objective of this 

paper is to develop an EBIE in infinite domain, and 

the solution of the constructed EBIE is existent and 

unique. 

For the first kind Fredholm integral equation, 

there is no systematic theory until now and thus it is 

still a problem to be solved. Even though the integral 

kernel behaves degenerate properties, the solution of 

this kind of integral equation sometimes does not 

exist or is not unique. The indirect CBIE of Laplace 

problems belongs to this kind of integral equation, 

and therefore, its solution is not existence or not 
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unique in some situation. For this, some 

modifications for the first kind of Fredholm integral 

equation are constructed in this paper, and proved the 

modified integral equation has a unique solution.  

According to this, the main work of this paper can 

be summarized as follows: (1) section 2 of this paper 

provides a sufficient and necessary condition which 

can ensure the existence and uniqueness of solution 

for Dirichlet exterior BVP of the harmonic function. 

All arguments presented in this paper are carried out 

under the sense of classical solutions, and advantage 

of this is that behaviors of the solution at infinity can 

be reflected more concretely; (2) an extremum 

principle of the harmonic function on the exterior 

domain is proposed, for the first time, in this paper; (3) 

section 3 establishes the boundary integral equations 

(BIEs) which are equivalent to the BVP on the 

exterior domain; (4) in section 4, some modifications 

for the first kind of Fredholm integral equation are 

constructed to ensure the existence and uniqueness of 

the solution. 

 

 

2 The sufficient and necessary 

condition to exterior boundary value 

problem 

 
We assume that Ω  is a bounded domain with the 

boundary Γ  in 2R , 2 ( )c RΩ = − Ω Γ∪  is open 

complement of Ω . 

 

Lemma 1  For Laplace’s equation  
2 2

2 2

1 2

0
x x

ω ω
ω

∂ ∂
∆ = + =

∂ ∂
, define the 

 following nondegenerate transformation 

 

1 1 2

2 1 2

( , )

( , )

x y y

x y y

ϕ

ψ

=


=
,which satisfies the 

conditions  

1 1y y

ϕ ψ∂ ∂
=

∂ ∂
, 

2 2y y

ϕ ψ∂ ∂
= −

∂ ∂
,Then we 

have 
2 2

2 2

1 2

0
y y

ω ω
ω

∂ ∂
∆ = + =

∂ ∂
. 

 

Theorem 2 Assume 2 {0}H R⊂ − , and Let �H  , 

��H  be the two sets satisfying 

 

� 2
{ / , }H H⊂ = ∈y y x x x ,  

�� �2
{ / , }H H⊂ = ∈y y x x x  

where 1 2( , )x x=x  and 
2 2 2

1 2x x= +x , 

 then we have ��H H= . 

 

Proof. To any ��H∈z , there is �H∈y  in such 

a way that 
2

/=z y y ; then to �H∈y , there is 

H∈x  such that 
2

/=y x x . Consequently, we 

have 
2

2 2 2
/ / / / H= = = ∈z y y x x x x x  

Conversely, to any H∈x , there exist 
2

/=y x x , so 
2

/=z y y  belongs to �
�
H . Thus, 

we get  

��
2

2 2 2
/ / / / H= = = ∈x x x x x y y z ,  

and completes the proof. 

 

Definition 1 If ( )u x  is a function in  
2 {0}H R⊂ − , we can construct a new function  

�( )u y  defined as follows �
2

( ) ( / )u u=y y y ， 

�H∈y  

where �
2

1 2{( , ) / , , 1,2}k kH y y y x H k= = ∈ =x x . 

 

Theorem 3 If ( )u x  is the harmonic function in 

2 {0}H R⊂ − , then we have �( )u x  is the 

harmonic function in �H . 

 

Proof.  Define a transformation as follows 
2

/ , 1,2k kx y k= =y  

One can checks easily that the above 

transformation is nondegenerate. Thus we can 

apply Lemma 1 to obtain that �( )u y  is the 

harmonic function in �H . This completes the 

proof. 

 

Theorem 4 Assume ( )u x  is the harmonic 

function in { }Ω − y . y  is removable singular 

point of u , if ( ) (log )u o= −x x y  as →x y . 
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Proof.  Without the generality, suppose 0=y  

and 1B  is closed unit circle belongs to Ω , then 

u  is continuous on 1B∂ . Hence there is 

1( )C Bυ ∈  such that 

1

1

0

,

in B

u on B

υ

υ

∆ =


= ∂
 

 

To any 0ε >  and 0 1δ< < , we construct the 

following function in 1B Bδ−  

( ) ( ) ( ) logV u υ ε= − +x x x x  

It is easily verified that ( )V x  is harmonic in 

1B Bδ− , continuous in 1B Bδ− , and equal to 

zero on 1B∂ . By applying ( ) (log )u o= −x x y  

to ( )V x , we have ( ) 0V <x  for sufficiently 

small δ  on Bδ∂ . According to the extremum 

principle, ( ) 0V <x  holds in 1 {0}B − , then let 

0ε → , in 1 {0}B − , we obtain 0u υ− ≤ . In a 

similar way, 0u υ− ≥  is proved. This implies 

u υ=  in 1 {0}B − , that is to say, 0=y  is 

removable singular point.  

The proof is complete. 

By applying theorem 3 and theorem 4, we 

have the following corollary. 

 

Corollary Without the generality, assume 

0 c∉Ω  and u  is the harmonic function in cΩ . 

There exists a constant C  such that 

lim ( )u C
→∞

=
x

x , if ( ) (log )u o=x x  as → ∞x . 

 

Theorem 5 (the extremum principle in infinite 

domain) Without the generality, let 0 c∉Ω  and 

( )u x  is the harmonic function but not a constant 

in cΩ . There does not exist the value of ( )u x  to 

reach its supremum and infimum in cΩ  if, and 

only if, ( )u M≤x (M is a constant) as → ∞x . 

 

Proof. (Necessity). It is obvious for the proof of 

necessity. 

(Sufficiency). Since 0 c∉Ω  and ( )u x  is the 

harmonic function in cΩ , the theorem 3 shows 

that �( )u y  is harmonic in � cΩ . Besides, ( )u x  is a 

bounded function in cΩ , thus �( )u y  is bounded 

in the neighborhood of origin O , that is to say, 

�( ) (log )u o=y y  as 0→y . According to the 

theorem 4, there is a constant C  such that 
�

0
lim ( )u C

→
=

y
y , namely, origin 0 is the harmonic 

point of �( )u y . By the extremum principle in 

finite domain, there are the following relational 

expressions 
�

� �

�( ) sup ( )
c

u u
∈Ω Γ

<
y

y y
∪

 and 
� �

�
�

�sup ( ) sup ( )
c

u u
∈Ω Γ ∈Γ

=
y y

y y
∪

 

for all �
c∈Ωy  

According the definition 1, we have 
� �( ) ( ), ,c cu u= ∈Ω ∈Ωy x y x  

and � � 2
( ) ( ), , ( / )u u= ∈Γ ∈Γ =y x y x x y y  

Therefore, the following equations are 

established 

� �

�sup ( ) sup ( )
c c

u u
∈Ω Γ∈Ω Γ

=
xy

y x
∪∪

  

and 
�

�sup ( ) sup ( )u u
∈Γ∈Γ

=
xy

y x  

This proves the sup ( ) sup ( )
c

u u
∈Ω Γ ∈Γ

=
x x

x x
∪

 and  

completes the proof. 

Let us consider Dirichlet exterior BVP as  

follows 

 

( ) 0, cu∆ = ∈Ωx x                               (1) 

0( ) ( ),u u= ∈Γx x x                            (2) 

( )cu M≤x                                          (3) 

( x  is large enough)                          

where M  is a constant. 

 

Theorem 6 Let Γ  be a piecewise smooth curve, 
�0 c∉Ω Γ∪  and 0 ( )u x  is a continuous functions  

on Γ , there exists a unique solution of problem 

 (1)-(2) if and only if (3) holds. 

 

Proof. (Sufficiency). If lim ( )u C
→∞

=
x

x  holds, 

and then consider the BVP as follows 

 
�2 0, {0}cu in∇ = Ω ∪                        (4) 

�2

0( ) ( / ),u onυ = Γy y y                    (5) 
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Since � {0}cΩ ∪  is a finite domain with 

boundary �Γ , and ( )υ y  is a continuous function 

on �Γ . Obviously, there exists a unique solution 

to the above problem, and it is well known in 

mathematical physical equation. 

Suppose �( )υ x  (definition 1) is a function in 

�� ��
ccΩ Γ = Ω Γ∪ ∪ . According to both theorem 2 

and theorem 3, �( )υ x  is a harmonic functions in 

��
c cΩ = Ω , so �( )υ x  satisfies (1). On �

�
Γ = Γ , we 

have 

� 2

0( ) ( ) ( / ) ( )uυ υ υ= = =x y x x x  

That is to say, �( )υ x  satisfies (2). Thus, 

�( ) ( )u υ=x x  is the solution of the boundary 

value problem (1)-(2).  

 Necessity of the theorem6 will be proved 

later. 

 

Remark: Let Γ  be a piece smooth curve, 

0 ( )u x  is a continuous function which only 

contains a finite number of discontinuity points 

of the first kind, then theorem 6 still is true. 

 

Theorem 7 There exist the special harmonic  

function �u  in cΩ  such that  

 

�

�

�

( ) 0,

( ) 0,

( ) (ln ),

cu

u

u O

∆ = ∈Ω


= ∈Γ


= → ∞

x x

x x

x x x

                (6) 

 

Proof. Assume 
1

( ) ln
2

U d
π Γ

= − Γ
Γ ∫ x

y x y   

and 0U U Γ= , then consider the following  

exterior BVP 
2 ( ) 0, cυ∇ = ∈Ωx x  

0( ) ( ),Uυ = − ∈Γx x x  

( ) Mυ ≤x , ( x  is large enough)where M 

is a constant. 

   There exists a unique solution ( )υ x  for this 

problem, and if we suppose  

�( ) ( ) ( )u U υ= +x x x , then �( )u x  is the special 

harmonic function satisfying the conditions (6). 

The proof is complete.  

Now we will prove the necessity of the 

theorem 6. 

(Necessity). Assume (3) is false. When x  

approaches∞ , either we have ( ) (ln )u O=x x , 

or we can find a unbounded sequence { }kx  

satisfying lim ( )k
k

u x b
→∞

=  for random real 

number b . Thus, if ( )u x  is the solution of 

problem (1)-(2), and l  is random real number, 

then �( ) ( )u lu+x x  is also the solution of that 

according to theorem 7. But this is a 

contradiction because there exists a unique 

solution to the problem (1)-(2). This completes 

the proof. 

 

Theorem 8
[22]

 Assume ( )u x , ( )cu x  are the 

harmonic functions in Ω  and cΩ  respectively, 

and ( ) (1)cu O=x  at ∞ , then we have  

0
u
d

Γ

∂
Γ =

∂∫ n
, 0

c

u
d

Γ

∂
Γ =

∂∫ n
. 

 
 

3 Equivalent boundary integral 

equations 

 
3.1 Equivalent direct boundary integral 

equations  

 

Theorem 9 Let Γ  be a piece smooth curve in  

plane. Suppose ( )u x  is a harmonic function in 

 cΩ , and its all the first-order partial derivatives  

are continuous in cΩ . If ( )u M≤x (M is a  

constant) when x  is large enough, then ( )u x   

can be expressed as follows 

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
                                 (7) 

*
* ( ) ( , )

( ) [ ( , ) ( ) ] , c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n

                                                     (8) 

where n  is the unit outward normal vectors of Γ   

at the point x . 
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Proof.   Let (0)RB  including Ω  denote a  

sufficiently large circle with radius R  and center  

at the original point. Setting � (0)R cBΩ = Ω∩  and  

applying Green theorem on �Ω , we can obtain 

 

�

*
*

*
*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ] ,

RB

u u
u u u d

u u
u u d

Γ

∂

∂ ∂
= − Γ

∂ ∂

∂ ∂
+ − Γ ∈Ω

∂ ∂

∫

∫

x

x

x x y
y x y x

n n

x x y
x y x y

n n

                                                

(9) 

 

  Since ( )u x  is bounded at infinite, and  

lim ( )
x
u C

→∞
=x  according to theorem 4, thus 

*1 ( , ) 1 1
( ) ( ) ( )

2
R

u
u C o and o B

R R Rπ

∂
= + =− + ∈∂

∂

x y
x x

n

So 
*

* ( ) ( , )
lim [ ( , ) ( ) ]

RBR

u u
u u d C

∂→∞

∂ ∂
− Γ =

∂ ∂∫ x

x x y
x y x

n n

                                             (10) 

substituting (10) into (9) and setting R → ∞ , we  

can deduce 

 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] , c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n

 

This proves (8). 

 

    Applying Green theorem to harmonic function  

( )u x  and ( ) 1υ ≡x  in �Ω , then we have 

 

( ) ( )
0

RB

u u
d d

Γ ∂

∂ ∂
Γ + Γ =

∂ ∂∫ ∫x x

x x

n n
 

 

The above expression is changed into the  

following equation as R→ ∞ . 

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
 . This proves theorem. 

 

Theorem 10 A harmonic function ( )u y  is  

defined as follows 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] , c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n
 

As → ∞y , ( )u C→y  if and only if  

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
. 

 

Proof.   Since  
2

2 2

2( , )
2 ln 2ln ln(1 )− = + − +

xx y
x y y

y y
 

cos(( , ), )
ln ln

∂
− = ∇ − =

∂ −
i

x y n
x y n x y

n x y
 

then, as → ∞y , we have 

1 ( ) 1
( ) ( ) ln ( )

2

u
u d O C

π Γ

∂
= − Γ + +

∂∫ x

x
y y

n y
 

Therefore ( )u C→y  if, and only if,  

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
 as → ∞y . 

This proves theorem. 

 

Letting → Γy , according the equations (7) and  

(8), we can get the following equivalent  

boundary integral equations 

( )
0

u
d

Γ

∂
Γ =

∂∫ x

x

n
                              (11) 

*
* ( ) ( , )

( ) [ ( , ) ( ) ] ,
u u

ku u u d C
Γ

∂ ∂
= − Γ + ∈Γ

∂ ∂∫ x

x x y
y x y x y

n n

                                                    (12) 

where k  equals / 2α π  for 2D  and α  denotes 

the interior angle at point y  on the boundary 

[25]. 

 

3.2 Equivalent indirect boundary integral 

equations  

 

Let us consider Dirichlet exterior BVP as  

Follows 

0

( ) 0,

( ) ( ),

( ) (1),

cu

u u

u O

∆ = ∈Ω


= ∈Γ
 = → ∞

x x

x x x

x x

                (13) 

 

Let (0)RB  including Ω  denote a sufficiently  

large circle with radius R  and center at the  

original point. Setting � (0)R cBΩ = Ω∩  and  

applying Green theorem in �Ω , we can obtain 
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�

*
*

*
*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ] ,

R

c
c c

c c

c
c

B
c c

u u
u u u d

u u
u u d

Γ

∂

∂ ∂
= − Γ

∂ ∂

∂ ∂
+ − Γ ∈Ω

∂ ∂

∫

∫

x

x

x x y
y x y x

n n

x x y
x y x y

n n

           

(14) 

Since ( )cu x  is bounded at infinite, and  

lim ( )c
x
u C

→∞
=x  according to theorem 4, thus 

1
( ) ( )cu C O

R
= +x , 

*( , ) 1 1
( )

2c

u
o

R Rπ

∂
= − +

∂

x y

n
,  

RB∈∂x  

So 
*

* ( ) ( , )
lim [ ( , ) ( ) ]

R

c
c

BR

u u
u u d C

∂→∞

∂ ∂
− Γ =

∂ ∂∫ x

x x y
x y x

n n
 

then we can deduce 

 
*

* ( ) ( , )
( ) [ ( , ) ( ) ] ,c
c c c

c c

u u
u u u d C

Γ

∂ ∂
= − Γ + ∈Ω

∂ ∂∫ x

x x y
y x y x y

n n
 

                                                          (15) 

Performing non-analytic continuation of  

( )cu x  to the finite domain, we have the  

following harmonic function ( )u x  

( ) 0,

( ) ( ),c

u

u u

∆ = ∈Ω


= ∈Γ

x x

x x x
 

Applying Green theorem in Ω , then the  

following equation exists 

 
*

* ( ) ( , )
0 [ ( , ) ( ) ] , c

u u
u u d

Γ

∂ ∂
= − Γ ∈Ω

∂ ∂∫ x

x x y
x y x y

n n
  

                                                         (16) 

By the addition of equations (15) and (16), we  

can get 

 
*

*

*
*

( ) ( , )
( ) [ ( , ) ( ) ]

( ) ( , )
[ ( , ) ( ) ] ,

c
c c

c c

c

u u
u u u d

u u
u u d C

Γ

Γ

∂ ∂
= − Γ

∂ ∂

∂ ∂
+ − Γ + ∈Ω

∂ ∂

∫

∫

x

x

x x y
y x y x

n n

x x y
x y x y

n n

   

(17) 

According to 
* *( , ) ( , )

c

u u∂ ∂
= −

∂ ∂

x y x y

n n
 and  

( ) ( )cu u=x x , there are the following equation 

*( ) ( ) ( , )cu u d Cϕ
Γ

= Γ +∫ x
y x x y           (18) 

where 
( )( )

( ) c

c

uu
ϕ

∂∂
= +

∂ ∂

xx
x

n n
, c∈Ωy  

By the theorem 8 we have  

( ) 0dϕ
Γ

Γ =∫ x
x                                     (19) 

Therefore the equivalent expression of the 

 harmonic function can be expressed as 

 

*

( ) 0

( ) ( ) ( , )c

d

u u d C

ϕ

ϕ

Γ

Γ

 Γ =


= Γ +

∫

∫

x

x

x

y x x y
 

 

Letting → Γy , according the expression (18),  

we can get the following equivalent boundary 

 integral equations 
*( ) ( ) ( , ) ,cu u d Cϕ

Γ
= Γ + ∈Γ∫ x

y x x y y                      

(20) 
*( ) ( , )

( ) ( ) ,cu u
k dϕ ϕ

Γ

∂ ∂
= + Γ ∈Γ

∂ ∂∫ x

y y

y x y
y x y

n n
                 

(21) 
*( , )u∂

∂
y

x y

n
 in the equation (21) has singularity 

 
1
( )O
r

. Thus, considering the nonexistence of  

regular integral on Γ , we can only get Cauchy  

principal value integrals. 

Equivalent indirect boundary integral equations  

in three typical boundary conditions are given in  

the table 1 (
u

u
∂

=
∂

n

n
). 

 

Table 1: Equivalent direct boundary integral 

equations 

Boundary value 

problems 

Boundary 

conditions 

Boundary 

integral 

equation 

Dirichlet u  (19), (20) 

Neumann un  (19), (21) 

Mix u , un  (19), (20), (21) 

 

 

4 The modification for the first kind 

Fredholm BIE 
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4.1 Some discussions on the conventional 

first kind Fredholm BIE  

 

The conventional first kind Fredholm BIE can be  

expressed as follows 

( ) ( ) ln ,g dφ
Γ

= − Γ ∈Γ∫ x
y x x y x    (22) 

 

The solution of the above integral equation may  

not exist, even though ( ) ( )g C∈ Γy , even satisfy  

more stringent conditions. This situation can be  

illustrated more fully by the following Laplace’s  

problem 

 

1

1

(0) 1

0, (0)

( ) ( ), (0)B

u in B

u g on B∂

∆ =


= ∂ y y
 

 

Since ( ) ( )g C∈ Γy , for the above BVP, it is  

obvious that the solution exists. Considering the 

 integral equation (22) , we have  

(0) ( ) ln 0 0xg dφ
Γ

= − Γ =∫ x x . 

 If (0) 0u > , this integral equation can not be 

solved. 

In order to make a further discussion on the 

conventional first kind Fredholm BIE, we take 

the integral equation (22) as the BIE for 

Laplace’s problem in infinite domain. Now, 

consider the following two exterior BVPs 

 

( ) ( )

0, 0,

: ( ) : ( )

( ) ( )

c cu u

u g u g K

u M u M

Γ Γ

 ∆ = ∈Ω ∆ = ∈Ω
 

Ι = ∈Γ ΙΙ = + ∈Γ 
 

≤ →∞ ≤ →∞ 

x x

y y y y

x x x x

 

where K , M are constants. Suppose 

1( )φ x , 2 ( )φ x  are the solutions of integral 

equations for the problems ( )Ι and ( )ΙΙ  

respectively, there are 

 

1( ) ln ( )xd gφ
Γ

− Γ =∫ x x y y               (23) 

2 ( ) ln ( )xd g Kφ
Γ

− Γ = +∫ x x y y        (24) 

 

which, by subtraction, yield the following 

expression 

( ) ln xd Kφ
Γ

− Γ ≡∫ x x y     for any 2R∈y                     

(25) 

where 2 1( ) ( ) ( )φ φ φ= −x x x . If ( ) 0dφ
Γ

Γ =∫ x
x , 

the equation (25) approaches 0 as → ∞y ; if 

( ) 0dφ
Γ

Γ ≠∫ x
x , the equation (25) approaches ∞  

as → ∞y . Thus, at least one solution of 

problem (Ⅰ) and (Ⅱ) can’t obtained by means 

of the integral equation (22). 

 

4.2 The modification for the conventional first 

kind Fredholm BIE 

 

Theorem 11 Write the following integral 

equations 

( ) 0dφ
Γ

Γ =∫ x
x                                 (26) 

( ) ( ) ln xg d Cφ
Γ

= − Γ +∫y x x y       (27) 

There exists a unique solution ( )φ x  for these 

integral equations, if ( ) ( )g C∈ Γx . 

Proof:   Assume the below BVPs 

 

0,

( ) ( )

u

u gΓ

∆ = ∈Ω


= ∈Γ

x

x x x
                 (28) 

0,

( ) ( )

( )

c c

c

c

u

u g

u M

Γ

∆ = ∈Ω


= ∈Γ


≤ → ∞

x

x x x

x x

           (29) 

 

where (28) and (29) are the interior and exterior 

BVPs respectively. Since ( ) ( )g C∈ Γx , the 

solutions of these two problems exist. Now, 

suppose ( )u x , ( )cu x  are the solutions of 

integral equations for the problems (28) and (29) 

respectively, and n , cn  are the unit outward 

normal vectors of Γ  to the domain Ω  and cΩ  

respectively. Define ( ) c

c

uu

n n
φ

∂∂
= +

∂ ∂
x , it can be 

easily verified that ( )φ x  is the solution of the 

problem (26)-(27). If there are two solutions 

1 1( ( ), )Cφ x , 2 2( ( ), )Cφ x  for the integral equation 

(26)-(27), then we have 

( ) 0dφ
Γ

Γ =∫ x  
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( ) ln d Cφ
Γ

− Γ ≡∫ x
x x y    for any 2R∈y  

where 2 1( ) ( ) ( )φ φ φ= −x x x , 2 1C C C= − . As 

 0→y , the integral expression  

( ) ln dφ
Γ

− Γ∫ x
x x y  tends to zero, that is to say, 

0C = . Hence ( ) 0φ =x , and the proof is 

complete. 
 

 

5 Discussion and conclusion  

 
5.1 Laplace’s exterior boundary value 

problem  

 

Example 1 Let cΩ  be the open complement of 

the unit circle with the boundary Γ , consider the 

following Dirichlet exterior BVP 

 

0,

( ) 1,

cu x

u x

∆ = ∈Ω


≡ ∈Γ x
 

 

In fact, both 1( ) 1u ≡x  and 2 ( ) ln 1u ≡ +x x , 

c∀ ∈Ωx are all the solutions of the above 

problem. It shows that the problem may have not 

unique solution if any conditions ensuring the 

behavior of the solution at infinite are not given. 

However, the constraint condition is not 

arbitrary. If we give the following condition 

( ) (1/ ),u O= → ∞x x x  

then the solution of the above problem does not 

exist. 

 

5.2  Boundary integral equation of Laplace’s 

exterior boundary value problem 

 

Now we will certify that the CBIEs have no 

extensive suitability by an example. 

 

Example 2 Suppose Ω  is a bounded domain 

with the boundaryΓ , and 2 ( )c RΩ = − Ω Γ∪  is 

its open complement. We shall consider the 

following two Dirichlet exterior BVPs 

( ) ( )0 0

( ) 0, ( ) 0,

: ( ) ( ) : ( ) ( )

( ) (1) ( ) (1)

c cu u

u u C u u

u O u O

∆ = ∈Ω ∆ = ∈Ω 
 

Ι = + ∈Γ ΙΙ = ∈Γ 
 = →∞ = →∞ 

x x x x

x x x x x x

x x x x

where C  is a constant. 

   The CBIEs base on the harmonic function in 

cΩ  can be expressed as 

*
* ( ) ( , )

( ) [ ( , ) ( ) ] , c

u u
u u u d

Γ

∂ ∂
= − Γ ∈Ω

∂ ∂∫ y

y x y
x x y y x

n n

                                                             (30) 

Supposing the solutions 1u  and 2u  to the above 

two problem can be get by the use of the CBIEs, 

then 1 2u u u= −  is the solution of the following 

boundary integral equation 

 

( ) 0,

( )

( ) (1)

cu

u C

u O

∆ = ∈Ω


= ∈Γ
 = → ∞

x x

x x

x x

 

 

It is obvious that ( )u C≡x  ( c∈Ωx ) is the 

solution of the above problem. According to the 

theorem 9, if 
( )

0
u

d
Γ

∂
Γ =

∂∫ y

y

n
, the equation (30) 

approaches 0 as → ∞x ; if 
( )

0
u

d
Γ

∂
Γ ≠

∂∫ y

y

n
, 

the equation (30) approaches ∞  as → ∞x . 

Thus, at least one solution of problem (Ⅰ) and 

(Ⅱ) can’t obtained by means of the CBIEs. 

 

5.3  Conclusions 

 

For any two boundary value problems that the 

difference of two boundary functions is a 

constant, at least one problem can not be solved 

by CBIEs. What’s more, on account of 

complexity of boundary conditions in projects, it 

is difficult to judge that the problem can be 

solved under whatever conditions. In this 

situation, the EBIEs of the Laplace’s exterior 

BVP problems are developed. The above 

conclusions also apply to Neumann and mixed 

BVPs. Besides, we constructed some 

modifications for the conventional first kind 

Fredholm integral equation to satisfy the 

existence and uniqueness of the solution. 
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